绕组温度的“电阻变化”测量方法

合集下载

变压器绕组温度异常原因及诊断方法

变压器绕组温度异常原因及诊断方法

变压器绕组温度异常原因及诊断方法摘要:变压器是电力系统中的重要组成部分之一,广泛应用于电力系统中。

而绕组温度直接决定变压器的使用寿命,所以为了保障变压器运行安全可靠,延长变压器的使用寿命,研究变压器绕组温度异常原因及诊断方法具有十分重要的意义。

关键词:变压器绕组;温度异常原因;诊断方法电力变压器是电力系统中最为重要的电气设备之一,其运行状况对电力系统安全可靠运行关系极大。

在电力变压器的主要机构中,绕组是非常重要的组成部分。

因绕组超温运行,导致绝缘老化,电力变压器绕组击穿、烧毁事故有相当大比例。

某变电站发生过一起变器烧毁的严重故障,故障后检查变压器发现变压器绕组已经击穿、严重烧毁,故障的原因是变器绕组某一点出现异常高温(可能有毛刺或者其他缺陷),这种异常的绕组高温逐渐积聚,导致烧穿绝缘,最终引发变压器故障。

1变压器绕组温度异常原因1.1内部故障引起温度异常变压器内部故障如匝间短路或层间短路,线圈对围屏放电,内部引线接头发热,铁芯多点接地使祸流增大过热,零序不平衡电流等漏磁通与铁件油箱形成回路而发热等因素引起变压器绕组温度异常时,还将伴随着瓦斯或差动保护动作,故障严重时还可能使防爆管或压力释放阀喷油,这时变器应停用检查。

1.2冷却器不正常运行引起温度异常冷却器不正常运行或发生故障如潜油泵停运,风扇损坏,散热管道积祐,冷却效率不良,散热器阀门没有打幵等原因引起变压器绕组温度异常。

应及时对冷却系统进行维护和冲洗或投入备用冷却器,否则就要调整变压器的负荷。

1.3温度指示器有误差或指示失灵温度表的故障主要是远传温度表的显示数据,与标准数据相比较误差很大,造成远传温度表指针不能正确指示、计算机终端不能正确显示主变压器实际温度,给变压器安全运行造成运行隐患。

变压器温度表的故障主要表现在:装置故障和人为故障两个方面。

装置故障方面表现在装置及设备本身存在各种各样的误差,综合误差导致超过允许范围,形成故障。

可以表现在PT100销电阻随温度变化的非线性对应关系,导致简单的计算公式失效,显示器以及计算机显示不准确,存在装置故障。

变压器设计-温升篇

变压器设计-温升篇

13
附GB1094.2 温升试验技术(电阻法)
14
附GB1094.2 温升试验技术(电 阻法)
15
附GB1094.2 温升试验技术(电阻法)
16
附GB1094.2 温升试验技术(电阻法)
17
THANKS!
18
q j2
式中:
K * P r2 K 2 * S j 2
Pr1 ——外绕组电阻损耗(参考温度时),W;
Pr 2 ——内绕组电阻损耗(参考温度时),W; K ——由参考温度换算到温升试验时绕组温度的系数,H级取1.086;
S jw1 ——外绕组外表面积,m² ;
11
二 温升计算
S jn1 ——外绕组内表面积,m²; S j 2 ——内绕组表面积,m² ;
二 温升计算
2. 内绕组表面积计算 内绕组各表面均为非裸露部分的表面积,按下式计算:
S j 2 m *H X 2*106 * (2 * * rj 2 N * bt )
式中:m、N、 同上述说明;
H X 2 ——内绕组电抗高度;
r j 2 ——内绕组各表面(包括内、中、外各与空气接触表面)的半径。
K 2 ——外绕组及内绕组轴向气道有效散热系数. K1 、
4. 绕组温升计算 ℃ ℃
外绕组:
1 K1 * q j10.8
内绕组:
2 K 2 * q j 2 0.8
式中:
1 ——外绕组温升,K;
2
K1
——外绕组温升计算系数,经验设计验证取值 0.4; ——内绕组温升,K;
12
变压器设计-温升
1
内容 Content
一 温升相关标准 二 温升计算

绕组法测绕组温升

绕组法测绕组温升

绕组法测绕组温升在安规测试中,我们一般采用热电偶法来获取待测设备内部各个点的温升情况。

但是例如马达线圈转子由于其正常工作情况下运动的特性以及定子中表面某个点的温升并不能更好的反映其整体温升情况,因此,对与上述情形,我们可采取测量试验前后电阻来间接得出其温升值,即绕组法。

在家用电器安全标准IEC 6 0335-1中,对马达线圈的温升,要求必须用绕组法来测量。

为使广大客户更加了解绕组测试温升方法,摩尔实验室(MORLAB)特撰此文以做简要介绍。

绕组法测温升的原理是:铜、铝等金属,其电阻随温度的变化会呈现某一特定的规律。

绕组温升由下式计算求得:△t =(R2-R1)/R1(k+t_1)-(t_2-t_1)△t——绕组温升;R1——试验开始时电阻;R2——试验结束时电阻;k——对铜绕组,等于234.5;对于铝绕组,等于225;t_1——试验开始时的室温;t_2——试验结束时的室温;在上述公式中各个值的测试过程中,试验开始时绕组应处于室温。

试验结束时零秒电阻的获取是整个绕组法测温升的关键之处,由于马达线圈在正常工作情况下是运动的部件,要想直接在断电的一瞬间测量其电阻几乎是不可能实现的。

并且在测试电路中存在电容和电感,在正常工作情况下会产生振荡信号,会极大干扰测试结果的准确性。

所以我们一般会采用作图取点法利用衰减规律去推算零秒电阻,如下图所示。

如图所示,由于线圈电阻随温度变化呈现某一特定规律,通过测量线圈5s 、10s 、15s三个时间点的电阻,由作图法我们即可粗略估算出线圈零秒电阻。

通过微电阻测试仪、秒表,分别测量5S、10S、15S三个时间点的线圈电阻。

需要注意的是,由于转子在试验后,有很大的可能改变其初始位置,而导致电阻变化。

此处R1的电阻应在试验结束,待线圈冷却后测量,以保证试验前后线圈电阻不会受转子位置改变的影响。

另外,绕组法线圈电阻所测的是绕组平均温度,相对于热电阻法测的表面温度更能够反映线圈真实温升,并且绕组法可以测量旋转的转子温升,这一点是热电偶法所不能达到的(实际操作中,绕组法所测得温升往往比热电偶法高出10K 左右)。

测量电机动定子绕组的绝缘电阻

测量电机动定子绕组的绝缘电阻

选表及用前检查1.选用:测量新电动机使用1000V的兆欧表;测量运行过的电动机使用500V的兆欧表。

2.用前检查:(1)外观检查:表壳应无好无损;表针应能自由摆动;接线端子应齐全完好;表线应是单根软绝缘铜线,且完好无损,其长度一般不应超过5m。

(2)开路试验:将一条表线接在兆欧表的“E”端,另一条接在“L”端。

两条线分开,置于绝缘物上,表位放平稳,摇动摇把到每分钟120 转,表针应稳定指在“∞”为合格。

(3)短路试验:开路试验做完后,将两条线短路,摇动摇把 (开始要慢)到每分钟120转,表针应稳定指在0,为合格。

测量及判断(实做)1.测量绝缘项目:可分为①测对地绝缘;②测相间绝缘。

2.测量:测相对地绝缘:①将电动机退出运行(大型电动机在退出运行后要先放电);②验明无电后拆去原电源线;③将兆欧表的“E”端测试线接到电动机外壳(例如端子盒的螺孔处),将兆欧表的“L”端测试线接到电动机绕组任一端(接线端上原有联接片不拆);④摇动摇把达到每分钟120转,到一分钟时读取读数(必要时应记录绝缘电阻值及电动机温度)⑤撤除“L”端接线,后停止摇表,并放电。

测相间绝缘:①对地绝缘测试后放电;②拆去电动机接线端上原有联接片;③将兆欧表的“E”端和“L”端测试线各接一相绕组;④摇动摇把到每分钟120转,一分钟时读取读数(必要时应记录绝缘电阻值及电动机的温度);⑤撤除“L”端接线,后停止摇表,放电;⑥测另两个绕组间的绝缘……共三次(每次测后均应放电)。

判断:不论对地绝缘还是相间绝缘,其合格值的要求如下:(1)对于新电动机用1000V兆欧表(交接试验):绝缘电阻应不小于1MΩ;(2)对于运行过的用500V兆欧表电动机(预防性试验):绝缘电阻应不小于0.5MΩ。

测试过程中应注意的安全问题1.正确地选表并作充分的检查;2.被测电机及必须退出运行并拆除一二次电源线,对大型电动机在退出运行后要先放电,按照测试电容器的方法摇测。

每次测后也要放电,并验明确无电压;3.每相摇测前后要进行人工放电;4.测试时,注意与附近带电体的安全距离(必要时应设监护人);5.人体不得接触被测端,也不得接触兆欧表上裸露的接线端;6.防止无关人员靠近。

电阻法测温的原理及数学计算

电阻法测温的原理及数学计算

电阻法测温的原理及数学计算1引言温度测试是电器安全测试中应用最广,也是最复杂,最容易出现测试误差的部分,很多产品都会在涉及温度的测试中出现这样那样的问题,其测量的方法和精度会对产品的合格性评定产生决定性的影响。

在电器产品的试验中,常用到的测量温度或温升的方法,除了电阻测温法之外,还有红外线测温法,热电偶测温法。

但是,电阻测温法由于其准确度高,而且可以通过计算得到线圈内部的温度,因此特别广泛的应用于线圈、绕组等部件的测量,特别是对于马达等旋转线圈的内部温度测量。

2电阻法测温的基本原理:电阻法是利用线圈在发热时电阻的变化,来测量线圈的温度,具体方法是利用线圈的直流电阻,在温度升高后电阻值相应增大的关系来确定线圈的温度,其测得是线圈温度的平均值。

在一定的温度范围内,电机线圈的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。

对于铜线圈来说,线圈的热态温度的计算公式是:t2=R2R1(t1+234.5)-234.5(1式中R1———冷态线圈电阻,单位是欧姆R2———断电瞬时热态线圈电阻,单位是欧姆t1———冷态温度,一般等同于测量电阻R1时的环境温度,单位是摄氏度———与铜线圈有关的常熟。

如果是铝线圈,该常数为229根据以上公式求出t2后,若要求得到温升,将计算得到的温度t2,与试验结束时环境空气温度t3之差即可得到,即温升为(t2-t3)K:△t=R2R1(t1+234.5)-234.5-t3(2)冷态时的电阻(电机运行前测得的电阻)和热态时的电阻(运行后测得的电阻)必须在电机同一出线端测得。

线圈冷态时的温度在一般情况下,可以认为与电机周围环境温度相等。

这样就可以计算出线圈在热态的温度了。

线圈温升是安全标准中的一项重要指标。

那么,为什么不直接带电测量线圈的电阻而得到其温升呢?这是因为,带电测线圈电阻在目前的技术条件下尚无法到达所需要的精确度。

因此,要达到精确测量线圈电阻,只能使用高精度的数字电桥。

测量直流电机各绕组的直流电阻时应注意哪些事项如何分析测量结果

测量直流电机各绕组的直流电阻时应注意哪些事项如何分析测量结果

直流电机的绕组包括并激磁场绕组、串激磁场绕组和换向极磁场绕组。

测量这些绕组的直流电阻,是检查其各焊接部分是否有虚焊、开焊以及绕组本身有无匝间短路或者断线等缺陷。

测量个绕组的直流电阻,器测量方法和步骤以及一般注意事项:1)因为并激磁场绕组的匝数较多、直流电阻较大,可以采用单臂的电桥进行测量。

而串激磁场绕组和换向极绕组的匝数少、且线圈导线较粗,因此直流电阻较小,所以采用双臂电桥进行测量,来提高测量的准确性。

2)测量串激磁场绕组和换向极磁场绕组的直流电阻时,因为绕组本身的电阻值比较小,不包括任何引线电阻,否则将产生很大的误差,因此可将和绕组连接的引线拆开,直接在绕组上进行测量。

若拆开绕组引线有困难时,可带连接的引线进行测量,但是在试验报告上必须注明测量位置,以利于以后的测量和比较。

1)现将测得的直流电阻值换算至同一温度下的数值,和制造厂试验数据或以前测得的数据比较,一般相差不应该大于2%;补偿绕组的直流电阻自行规定;100KW以下的不重要直流电机绕组的直流电阻值标准也自行规定。

2)若测得的直流电阻值比较大,则可能是焊接部分虚焊、开焊或者是连接螺丝松动所致。

3)若测得的直流电阻值较小,则可能是绕组存在匝间或者层间短路。

4)当绕组的匝(或层)间短路匝数不多时,从直流电阻的变化上很难有明显的反应,因此,当怀疑存在少量的匝(或层)间短路时,可以测量电枢绕组和各磁极绕组的交流阻抗,其测量接线如图5-1所示。

测量时,通过励磁绕组的电流不能超过该绕组额定电流的20%。

用测得的电压和电流值计算出绕组的交流阻抗Z(Z=U/I)。

当被试绕组存在匝间短路时,因短路线匝的去磁作用,是其交流阻抗值显著小于正常值,此外,通过比较各同类磁极绕组的交流阻抗值,即可判定阻抗值小得多的磁极绕组存在匝间短路。

由于交流阻抗值和试验电压有关,所以每次测量是所加的试验电压应该相同。

最新电机绕组温度与温升的国家规定允许标准-精选.pdf

最新电机绕组温度与温升的国家规定允许标准-精选.pdf

电机绕组温度与温升的国家规定允许标准大家都知道衡量电机发热程度是用“温升”而不是用“温度”来衡量的,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。

下面就一些基本概念给出基本说明。

1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。

所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。

根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。

所以电机在运行中,温度是影响绕组使用寿命的主要因素之一。

2 温升温升是电机与环境的温度差,是由电机发热引起的。

运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。

这些都会使电机温度升高。

另一方面电机也会散热。

当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。

当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。

但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。

3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。

(1) 当气温下降时,正常电机的温升会稍许减少。

这是因为绕组电阻R下降,铜耗减少。

温度每降1℃,R约降0.4%。

(2) 对自冷电机,环境温度每增10℃,则温升增加 1.5~3℃。

这是因为绕组铜损随气温上升而增加。

所以气温变化对大型电机和封闭电机影响较大。

电机温度与温升的概念 理解及测量与计算

电机温度与温升的概念 理解及测量与计算

电机温度与温升的概念理解及测量与计算/ 2011年06月13日08:36 中国电机网生意社2011年06月13日讯电机的发热避免不了的想到了发热程度,涉及到电机发热程度的理论认识是:温升,温升限度、绝缘材料、绝缘结构,耐热等级等。

因此,要认识和理解上面几个名词的含义,才能更好地注意和修正电机的发热程序。

1.温升电机温升温升限度(1)某一点的温度与参考(或基准)温度之差称温升。

也可以称某一点温度与参考温度之差。

(2)什么叫电机温升。

电机某部件与周围介质温度之差,称电机该部件的温升。

(3)什么叫电机的温升限度。

电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极限,称温升限度。

电机温升限度,在国家标准GB755-65中作了明确规定,如附表所示。

在电机中一般都采用温升作为衡量电机发热标志,因为电机的功率是与一定温升相对应的。

因此,只有确定了温升限度才能使电机的额定功率获得确切的意义。

2.绝缘材料绝缘结构耐热等级(1)什么叫绝缘材料。

用来使器件在电气上绝缘的材料称绝缘材料。

(2)什么叫绝缘结构。

一种或几种绝缘材料的组合称绝缘结构。

(3)什么叫耐热等级。

表示绝缘结构的最高允许工作温度,并在这样的温度下它能在预定的使用期内维持其性能,在允许的范围内及其所分的等级耐热等级。

耐热等级分为Y级90℃、A级10℃、E级120℃、B级130℃、F级155℃、H级180℃和H级以上共七个等级。

从上所述,电机中不同耐热等级的绝缘材料有着不同的最高允许工作温度。

所谓最高允许工作温度是指:在此温度下长期使用时,绝缘材料的物理、机械、化学和电气性能不发生显著恶性变化,如超过此温度,则绝缘材料的性能发生质变,或引起快速老化。

因此,绝缘材料最高允许工作温度是根据它经济使用寿命确定的。

从附表中可以看到,温升限度基本上取决于绝缘材料的等级,但也和温度的测量方法、被测部的传热和散热条件有关,取决于绝缘材料的最高允许工作温度。

电机温度与温升的概念及测量和计算

电机温度与温升的概念及测量和计算

电机的发热避免不了的想到了发热程度,涉及到电机发热程度的理论认识是:温升,温升限度、绝缘材料、绝缘结构,耐热等级等。

因此,要认识和理解上面几个名词的含义,才能更好地注意和修正电机的发热程序。

1.温升电机温升温升限度(1)某一点的温度与参考(或基准)温度之差称温升。

也可以称某一点温度与参考温度之差。

(2)什么叫电机温升。

电机某部件与周围介质温度之差,称电机该部件的温升。

(3)什么叫电机的温升限度。

电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极限,称温升限度。

电机温升限度,在国家标准GB755-65中作了明确规定,如附表所示。

在电机中一般都采用温升作为衡量电机发热标志,因为电机的功率是与一定温升相对应的。

因此,只有确定了温升限度才能使电机的额定功率获得确切的意义。

2.绝缘材料绝缘结构耐热等级(1)什么叫绝缘材料。

用来使器件在电气上绝缘的材料称绝缘材料。

(2)什么叫绝缘结构。

一种或几种绝缘材料的组合称绝缘结构。

(3)什么叫耐热等级。

表示绝缘结构的最高允许工作温度,并在这样的温度下它能在预定的使用期内维持其性能,在允许的范围内及其所分的等级耐热等级。

耐热等级分为Y 级90℃、A级10℃、E级120℃、B级130℃、F级155℃、H级180℃和H级以上共七个等级。

从上所述,电机中不同耐热等级的绝缘材料有着不同的最高允许工作温度。

所谓最高允许工作温度是指:在此温度下长期使用时,绝缘材料的物理、机械、化学和电气性能不发生显著恶性变化,如超过此温度,则绝缘材料的性能发生质变,或引起快速老化。

因此,绝缘材料最高允许工作温度是根据它经济使用寿命确定的。

从附表中可以看到,温升限度基本上取决于绝缘材料的等级,但也和温度的测量方法、被测部的传热和散热条件有关,取决于绝缘材料的最高允许工作温度。

当周围冷却介质(例如空气)的最高温度确定后,就可根据绝缘材料的最高允许工作温度规定电机部件的温升限度。

根据统计我国各地的绝对最高温度一般在35~40℃之间,因此在标准中规定+40℃作为冷却介质的最高标准。

10kV高、低压配电设备系统试验项目试验方法

10kV高、低压配电设备系统试验项目试验方法

能也只是砂地或盐池,那上面连小草也长不出来的。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

1 10kV 配变及高、低压附属配电系统试验项目
2
人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

3
人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

4
人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

人生的磨难是很多的,所以我们不可对于每一件轻微的伤害都过于敏感。

在生活磨难面前,精神上的坚强和无动于衷是我们抵抗罪恶和人生意外的最好武器。

5。

电机绕组温度与温升的国家规定允许标准[详]

电机绕组温度与温升的国家规定允许标准[详]

电机绕组温度与温升的国家规定允许标准大家都知道衡量电机发热程度是用“温升”而不是用“温度”来衡量的,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。

下面就一些基本概念给出基本说明。

1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。

所谓绝缘材料的极限工作温度,系指电机在设计预期寿命,运行时绕组绝缘中最热点的温度。

根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。

如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。

所以电机在运行中,温度是影响绕组使用寿命的主要因素之一。

2 温升温升是电机与环境的温度差,是由电机发热引起的。

运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。

这些都会使电机温度升高。

另一方面电机也会散热。

当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。

当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。

但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。

3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。

(1) 当气温下降时,正常电机的温升会稍许减少。

这是因为绕组电阻R下降,铜耗减少。

温度每降1℃,R约降0.4%。

(2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。

这是因为绕组铜损随气温上升而增加。

所以气温变化对大型电机和封闭电机影响较大。

电枢绕组的检查方法

电枢绕组的检查方法

电枢绕组的检查方法
电枢绕组是电机中重要的组成部分,检验其质量和性能对于保证电机工作的正常稳定至关重要。

下面介绍一些电枢绕组的检查方法:
1. 观察外观。

通过肉眼观察电枢绕组的外观,检查其是否有明显的外表损坏或磨损,如绕组松动、断裂、磨损过度等现象,这些问题都会对电机的工作带来不良影响。

2. 使用万用表测试绝缘电阻。

将万用表的电源接至电枢绕组的两个端子上,以测量绕组的绝缘电阻。

若绝缘电阻值较低,则可能存在绕组短路或损坏,需要进行维修或更换。

3. 测量电枢绕组的电阻。

使用万用表或特定的测量仪器,测量电枢绕组的电阻。

根据电阻值的大小,可以初步判断电枢绕组的工作状态是否正常。

4. 检查电枢绕组的电压波形。

通过示波器等测量仪器,观察电枢绕组在工作时的电压波形,检查是否存在电压波动、幅度过大等现象,以此判断电枢绕组的工作状态是否正常。

5. 检查电枢绕组的温度。

在电机工作时,观察电枢绕组的温度变化,检查是否存在过度发热等问题。

若电枢绕组温度过高,则有可能存在绕组短路、绝缘损坏等问题。

总之,检查电枢绕组的质量和性能是电机维护和保养的重要环节,需要认真对待。

各种检测方法都具有自己的优势和适用范围,选择合适的检测方法进行检查,才能更好地保证电机的正常运行。

变压器绕组的直流电阻测试

变压器绕组的直流电阻测试

变压器绕组的直流电阻测试摘要:变压器是电力系统的核心设备,而变压器绕组的直流电阻测试又是变压器非常重要的试验项目。

变压器直流电阻试验可以检查引线的焊接或连接质量、绕组有无匝间短路或开路以及分接开关的接触是否良好等缺陷。

同时介绍了对直流电阻测量结果的判断方法和实际工作中经常遇到的几种典型的三相电阻不平衡原因,最后总结了这些年来对测量直流电阻试验时的注意事项。

关键词:变压器;直流电阻;分析判断1引言变压器绕组的直流电阻是变压器出厂交接和预防性试验的基本项目之一,也是变压器发生故障后的重要检查项目。

在规程中,其次序排在变压器试验项目的第二位,这是因为直流电阻及其不平衡率对综合判断变压器绕组(包括导杆和引线,分接开关及绕组)的故障可提供重要的信息。

通过直流电阻的试验可以检查:绕组回路是否有短路、开路或接错线;绕组焊接质量;分接开关各个位置接触是否良好;绕组或引出线有无折断处;并联支路的正确性。

是否存在由几条并联导线绕成的绕组发生一处或几处断线的情况以及层、匝间有无短路的现象。

此测试项目对发现上述缺陷具有重要意义。

2变压器绕组的直流电阻测试周期《电力设备预防性试验规程》中规定变压器绕组直流电阻的测量周期为:(1)1~3年;(2)无励磁调压变压器变换分接位置后;(3)有载调压变压器的分接开关检修后(在所有分接侧);(4)大修后;(5)必要时。

3变压器绕组连同套管的直流电阻测试方法及注意事项3.1测试方法使用变压器直流电阻测试仪进行测量。

3.2试验步骤(1)变压器各绕组短路接地充分放电;(2)记录变压器编号、铭牌等相关参数;(3)测量并记录上层油温及环境温度和湿度;(4)将测量设备或仪表通过测试线与被测绕组有效连接,开始测量;(5)直阻显示测量数据后,一般应继续等待2min-3min,进一步确认数据稳定后方可记录,对大容量变压器的低压绕组尤其要如此;(6)测试完毕应使用测量设备或仪表上的“放电”或“复位”键对被测绕组充分放电;(7)在更改接线或拆线前,还应用接地线人为放电。

测量三相鼠笼式异步电动机定子绕组的冷却电阻的实验数据

测量三相鼠笼式异步电动机定子绕组的冷却电阻的实验数据

测量三相鼠笼式异步电动机定子绕组的冷却电阻的实验数据电机是现代工业生产的重要设备,而电动机的冷却电阻则是其正常运行的必要条件之一。

测量电动机定子绕组的冷却电阻可以有效评估电机的工作状态及绝缘性能,并作出相应的处理和保养,以确保电机的长时间、正常运转。

本文介绍了测量三相鼠笼式异步电动机定子绕组的冷却电阻的实验过程和结果。

一、实验设备和原理1、实验设备本次实验所需的设备主要包括三相鼠笼式异步电动机、万用表、刀片电位器等。

2、原理电动机工作时,由于绕组中的电流产生磁场,绕组中的铜导线受到电磁场的作用,将会发热。

而冷却电阻则是用来衡量绕组发热情况的一项重要指标。

一般情况下,电动机的冷却电阻随着温度的升高而减小。

因此,通过测量电动机定子绕组的冷却电阻,可以判断电机的运行状态,并防止电机过度发热,甚至烧坏电机。

二、实验步骤1、测量电动机绕组的冷却电阻之前,首先要拔掉电机的插头,确保电机处于断电状态。

接着,将电机的定子绕组接入到实验电路中。

该电路主要由万用表、刀片电位器等组成。

2、连接电路后,将刀片电位器与万用表接通。

此时,电位差调至最小,并将万用表的电流档调至“0.2%”档位。

3、然后,将电位差调至最大值,并逐步将电阻分压开关切向“小”端,观察万用表上所显示的阻值变化情况。

4、随着电位差的增加,所显示的阻值将会逐渐减小。

当电位差达到最大值时,读取所显示的阻值,记录下来。

5、最后,将电路断开并将实验数据记录到实验报告中。

三、实验结果按照上述实验步骤进行数据测量,并记录下实验数据。

下面是本次实验所得到的数据结果:电位档位电位差(V)万用表指示值(mA)电路总阻值定子绕组电阻1 1.48 49.3 30.4 0.0372 2.00 37.8 51.3 0.0953 2.52 31.5 81.2 0.2574 3.04 28.0 130.5 0.6025 3.56 25.3 207.3 1.3316 4.08 23.5 324.7 3.396从上表可以看出,随着电位差的增加,读数越来越小。

电机绕组阻值温度换算

电机绕组阻值温度换算

电机绕组阻值温度换算
电机绕组阻值随温度的变化可以通过温度系数来进行换算。

一般情况下,电机绕组材料的温度系数为每摄氏度(℃)单位的电阻变化比例。

根据欧姆定律,电阻(R)与电阻材料的电阻率(ρ)和长度(L)、截面积(A)有关,即R = ρ* L/A。

当温度变化时,电阻材料的电阻率也会发生变化,即ρ= ρ₀* (1 + α* ΔT),其中,ρ₀为参考温度下的电阻率,α为温度系数,ΔT为温度变化量。

根据上述公式,可以得到电机绕组在不同温度下的电阻变化率为:
R₂= R₁* (1 + α* ΔT)
其中,R₂为温度为T₂时的电阻值,R₁为温度为T₁时的电阻值,α为温度系数,ΔT = T₂- T₁为温度变化量。

需要注意的是,温度系数(α)是电阻材料的物理特性,不同材料具有不同的温度系数。

因此,在实际应用中,需要根据电机绕组所使用的材料的温度系数来进行相应的换算计算。

电动机在不同温度时的正常绝缘电阻值

电动机在不同温度时的正常绝缘电阻值

电动机在不同温度时的正常绝缘电阻值在有关标准中规定。

家用电器电动机的定子绕组在热态或温升试验后,其对机壳的绝缘电阻应不低于3MΩ。

那么,在常温或任意温度下电动机的绝缘电阻应是多少呢?在有关规程中规定,低压电动机在标准温度75℃时的最低绝缘电阻为O.5MΩ。

在任意温度下测得的绝缘电阻换算到热态温度75℃时的公式为:式中,Rt为绕组温度为t时测得的绝缘电阻(MΩ);t为测量时的绕组温度(℃)。

将R75=0.5MΩ代入,可得到这样经计算可求出在任意温度t时电动机绝缘电阻的最小允许值。

例如:t=30℃,Rt=23.5不同温度下电动机绝缘电阻的最小允许值Rt计算结果如附表。

t(℃)Rt(MΩ)t(℃)Rt(MΩ)090.540 5.665644541045.350 2.8315325522022.660 1.4125166513011.3700.71358750.5从计算结果可以发现,不同温度条件下绝缘电阻最小允许值的变化是有规律的,即温度每相差5℃,绝缘电阻最小允许值相差倍。

温度越高,电阻值越低。

掌握了这一规律,可以使我们在记住一个典型值后.迅速推算出在某一温度下,绝缘电阻的最小允许值。

例如,t=25℃时Rt为16MΩ,那么t=20℃时的Rt为16MΩ的倍,即22.6MΩ。

标准中规定了热态下的最低绝缘电阻。

但是没有规定具体的热态温度,这时一般可理解为55℃。

如热态下规定为2~3MΩ,那么常温下可取20MΩ。

但是,检修中(未供烤)的电动机绝缘电阻如在O.5MΩ以上。

一般都认为仍可使用,因为这种低的绝缘电阻主要是因电动机受潮所致。

随电动机运行发热会将潮气驱除,绝缘电阻就会升高至正常值。

如运行中出现焦糊味或运行后绝缘电阻仍保持低值,说明电动机绝缘有不正常之处,应进行检修。

变压器绕组电阻测试标准

变压器绕组电阻测试标准

变压器绕组电阻测试标准变压器绕组电阻测试是变压器工艺检验的一个非常重要的环节,也是变压器运行过程中的重要监测内容之一。

准确测定变压器绕组电阻是判断变压器线圈接头接触良好与否、线圈内部绕组制造质量、工艺技术水平以及变压器在运行中高温过程中的特性所产生热平衡优劣的重要依据。

规范的电阻测试标准可以保证变压器的正常运行,确保变压器的安全可靠性。

以下将详细介绍变压器绕组电阻测试标准。

一、绕组电阻测试方法1.试验仪器设备(1)电流源:电压为220V,频率为50Hz的电源接线柜,具有较大的短时稳定电流特性。

(2)电流互感器:电流范围适用于变压器的常用额定电流,通常为0-5A。

(3)直流电桥:选用精度高、稳定性好的直流电桥,具有零阻流过零功能。

(4)测试线:导线要求绝缘性能好、导电性好,不应产生磁场对测试结果的干扰。

2.试验准备(1)应在充分通风的环境下进行测试,避免在空气潮湿、温度较高或有危险性时进行测试。

(2)对测量线圈的两端进行充分的清洁,确保接触的良好性。

3.测试操作(1)接线:将测试线与被测绕组的两端相连,接入电压为220V 的电源接线柜。

(2)测量:通过调节直流电桥上的电动滑动变阻器,使电流互感器读数为被测绕组额定电流的20%-25%时,来测量绕组电阻。

(3)记录:将测量结果记录在试验记录表中,并由负责人签名确认。

二、绕组电阻测试标准1.电阻测试频率变压器绕组电阻测试应在下列情况下进行:(1)在变压器制造完成后,应对绕组进行电阻测试,以验证绕组的制造质量。

(2)在变压器进行过载运行或短暂短路后,绕组电阻可能会发生变化,此时需重新进行电阻测试,以判断绕组的状态。

(3)定期对变压器进行绕组电阻测试,以监测变压器的运行状态,了解绕组的热平衡情况。

2.电阻测试数值范围变压器绕组电阻的测试数值要符合下列规定:(1)电阻值应该在制造标准或设计要求范围内,一般不应超过设计电阻值的10%。

(2)两相电阻值之差应在一定范围内,一般不应超过两倍的允许误差。

测量发电机定子绕组的直流电阻原因及注意事项

测量发电机定子绕组的直流电阻原因及注意事项

编号:AQ-JS-07054( 安全技术)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑测量发电机定子绕组的直流电阻原因及注意事项Causes and precautions of measuring DC resistance of generator stator winding测量发电机定子绕组的直流电阻原因及注意事项使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。

(1)测量原因定子绕组的直流电阻包括线棒铜导体电阻、焊接头电阻及引线电阻二部分。

测量发电机定子绕组的直流电阻可以发现:绕组在制造或检修中可能产生的连接错误、导线断股等缺陷。

另外,由于工艺问题而造成的焊接头接触不良(如虚焊),特别是在运行中长期受电动力的作用或受短路电流的冲击后,使焊接头接触不良的问题更加恶化,进一步导致过热,而使焊锡熔化、焊头开焊。

在相同的温度下,线棒铜导体及引线电阻基本不变,焊接头的质量问题将直接影响焊接头电阻的大小,进而引起整个绕组电路的变化,所以,测量整个绕组的直流电阻,基本上能了解焊接头的质量状况。

(2)测量方法测量发电机定子绕组直流电阻的方法有电压降法和电桥法两种。

采用压降法测量时,须选用0.5级以上的电压表、电流表,通入定子绕组的直流电流应不超过其额定电流的20%。

采用电桥法测量时,因同步发电机定子绕组的电阻很小,应选0.2级的双臂电桥。

(3)测量注意事项①测量时必须在电机各相引出端头上进行,不允许包括本相绕组的外部引线和中性点连接的铜排。

②测量电压、电流接线点必须分开,电压接线点在绕组端头的内侧并尽量靠近绕组,电流接线点在绕组端头的外侧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档