九年级数学相似三角形的应用2
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
(五)总结归纳
1.让学生回顾本节课所学的相似三角形的性质,总结性质的应用和证明方法。
2.引导学生将相似三角形的性质与全等三角形的性质进行对比,明确它们的联系与区别。
3.强调相似三角形在实际生活中的应用,激课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好铺垫。
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,如对应角相等、对应边成比例,并能运用这些性质解决实际问题。
2.使学生能够运用相似三角形的性质,进行几何图形的证明和计算,提高学生的逻辑思维能力和解题技巧。
3.培养学生运用相似三角形的性质,解决与生活实际相关的问题,如地图比例尺、摄影中的相似变换等。
1.学生对相似三角形定义的理解程度,是否能顺利过渡到性质的学习。
2.学生在几何证明方面的能力,是否能运用已知性质进行严密的逻辑推理。
3.学生在实际问题中运用相似三角形性质的能力,是否能够将理论知识与生活实际相结合。
针对以上情况,教师应采取生动形象的教学方法,如运用多媒体、实物模型等辅助教学,帮助学生形象地理解相似三角形的性质。同时,设计具有启发性的问题和例题,引导学生积极参与课堂讨论,提高他们的逻辑思维能力和解题技巧。在课后,关注学生的作业完成情况,及时发现并解决他们在学习过程中遇到的问题,确保学生对相似三角形性质的理解和应用。
(3)采用小组合作法,鼓励学生相互交流、讨论,共同解决几何证明和实际问题;
(4)实施启发式教学法,教师通过提问、引导学生思考,激发学生的思维潜能。
2.教学策略:
(1)逐步引导:从复习相似三角形的定义入手,逐步过渡到性质的学习,让学生在已有知识的基础上自然过渡;
湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计
湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计一. 教材分析《相似三角形的判定》是湘教版数学九年级上册3.4的内容,这部分内容是在学生已经掌握了相似三角形的概念和性质的基础上进行学习的。
本节课的主要内容是引导学生探究并掌握相似三角形的判定方法,并通过大量的例题和练习题,使学生熟练掌握并应用这些方法。
教材中提供了丰富的教学资源,包括例题、练习题、探究题等,有助于提高学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于相似三角形的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、探究等活动,发现并总结相似三角形的判定方法。
同时,学生可能对一些复杂的问题感到困惑,需要教师给予适当的指导。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,并能灵活运用。
2.过程与方法:通过观察、思考、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:如何引导学生发现并总结相似三角形的判定方法。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、思考、探究,发现并总结相似三角形的判定方法。
2.例题教学法:教师通过讲解典型例题,使学生掌握相似三角形的判定方法。
3.练习法:教师布置适量的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教材:湘教版数学九年级上册。
2.教学多媒体设备:用于展示教材内容、例题和练习题。
3.练习题:用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察、思考,发现相似三角形的判定方法。
4.5 相似三角形的性质及其应用第2课时 相似三角形的性质(2)浙教版数学九年级上册课件
三角形相似的 性质(2)
周长比 =相似比 面积比 =相似比的平方
1.填空: (1)如果三角形的边长扩大到原来的100倍,那么三角 形的周长扩大到原来的____1_0_0倍;面积扩大到原来的 ___1_0_0_0倍0 . (2)如果三角形的周长扩大到原来的100倍,那么三角 形的边长扩大到原来的____1_0_0倍. (3)如果三角形的面积扩大到原来的100倍,那么三角 形的边长扩大到原来的_____1_0倍.
3
5
4
10 6
8
相似比
3
5
4
10 6
8
相似三角形的周长和面积有以下性质:
相似三角形的周长之比等于相似比; 相似三角形的面积之比等于相似比的平方.
A
B
C
A′
B′
C′
A
如图,分别作△ABC,△A′B′C′的BC,
B
B′C′边上的高线AD,A′D′.
∵△ABC∽△A,在等边三角形ABC中,点D,E分别在边AB,AC上, DE∥BC. 如果BC=8 cm,AD:DB=1:3,则△ADE的周长等 于___6___cm,△ADE的面积等于______cm2.
感谢观看!
∵AD,A′D′分别是BC, B′C′边上的高线,
∴∠ADB=∠A′D′B′=90°,
B′
DC A′
C′ D′
A B DC
A′
B′
C′
D′
解:(1)在△ABC和△ADE中, ∵∠CAB=∠EAD(公共角), ∠B=∠ADE(已知), ∴△ABC∽△ADE.
如图,D,E分别是AC,AB上的点,∠ADE=∠B, AG⊥BC于点G,AF⊥DE于点F. 若AD=3,AB=5,求: (2)△ADE与△ABC的周长之比. (3)△ADE与△ABC的面积之比.
北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计
4.反思与总结:
-要求学生完成一份学习反思,内容包括本节课学到的知识、遇到的问题、解决方法以及收获等,帮助学生建立自我评价和反思的习惯。
-教师在批改作业时,要及时给予评价和反馈,关注学生的进步,鼓励学生持续努力。
-新知探究:组织学生分组讨论,合作探究相似三角形的性质,教师适时引导和点拨。
-性质应用:设计不同层次的例题和练习,让学生在解决问题的过程中运用相似三角形的性质。
-总结提升:引导学生归纳相似三角形性质的关键点,总结解题策略和方法。
-课堂反馈:通过课堂练习和小结,了解学生的学习情况,及时调整教学策略。
3.教学评价:
-注重培养学生的几何直观和逻辑思维能力,通过逐步引导,帮助学生建立知识体系。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将以生活实例为基础,引导学生从实际问题中发现相似三角形的性质。首先,我会向学生展示一组图片,包括放大镜下的三角形、不同尺寸的国旗图案等,让学生观察并思考这些图形之间是否存在某种关系。通过学生的回答,我会引导他们回顾全等三角形和相似三角形的定义,为新课的学习做好铺垫。
接着,我会提出一个具有挑战性的问题:“如果我们在一个三角形中,知道两边和它们夹角的比例关系,我们能否求出第三边的长度?”这个问题将激发学生的好奇心,促使他们积极思考。在此基础上,导入相似三角形的性质,为接下来的新知学习奠定基础。
(二)讲授新知
在讲授新知阶段,我会采用讲解、示范、引导相结合的方式,让学生逐步理解并掌握相似三角形的性质。
3.引导学生通过观察、实践、探索,发现相似三角形在生活中的应用,提高学生将数学知识应用于实际问题的能力。
相似三角形的应用
相似三角形的应用相似三角形是指具有相同形状但大小不同的两个或多个三角形。
相似三角形之间存在一种特殊的比例关系,通过这种比例关系,我们可以运用相似三角形解决各种实际问题。
本文将重点介绍相似三角形的应用领域及其在数学和几何中的具体运用。
一、相似三角形在实际问题中的应用1. 测量高度和距离:相似三角形的应用在测量高度和距离方面非常常见。
例如,在无法直接测量建筑物或树木的高度时,可以通过相似三角形的比例关系,利用已知的高度和距离来计算未知的高度。
类似地,当无法直接测量两个物体之间的距离时,可以利用相似三角形的比例关系来推算出距离。
2. 图像的放大和缩小:在艺术和设计领域中,相似三角形的应用非常重要。
当我们需要将一幅图像进行放大或缩小时,可以利用相似三角形的性质来确定新图像与原图像的比例关系,从而实现图像的变形。
3. 建筑设计与规划:在建筑设计与规划中,相似三角形的应用也非常普遍。
通过相似三角形可以计算出建筑物的高度、宽度、长度等尺寸信息,从而帮助设计师进行准确的规划和设计。
二、相似三角形在数学中的应用1. 比例和比值的计算:相似三角形的比例关系可以用来计算不同长度之间的比例和比值。
通过相似三角形的性质,我们可以建立起各种数学关系式,进行比例和比值的计算,从而解决许多实际和抽象的问题。
2. 三角函数的定义和性质:在三角函数的定义和性质中,相似三角形也扮演着重要角色。
例如,在定义正弦、余弦和正切函数时,就需要利用相似三角形的性质来推导出它们的数学表示式。
相似三角形的运用使得三角函数的计算和应用更加简便和灵活。
3. 几何图形的相似性判定:相似三角形的性质在判定几何图形的相似性方面起着至关重要的作用。
根据相似三角形的比例关系,我们可以通过对角、边长比较等方法来判断两个图形是否相似,并进一步推导出它们之间的其他性质。
总结:相似三角形在实际问题、数学和几何中都有着广泛的应用。
通过运用相似三角形的比例关系,我们可以解决测量、计算和设计等问题,在数学和几何中推导出各种定理和性质。
24.3相似三角形的应用2(课件)(华师大版九年级上册)
相似三角形的应用2
等分线段
同学们看课本第82页,告诉我们应用一组等距离 的平行线可以把一线段五等分,你能把一线段三 等分或六等分吗?试试看
如果手头上没有这样等距离的平行线怎么 办呢?
C
A
D
E
F
B
把线段AB五等分 画法:
A1 A2
A3
A4
1.过线段AB的一端点A任意画一射线;
A5 P
2.在AP上依次截取五段相等的线段AA1、A1A2、 A2A3、A3A4、A4A5。 3.连结A5B; 4.分别过A4、A3、A2、A1点画BA5的平行线,这些 平行线与线段AB交于点F、E、D、C,这样就 把线段AB五等分。
为什么这样就五等分了呢?能否用相似三角 形性质说明理由。 因为A1C∥A5B, 因此∠AA1C=∠AA5B, 而∠A=∠A 所以△AA1C∽△AA5B, 则AA1/ AA5=AC/AB,而AA1/AA5=1/5 所以AC/AB=1/5,即AC=1/5AB。 同样道理:AD=2/5AB
练习
把线段AB七等分
把线段AB分成4:3的两部分
如图,在离某建筑物4米处有一棵树, 在某时刻,1.2m长的竹竿竖直地面, 影长为2m,此时,树的影子照射地 面,还有一部分影子在建筑物的墙上, 墙上的影长为2m,那么这棵树高约 多少米?
A A/ B/ C/ B
D C
课堂小结
应用相似三角形的知识,可以用于测量物
分别为35cm 和14cm。 1. 它们的周长差60cm,求这两个三角形的 周长。 2. 它们的面积差588cm2,求这两个三角形的 面积。 3.要做两个相似的三角形的框架,其中一个三角 形框架的三边长分别为4、5、6,另一个三角形 框架有一边长为2,另两边的木料应多长可以使 它们相似?
相似三角形的性质与应用
相似三角形的性质与应用相似三角形是初中数学中的重要概念,它们具有一些特定的性质和各种应用。
本文将介绍相似三角形的性质,以及在实际问题中如何应用相似三角形来解决一些实际问题。
一、相似三角形的性质相似三角形是指具有相同形状但大小不一的两个三角形。
相似三角形具有以下几个基本性质:1. 对应角相等性质:相似三角形中的对应角相等,即相等角所对的边成比例。
例如,若∠A≌∠D,则边AB与边DE的比等于边AC与边DF的比,即AB/DE = AC/DF。
2.对应边成比例性质:相似三角形中的对应边成比例,即边的比和角的比之间成立。
例如,若AB/DE = AC/DF,则∠A≌∠D。
3.三角形的扩大缩小性质:相似三角形中,如果一个三角形的边与另一个三角形的边成比例,那么这两个三角形是相似的。
例如,如果AB/DE = AC/DF且BC/EF = AC/DF,则三角形ABC与三角形DEF相似。
二、相似三角形的应用相似三角形在实际问题中具有广泛的应用。
下面介绍几个常见的应用:1.测量高度:相似三角形可用于测量无法直接测量的高度。
例如,当直接无法测量一座建筑物的高度时,可以利用相似三角形原理,在地面上测量一个已知距离的长度,然后观察建筑物的倾斜角度,从而利用相似三角形的比例关系计算出建筑物的高度。
2.计算距离:相似三角形还可用于计算距离。
例如,当无法直接测量两个不相邻点之间的距离时,可以利用相似三角形与已知距离的比例关系计算出所需距离。
3.设计工程:在设计工程中,相似三角形可用于模拟大规模结构的小规模模型。
通过将真实结构缩小成模型,可以通过相似三角形的比例关系获得有关真实结构的信息,从而进行有效的设计和分析。
4.地图测绘:在制作地图时,为了将真实距离转换为地图上的距离,可利用相似三角形的比例关系来缩放。
这样可以保持地图的比例并准确表示真实距离。
总结:相似三角形的性质和应用是初中数学中的重要内容。
准确理解相似三角形性质,并能灵活运用到实际问题中,能够帮助我们解决许多几何和测量方面的困难。
人教版九年级数学下册第二十七章《相似三角形应用举例》优质公开课课件
例1 已知左、右并排的两棵
大树的高分别是AB=8m和 CD=12m,两树的根部相距 BD=5m.一个身高1.6m的 人沿着正对这两棵树的一 F 条水平直路m从左向右前进, E 当他与左边较低的树的距 离小于多少时,就不能看 到右边较高的树的顶端点C?
A
A
A
P
P
Q
Q P
Q
C
BC
BC
B
• 12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 • 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/32022/5/3May 3, 2022 • 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
C A
BDm
C A
F H
K
G
EB D m
李巍同学在回家的 路上发现了如图两根电线
杆AB、CD,分别在高10m的A处和15m的C处有 两根钢索将两杆固定,求钢索AD与钢索BC的交点 M离地面的高度MH.
C AM
E
BH D
F
例2 如图,在矩形ABCD中,AB=6米,BC=8米,
动点P以2米/秒的速度从点A出发,沿AC向点C移动,同 时动点Q以1米/秒的速度从点C出发,沿CB向点B移动, 设P、Q两点移动t秒(0<t<5)后, 四边形ABQP的面积 为S平方米。
老师的小结:
1、“数学建模”解决实际问 题: 构造相似三角形解决实际生活中求线段长问题 2、“数学思想”解决综合题
“方程思想” “分类讨论思想”
初中数学湘教版九年级上册第3章 图形的相似3.5 相似三角形的应用-章节测试习题(2)
章节测试题1.【答题】如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是______毫米.【答案】【分析】本题考查相似三角形的应用.【解答】∵DE∥AB,∴△CDE∽△CAB,∴CD:CA=DE:AB,∴20:60=DE:10,∴DE毫米,∴小管口径DE的长是毫米.故答案为.2.【答题】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物项端A标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,则建筑物的高是______米.【答案】54【分析】本题考查相似三角形的应用.【解答】∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴,∵CD=DG=EF=2m,DF=52m,FH=4m,∴,∴,解得BD=52,∴,解得AB=54,即建筑物的高是54m.故答案为54.3.【答题】如图所示为某种型号的台灯的横截面图,已知台灯灯柱AB长30cm,且与水平桌面垂直,灯臂AC长为10cm,灯头的横截面△CEF为直角三角形,当灯臂AC 与灯柱AB垂直时,沿CE边射出的光线刚好射到底座B点.若不考虑其它因素,则该台灯在桌面可照亮的宽度BD的长为______cm.【答案】100【分析】本题考查相似三角形的应用.【解答】∵AB⊥BD,AC⊥AB,∴AC∥BD.∴∠ACB=∠DBC.∵∠A=∠BCD=90°,∴△ABC∽△CDB.∴,∴BC2=AC•BD,在Rt△ABC中,BC2=AC2+AB2=102+302=1000,∴10BD=1000.∴BD=100(cm).故答案为100.4.【题文】如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE =1m,OF=5m,求围墙AB的高度.【答案】4 m.【分析】本题考查相似三角形的应用.【解答】延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,∴,解得x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.5.【题文】如图,要从一块Rt△ABC的白铁皮零料上截出一块矩形EFGH白铁皮.已知∠A=90°,AB=16cm,AC=12cm,要求截出的矩形的长与宽的比为2:1,且较长边在BC上,点E,F分别在AB,AC上,所截矩形的长和宽各是多少?【答案】矩形的长为cm,宽为cm.【分析】本题考查相似三角形的应用.【解答】如图,过点A作AN⊥BC交HF于点M,交BC于点N.∵∠BAC=90°,∴∠BNA=∠BAC,BC20(cm).又∵∠B=∠B,∴△ABN∽△CBA,∴,∴AN(cm).∵四边形EFGH是矩形,∴EF∥HG,∴∠AHF=∠B,∠AFM=∠C,∴△AHF∽△ABC,∴.设EF=x,则MN=x,由截出的矩形的长与宽的比为2:1可知HF=2x,,解得x,∴2x.答:截得的矩形的长为cm,宽为cm.6.【答题】如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为______米.【答案】5【分析】本题考查相似三角形的应用.【解答】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=5.∴小明的影长为5米.7.【答题】如图,为了估计荆河的宽度,在荆河的对岸选定一个目标点,在近岸取点和,使点、、在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为,如果,,,则荆河的宽度为()A. B. C. D.【答案】B【分析】本题考查相似三角形的应用,解题的关键是利用相似三角形的对应边的比相等求出PQ的长度.由题意可知:QR∥ST,∴△PQR∽△PST,由相似三角形的性质可知,列出方程即可求出PQ的长度.【解答】由题意可知:QR∥ST,∴△PQR∽△PST,∴.设PQ=x,∴,解得x=120.故PQ=120m.选B.8.【答题】数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为米的竹竿的影长为米.同时另一名同学测量这棵树的影长为米,则树高为______米.【答案】4【分析】本题考查了相似三角形的运用;熟记同一时刻的物高与影长成比例是解答此题的关键.设这棵树的高度是x米,根据同一时刻的物高与影长成比例得出比例式,即可得出结果.【解答】设这棵树的高度是x米,根据题意得1:0.8=x:3.2,解得x=4;即这棵树的高度为4米.故答案为4.9.【答题】如图,小明用2m长的标杆测量一棵树的高度.根据图示条件,树高为______m.【答案】7【分析】根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.【解答】这棵树高是x米,2:6=x:(6+15),6x=21×2,x=7.故答案是7.10.【题文】如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.【答案】90m.【分析】本题考查了相似三角形的判定与性质,根据已知得出△PQR∽△PST是解题关键.根据相似三角形的性质得出,进而代入求出即可.【解答】根据题意得出QR∥ST,则△PQR∽△PST,故,∵QS=45m,ST=90m,QR=60m,∴,解得PQ=90(m),∴河宽度为90米.11.【题文】如图,有一块三角形的土地,它的一条边BC=100米,BC边上的高AH=80米.某单位要沿着边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC 上.若大楼的宽是40米,求这个矩形的面积.【答案】2000平方米或1920平方米.【分析】利用矩形的性质得出△ADG∽△ABC,然后利用相似三角形对应高的比等于相似比求出矩形的长,然后利用矩形的面积公式计算即可.【解答】∵矩形DEFG中DG∥EF,∴∠ADG=∠B,∠AGD=∠C,∴△ADG∽△ABC,∴.①若DE为宽,则,∴DG=50,此时矩形的面积是50×40=2000平方米;②若DG为宽,则,∴DE=48,此时矩形的面积是48×40=1920平方米.12.【答题】在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C. 2倍 D. 3倍【答案】A【分析】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【解答】如图,作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故选A.13.【答题】如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P处水平放置一平面镜,一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是______米.【答案】24【分析】本题考查了相似三角形的应用,根据题意得出△ABP∽△CDP是解题关键.由已知得△ABP∽△CDP,根据相似形的性质可得=,解答即可.【解答】由反射的性质可得∠APB=∠CPD,又∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∴CD===24(米).故答案为24.14.【题文】如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.【答案】30mm.【分析】【解答】作出示意图.连接AB,同时连结OC并延长交AB于E,∵夹子是轴对称图形,故OE是对称轴,∴OE⊥ABAE=BE,∴Rt△OCD∽Rt△OAE,∴,而,即,∴AB=2AE=30(mm).答:AB两点间的距离为30mm.15.【题文】小青同学想利用影长测量学校旗杆AB的高度.某一时刻他测得长1米的标杆的影长为1.4米,与此同时他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得其长度为11.2米和2米,如图所示.请你帮他求出旗杆AB的高度.【答案】10米.【分析】利用相似三角形对应线段成比例,求解即可【解答】过点C作CH⊥AB.设AH=x米,,解得x=8,AB=8+2=10米.答:AB的高度为10米.16.【题文】数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH =3米;③计算树的高度AB;【答案】15米.【分析】本题考查了相似三角形的应用,正确应用相似三角形的判定与性质是解题关键.根据题意得出△ABF∽△GHF,利用相似三角形的性质得出AB,BC的长进而得出答案.【解答】设AB=x米,BC=y米.∵∠ABC=∠EDC=90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴,∵∠ABF=∠GHF=90°,∠AFB=∠GFH,∴△ABF∽△GHF,∴,∴,∴,解得y=20,把y=20代入中,得x=15,∴树的高度AB为15米.17.【题文】“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【答案】9.6米.【分析】本题考查相似三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.通过△CND∽△ANB和△EMF∽△AMB的性质求得x的值,然后结合求得大树的高.【解答】设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即.解得x=6.6,∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.18.【题文】如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【答案】48mm.【分析】本题考查了正方形的性质、相似三角形的应用,注意数形结合的运用是解题关键.根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.19.【题文】20世纪90年代以来,我国户外广告行业取得了突飞猛进的发展,户外广告装置多设立于城市道路、铁路、公路等主要交通干道边上,面向密集的车流和人流.某天,小芳走到如图所示的C处时,看到正对面一条东西走向的笔直公路.上有一辆汽车从东面驶来,到达Q处时,恰好被公路北侧边上竖着的一个长12m的广告牌AB挡住,3s后在P处又重新看到该汽车的全部车身,已知该汽车的行驶速度是21.6km/h,假设AB∥PQ,公路宽为10m,求小芳所在C处到公路南侧PQ的距离.【答案】30m.【分析】本题考查了相似三角形的应用,证明△CAB∽△CPQ是本题的关键.通过证明△CAB∽△CPQ可得,可求解.【解答】设小芳所在C处到公路南侧PQ的距离为x m,21.6km/h=6m/s,∵AB∥PQ,∴△CAB∽△CPQ,∴,∴,∴x=30,∴小芳所在C处到公路南侧PQ的距离为30m.20.【答题】如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.【答案】D【分析】本题考查了把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出边长,熟练掌握对应高的比等于相似比是关键.过点B 作BP⊥AC,垂足为P,BP交DE于Q,三角形的面积公式求出BP的长度,由相似三角形的判定定理得出△BDE∽△BAC,设边长DE=x,根据相似三角形的对应边成比例求出x的长度可得.【解答】如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC•AB•BC•AC•BP,∴BP.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴.设DE=x,则,解得x,选D.。
浙教版九级上数学.相似三角形的性质及其应用同步导学练(含答案)2
4.5 相似三角形的性质及其应用(2)相似三角形的周长之比等于相似比,面积之比等于相似比的平方.1.两个相似三角形的一组对应边分别为5cm和3cm,若它们的面积之和为136cm2,则较大的三角形的面积是(D).A.36cm2B.85cm2C.96cm2D.100cm22.如图所示,已知△ABC∽△DEF,AB∶DE=1∶2,则下列等式中,一定成立的是(D).(第2题)(第3题)(第4题)3.如图所示,在ABCD中,点E在边DC上,DE∶EC=3∶1,连结AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B).A.3∶4B.9∶16C.9∶1D.3∶14.如图所示,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD的面积为(C).A.1B.2C.3D.45.如图所示,如果△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么S△DEF∶S△ABC的值为 2 .(第5题)(第6题)(第7题)6.如图所示,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA 与反比例函数y=x k (x<0)的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为 -16 .7.如图所示,在四边形ABCD 中,AD ∥BC ,CM 是∠BCD 的平分线,且CM ⊥AB ,点M 为垂足,AM=31AB.若四边形ABCD 的面积为715,则四边形AMCD 的面积是 1 . 8.已知两个相似三角形的一组对应边长分别是35cm 和14cm.(1)若它们的周长相差60cm ,求这两个三角形的周长.(2)若它们的面积相差588cm 2,求这两个三角形的面积.【答案】(1)较大的三角形的周长为100cm ,较小的三角形的周长为40cm.(2)较大的三角形的面积为700cm 2,较小的三角形的面积为112cm 2.9.如图所示,△ABC 是正方形网格中的格点三角形(顶点在格点上),请在正方形网格上按下列要求画一个与△ABC 相似的格点三角形,并填空.(1)在图1中画△A 1B 1C 1,使得△A 1B 1C 1的周长是△ABC 的周长的2倍,则ABB A 11= 2 . (2)在图2中画△A 2B 2C 2,使得△A 2B 2C 2的面积是△ABC 的面积的2倍,则AB B A 22= 2 .(第9题)【答案】(1)图略 2(2)图略2 10.如图所示,在△ABC 中,P 是BC 边上任意一点(点P 与点B ,C 不重合),AFPE 的顶点F ,E 分别在AB ,AC 上.已知BC=2,S △ABC =1.设BP=x ,平行四边形AFPE 的面积为y.(1)求y 关于x 的函数表达式.(2)上述函数有最大值或最小值吗?若有,则当x 取何值时,y 有这样的值,并求出该值;若没有,请说明理由.(第10题)【答案】(1)∵四边形AFPE 是平行四边形,∴PF ∥CA.∴△BFP ∽△BAC.∴.∵S△ABC =1,∴S △BFP =42x .同理S △PEC =,∴y=. (2)上述函数有最大值,最大值为21.理由如下:∵y=-22x +x=-21(x -1)2+21,-21<0, ∴y 有最大值.又∵0<x<2,∴当x=1时,y 有最大值,最大值为21.11.如图所示,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶9,则S ,则S △BDE 与S △CDE 的比是(B ).A.1∶3B.1∶2C.1∶4D.1∶9(第11题) (第12题) (第13题) (第14题)12.如图所示,D ,E ,F ,G 为△ABC 两边上的点,且DE ∥FG ∥BC ,若DE ,FG 将△ABC 的面积三等分,则下列结论正确的是(C ).13.如图所示,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,BG=42,则△EFC 的周长为(D ).A.11B.10C.9D.814.如图所示,在△ABC 中,∠C=90°,D 是BC 边上一点,DE ⊥AB 于点E ,∠ADC=45°,若DE ∶AE=1∶5,BE=3,则△ABD 的面积为 13 .15.如图所示,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为 1211 . (第15题) (第16题)16.如图所示,M 是△ABC 内-点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形(图中阴影部分)的面积分别是1,4,9.则△ABC 的面积是 36 .17.如图所示,已知AD 是△ABC 的角平分线,⊙O 经过A ,B ,D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连结ED.(1)求证:ED ∥AC.(2)若BD=2CD ,设△EBD 的面积为S1,△ADC 的面积为S2,且S 21-16S 2+4=0,求△ABC 的面积.(第17题)【答案】(1)∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC.∵∠E=∠BAD ,∴∠E=∠DAC. ∵BE ∥AD ,∴∠E=∠EDA.∴∠EDA=∠DAC.∴ED ∥AC.(2)∵BE ∥AD ,∴∠EBD=∠ADC.又∵∠E=∠DAC ,∴△EBD ∽△ADC ,且相似比k=DC BD =2.∴21S S =k 2=4,即S1=4S2.∵S12-16S 2+4=0,∴16S22-16S2+4=0,即(4S2-2)2=0.∴S 2=21. ∵=3,∴S △ABC =23. 18.如图1所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1,S 2,S 3表示,则不难证明S 1=S 2+S 3.(1)如图2所示,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1,S 2,S 3表示,则S 1,S 2,S 3之间有什么关系?(不必证明)(2)如图3所示,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1,S 2,S 3表示,请你确定S 1,S 2,S 3之间的关系并加以证明.(3)若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S 1,S 2,S 3表示,为使S 1,S 2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?请证明你的结论.(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.(第18题) 【答案】设直角三角形ABC 的三边BC ,CA ,AB 的长分别为a ,b ,c ,则c 2=a 2+b 2.(1)S 1=S 2+S 3.(2)S1=S2+S3.证明:∵S1=43c 2,S2=43a 2,S3=43b 2,∴S2+S3=43 (a 2+b 2)= 43c 2=S 1.∴S 1=S 2+S 3. (3)当所作的三个三角形相似时,S 1=S 2+S 3.证明:∵所作的三个三角形相似,∴, ∴=1.∴S 1=S 2+S 3.(4)分别以直角三角形ABC 三边为边向外作三个相似图形,其面积分别用S 1,S 2,S 3表示,则S 1=S 2+S 3.19.【镇江】点E ,F 分别在ABCD 的边BC ,AD 上,BE=DF ,点P 在边AB 上,AP ∶PB=1∶n (n >1),过点P 且平行于AD 的直线l 将△ABE 分成面积为S 1,S 2的两部分,将△CDF 分成面积为S 3,S 4的两部分(如图所示).有下列四个等式:①S 1∶S 3=1∶n ;②S 1∶S 4=1∶(2n+1);③(S 1+S 4)∶(S 2+S 3)=1∶n ;④(S 3-S 1)∶(S 2-S 4)=n ∶(n+1).其中成立的是(B ).A.①②④B.②③C.②③④D.③④(第19题) (第20题)20.【杭州】如图所示,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 78 .【解析】∵在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,∴BC=22AC AB =25,S △ABC =21AB ·AC=21×15×20=150.∵AD=5,∴CD=AC -AD=15.∵DE ⊥BC ,∴∠DEC=∠BAC=90°.又∵∠C=∠C ,∴△CDE ∽△CBA.∴AC CE =CB CD ,即20CE =2515,解得CE=12.∴BE=BC -CE=13.∵S △ABE ∶S △ABC =BE ∶BC=13∶25,∴S △ABE =2513×150=78.21.如图所示,在△ABC 中,已知AB=AC=5,BC=6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿点B 到点C 方向运动,且DE 始终经过点A ,EF 与AC 交于点M .(1)求证:△ABE ∽△ECM .(2)在△DEF 的运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.(3)当线段AM 最短时,求重叠部分的面积.(第21题)【答案】(1)∵AB=AC ,∴∠B=∠C.∵△ABC ≌△DEF ,∴∠AEF=∠B.∵∠AEF+∠CEM=∠AEC=∠B+∠BAE ,∴∠CEM=∠BAE.∴△ABE ∽△ECM.(2)能.∵∠AEF=∠B=∠C ,∠AME >∠C ,∴∠AME >∠AEF.∴AE ≠AM.①当AE=EM 时,则△ABE ≌△ECM ,∴CE=AB=5.∴BE=BC -EC=1.②当AM=EM 时,则∠MAE=∠MEA ,∴∠MAE+∠BAE=∠MEA+∠CEM ,即∠CAB=∠CEA.∵∠C=∠C ,∴△CAE ∽△CBA.∴AC CE =CB AC .∴CE=CB AC 2=625.∴BE=611.∴BE=1或611. (3)设BE=x.∵△ABE ∽△ECM ,∴.∴CM=-51(x -3)2+59.∴AM=5-CM=51(x -3)2+516.∴当x=3时,AM 最短为516.此时BE=21BC ,∴E 为BC 的中点.∴AE ⊥BC.∴AE=22BE AB =4.EF ⊥AC.∴EM=AE 2-AM 2=512.∴S △AEM =21×516×512=2596.。
北师大版数学九年级上册4.7《相似三角形的性质》第二课时优秀教学案例
4.总结归纳与知识应用:在总结归纳环节,让学生回顾学习内容,总结相似三角形的性质和判定方法,形成系统的知识体系。同时,强调相似三角形性质在几何证明和实际问题解决中的应用,提高学生的知识应用能力。
五、案例亮点
1.生活情境的引入:通过引入实际问题和生活情境,激发学生的学习兴趣和积极性。例如,计算建筑物面积或解决角度问题等,使学生感受到相似三角形性质在实际生活中的应用,提高学习的贴切性和实际意义。
2.问题导向与学生主动探究:以问题为导向,引导学生主动探究和发现相似三角形的性质。提出引导性问题激发学生思考,通过观察、操作和归纳等方法,发现和总结相似三角形的性质,培养学生的问题解决能力和科学探究精神。
二、教学目标
(一)知识与技能
1.学生能够理解相似三角形的性质,包括对应边成比例、对应角相等。
2.学生能够运用相似三角形的性质解决实际问题,如计算面积、解决角度问题等。
3.学生能够熟练运用相似三角形的判定方法,判断两个三角形是否相似。
4.学生能够掌握相似三角形的性质在几何证明中的应用,提高证明能力。
(二)过程与方法
5.作业小结与反馈指导:布置有关相似三角形性质的练习题,巩固所学知识。要求学生在作业中运用相似三角形的性质解决实际问题,培养学生的应用能力。在批改作业过程中,及时给予反馈和指导,帮助学生纠正错误和提高解题能力。
情境的方式,让学生思考和讨论实际问题。例如,展示一张图片,图片中有一个矩形和一个相似的平行四边形,让学生计算它们的面积。通过这个问题,引导学生思考相似形的性质,从而引出本节课的主题——相似三角形的性质。
相似三角形的实际问题
相似三角形的实际问题在数学中,相似三角形是指有相同形状但可能不同大小的三角形。
相似三角形的概念在实际问题中常常得到应用,包括地理测量、建筑设计以及工程计算等领域。
本文将以几个实际问题为例,介绍相似三角形的应用。
问题一:高楼建设在高楼建设过程中,经常会遇到需要测量高楼的高度的问题。
然而,由于高楼的高度较高,直接测量比较困难。
这时,可以利用相似三角形的原理进行测量。
解决方法:选择一个相对安全的地方,远离高楼底部。
然后,使用测量仪器(比如测距仪)测量出站立点到高楼底部某一固定点的距离,记为a。
接着,可以使用测量仪器对站立点到高楼顶部的角度进行测量,记为α。
利用三角函数的知识可以计算出高楼的高度h。
解决思路:在测量三角形底边上选择一个已知的点(即测量仪器的位置),根据已知的距离和角度,可以通过相似三角形的性质计算出高楼的高度。
具体计算公式如下:h = a × tan(α)问题二:航空导航在航空导航中,飞行员需要根据当前位置和目标位置之间的距离、方向等信息进行导航。
相似三角形的原理可以帮助飞行员计算出正确的航线。
解决方法:假设飞行员需要从A地飞行到B地,但由于天气等原因无法直接导航。
这时,飞行员可以选择一个C点,使得ABC和ABD两个三角形是相似的。
通过测量AC的距离和角度,以及AB的距离,飞行员可以使用相似三角形的性质计算出BD的距离。
进而,飞行员可以根据反向推导的方法确定正确的航线。
解决思路:根据相似三角形的性质,在已知的线段AC与线段AB所对应的两个角度相等的情况下,可以通过线段AC的长度和线段AB的长度的比值来计算出线段BD的长度。
具体计算公式如下:BD = AB × (BD/AC)问题三:地图比例尺在地图上,我们常常会看到一个比例尺,它告诉我们地图上的距离与实际距离之间的比例关系。
这个比例尺就是通过相似三角形的原理确定的。
解决方法:在绘制地图时,测量某一地区的实际距离,例如100米。
九年级数学下册教学课件《相似三角形应用举例第2课时》
解:∵DE∥BC,∴△ADE∽△ABC,
DE AD AD=AB-BD=8-2x
BC AB
∴ y 8 2x ,∴ y 9 (8 2x) 9 x 9
98
8
4
∵ 0<2x<8,∴0<x<4
∴ y 9 x 9 (0<x<4) 4
图像是一条直线
S ABC AB
2
∴ AD 1
AB 2
2 AD= AB
2
即D点在距A点的 2 AB处。 2
综合 运用
13.如图,△ABC中,CD是边AB上的高, 且 AD CD ,求∠ACB的大小。
CD BD
解:∵
AD CD CD BD
,又∠ADC=∠CDB=90°
∴△ADC∽△CDB,∴∠A=∠DCB
∴∠ACD=∠,
OC OD
∴△AOB∽△COD.
∴ AB OA =3 CD OC
又∵CD=7 cm,∴AB=21 cm. 由题意和图易知 25-2x=21,∴x=2(cm). ∴此零件的厚度为2 cm.
综合应用
2.当你乘车沿一平坦的大道向前行驶时,你会发现:前方 那些高一些的建筑物好像“沉”到了位于它们前面的矮一 些的建筑后面去了.如图,已知楼高AB=18米,CD=9米, BD=15米,在N处的车内小明视点距地面2米,此时刚好 可以看到楼AB的P处,PB恰好为12米,再向前行驶一段 到F处,从距离地面2米高的视点刚好看不见楼AB,那么 车子向前行驶的距离NF为多少米?
解:CD=
1 3
AB,∵
OD OA
1 3
,即
OD OA
OC OB
,
而∠COD=∠BOA,
∴△COD∽△BOA
部编数学九年级下册专项32相似三角形射影定理综合应用(2种类型)(解析版)含答案
专项32 相似三角形-射影定理综合应用(2种类型) 一、射影定理 直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
(证明略)二、变式推广 1.逆用 如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
【类型1:直角三角形中射影定理】【典例1】(2021秋•南京期末)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,且=.(1)求证△ACD∽△ABC;(2)若AD=3,BD=2,求CD的长.【解答】(1)证明:∵=,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴∠ACD=∠B,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠ADC=∠BDC,∵∠ACD=∠B,∴△ACD∽△CBD,∴=,∴=,∴CD=.【变式1-1】(2022•义乌市校级开学)如图,在△ABC中,∠ACB=90°,CD⊥AB,若AD=4,BD=8,则CD的长为( )A.4B.4C.4D.【答案】A【解答】解:∵∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠DCB+∠B=90°,∴∠A=∠DCB,∵∠ADC=∠CDB=90°,∴△ADC∽△CDB,∴=,即=,解得:CD=4,故选:A.【变式1-2】(2021秋•漳州期末)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,CD=4,则BD的长为( )A.B.C.D.2【答案】A【解答】解:∵∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC,∴∠DAC+∠C=90°,∠ADB=∠ADC=90°,∴∠B=∠DAC,∴△BDA∽△ADC,∴=,∵AD=3,CD=4,∴=,解得:BD=,故选:A.【变式1-3】(2020秋•梁平区期末)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是( )A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 【答案】B【解答】解:∵∠ACB=90°,CD⊥AB于点D,∴AC2=AD•AB,CD2=DA•DB,BC2=BD•BA.故选:B.【变式1-4】(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )A.3B.8C.D.2【答案】A【解答】解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.【类型2:非直角三角形中射影定理】【典例2】如图,已知∠A=70°,∠APC=65°,AC2=AP•AB,则∠B的度数为( )A.45°B.50°C.55°D.60°【答案】A【解答】解:∵∠A=70°,∠APC=65°,∴∠ACP=180°﹣70°﹣65°=45°.∵AC2=AP•AB,∴=.∵∠B=∠B,∴△BAC∽△CPA.∴∠B=∠ACP=45°.故选:A.【变式2-1】如图,在△ABC中,点D在边AB上,若∠ACD=∠B,AD=3,BD=4,则AC的长为( )A.2B.C.5D.2【答案】B【解答】解:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∵AD=3,BD=4,∴AB=AD+BD=3+4=7,∴,∴AC=或﹣(舍去),故选:B.【变式2-2】如图,在△ABC中,点D在AB边上,∠ABC=∠ACD.(1)求证:△ABC∽△ACD;(2)若AD=2,AB=6.求AC的长.【解答】(1)证明:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴,∴AC2=2×6=12,∴AC=2.【典例3】如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 .【答案】8【解答】解:∵∠A=90°,∴∠ABD+∠ADB=90°,∵BD=CD,∴∠DBC=∠C,∴∠ADB=∠DBC+∠C=2∠C,∵∠C+∠CDE=45°∴2∠C+∠CDE=90°,∴∠ADB+∠CDE=90°,∴∠BDE=90°,作DF⊥BC于F,如图所示:则BF=CF,△DEF∽△BED∽△BDF,∴===,设EF=x,则DF=2x,BF=CF=4x,∴BC=8x,DE=x,∴CD=BD=2x,AC=6+2x,∵∠DFC=∠A=90°,∠C=∠C,∴△CDF∽△CBA,∴=,即=,解得:x=,∴BC=8;故答案为:8.【变式3】如图,在锐角△ABC中,BD⊥AC于D,DE⊥BC于E,AB=14,AD=4,BE:EC=9:2,则CD= .【答案】2【解答】解:∵BD⊥AC,∴∠ADB=90°,∴BD2=AB2﹣AD2=142﹣42=180,设BE=9x,EC=2x,∵DE⊥BC,∴BD2=BE•BC,即180=9x(9x+2x),解得x2=,∵CD2=CE•CB=2x•11x=22×=40,∴CD=2.1.(2022秋•义乌市月考)如图,小明在A时测得某树的影长为3m,B时又测得该树的影长为2m,若两次日照的光线互相垂直,则树的高度为( )m.A.B.C.6D.【答案】B【解答】解:根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=2m,FD=3m;∵∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,∴△EDC∽△CDF,∴=,即DC2=ED•FD=2×3=6,解得CD=m.故选:B.2.(2012•麻城市校级自主招生)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是( )A.3B.4C.4D.2【答案】D【解答】解:延长EC交圆于点F,连接DF.则根据90°的圆周角所对的弦是直径,得DF是直径.∵DE∥BC,∴△ADE∽△ABC.∴.则DE=4.在直角△ADF中,根据射影定理,得EF==4.根据勾股定理,得DF==4,则圆的半径是2.故选:D.3.(2022春•周村区期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .【答案】6【解答】解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.4.(2021春•汉阴县期中)如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD 交于O,且BE:ED=1:3,AD=6cm,则AE= cm.【答案】3【解答】解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x (3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.5.(2022•武汉模拟)在矩形ABCD中,BE⊥AC交AD于点E,G为垂足.若CG=CD=1,则AC的长是 .【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.6.(2021秋•滦州市期中)已知关于x的方程x2﹣2(a+b)x+c2+2ab=0有两个相等的实数根,其中a、b、c为△ABC的三边长.(1)试判断△ABC的形状,并说明理由;(2)若CD是AB边上的高,AC=2,AD=1,求BD的长.【解答】解:(1)∵两根相等,∴可得:4(a+b)2﹣4(c2+2ab)=0,∴a2+b2=c2,∴△ABC是直角三角形;(2)由(1)可得:AC2=AD×AB,∵AC=2,AD=1,∴AB=4,∴BD=AB﹣AD=3.7.如图,点D在△ABC的边BC上,∠ADC+∠BAC=180°,AB=4,BC=8,求BD的长.【解答】解:∵∠ADC+∠BAC=180°,∠ADC+∠ADB=180°,∴∠ADB=∠BAC,又∵∠B=∠B,∴△BAD∽△BCA,∴=,∴BA2=BD•BC,∵AB=4,BC=8,∴BD=2.即AC⋅CF=CB⋅DF.8.(盐城校级模拟)【问题情境】如图1,Rt△ABC中,∠ACB=90°,CD⊥AB,我们可以利用△ABC与△ACD相似证明AC2=AD•AB,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E 在CD上,过点C作CF⊥BE,垂足为F,连接OF,(1)试利用射影定理证明△BOF∽△BED;(2)若DE=2CE,求OF的长.【解答】【问题情境】证明:如图1,∵CD⊥AB,∴∠ADC=90°,而∠CAD=∠BAC,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,∴AC2=AD•AB;【结论运用】(1)证明:如图2,∵四边形ABCD为正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即=,而∠OBF=∠EBD,∴△BOF∽△BED;(2)方法一:∵BC=CD=6,而DE=2CE,∴DE=4,CE=2,在Rt△BCE中,BE==2,在Rt△OBC中,OB=BC=3,∵△BOF∽△BED,∴=,即=,∴OF=.方法二:将△OFC绕O顺时针旋转90度得到△OGB,如图3,由△BOF∽△BED得到∠OFB=45°,∴∠OGB=∠OFC=45°+90°=135°,∵OG=OF,∴△OGF为等腰直角三角形,∴∠OGF=45°,∴G点在BE上,∵BG=CF=,∴GF=,∴OF=GF=.。
27.2.2 相似三角形应用举例 课件2 (新人教版九年级下)
C
A
F
H
Ⅰ
Ⅱ
K G
分析:
E
B
(2)
D
l
假设观察者从左向右走到点E时,他的眼睛的位 置点F与两颗树的顶端点A、C恰在一条直线上,如 果观察者继续前进,由于这棵树的遮挡,右边树 的顶端点C在观察者的盲区之内,观察者看不到 它。
由题意可知,AB⊥L,CD⊥L,
∴AB∥CD,△AFH∽ △CFK
FH = AH ∴ FK CK 即
解: 因为 ∠ADB=∠EDC,
AB BD 那么 EC DC
∠ABC=∠ECD=90°, 所以 △ABD∽△ECD,
B
D
C
E
BD EC 120 50 解得AB 100(米) DC 60 答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
A
P E N C
因为PN∥BC,所以△APN∽ △ABC 所以 AE = PN B AD BC Q D M 80–x x = 因此 ,得 x=48(毫米)。答:-------。 80 120
1、在同一时刻物体的高度与它的影长 成正比例,在某一时刻,有人测得一高 为1.8米的竹竿的影长为3米,某一高楼 的影长为60米,那么高楼的高度是多少 米?解:设高楼的高度为X米,则
1.8 x 3 60 60 1.8 x 3 x 36
答:楼高36米.
例4 为了估算河的宽度,我们可以在河 对岸选定一个目标点P,在近岸取点Q和 S,使点P、Q、S共线且直线PS与河垂 直,接着在过点S且与PS垂直的直线a 上选择适当的点T,确定PT与过点Q且 P 垂直PS的直线 b的交点R.如果测 得QS=45m,ST= b Q R a 90m,QR=60m, S T 求河的宽度PQ.
《相似三角形的性质2》教学设计
《相似三角形的性质2》教学设计一、教材分析:《相似三角形的性质2》是根据核心素养及《中小学课程标准》的要求,结合素质教育开放周活动开展进度,旨在培养九年级学生研究、探索数学能力的一节活动探究课。
本节课教学在学完相似三角形的定义、相似三角形的判定及相似三角形性质1的基础上,重点指导九年级学生经历画图、计算周长面积等过程掌握相似三角形性质并灵活运用以解决相关问题。
二、学情分析:九年级的学生已经掌握相似三角形对应线段的比等于相似比,且有动手画图及一定的计算能力、推理能力。
本节课,我将从复习相似三角形性质1入手,指导学生小组合作交流,通过画图、计算等探究活动得到相似三角形的周长比、面积比,鼓励学生利用已学习的等比性质证明定理。
三、教学目标:1. 知识技能:在掌握相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比的基础上,通过小组合作探究以掌握相似三角形的周长比等于相似比,面积比等于相似比的平方,并能用来解决简单的问题。
2. 数学思考:培养学生动手操作能力以及全面地观察问题与分析问题的能力,进一步培养学生的逻辑思维能力及推理能力,帮助学生打破思维定势的束缚。
3. 问题解决:能利用相似三角形的性质解决简单的问题。
4. 情感态度:在小组合作探究中发展学生积极的情感态度、价值观,体验提出猜想,证明猜想的探究过程。
四、教学重难点:重点:理解相似三角形的周长比等于相似比,面积比等于相似比的平方。
难点:相似三角形的周长比、面积比与相似比的关系探究过程和应用。
五、教学时间:一课时六、教学准备:课件、画图专用纸(方格纸)、直尺。
七、教学过程:(一)复习引入,生成问题温故知新提问1:相似三角形有怎样的性质?(指名生回答)(1)相似三角形的对应角相等,对应边成比例。
(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比。
提问2:相似三角形的周长、面积之间又有什么关系呢?(二)合作探究,生成能力1. 小组合作,动手操作请同学们拿出在老师发放的网格纸(每个方格边长为单位1)中画出一组的相似三角形(在网格纸上构造的格点三角形)。
专题2 相似三角形的判定及应用
专题2 相似三角形的判定及应用(一)一个三角形与另一个三角形的两个角对应相等,则这两个三角形相似.这是判定三角形相似的重要方法之一.由此,即知(1)任何两个等边三角形都相似.(2)任何顶角相等的两个等腰三角形相似.(3)三角形的中位线截原三角形得到的小三角形与原三角形相似.(4)一个锐角相等的两个直角三角形相似.例1 如图,设P是等边△ABC的边BC上任一点,连AP,作AP的中垂线交AB、AC 于M、N.证明:BP·PC=BM·CN.(1994年安徽省竞赛题)例2 如图,△ABC和△A’B’C’的各边交成六边形DEFGHK,且EF∥KH,GH∥DE,FG∥KD,KH-EF=FG—KD=DE—OH>0.求证:△ABC,△A’B’C’均为等边三角形.例3 如图,在锐角△ABC中,D、E、F分别是三条高AD、BE、CF的垂足,连DF、EF、FD,求证:△DEC∽△AEF∽△DBF.例4 在等腰△ABC中,AB=AC=6,P为边BC上一点,且PA=4,求PB.PC的值.例5 如图,在△ABC的边AB上取一点D,连CD,过D作DE∥BC交AC于E,过E 作EF∥CD交AB于F,求证:AB≥4DF.习题11.设△ABC 的三边为c b a ,,,求证:(1)若∠A =2∠B ,则)(2c b b a +=;(2)若∠A =3∠B ,则))((1222b a b a bc --=.2.在△ABC 中,∠A =600,∠B =800.求证:AC 2-AB 2=AB·AC .3.在△ABC 中,∠C =3∠A ,48,27==c a .求b .4.等腰△ABC 的顶角∠A =1080,BC =m ,AB =AC =n ,记nm n m x -+=,mn n m y 2)(+=,33nm z =.试排出z y x ,,的大小关系.5.在△ABC 中,AD 是∠BAC 的平分线,若AB +BD =25,AC -CD =4,求AD .6.已知E 五边形的周长等于p ,所有对角线的长度之和等于q ,求qp p q -的值.7.设O 是△ABC 内任一点,直线AO 、BO 、CO 分别与三边相交于P 、Q 、R .令BC =a ,CA =b ,AB =c ,若c b a >>,求证:OP +OQ +OR<a .专题3 相似三角形的判定及应用(二)一个三角形的两条边与另一个三角形的两条边对应成比例,且对应夹角相等,则这两个三角形相似.这是判定三角形相似的又一重要方法.例1 如图,在△ABC中,AB=AC,D是底边上一点,F是线段AD上一点,且∠BED =2∠CED=∠BAC.求证:BD=2CD.(1992年全国联赛题,同§2.2中例2)例2 如图,在△ABC外作△BPC、△CQA、△ARB,使∠PBC=∠CAQ=450,∠BCP =∠QCA=300,∠ABR=∠BAR=150.求证:△POR是等腰直角三角形.(1991年四川省竞赛题)例3 如图,已知△ABC满足∠ACB=2∠ABC.设D是BC边上一点,且CD=2BD.延长线段AD至E,使AD=DE.证明:∠ECB+1800=2∠EBC.例4 锐角△ABC的三条高AA l、BB l、CC l的中点分别为A2、B2、C2.试求∠B2A l C2+∠C2B1A2+∠A2C1B2.(第22届全俄奥林匹克题)例5 在△ABC 中,∠BAC =600,∠ACB =450.(1)求:这个三角形的三边之比AB :BC : CA ;(2)设P 为△A BC 内一点,且26+=PA ,623+=PB ,6223+=PC ,求∠APB 、∠BPC 、∠CPA .(1990年武汉、重庆、广州、洛阳、福州联赛题)习题21.等腰三角形ABC中,∠A=1000,AB=AC,角B的平分线交AC于D.求证:BD+AD=BC.(第23届加拿大奥林匹克训练题)2.在△ABC中,若∠A=2∠B,边AC=4,AB=5,求BC.3.如图,△ABC和△A1B1C1均为正三角形,BC和B1C1的中点均为D.求证:AA1⊥CC1.(2000年重庆市竞赛题)4.如图,大正方形ABCD 及小正方形AEFG 共顶点A ,连BE 、CF 、DG ,求BE :CF :DG .5.在给定的不等边三角形A 1A 2A 3中,用ij B 表示顶点i A 关于由顶点j A 引出的角平分线的对称点,其中{}3,2,1,∈j i ,求证:直线B 12B 21,B 13B 31与B 23B 32相互平行.(1982年保加利亚奥林匹克题)专题3 相似三角形的判定及应用(三)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;若两个三角形的三边对应成比例,则这两个三角形相似.这也是判定三角形相似的两个重要方法.例1 如图,P 是△ABC 内一点,过P 分别作直线平行于△ABC 的各边,所成的小三角形1t 、2t 和3t 的面积分别是4、9和49.求△ABC 的面积.(第2届美国邀请赛题)例 2 如图,过三角形内任何一点,引三条直线分别平行于它的边,它们把边分割成线段321321321,,,,,,,,c c c b b b a a a .求证:333222111c b a c b a c b a ==.(第24届全苏奥林匹克题)例3 如图,在△ABC 中,∠BAC =2∠B ,AD 为∠BAC 的平分线,DE ∥CA ,AD 、CE 相交于点O ,令△AOC 、△DOE 、△BDE 的面积分别为S 1、S 2、S 3,求证:22321)1(1+=+⎥⎥⎦⎤⎢⎢⎣⎡+c b S S S ,其中b 、c 分别为边AC 和AB 的长.(1991年安庆市竞赛题)例4 如图,在△ABC 中,S △COE =S △DOF ,且215+=FD AF. 求证:(1)FDAFFO CO =;(2)S △AEF :S △EOF =25+.(1990年四川竞赛题)例5 如图,在△UVW 与△XYZ 的边分别交于A 、B 、C 、D 、E 、F ,若WUEFVW CD UV AB ==,求证ZXFAYZ DE XY BC ==.习题31.在△ABC 中,D 为BC 的中点,过D 作一直线交AC 于E ,交AB 的延长线于F .求证:AE :EC =AF :BF .(1978年北京市竞赛题)2.在△ABC 中,BC =2AC ,D 、E 分别是边BC 、AB 上的点,且∠B =∠EDA =∠DAC .如果△ABC 、△EBD 、△ADC 的周长依次为m 、1m 、2m .求证:)(4521m m m +=5m .3.在△ABC 的与边BC 平行的中位线MN 上任取一点P ,射线BP 、CP 分别交AC 、AB 于F 、E ,试证:1=+FCAEEB AE .4.在正△ABC 的边BC 、CA 上各有一点E 、F ,BE =CF =a ,EC =FA =b ,当BF 平分AE时,试比较332,)(,,2ba ab b a b a b a b b a +-++的大小.5.△ABC 的面积为1,DE ∥AB 交AC 于D ,交BC 于E ,连BD .设△DCE 、△ABD 、△BDE 中面积最大者的值为y .求y 的最小值.6.四边形PQRS 是锐角△ABC 的内接矩形,S 在AB 上,R 在AC 上,Q 在P 与C 之间.设S △ABC =n S 矩形ABCD ,其中n 为不小于3的自然数.求证:ABBS为无理数.专题4 直角三角形的相似及应用直角三角形有一个特殊的角——直角,因而对于一般的相似三角形的判定方法中,现在已经确定了一个角对应相等,只需再寻求其余一个条件,即可判定两个直角三角形相似.例1 如图,已知P 为Rt △ABC 的斜边BC 上一点,Q 为PC 的中点,过P 作BC 的垂线, 交AB 于R ,H 为AR 的中点,过H 向C 所在一侧作射线HN 上AB .证明:射线HN 上存在一点G ,使AG =CQ ,BG =BQ .(2002年全国联赛题)例2 如图,AD 是锐角△ABC 边BC 上的高,E 是AD 上的一点且满足DBCDED AE,过D 作DF ⊥BE 于F .求证:∠AFC =900.(1999年上海中学数学实验班选拔赛题)例3 如图,在△ABC 中,∠A =900,AD ⊥BC 于D ,∠B 的平分线分别与AD 、AC 交于E 、F .求证:(1)AE =AF ; (2)若AC 2=,则CF AF CDEF⋅<.(1993年四川省竞赛题)例4 如图,AD 是Rt △ABC 斜边BC 上的高,P 是AD 的中点,连结BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .(1999年山东省竞赛题)例5 如图,在四边形ABCD中,AD=DC=1,∠DAB=∠ECB=900.BC、AD的延长线交于P.求AB·S△PAB的最小值.(1994年四川省竞赛题)例6 如图,AD、BE、CF是锐角△ABC的三条高,M、N分别是BE、CF的中点,求证:△DMN∽△ABC.习题41.设AA 1、BB 1、CC 1为锐角△ABC 的三条高,H 为垂心,已知11`1HC BA HC AB S S =,求证:△ABC 为等腰三角形.(1991年苏联教委推荐试题)2.△ABC 中,∠C =900,D 为AB 上一点,作DE ⊥BC 于E ,使BE =AC ,且21=BD ,又DE +BC =1.求证:∠ABC =300.(1986年北京市竞赛题) 3.已知△ABC 中,∠C =900,BE 是∠B 的平分线,CD ⊥AB 于D 交BE 于O ,又过O 作FG ∥AB 且分别交AC 、BC 于F 、G .求证:AF =CE .(1979年宁夏回族自治区竞赛题)4.在△ABC 中,∠ACB =900,AC =BC ,D 是BC 延长线上的一点,BE ⊥AD 于E ,BE 与AC 交于点F .求证:CD =CF 及DE>DC .(1994年四川省竞赛题)5.将长为12,宽为5的矩形纸片沿对角线对折后放在桌面上,求复盖桌面的面积.6.在△ABC 中,BC =a ,AC =b ,AB =c ,∠C =900,CD 和BE 是△ABC 的两条中线,且CD ⊥BE .求c b a ::.(1997年安徽省部分地区竞赛题)7.△ABC 中,AB =2,AC =3,∠A =∠BCD =450(D 在AB 的延长线上).求BC 及△BDC 的面积.(1997年山东省竞赛题) 8.在△ABC 中,AB =AC ,BC 上的高AD =5,M 为AD 上一点,MD =1,且∠BMC =3∠BAC .试求△ABC 的周长.(1995年四川省竞赛题)9.在等边△ABC 的边BC 上取点D ,使21DC BD ,作CH ⊥AD ,H 为垂足,连结BH .求证:∠DBH =∠DAB .(1993年黄冈地区竞赛题)10.在凸五边形ABCDE中,顶点B、E的角是直角,又∠BAC=∠FAD.对角线BD和CE交于点O.求证:直线AO与BE垂直.11.给定△ABC,其中AB=AC,点M、E分别在AB、AC上,直线EF、MN分别垂直BC于F、N.求证:不论MN、EF怎样平行移动,只要它们之间距离不变,则五边形AMNFE的周长为一定值.(1979年北京市竞赛题)。
数学:24.2《相似三角形的判定(二)》教案(沪科版九年级上)
24.2 相似三角形的判定学习目标要求1、掌握相似三角形的概念。
2、掌握两个三角形相似的条件。
3、能用两个三角形相似的条件解决问题。
教材内容点拨知识点1相似三角形:1、两个三角形,如果各边对应成比例,各角对应相等,则这两个三角形相似。
2、各边对应成比例,各角对应相等是指三组对应角分别相等,三组对应边分别成比例。
3、△ABC与△A′B′C′相似记作“△ABC∽△A′B′C′”,书写时同三角形全等一样,要注意对应字母放在对应位置,例如,△ABC与△DEF中,A点与E点对应,B点与D点对应,C点与F点对应,则应记作△ABC∽△EDF。
4、相似三角形的定义揭示了相似三角形的本质特性,即如果两个三角形相似,则各边对应成比例,各角对应相等,∴相似三角形的定义即是性质,又是判定。
5、全等三角形是相似比为1的相似三角形。
知识点2相似三角形判定方法:相似三角形的判定方法按照全等三角形的判定方法可记为“AA”、“SAS”、“SSS”和“HL”,只是这里对边要求是对应成比例,对角的要求是对应角相等。
1、“AA”:如果一个三角形的两个角分别与另一个三角形的两个角对应相等;那么这两个三角形相似。
可简单的说成:两角对应相等的两个三角形相似。
2、“SAS”:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单的说成:两边对应成比例且夹角相等的两个三角形相似。
3、“SSS”:如果一个三角形的三条边为另一个三角形的三条边对应成比例,那么这两个三角形相似,可以简单的说成:三边对应成比例的两个三角形相似。
4、“HL”:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三外形相似。
典型例题点拨例1、已知:如图,ΔABC中,AD=DB,∠1=∠2,求证:ΔABC∽ΔEAD。
从而可得两个角之间的关系,联系到要求证的结论,可联想到用“AA ”来证。
人教版初中九年级全一册数学教学课件 第二十七章 相似 相似三角形应用举例(第2课时)
数学
9年级/全
第二十七章 相似
学习新知
检测反馈
问题思考
学习新知
如图所示,屋顶上有一只猫,院子里有一只小老鼠,若 猫看见了小老鼠,则小老鼠就会有危险,小老鼠在墙的哪部
分活动是安全的?试画出小老鼠在墙的左端的安全区.
(教材例6)如图(1)所示,左、右并排的两棵大树的高分别为AB=8 m 和CD=12 m,两树底部的距离BD=5 m,一个人估计自己眼睛距地面
1
即BE=2.7× 0.9 =3(m). ∴AB=AE+EB=1.2+3=4.2(m).
答:树高为m.
【归纳】 (1)求树高常用的方法:①根据相似三角
形对应线段成比例,列方程求解即可;②在
同一时刻,物体的实际高度和影长成比例
,据此列方程即可求解.
(2)求树高常用的辅助线:①作垂直,构 造相似三角形;②作平行,构造相似三角 形;③延长两条直线相交,构造相似三角
解析:如图(2)所示,过点C作 CE⊥AB于点E.根据题意,在 Rt△ACE中,CE=35 m, ∠α=45°,∴AE=35 m.则AB的 长为AE+BE=36.4 m.
3.如图所示,小明同学用自制的直角三角形纸板DEF测
量树的高度AB,他调整自己的位置,设法使斜边DF保
持水平,并且边DE与点B在同一直线上.已知纸板的两
条直角边DE=40 cm,EF=20 cm,测得边DF离地面的
高度AC=1.5 m,CD=8 m,则树高AB= 5.5 m.
解析:∵∠DEF=∠BCD=90°,
∠∴DBE=CF∠ DDDCE,,∴∵△DDEE=F4∽0 △cDmC=B0.,4
m,EF=20 cm=0.2 m,AC=1.5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。