第二章 、传感器的基本特性
传感器的一般特性
• 通常用下面四个指标来表示传感器的动态性 能(P37): (1)时间常数τ (2)上升时间tr (3)响应时间t5、t2 (4)超调量
• 2.频域性能指标(P32) 通常在正弦信号作用下测定传感器动 态性能的频域指标,称为频率法。具体方 法是在传感器输入端加恒定幅值的正弦信 号,测出不同频率下稳定输出信号的幅值, 绘制出幅频特性曲线。 频域通常有下面三个动态性能指标: (1)通频带 b (2)工作频带 (3)相位误差
• 2.2传感器的动态特性 传感器的动态特性是指输入量随时间动态变 化时,其输出与输入的关系。传感器所检测的物 理量大多数是时间的函数,为使传感器输出信号 及时准确地反映输入信号的变化,不仅要求它具 有良好的静态特性,还要求它具有良好的动态特 性。 为研究传感器的动态特性,可建立其动态数 学模型,用数学中的逻辑推理和运算方法,分析 传感器在动态变化的输入量作用下,输出量如何 随时间改变。也常用实验手段研究传感器的动态 特性,即给传感器一个“标准”信号(正弦输入 和阶跃输入),测出其输出随时间的变化关系, 进而得到其各项动态特性技术指标。
1.理想的线性特性 当a0=a2 =a3=…=an=0时,具有这种特性。此时 y=a1x,静态特性曲线是一条直线,传感器的灵敏 度为Sn=y/x=a1=常数 2.非线性项仅有一次项和偶次项 即y= a1x+a2x2+a4x4+… 因不具有对称性,其线性范围较窄,所以在设 计传感器时一般很少采用这种特性。当出现 时,必须采取线性化补偿措施。
• 2.2.1传感器的动态数学模型 要精确建立传感器或其测试系统的数学 模型是很困难的,在工程上采取一些近似, 略去一些影响不大的因素。通常把传感器 看成一个线性时不变系统,用常系数线性 微分方程来描述其输出量y与输入量x之间的 关系。 对于一个复杂的系统或输入信号,求解 微分方程是很难的,常用一些足以反映系 统动态特性的函数,将系统的输出与输入 联系起来,这些函数有传递函数、频率响 应函数和脉冲响应函数等。
第2章传感器特性
第2章 传感器基本特性
迟滞误差由满量程输出的百分数表示:
2.1 传感器静态特性
为正、反 行程输出值之间的最大差值
产生迟滞误差的原因:主要是由于敏感元件材料的物理 性质缺陷造成的。如弹性元件的滞后,铁磁体、铁电体 在加磁场、电场作用下也有这种现象。 迟滞误差的存在使输入输出不能一一对应。
传感器原பைடு நூலகம்及应用
第2章 传感器基本特性
2.1 传感器静态特性
—— 最大非线性绝对误差 —— 满量程输出 —— 线性度
线性度 是表征实际特性与拟合直线不吻合的参数
由于实际传感器总有(高次项)非线性存在,输入输出关系总是非线性关系,使近似后的拟合直线与实际曲线存在偏差。这个最大偏差称为传感器的非线性误差。 通常用相对误差表示线性度
正弦信号
单位阶跃信号
传感器原理及应用
第2章 传感器基本特性
(1) 传递函数
2.2 传感器动态特性
输入激励 x(t)
输出响应 y(t)
传感器系统
为了分析动态特性,首先要写出传感器的数学模型求出传递函数。 已知外界有一激励施加于系统时,系统对外界有一响应;
传感器是个信号转换元件,假设是测力传感器,系统存在阻尼,弹性和惯性元件; 当输入量随时间变化时,在力作用下,输出不仅与位移x有关,还与速度dx/dt、加速度d2x/dt2有关。
第2章 传感器基本特性
2.2 传感器动态特性
多数传感器输入信号是随时间变化的,只是变化的快慢不同而已。缓慢变化的信号容易跟踪,变化较快的信号跟踪性能会下降。 一个动态性能好的传感器输入与输出应具有相同的时间函数,但除理想状态外,输出信号一定不会与输入信号有相同时间函数。 这种输入输出之间的差异就是动态误差。
传感器的基本特性与指标
2
xi x
i 1
式中
b ykx
x
1 n
n i 1
xi
,y
1 n
n i 1
yi
(推导从略)
特点:拟合精度高,在数据较多的情况下可由计算机处理,但其拟
合出的直线与标定曲线的最大偏差绝对值不一定最小,最大正负偏
差的绝对值也不一定相等 。例:
y
图中最小二乘拟合直线偏低,使 Lmax Lmax, 从而使估计值偏大。
机解算来获得。
当标定曲线(或平均校准曲线)为单调曲
线,且测量上、下限处的正、反行程校准数据
的算术平均值相等时,“最佳直线”可采用端 点连
线平移来获得,有时称该法为端点平行线法。
y Lmax
拟合 直线
Lmaxห้องสมุดไป่ตู้
O
x
端点平行线法
二.迟滞误差(回差)
传感器或检测系统的输入量由小增大(正行程),继而自大减小
对多环节组成的串联或并联组成的传感器或系统,如果各环节阻 抗匹配适当,求总的传递函数可略去相互间的影响。
对于n个环节组成的串联系统: 对于n个环节组成的并联系统:
n
H (s) Hi (s) i 1
n
H (s) Hi(s) i 1
2.3 传感器的静、动态特性
2.3.1. 静态特性与指标
五.分辨力
系统在规定测量范围内所能检测出输入量的最小变化量。
有时用该值相对满量程输入值之百分数表示,这时称为分辨率。
注意区分: 分辨力:如1mV
分辨率:如0.1%
六.量程
又称“满度值”,表征传感器或系统能承受最大输入量的能力,其 数 值是测量系统示值范围上、下限之差的模。当输入量在量程范围以内 时,测量系统正常工作,并保证预定的性能。
第2章 传感器的基本特性
( x1 x) ( x 2 x) ( x m x) x m -1
2 2
2
可以证明,σ和
x 之间存在关系
x n
【例】对某一重物进行了十次等精度测量,测值为 20.62 20.82 20.78 20.82 20.70 20.78 20.84 20.78 20.85 20.85 (单位:g) 求:(1)测量值的算术平均值 (2)测量值的标准差 (3)测量结果的表达 解:(1)算术平均值为:
(2) 标准差
① 测量列的标准偏差 算术平均值反映了随机误差的分布中心,为更好的表征随 机变量相对于中心位置的离散程度,可引入标准偏差。 标准偏差是指随机误差的方均根值。
若测量列为一组测量值x1,x2,…,xn,其标准差σ为
2 1
( x1 A0 ) 2 ( x2 A0 ) 2 ( xn A0 ) 2 n
x1 x2 x16 x 39.50 16
(2)求标准差:
(3)根据
( x1 x) ( x2 x) ( x16 x)
2 2
2
16 - 1
0.38
Vi | xi x | 3 1.14
结论:无粗差
2.2 传感器的静态特性
传感器的静态特性是指在输入量为静态或缓慢变化时的 输入输出关系
返 回 上一页 下一页
(3)实际值 用精度更高一级的标准器具所测得的值称为实际值, 实际应用中可代替真值。 (4)标称值 一般由制造厂家为元件、器件或设备在特定运行条件 下所规定的量值。 (5)示值
由测量器具读数装置直接读出来的被测量的数值。
返
回
上一页
下一页
第2章 生物医学传感器基础课件
• E 0 是金属浸在含有该金属离子有效浓度 为lmol/L的溶液中达到平衡时的电极电位, 称为这种金属的标准电极电位(表3.2 )
• 可看出 E 0 值远远大于所有生物电位信号 的大小。
• E 0 与金属以离子形态转入溶液的能力K 以及温度T有关系。
第2章 生物医学传感器基础
第2章 生物医学传感器基础
• 图 电极-溶液界面的平衡电位
锌电极放入含Zn2+的溶液 中,锌电极中Zn2+进入溶 液中,在金属上留下电子
带负电,溶液带正电。
进入水中的正离子和带负 电的金属彼此吸引,使大多 数离子分布在靠近金属片 的液层中,形成的电场,阻 碍Zn2+进一步迁移最终达 到平衡。
此时金属与溶液之间形成电荷 分第2布章 产生物生医学一传感定器的基础电位差。
第2章 生物医学传感器基础
一、电极的基本概念
• 生物电是生物体最基本的生理现象,各种生物 电位的测量都要用电极;给生物组织施加电剌 激也要用电极
• 电极实际上是把生物体电化学活动而产生的离 子电位转换成测量系统的电位
• 电极起换能器作用,是一种传感器
• 电流在生物体内是靠离子传导的,在电极和导
线中是靠电子传导的,在电极和溶液界面上则
+
-
-
-
+
-
生物电检测电极示意图 第2章 生物医学传感器基础
生物电测量的等效电路
第2章 生物医学传感器基础
• 医用电极按工作性质可分为检测电极和 刺激电极两大类:
• 检测电极是敏感元件,用来测定生物电位的。 需用电极把这个部位的电位引导到电位测量 仪器上进行测量,这种电极称为检测电极。
• 剌激电极是对生物体施加电流或电压所用的 电极。剌激电极是个执行元件。
《传感器与检测技术》知识点总结
《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。
(3)功能:检测和转换。
(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。
(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。
2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。
0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。
分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。
4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。
开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。
传感器的基本特性概述
传感器的基本特性概述一、静态特性是指被测输入量不随时间变化时传感器的输入——输出关系。
衡量传感器静态特性的主要指标有线性度、灵敏度、迟滞性、漂移等。
1.线性度理想传感器的输入y 与输入x 呈线性关系,则y =a1x 式中,1a为传感器的线性灵敏度。
实际传感器的输出y 与输入x 呈非线性关系,如不考虑迟滞和蠕变因素,则线性度有时也称非线性误差,用以衡量传感器输出量与输入量之间线性关系的程度,以及直线拟合的好坏。
常用的直线拟合除端点拟合法外,还有切线拟合、最小二乘法等方法。
2.灵敏度传感器在稳态下输出变化量与输入变化量之比称为灵敏度Sn ,即对于理想线性传感器,灵敏度n S 为常数,对于一般传感器则采用线性区或拟合直线的斜率表示。
见图A-2 所示。
通常测量点取在零点附近时线性度好,灵敏度也高。
3.迟滞性它是指传感器在正(输入量增大)反(输入量减小)行程期间的输出输入曲线不重合的程度,见图A-3 所示。
迟滞大小用迟滞误差表示,通常由实验确定。
即迟滞差是由与传感器的响应受到输入过程影响而产生的,它的存在,破坏了输入和输出的一一对应关系,因此,必须尽量减少迟滞差。
4.漂移漂移是指在一定时间间隔内,传感器输出量存在着有与被测输入量无关的,不需要的变化。
漂移包括零点漂移和灵敏度漂移。
零点漂移或灵敏度漂移又分为时间漂移和温度漂移。
时间漂移是指在规定条件下,零点或灵敏度随时间缓慢变化。
温度漂移为环境变化而引起的零点或灵敏度的漂移。
二、动态特性它是指传感器输出对随时间变化的输入量的响应特性。
传感器的输出不仅要精确地显示被测量的大小,还要显示被测量随时间变化的规律(即被测量的波形),因此,传感器的输出量也是时间的函数。
在实际中,输出信号将不会与输入信号具有相同的时间函数,它们之间的这种差异,就是要分析的动态误差。
动态误差包括两个部分:一是实际输出量达到稳定状态后与理论输出量间差别;二是当输入量发生跃变时,输出量由一个稳态到另一个稳态之间过渡状态中的误差。
传感器第2章基本特性
(2 ~ 3)σ γ =± × 100% y FS
标准偏差的计算用贝赛尔公式计算, 标准偏差的计算用贝赛尔公式计算,即
σ=
∑(y
i =1
n
i
y)
n 1
第 1 章 传感器基础知识
8)分辨力与阈值 定义:指能检测最小输入变化量(增量)的能力. 定义:指能检测最小输入变化量(增量)的能力. 由于分辨力易受噪声影响,所以常用相对于噪声电平N 由于分辨力易受噪声影响,所以常用相对于噪声电平N若干 的被测量为最小检测量. 倍c的被测量为最小检测量. 定义式: 定义式: cN
M=
k
C取1~5 取
阈值:输入量在零点附近的分辨力(最小检测量). 阈值:输入量在零点附近的分辨力(最小检测量).
第 1 章 传感器基础知识
思考 题 1.何为传感器的静态特性? 1.何为传感器的静态特性? 何为传感器的静态特性 2.静态特性的主要技术指标为哪些? 2.静态特性的主要技术指标为哪些? 静态特性的主要技术指标为哪些 3.某位移传感器,在输入量变化5mm时, 3.某位移传感器,在输入量变化5mm时 某位移传感器 5mm 输出电压变化为300mV,求其灵敏度. 300mV,求其灵敏度 输出电压变化为300mV,求其灵敏度. 4.某测量系统由传感器,放大器和记录仪组成, 4.某测量系统由传感器,放大器和记录仪组成,各环节的 某测量系统由传感器 灵敏度为S1 0.2mV/℃ S2=2.0V/mV,S3=5.0mm/V,求系 S1= 灵敏度为S1=0.2mV/℃, S2=2.0V/mV,S3=5.0mm/V,求系 统总的灵敏度. 统总的灵敏度.
y (t ) = B(ω ) sin[ωt + φ (ω )]
第 1 章 传感器基础知识
第二章 传感器的基本特性
47
二阶系统的动态响应(振动系统)
二阶系统传递函数
b0 kw Y ( s) H ( s) 2 2 X ( s) a2 s a1s a0 s 2 wm s wn
零漂=
Y0 100% YFS
式中 ΔY0 ——最大零点偏差;
YFS ——满量程输出。
22
温度漂移
传感器在外界温度变化时输出量的变化
温漂=
max 100% YFS T
式中 Δmax —— 输出最大偏差; ΔT —— 温度变化范围; YFS —— 满量程输出。
23
其它特性指标
分辨率—— 传感器能够检测到的最小输入增量;
14
迟滞
重合的现象称迟滞。
输入量增大
传感器在正、反行程期间输入、输出曲线不
输入量减小
15
迟滞误差一般由满量程输出的百分数表示:
H H max / Y
FS
100%
H max Y2 Y1
例:一电子秤
增加砝码 电桥输出 减砝码输出
为正、反 行程输出值间的最大差值
10g —— 50g —— 100g —— 200g 0.5 mv --- 2mv --- 4mv --- 10mv 1 mv --- 5mv --- 8mv --- 10mv
16
重复性
传感器输入量按同一方向作多次测量时,输 出特性不一致的程度。
17
重复性误差用最大重复偏差表示:
Rmax rR 100% YFS
43
反变换后得出输出的振幅和频率变化特性
e 1 ( / ) y (t ) sin(t ) 2 2 2 2 (1/ ) (1/ )
传感器的概述
第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
传感器基本特性
三、机电模拟 Electro-mechanical analog
机电模是基于能量流概念,由机械系统的微 分方程与等值的微分电路形式上的相似实现模拟。
常见的机电模拟形式有:
力-电压模拟
■
力-电流模拟
■
图2-9 二阶机械系统力学模型
①力——电压模拟
对上图所示的二阶机械系统,根据牛顿运动定 律可以写出:
F Fa Fc Fk
Fa代表系统的惯性力,它等于系统的质量m与加速度 的乘积;Fc代表系统的阻尼力,它与运动速度成正 比;Fk代表系统的弹性力,它与系统的形变成正比。
∴
F
m
d2x dt 2
c
dx dt
kx
m
dv dt
cv
k
(2)端点线性度
以校准曲线的两个端点相连成的直线作为 拟合直线所确定的线性度。
这种拟合方法比较简单直观,但其拟合精 度较低。
18
(3)平均选点线性度
此种拟和方法是将测得的ni个试n /验2 点n分 成数
目相等的两组,前半部 n/2个点为一组,后半 部 n/2个点为另一组,求出两组试验点的 “点系中心”,使各组试验点均分布在各自的 “点系中心”周围。通过两个点系中心的直线 就是所求的平均选点拟合直线。
1.时域分析法 Time lands analysis method
时域分析法——在已知传感器传递函数的前提 下,借助于拉氏逆变换求得输出对输入的时间响应 的一种数学方法。实际是指传感器对于单位阶跃信 号时间响应特性的分析方法。
已知传感器的拉氏传递函数为:
输出量的拉氏变换为:
H
传感器的基本特性
分类法。
35
绪 论
按大类分
传 感 器 的基本特性
物理传感器: 利用物理性质和物理效应 制成的传感器。
传感器
化学传感器: 把人体内某些化学成分、 浓度等转换成与之有确切 关系的电学量的器件。 生物传感器:利用生物活性物质具有的 选择识别待测生物化学物 质的能力而制成传感器。
36
绪 论
分类方法 按输入量分类 按工作原理分类
绪 论
传 感 器 的基本特性
生物医学传感器
阮 萍
生物医学工程系 E-mail: 326737727@
1
绪 论
传 感 器 的基本特性
传感器的应用
1、自动门,利用人体的红外微波来开关门。 2、烟雾报警器,利用烟敏电阻来测量烟雾浓度,从而达到报警目的。 3、手机,数码相机的照相机,利用光学传感器来捕获图象。 4、电子称,利用力学传感器。 5、水位报警,温度报警,湿度报警,光学报警等是智能传感器。 在工业生产中,利用传统的传感器无法对某些产品质量指标(例如,黏度、 硬度、表面光洁度、成分、颜色及味道等)进行快速直接测量并在线控制。 而利用智能传感器可直接测量与产品质量指标有函数关系的生产过程中的某 些量(如温度、压力、流量等)。 6、医疗器械应用中的传感器,呼吸器械:麻醉机、睡眠呼吸机、制氧机和 呼吸机。输液泵:触力传感器、霍尔效应磁位置传感器、红外传感器。 诊断用器械:血液分析仪、血细胞分析仪、免疫测定分析仪、临床化学分析 仪、质谱仪、色谱仪(气相、液相、高效液相)和实验室的自动系统等。 2
医学研究和进行疾病诊断都要求获得人体各方面的 信息。如心脏疾病的诊断,它要求来自从系统到器官、 组织、细胞、分子等各层次的信息,即心音、血压、心
电、心肌组织信息等。实现这些生物信息的检测手段就
传感器的特性
理想情况仅含有一次项,希望表达式仅含奇次项, 偶次项和零次项消除。传感器在结构上采用差动式结构
可实现。
y1 a0 a1 x a2 x 2 an x n y2 a0 a1 x a2 x 2 (1) n an x n y y1 y2 2(a1 x a3 x 3 ) 表达式中消除了零次项 和偶次项,提高了灵敏 度, 减小了非线性。
传感器非线性大小评定方法
静特性曲线可通过实际测试获得。 首先在标准工作
状态下,用标准仪器设备对传感器进行标定(测
试),得到其输入输出实测曲线,即校准曲线,然 后作一条理想直线,即拟合直线,校准曲线与拟合 直线之间的最大偏差与传感器满量程输出之比,称 为传感器的非线性误差(或线性度) 在采用直线拟合线性化时,传感器的输出输入校正 曲线与其拟合曲线间最大偏差与满量程输出值的百 分比称为线性度或非线性误差,通常用相对误差表 示。
A X ’ )1 X ’ 求得A, ( X Y
进而求得( a0 , a1 am ) 计算机求解。
分辨力可用绝对值表示,也可用与满量程的百 分数表示。
数字式传感器一般用分辨力为输出的数字指示 值最后一位数字。 7、温度稳定性
温度稳定性又称温漂,表示温度变化时传感 器输出值的偏离程度,一般以温度变化1℃输出 最大偏差与满量程的百分比表示
为了减小动态误差和扩大频率响应范围, 一般 是提高传感器固有频率ωn。而固有频率ωn与传 感器运动部件质量m和弹性敏感元件的刚度k 有关, 即ωn =(k/m)1/2。增大刚度k和减小质 量m可提高固有频率, 但刚度k增加, 会使传感 器灵敏度降低。所以在实际中, 应综合各种因 素来确定传感器的各个特征参数。
传感器与检测技术
第二章传感器的特性21传感器的静态特性
l 可靠度R(t) : 完成规定功能的概率P(T>t)
l 可靠寿命:年,月 l 失效率 (t) 在t时刻后单位时间发生失效的概
率
返回
上页
下页
2.2 传感器的动态特性
传感器对随时间变化的输入量的响应特性(测量 值大小、变化规律)
返回
上页
下页
标定系统组成
标定系统框图
传感器标定时,所用测量设备的精度至少要比待标 定传感器的精度高一个数量级。
返回
上页
下页
为了保证各种被测量量值的一致性和准确性,很多 国家都建立了一系列计量器具(包括传感器)检定的组织 和规程、管理办法。我国由国家计量局、中国计量科学 研究院和部、省、市计量部门以及一些大企业的计量站 进行制定和实施。国家计量局(1989年后由国家技术监 督局)制定和发布了力值、长度、压力、温度等一系列计 量器具规程,并于1985年9月公布了《中华人民共和国 计量法》,其中规定:计量检定必须按照国家计量检定 系统表进行。计量检定系统表是建立计量标准、制定检 定规程、开展检定工作、组织量值传递的重要依据。
返回
上页
下页
静态标定的目的是确定传感器静态特性指标,如 线性度、灵敏度、滞后和重复性等。传感器的静态 特性是在静态标准条件下标定的。
静态标准条件 所谓静态标准条件主要包括没有加速度、振动、冲 击及环境温度一般为室温 (20℃±5℃) 、相对湿度不 大于85%、大气压力(101±7)kPa 等条件。
返回
上页
下页
传感器的标定有两层含义: § 确定传感器的性能指标 § 明确这些性能指标所适用的工作环境
第2章 传感器的基本特性
dn y(t)
dn-1 y(t)
dy(t)
an dt n + an -1 dt n-1 + + a1 dt + a0 y(t)
=
bm
dm x(t) dt m
bm-1
d m-1 x(t ) dt m-1
b1
dx(t) dt
b0 x(t )
(2.3.1)
式中,an、an-1、…、a1、a0和bm、bm-1、…、b1、 b0均为与系统结构参数有关但与时间无关的常数。
➢ 除理想状态,多数传感器的输入信号是随时间变 化的,输出信号一定不会与输入信号有相同的时间函 数,这种输入输出之间的差异就是动态误差。
第2章第7传章 感器磁电的式基传本感器特性
1155
2.3.1数学模型
一般用线性时不变系统理论描述传感器的动态 特性,数学上可以用常系数线性微分方程表示系统 的输出量y与输入量x的关系。
第2章第7传章 感器磁电的式基传本感器特性
1122
2.2.2 静态特性参数
6、漂移 作用在传感器上的激励不变时,响应量随时间
的变化趋势。表征传感器的不稳定性。 产生漂移的原因:1、传感器自生结构参数的变化;
2、外界工作环境参数的变化。
7、量程及测量范围 – 测量上限值与下限值的代数差称为量程。 – 测量系统能测量的最小输入量(下限)至最大 输入量(上限)之间的范围称为测量范围。
Y ( jω) = y(t)e -jωtdt
0
0
Y ( jω)
H ( jω) = X ( jω)
H
(
jω)
=
bm an
( (
jω)m jω)n
bm-1( jω)m-1 b1( jω) b0 an-1( jω)n-1 a1( jω) a0
传感器原理及应用复习题库
传感器原理及应用复习题库第一章 概述1、传感器一般由敏感元件、转换元件、基本电路三部分组成。
62、传感器图用图形符号由符号要素正方形和等边三角形组成,正方形表示转换元件,三角形表示敏感元件,“X ”表示被测量,“*”表示转换原理。
7第二章 传感器的基本特性1、传感器动态特性的主要技术指标有哪些?它们的意义是什么?答:1)传感器动态特性主要有:时间常数τ;固有频率n ω;阻尼系数ξ。
2)含义:τ越小系统需要达到稳定的时间越少;固有频率n ω越高响应曲线上升越快;当n ω为常数时响应特性取决于阻尼比ξ,阻尼系数ξ越大,过冲现象减弱,1ξ≥时无过冲,不存在振荡,阻尼比直接影响过冲量和振荡次数。
2、有一温度传感器,微分方程为30/30.15dy dt y x +=,其中y 为输出电压(mV) , x 为输入温度(℃)。
试求该传感器的时间常数和静态灵敏度。
解:对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s)则该传感器系统的传递函数为: ()0.150.05()()303101Y s H s X s s s ===++ 该传感器的时间常数τ=10,灵敏度k=0.053、测得某检测装置的一组输入输出数据如下:试用最小二乘法原理拟合直线,求其线性度和灵敏度。
(10-12)1、解: b kx y +=)(b kx y i i i +-=∆22)(i i ii i i x x n y x y x n k ∑-∑∑∑-∑=222)()(i i i i i i i x x n y x x y x b ∑-∑∑∑-∑∑=代入数据求得68.0=k 25.0=b ∴ 25.068.0+=x y238.01=∆ 35.02-=∆ 16.03-=∆ 11.04-=∆ 126.05-=∆ 194.06-=∆ x0.9 2.5 3.3 4.5 5.7 6.7 y 1.1 1.6 2.6 3.2 4.0 5.0%7535.0%100max ±=±=⨯∆±=FS L y L γ 第三章 电阻式传感器1、何为电阻应变效应?怎样利用这种效应制成应变片?答:导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
44
忽略瞬态响应,稳态响应整理后为:
y(t) 1 sin(t ) A() sin(t ) 1 2 2
幅—频特性:
A(w)
1
1 (w )2
相—频特性:
() arctan( )
45
46
时间常数τ越小, 频率响应特性越好。 当ωτ << 1时, A(ω)≈1, Φ(ω)≈0, 表明传感器输出与 输入为线性关系, 且相位差也很小,输出y(t)比较真实地反 映输入x(t)的变化规律。 因此, 减小τ可改善传感器的频率特性。
✓ 用时域法表示成:
Y t f X t
✓ 用频域法表示为:
Y j f X j
26
➢ 动态特性是指传感器输出对随时间变化的输入
量的响应特性: ➢一个动态特性好的传感器, 其输出将再现输入量 的变化规律, 即具有相同的时间函数。 ➢实际上除了具有理想的比例特性外, 输出信号将 不会与输入信号具有相同的时间函数,这种输出与 输入间的差异就是所谓的动态误差。
s 1 S
t
y(t) k (1 e )
一阶系统
40
❖ 一阶传感器的阶跃响应
41
传感器存在惯性, 它的输出不能立即复现输入信号, 而 是从零开始, 按指数规律上升, 最终达到稳态值。
理论上传感器的响应只在t趋于无穷大时才达到稳态值, 但实际上当t=4τ时其输出达到稳态值的98.2%, 可以认为 已达到稳态。
32
33
对于复杂的系统或输入信号,求解输入输出关系(求解微 分方程)是很困难的,因此可以采取一些足以反映系统动态 特性的函数,将系统的输入输出联系起来。
工程中常用的函数有传递函数、频率响应、脉冲响应函数 和阶跃响应函数。
34
1) 传递函数
输入激励 X(t)
传感器系统
输出响应 Y(t)
当输入量随时间变化时,略去影响小的因素,假设 传感器输入、输出在线性范围变化,它们的关系可 用高阶常系数线性微分方程表示:
(s)
1 s 1
s2
2
1
(s 1/ )(s2 2 )
43
反变换后得出输出的振幅和频率变化特性
y(t)
et /
(1/ )2 2
1
( / )2 (1/ )2 2
sin(t
)
输出Y(t)有个两部分,瞬态响应成分、稳态响应 成分,瞬态响应随时间t逐渐消失。
k b0 a0
静态灵敏 a1 时间常数
度
a0
传递函数可简化为: H (S ) 1
s 1
39
❖ 一阶传感器的阶跃响应(瞬态
响应)
由拉氏反变换得到单位阶跃响应信号为:
X (t) 1(t)
X (S) 1 S
L{X (t)} 1
Y (s) X(s)H (S) 1 1 S
30
传感器的输入量随时间变化的规律是各种各样的, 下面 在对传感器动态特性进行分析时,采用最典型、最简单、
易实现的正弦信号和阶跃信号作为标准输入信号。
➢对于正弦输入信号, 传感器的响应称为频率响应或稳 态响应; ➢对于阶跃输入信号, 则称为传感器的阶跃响应或瞬态 响应
31
一阶传感器的单位阶跃响应信号为
两边取拉氏变换,将实函数变换到复变函数
y(s)(ansn an1sn1 a0 )
x(s)(b m
s
m
bm 1s m 1
b0 )
36
传感器的传递函数:
H (S )
y(s) x(s)
b m
sm
an s n
bm1sm1 b0 an1sn1 a0
则稳定度可表示为1.5mV/h。
21
零点漂移
▪ 传感器在输入为零时的输出量,(长时间工作 稳定性、零点漂移)
零漂=
Y0 100 % YFS
式中 ΔY0 ——最大零点偏差; YFS ——满量程输出。
22
温度漂移
▪ 传感器在外界温度变化时输出量的变化
温漂= max 100 % YFS T
an
dny dt n
a1
dy dx
a0
y
b m
dmx dt m
b 1
dx dt
b0 x
式中: Y—输出;X—输入;ai 、bi为常数
35
t0 y0 时
y(s)=L[F(t)]=
0
y(t )e st dt
x(s)=L[x(t)]=
0
x(t
)e
st
dt
传感器的非线性误差通常用相对误传差感表器示实:际特性曲
线与拟合直线之间
L
Lmax Y
100%
FS
的最大偏差 Y
Y=kx+b
线性度 Yi
传感器满量程输出
Lmax X
Xi
6
7
直线拟合线性化
▪ 出发点: 获得最小的非线性误差
拟合方法: ①理论拟合; ②过零旋转拟合; ③端点连线拟合; ④端点连线平移拟合; ⑤最小二乘拟合;
ΔLmax x
11
返回
上一页
下一页
④端点连线平移拟合
▪ 在端点连线拟合基础上使直线平移,移动距离 为原先的一半 L2 L1 L3 LMax y ΔLmax
ΔL1 x
12
返回
上一页
下一页
⑤ 最小二乘拟合
y kxb
i yi (kxi b)
n
n
原理: 2i yi (kxi b)2 min
H max
/Y FS
100%
Hmax Y2 Y1 为正、反 行程输出值间的最大差值
例:一电子秤
增加砝码 10g —— 50g —— 100g —— 200g 电桥输出 0.5 mv --- 2mv --- 4mv --- 10mv 减砝码输出 1 mv --- 5mv --- 8mv --- 10mv
47
二阶系统的动态响应(振动系统)
❖ 二阶系统传递函数
H (s)
Y (s) X (s)
a2s2
b0 a1s a0
s2
kwn2
2 wms wn
wn a0 / a2 固有频率
k b0 / a0 静态灵敏度
a1
2 a0a2
阻尼比
48
❖ 二阶传感器的阶跃 响应
输入阶跃信号时拉氏变换为
8
返回
上一页
下一页
①理论拟合
拟合直线为传感器的理论特性,与实际测试值无关。 方法十分简单,但一般说 LMax 较大
y
ΔLmax
x
9
返回
上一页
下一页
②过零旋转拟合
曲线过零的传感器。拟合时,使 L1 L2 LMax y
ΔL1 ΔL2
x
10
返回
上一页
下一页
③端点连线拟合
▪ 把输出曲线两端点的连线作为拟合直线 y
传感器基本特性
▪ 主要内容
➢ 传感器静态特性 ➢ 传感器动态特性
1
传感器基本特性
被测量x
y
传感器
测量电路
输出单元
▪ 传感器的基本特性—传感器输入与输出之间的关系。
▪ 传感器测量的参数X一般有两种形式
➢ 快变信号(动态信号)
X随时间变化时X-Y的特性
➢ 慢变信号(稳态信号)
X不随时间变化时X-Y的特性
LX (t) 1
s
输出拉氏变换
二阶系统
Y
(s)
H
s
X
s
s2
wn2
2 wns
wn2
1 s
49
反变换为:
Y (t) 1
e wnt
1 2
sin wdt
式中:
13
结论!
▪ 即使是同类传感器, 拟合直线不同, 其线性 度也是不同的。 选取拟合直线的方法很多, 用最小二乘法求取的拟合直线的拟合精度 最高。
14
迟滞
输入量增大
❖ 传感器在正、反行程期间输入、输出曲线不
重合的现象称迟滞。
输入量减小
15
❖ 迟滞误差一般由满量程输出的百分数表示:
H
τ越小, 响应曲线越接近于输入阶跃曲线, 因此, τ值是一 阶传感器重要的性能参数。
由曲线看出它与动态测温相似,所以动态测温是典型的 一阶系统 。
42
❖ 一阶传感器的频率响应(稳态响应)
输入正弦信号
一价系统
X (t) sint
拉氏变换后
L{X
(t)}
S2
2
Y
(s)
H
(s)
X
式中 Δmax —— 输出最大偏差; ΔT —— 温度变化范围; YFS —— 满量程输出。
23
其它特性指标
❖ 分辨率—— 传感器能够检测到的最小输入增量;
❖ 阈值——输入小到某种程度输出不再变化的X值; ❖ 门槛灵敏度—— 指输入零点附近的分辨能力。
24
25
传感器动态特性
➢ 当输入量随时间变化时,如 :加速度、振动等 ➢ 这时被测量是时间的函数,或是频率的函数。
16
重复性
❖ 传感器输入量按同一方向作多次测量时,输 出特性不一致的程度。