晶体缺陷——位错运动

合集下载

晶体缺陷-位错的基本类型与特征

晶体缺陷-位错的基本类型与特征

混合位错
总结词
混合位错是一种同时具有刃型和螺旋型 特征的晶体缺陷,其特征是晶体中某处 的原子既发生了平移又发生了螺旋式的 位移。
VS
详细描述
混合位错是刃型位错和螺旋位错的组合体 ,其原子位移同时包含了平移和螺旋式的 位移。混合位错通常出现在晶体的复杂区 域,如晶界、相界等。由于混合位错同时 具有刃型和螺旋型位错的特征,其对晶体 的性能影响也较为复杂,需要进行深入研 究。
滑移与攀移
在切应力作用下,位错能够沿滑移面整列移动,称为滑移; 而垂直于滑移面方向的移动称为攀移。这两种运动方式是 位错在塑性变形中的重要表现。
应变梯度与几何必须位错
当材料的局部区域发生不均匀变形时,会产生应变梯度, 进而促使位错的形成和运动,以协调这种不均匀变形。
位错与材料疲劳断裂
01
疲劳裂纹的萌生与扩展
强化机制
加工硬化
在塑性变形过程中,位错的运动和交 互作用导致材料逐渐变硬,即加工硬 化。这是金属材料常用的强化手段。
通过引入位错,可以增加材料的内应 力,从而提高其屈服强度。这种强化 机制称为位错强化。
位错与材料塑性变形
塑性变形机制
位错在受力时能够运动,从而改变材料的形状。这种运动 机制是金属等材料发生塑性变形的内在原因。
在循环载荷作用下,位错容易在材料的应力集中区域(如晶界、相界或
表面)聚集,形成位错塞积群,进而导致疲劳裂纹的萌生。裂纹的扩展
通常沿特定晶体学平面进行。
02
影响疲劳性能的因素
位错的运动和交互作用对疲劳裂纹的萌生和扩展具有重要影响,进而影
响材料的疲劳性能。例如,材料的抗疲劳性能可以通过引入阻碍位错运
动的合金元素来改善。
晶体缺陷的分类

晶体缺陷7 实际晶体中的位错

晶体缺陷7 实际晶体中的位错

扩展位错比全位错交滑移困难得多
金属层错能愈低,扩展位错宽度愈大,束集 愈困难,交滑移愈难。反之层错能愈高,易 于交滑移。
• 由此可以解释FCC金属形变过程中的许多现象。 • 例如奥氏体不锈钢,层错能很低,交滑移困难,使 得即使在大变形量下,位错也只局限在滑移面上。 • 铝的层错能很高,位错易于通过交滑移,使大部分 螺位错滑移到相交的滑移面上,排列成小角晶界。
C B α δ β D γ A
在汤普森记号中的所有向量均很容易计算出来。例 如在(111)面上柏氏矢量为a/2(-1 1 0)的全位错分解 ,可简便写为:
BC B C
扩展位错
a a a [110] [21 1] [12 1] 2 6 6
fcc晶体中的位错线在切应力作用下,沿着(111)[ 1,0,-1 ] 滑移系在B层与C层之间滑移,原子由C移至C′有两种途径。
HCP:{111}面按ABAB顺序排列形成
FCC:{111}面按ABCABC顺序排列形成
层错:实际晶体中晶面堆垛顺序发生局部差错而产生的缺陷。
1. 滑移
使任一层(111)晶面滑移1/6<112>,移至其相邻晶
[110] [111]
面相应的位置上,该层以上的原子面也滑移同样大小的矢量
A B
[110]
1 6
CA C BC
[111]
[11 2]
B A
C
1 6
[11 2]
B
[112]
⊙ [110] [112] ABCABC…… → ABCBCA…… 抽出型层错 △△▽△△
A
2. 抽去一层
d hkl
a h2 k 2 l 2
a 3
抽去A2层后,其上各层晶面垂直下落一个(111)面的面 间距,相当于发生1/3[111]的滑移,结果在C1和B2层之 间形成层错或同时加进两层(111)面也会形成同样层错。

晶体缺陷-位错运动

晶体缺陷-位错运动
晶体缺陷-位错运动
contents
目录
• 位错概念 • 位错运动 • 位错与材料性能 • 位错研究的意义与展望
01
位错概念
位错的定义
位错是晶体中原子排列的一种“缺 陷”,表现为一个或多个原子在晶体 中的位置发生了偏差。
位错的存在会导致晶体局部的原子排 列出现异常,破坏了晶体原有的周期 性结构。
塑性变形
位错是晶体中塑性变形的主要机 制,当外力作用在晶体上时,位 错会沿滑移面移动,导致晶体发 生塑性变形。
强度与硬度
位错的存在会阻碍裂纹的扩展, 从而提高材料的强度和硬度。
位错对扩散的影响
扩散路径
位错可以作为扩散的快速通道,影响原子沿位错线的扩散速 度。
扩散激活能
某些情况下,位错的存在可能会降低扩散所需的激活能。
位错的类型
01
02
03
刃型位错
由晶体中一个原子层上的 原子位移形成,表现为一 个多余的半原子面。
螺旋型位错
由多个原子层上的原子连 续位移形成,表现为螺旋 状的原子排列。
混合型位错
同时包含刃型和螺旋型位 错的特点,通常为一个刃 型位错与一个螺旋型位错 的组合。
位错的形成与存在
位错的形成
位错的运动
在晶体生长、加工或受到外力作用时, 原子排列可能会发生偏差,从而形成 位错。
性和耐腐蚀性。
半导体材料
在半导体材料中,位错对电子传 输和器件性能有重要影响,研究 位错有助于提高半导体器件的稳
定性和可靠性。
功能材料
在功能材料中,位错的运动和相 互作用对材料的物理性能(如热 学、电学和磁学性能)有重要影 响,通过位错研究可以优化功能
材料的性能和应用。
THANKS FOR WATCHING

7.3 位错的运动

7.3  位错的运动

(a)位错环
(b)位错环运动后产生的滑移位错环的滑移
位错的滑移
刃型位错的运动
螺型位错的运动
混合位错的运动
位错的滑移特征
位错 类型
柏氏 矢量 ⊥位错线
位错线 运动方向 ⊥位错线本身
晶体滑移方 向 与b一致 与b一致 与b一致
切应力 方向 与b一致 与b一致 与b一致
滑移面 数目 唯一
刃型 位错
螺型 位错 混合 位错
螺位错滑移
5、位错的滑移特点
5)只有螺型位错才能够交滑移: 螺位错:因其位错线与柏氏矢量b 平行,故无确 定滑移面,通过位错线并包含b 的所有晶面都可 能成为它的滑移面。 若螺位错在某一滑移面滑移后受阻,可转移到与 之相交的另一个滑移面上去,此过程叫交叉滑移, 简称交滑移。 由此看出,不论位错如何移动,晶体滑移总是沿 柏氏矢量相对滑移,故晶体滑移方向就是位错的 柏氏矢量 b 方向。
3、螺型位错滑移
螺位错沿滑移面运动时,周围原子动作情况如图。 虚线--为螺旋线原始位置, 实线--位错滑移一个原子间距后的状态。
(a)原始位置;
(b)位错向左移动一个原子间距 螺型位错滑移
3、螺型位错滑移
位错线向左移动一个原子间距,则晶体因滑移而产生的台 阶亦扩大了一个原子间距。
一、位错的滑移
下图(a)表示含有一个正刃型位错的晶体点阵,图中实线表示位 错(半原子面PQ)原来的位置,虚线表示位错移动一个原子间距(如 P’Q’)后的位置,可见,位错虽然移动了一个原子间距,但位错附近的 原子只有很小的移动。图(b)为负刃型位错再切应力下的滑动。 位错的滑移:是通过位错线及附近原子逐个移动很小距离完成的,故只 需加很小切应力就可实现。 正刃位错滑移方向与外力方向相同;负刃位错滑移方向与外力方向相反。

Chapter 3-1 晶体缺陷-点缺陷、位错

Chapter 3-1 晶体缺陷-点缺陷、位错

杂质(异类)原子
定义: 任何纯金属中都或多或少会存在杂质, 即其它
元素, 这些原子称杂质(异类)原子
热缺陷: 热起伏促使原子脱离点阵位置而形成的点缺陷。 热缺陷的两种基本形式
弗伦克尔缺陷
肖特基缺陷
热缺陷示意图
弗兰克尔缺陷
肖特基缺陷
化合物离子晶体中的两种点缺陷
金属晶体:弗兰克尔缺陷比肖特基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
ρ理论
=
n理论 NA
V
M
=
4 6.022 1023
26.98
4.049 10-8 3
g
cm 3 = 2. 6997g
cm 3
空位数 cm3
ρ ρ theoretical
observed
NA
M 4.620 10 20 cm 3 Al
例5 MgO晶体的肖特基缺陷生成能为84KJ/mol,计算该晶体 1000K和1500K的缺陷浓度
平移对称性的示意图
平移对称性的破坏
②分类
点缺陷(零维缺陷)--原子尺度的偏离.

例:空位、间隙原子、杂质原子等

陷 线缺陷(一维缺陷)--原子行列的偏离.

例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.

例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
CV ,1000
n N
exp( ΔGS RT
)
exp(
84000 8.3145 1000
) 4.096 10-5
CV ,1500
n N
ρ
( 单位晶胞原子数n )( 55.847g / mol ) ( 2.866 108 cm )3 ( 6.02 1023 / mol )

4. 晶体缺陷

4. 晶体缺陷

螺型位错的滑移:在图示的晶体上施加一切应力,当应力足够大 时,有使晶体的左右部分发生上下移动的趋势。假如晶体中有一 螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边 晶体向下移动一柏氏矢量。因此,①螺位错也是在外加切应力的 作用下发生运动;②位错移动的方向总是和位错线垂直;③运动 位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动 (滑移);④位错移过部分在表面留下部分台阶,全部移出晶体 的表面上产生柏氏矢量大小的完整台阶。这四点同刃型位错。
第二节 位错的基本概念
一.位错概念的引入
★1926年 Frank计算了理论剪切强度,与实际剪切 强度相比,相差3~4个数量级,当时无法解释, 此矛盾持续了很长时间 。
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★ 1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
例题
Cu晶体的空位形成能uv=0.9ev/atom或 1.44*10-19J/atom材料常数A取作1,k=1.38*10-23. 计算:
1)在500℃下,每立方米中的空位数目; 2)500 ℃下的平衡空位浓度 。
解:首先确定1m3体积内原子Cu原子总数 (已知Cu的摩尔质量MCu=63.54g/mol,500 ℃
螺型位错
τb
晶体的局部滑移
螺型位错的原子组态
混合型位错: 晶体的局部滑移
τ∧ b
混合型位错的原子组态
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),
另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错Dislocation
一、位错的原子模型

晶体缺陷-位错概念

晶体缺陷-位错概念

b矢量的表示法 矢量的表示法
以晶轴为坐标系,用晶向指数来表示: 体心:b=a/2[111] 一般立方晶系:b=a/n<uvw> 矢量大小:
a 2 2 b= u + v + w2 n
柏氏矢量特征
1)柏氏矢量与回路起点选择无关,也与柏氏回路的具体路径, 大小无关 2)对一条位错线而言,其伯氏矢量是固定不变的,此即位错的 伯氏矢量的守恒性。 推论: a.一条位错线只有一个伯氏矢量。 b.如果几条位错线在晶体内部相交(交点称为节点),则指 向节点的各位错的伯氏矢量之和,必然等于离开节点的各位 错的伯氏矢量之和 。如有几根位错线的方向均指向或离开节 点,则这些位错线的柏氏矢量之和值为零
确定半原子面的右手定则
半原子面: 半原子面:拇指
B方向:中指 方向: 方向
位错线正方向: 位错线正方向:食指
刃型位错---刃位错结构示意图 刃位错结构示意图
基本点如下:
位错线:晶体中已滑移区与未滑移区的边界
正、负刃位错
位错宽度,2~5个原子间距 位错是一管道 额外(多余)半原子面 滑移矢量 滑移面 刃位错不一定是直线, 可为纯刃型位错环
位错的引入: 位错的引入:晶体使得强度和理论强度相差
几个数量级
与位错相关的形变的特点:(1)方向性,晶 体在固定的晶面和晶向滑移。(2) 形变的不 均匀性和不连续性。(3) 形变滑移的传播性。 (4) 滑移具有临界切应力。(5)温度对临界 切应力有影响。 位错的特性: (1) 位错由晶体结构本身确定。(2) 具有结 构敏感性。(3) 能解释形变的传播性。(4) 位错的易动含有位错的总长度
ρV = L / V
单位:长度单位-2
定义2:单位面积上截过的位错数目 ρ s 当所有位错线相互平行并且都垂直于表面时:

材料科学基础I 7-2 线缺陷——位错的基本概念

材料科学基础I 7-2 线缺陷——位错的基本概念

五、位错密度
晶体中位错的量(多少)通常用位错密度来表示:
S (cm/ cm3)
V
V——晶体的体积,cm3 S——该晶体中位错线的总长度,cm
为了简便,把位错线当成直线,而且是平行地从晶体的一面 到另一面,这样上式可变为:
n l n 1/ cm2 lA A
n——面积A中见到的位错数目,个、条 l ——每根位错线长度,近似为晶体厚度。
3、左、右旋螺型位错的规定
左旋螺型位错:符合左手定则(上图) 右旋螺型位错:符合右手定则(下图)
三、柏氏矢量(Burgers vector) 1、柏氏矢量b的确定方法
2、柏氏矢量b的物理意义
柏氏矢量b是描述位错实质的重要物理量。它反映了柏氏回 路包含位错所引起点阵畸变的总积累,通常将柏氏矢量称为位 错强度。位错的许多性质,如位错的能量、应力场、位错反应 等均与其有关。它也表示出晶体滑移的大小和方向。
滑移面——位错线l与柏氏矢量b构成的平面(l ×b)。
滑移方向v、位错线l 、柏氏矢量b之间的关系: 滑移方向与柏氏矢量方向相同,与位错线垂直:v // b ⊥ l
2、攀移
只有刃型位错才能发生攀移运动,即位错在垂直于滑移面 的方向上运动。其实质是构成刃型位错的多余半原子面的扩 大或缩小,它是通过物质迁移即原子或空位的扩散来实现的。 通常把半原子面向上运动称为正攀移,向下运动称为负攀移。
分界面, l×v所指向的那部分晶体必沿着b方向运动。
这个规则对刃型位错、螺形位错、混合型位错的任何运动
(滑移、攀移)都适用。
l
v
二、螺型位错的运动
螺型位错只能滑移,不能攀移。
动画
螺型位错的运动方向v与位错线l、柏氏矢量b垂直: v⊥ l // b

晶体结构缺陷(二) 位错的运动

晶体结构缺陷(二) 位错的运动

知识点058. 位错的运动滑移攀移位错的运动刃位错的运动螺位错的运动 滑移攀移 滑移刃位错的滑移有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)刃位错的滑移注意:晶体不同部分的相对滑移形成了位错,而位错的滑移是实现塑性变形的机制。

要区别晶体的滑移与位错的滑移。

此例中晶体滑移方向与位错滑移方向相同(相互平行)。

刃位错滑移方向与外力及伯氏矢量平行正、负刃位错滑移方向相反螺位错的滑移注意:晶体不同部分的相对滑移造成位错,而位错的滑移是实现塑性变形的机制。

要注意区别晶体的滑移与位错的滑移。

此例中晶体滑移方向与位错滑移方向不同(相互垂直)。

螺位错滑移方向与外力及伯氏矢量垂直左、右螺位错滑移方向相反混合位错的滑移注意:晶体不同部分的相对滑移造成位错,位错的滑移是实现塑性变形的机制。

要区别晶体的滑移与位错滑移。

此例中晶体滑移方向与位错滑移方向部分相同,部分不相同。

混合位错滑移方向与外力及伯氏矢量成一定角度(沿位错线法线方向滑移)刃位错和螺位错滑移的比较晶体的滑移方向与外力及位错的伯氏矢量相一致但并不一定与位错的滑移方向相同。

位错类型柏氏矢量位错线运动方向晶体滑移方向切应力方向刃位错垂直于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致螺位错平行于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致混合位错与位错线成角度垂直于位错线与柏氏矢量方向一致与伯氏矢量方向一致有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)位错的攀移定义:分类:正攀移负攀移攀移的特点及与滑移的不同:有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)随堂练习:答:。

位错理论2-位错的运动

位错理论2-位错的运动

目录
位错的滑移 位错的攀移 位错运动对晶体体积的影响
23
位错运动:小结 位错运动的结果:不引起晶体 结构的变化,只引起晶体缺陷 组态与分布的变化 一旦位错运动移走晶格畸 变消失
24
位错运动引起的晶体体积变化
设柏氏矢量为b的位错:长 度为dl,在法向为n的晶面上 扫过dD的距离 所以:
19
Climb of dislocation
正攀移:
原子从多于半原子面转移至别处 空位转移至多于半原子面下端
负攀移:相反
20
Climb of dislocation
攀移的影响因素:
由于攀移需原子扩散,因此不能整条位错 线同时攀移,只能一段一段地进行位错 线的攀移过程使位错线形成折线
位错的滑移方向
位错线的滑移方向是位错线的法向 又因为:总有 b∥t的方向 螺型位错:滑移方向与外力t和b垂直; 左、右螺位错的滑移方向相反。
10
11
Slip direction
位错的滑移方向
位错线的滑移方向是位错线的法向 又因为:总有 b∥t的方向 混合位错:滑移方向与外力t和b成一夹角。
位错是靠位错线上的原子或附近畸变区的 原子,逐排逐排地移动而进行的。 与经典刚性滑移模型(理论剪切强度)存 在显著差异。 可解释晶体剪切强度的实验数据。
3
Slip of dislocation
4
Slip plane
位错滑移面与晶体滑移面的关系:
位错线和b 位错滑移面——可滑移面
Dy b
17
目录
位错的滑移 位错的攀移 位错运动对晶体体积的影响
18
Climb of dislocation 位错攀移定义:

第4章晶体缺陷-位错3.15

第4章晶体缺陷-位错3.15

根据原子的滑移方向和位错线取向的几何 特征,位错可分为:
刃位错 螺位错 混合位错
返回 15:07
GARREY
机电工程学院
4.0 概述
4.1 点缺陷
4.2 位错的 基本概念
4.3 位错的 能量及交互 作用
4.4晶体中 的界面
Foundation of Materials Science
二.位错类型
4.2 位错基本概念
的b矢量之和为零。
GARREY
机电工程学院
Foundation of Materials Science
柏氏矢量与位错线
1. 刃位错柏氏矢量⊥位错线,可以为任何形状;
2. 螺位错柏氏矢量∥位错线,只能为直线;
3. b∥t则为螺位错,同向为右螺,反向为左螺;b⊥t为刃位错; 任意角度φ为混合位错,刃位错分量:bsin φ,螺位错分量: bcosφ
4. 同一根位错线上各处柏氏矢量一定相同;
5. 位错线只能终止在晶界或表面,不能终止在晶体内部,在内 部只能形成封闭环或空间网络。(位错是滑移区的边界)
15:07
GARREY
机电工程学院
4.0 概述 4.1 点缺陷 4.2 位错的 基本概念 4.3 位错的 能量及交互 作用 4.4晶体中 的界面
返回 15:07
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
★1947年 Cottrell发表了溶质原子与位错间交互作用 的研究报告 。
返回 15:07
GARREY
机电工程学院
返回 15:07

ch3.2 晶体缺陷--线缺陷(位错)(07级)

ch3.2 晶体缺陷--线缺陷(位错)(07级)

第三章 晶体缺陷
• 完整晶体滑移和实际晶体滑移:完整 晶体滑移的理论剪切强度要远高于实 际晶体滑移的对应强度,实验上所测 得的临界切应力远小于计算值。理论 值 大 了 约 1000~10000 倍 。 从 而 促 进 了 位错理论的产生和发展。
• Orowan把晶体的滑移过程比喻为蠕虫 的运动。
• 位错理论是上世纪材料科学最杰出成 就之一
行也不垂直于滑移方向,即滑移矢量与位错线成任意角度,这 种晶体缺陷称为混合型位错(mixed dislocation)
(2) 混合位错特征:混合位错可分为刃型分量和螺型分量,它们
分别具有刃位错和螺位错的特征。刃:ξ⊥b ; 螺: ξ∥b ;
第三章 晶体缺陷 位错环(dislocation loop)是一种典型的混合位错。
晶体局部滑移造成的刃型位错
2.螺型位错
第三章 晶体缺陷
(1)螺型位错的形成:
(2) 螺 型 位 错 ( screw dislocation)的图示
晶体中已滑移区与未滑移 区的边界线(即位错线) 若平行于滑移方向,则在 该处附近原子平面已扭曲 为螺旋面,即位错线附近 的原子是按螺旋形式排列 的,这种晶体缺陷称为螺 型 位 错 ( screw dislocation)。
对纯刃型位错而言,位错的滑移沿位错线的法线方 向进行。滑移面同时包含柏矢量b和位错线。
∥b、b⊥、滑移方向⊥、滑移方向∥b,单一滑
移面。
第三章 晶体缺陷
(2) 螺型位错的滑移过程(Lwcyd)
∥b、b ∥ 、滑移方向⊥ 、滑移方向⊥ b ,非 单一滑移面。
对于螺型位错,由于所有包含位错线的晶面都可以 成为它的滑移面,因此当某一螺型位错在原滑移面上 运动受阻时,有可能从原滑移面转移到与之相交的另 一滑移面上继续滑移,这一过程称为交滑移。

位错反应和扩展位错

位错反应和扩展位错

位错反应和扩展位错位错是晶体中的一种晶格缺陷,是晶体中原子排列的畸变现象。

位错反应和扩展位错是位错在晶体中的运动和扩散过程。

位错反应是位错在晶体中的运动过程。

晶体中的位错运动是基于斯托克斯位错理论提出的。

斯托克斯位错理论认为,位错运动是由弹性力和阻力共同作用导致的。

位错运动分为两种类型:刃位错和缓和位错。

刃位错是由螺旋位错和面位错组成的,螺旋位错绕面位错旋转。

位错运动的驱动力是应变能的减小,当位错移动时,其相邻的晶格原子会经历应变,形成应变能。

刃位错运动主要通过面位错与空位、线缺陷相互作用来进行,而缓和位错运动主要通过面位错与扩展位错、原子位错相互作用来进行。

扩展位错是由位错的运动和伸展沿晶体中的一条线形缺陷而形成。

扩展位错与位错反应不同,它是未发生位错运动时发生的。

扩展位错的形成主要是由于晶体中的晶面不完整,导致晶体表面的原子排列断裂。

扩展位错主要分为两种类型:沿基柏格矢量和沿晶向(非基柏格矢量)。

沿基柏格矢量的扩展位错是由于晶体中的原子在沿着基柏格矢量方向上遭遇到了阻碍,导致附近原子的排列发生了畸变。

沿晶向的扩展位错主要是由于晶体中的原子在垂直于基柏格矢量方向上排列不完整,导致晶体表面的原子排列断裂。

位错反应和扩展位错在实际材料的制备和改性过程中起到了重要作用。

位错反应可以改变材料的晶体结构和性能,进一步提高材料的硬度、强度和韧性。

扩展位错的形成和运动也可以改变材料的晶体结构和性能,影响材料的塑性和导电性能。

总结起来,位错反应和扩展位错是晶体中位错的运动和扩散过程。

它们在材料的制备和改性中具有重要作用,可以改变材料的晶体结构和性能,提高材料的硬度、强度和韧性。

了解和控制位错反应和扩展位错对于材料的设计和制备具有重要意义。

结晶学 第七章 线缺陷-位错

结晶学 第七章 线缺陷-位错

P
3
应力 T 有方向性,是位置的函数,还 是小面元法线方向 n 的函数,通常在直角 坐标系下描述某点的应力,可用九个分量 的张量(txx txy txz, tyx tyy tyz, tzxtzytzz)表示。 将应力T 分解为两个分量
n
σ T
(1) 沿小面元 dS 法线方向称作正应力s ; (2) 沿小面元 dS 切线方向称作切应力 τ 。
26
位错的普遍定义:一个柏格斯回路绕着晶体缺陷 作一闭合回路,其所走步数矢量和不为零,这个晶 体缺陷叫位错。 此前定义“位错是已滑移区与未滑移区的交界线”, 略显粗糙。
27
2、柏氏矢量的守恒性
一个确定的位错,其柏氏矢量是固定不变的(与伯格斯回路 的大小、路径无关)。 而且,它有如下表现: (1) 方向指向结点的位错线的柏氏矢量之和等于方向离开结 点的位错的柏氏矢量之和。



正刃型
负刃型
b



图7.1.12 具有环形位错线的混合型位错
18
晶体中存在的环形位错线不一定必须由各种类型的位错 构成。例如图7.1.13所示的环形位错线是纯刃型的,形成它 的滑移矢量与位错线是垂直的。
图7.1.13 具有环形位错线的刃型位错
19
7.2 柏氏矢量
滑移矢量的大小等于原子间距的整数倍,其大小可以反 映产生位错的数目或强度,依据其方向与位错线的交角可以 判断位错类型,但用其描述位错的特征尚有不足。 例如:
33
看几个实验结果:
① Ge单晶在温度T<500℃,Si单晶在温度T<650℃的条件 下,进行热处理,一般不产生位错; ② 无位错的Si单晶,屈服强度接近理论值。在800~900℃ 温度下进行热处理,施加较大的热应力也不产生位错增殖; ③ Si单晶薄片在室温下,施加机械应力使之弯曲,r (曲率 半径)在2m以上,不发生范性形变。 若晶体内应力超过晶体的屈服强度,将会出现位错。 讨论弯曲应力和温度应力产生的位错密度问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
• 交滑移:P95图3.17 螺型位错如果在原来的滑移面上受到阻碍时,可能转
移到另一个与它相交的滑移面上继续滑移 • 双交滑移:发生交滑移后的位错如果再转回到和原滑移3.15
混合型位错的滑移过程
精品课件
2.位错的攀移 P96
• 刃型位错多余半原子面向上或下运动。 • 通过物质的迁移,即原子或空位的扩散来实现。 • 形式:正攀移、负攀移
精品课件
2.柏氏矢量的特性: (1)b的物理意义: • 其方向表示位错的性质和取向,即位错运动导致
晶体滑移的方向 • 模∣b∣表示畸变的程度:位错强度
精品课件
(2)b的守恒性: 对一个确定的位错正向,按照右手螺旋法
则获取的b具有唯一性、守恒性,与柏氏回路的起 点和具体路径无关,
精品课件
(3)一根不分叉的位错线具有唯一的柏氏矢量:上 各个位置的b均相同;位错在晶体中移动或者改变 方向时,其柏氏矢量不变
决于另一根位错的柏氏矢量,但具有原本的柏氏矢 量 所有的割阶都是刃型位错,扭折可以是螺型位错也 可以是刃型位错 扭折出现在同一滑移面上几乎不产生位错运动阻力; 割阶与原位错线垂直,一般不能随位错线一起移动, “钉扎”,产生运动阻力——割阶硬化
精品课件
带割阶位错的运动
精品课件
精品课件
精品课件
精品课件
3.柏氏矢量的表示方法 第6次 (1)以其在晶轴上的分量a、b、c表示:
b=xa+yb+zc (2)对立方晶系:a=b=c,因此用方向相同的晶向
指数表示: b=a/n [u v w] 例: b=a[2 3 6] b=a/2 [1 1 1]
精品课件

精品课件
3.2.3 位错的运动 P94 i. 位错可以在晶体中运动 ii. 材料的塑性变形就是通过位错运动实现的
精品课件
3. 位错的交割 • 含义:位错在运动过程中,可能和其它位错交割 • 意义:交割会影响位错进一步的运动,从而会影响
材料的强度等性能
精品课件
a.割阶与扭折 • 位错局部滑移、刃型位错攀移、两条位错线交割后,经常
产生一段曲折线段 • 如果曲折线段位于位错的滑移面上——扭折
P97图3.19
精品课件
图 3.18 刃型位错的攀移运动模型
a) 未攀移的位错
b) 空位引起的正攀移 c)间隙原子引起的
负攀移
精品课件
特点: ① 螺型位错没有半原子面,故不会发生攀移 ② 一般情况下,攀移比滑移需要的能量高,在室温
下不容易发生 ③ 高温淬火、冷变形加工、高能粒子辐照后,晶体
中存在大量点缺陷的情况下,容易发生位错的攀 移(刃型位错)
精品课件
(4)如果一个b的位错分解为几个位错,柏氏矢量 分别为b1,b2,b3,…,则b=∑bi
精品课件
• 有几根位错线相交于一个点,则指向它的位错 ∑b指=离开它的位错∑b离
精品课件
• 如果所有位错线均指向或离开某点,则∑bi=0
精品课件
(5)位错线不能中止在晶体内部——位错的连续性 (定义) 可形成位错环、或与其它位错相连、或与晶 界相连、或露出晶体表面
• 如果此线段垂直于滑移面——割阶
精品课件
实例1:两个柏氏矢量相互垂直的刃型位错交割
精品课件
实例2:两个柏氏矢量相互平行的刃型位错交割
精品课件
实例3:两个柏氏矢量相互平行的刃型位错和螺型位错交割
精品课件
实例4:两个柏氏矢量相互垂直的两螺型位错交割
精品课件
小结: 每根位错线都可能产生扭折或割阶,大小和方向取
精品课件
iii. 材料的强度与位错运动紧密相关 iv. 意义:可以通过控制位错运动提高材料强度
• 位错运动基本形式: 滑移、攀移
精品课件
1.位错的滑移 (1)含义:在外力作用下,沿滑移面运动 (2)刃型位错的滑移
特点:需要的力 小
精品课件
• 结果:较小的力使材料发生塑性变形
精品课件
(3)螺型位错的滑移
相关文档
最新文档