历年高考数学真题精选18 平面向量的线性运算

合集下载

历年高考数学真题精选18平面向量的线性运算

历年高考数学真题精选18平面向量的线性运算

第1页(共 10页)A .2B .3C .D .5D ,E ,F 分别是 ABC 的边 AB , BC , CA 的中点,则 (uuur uuur B . BD CF uuur DF历年高考数学真题精选(按考点分类) 专题十八 平面向量的线性运算 (学生版)D .既不平行也不垂直uuur uuur uuur uuur足|CD| 1,则|OA OB OD |的取值范围是 (uuur uuur uuuurAB AC mAM 成立,则 m1.( 2015?新课标Ⅰ)设 D 为 ABC 所在平面内一点, BC 3CD,则 ( )uuur 1 uuur 4 uuuruuur 1 uuur 4 uuurA . AD AB AC B . AD ABAC3 333uuur 4 uuur 1 uuuruuur 4 uuur 1 uuurC . AD AB 1 AC D . ADAB 1AC3 3332.( 2008?湖南)设 D 、E 、F 分别是 ABC 的三边 BC 、CA 、 AB 上的点,且 uuur uuuruuur uuur uuur uuur uuur uuurCE 2EA ,AF 2FB ,则AD BE CF 与 BC().选择题(共 13 小题)A .反向平行B .同向平行uuur uuuruuur uuur DC 2 BD ,3.( 2014?湖南)在平面直角坐标系中, O 为原点, A( 1,0) , B(0, 3) , C(3,0) ,动点 D 满C .互相垂直 A .[4, 6]B . [ 19 1, 19 1]C .[2 3 , 2 7]D . [ 7 1, 7 1] 4 .( 2011 ? 上 海 ) 设 A 1 , A 2 , A 3 , A 4 是 平 面 上 给 定 的4 个不 同点 , 则使uuuuruuuur MA MA uuu ur MAuuuur rMA 4 0 成立的点 M 的个数为 A .0B .1C .D .45 .( 2010 ?湖 北) 已 知 ABC 和 点 uuur M 满足 MA uuurMBuuu ur MC.若存 在 实数 m 使得6.( 2009?湖南)如图,A . AD DF CFuuur uuur u uur r uuur uuur uuur C . AD CE CF 0 D . BD BE FC则O uu C ur等于 ( )uuur uuuruuur uu 2 uuur 1 uuur1 u uu2 u uurA . 2OA OB B . OA 2OBC . OA OBD .OAOB3 3 338.( 2006?全国卷Ⅰ) 设平面向量 a r 1 r、 a 2 、 a r 3 的和 a r 1 a r 2 a r 3 0 .如果向量 r b 1、 r b2 r 、 b3 ,满足| b r i | 2|a r i |, 且 a r i 顺时针旋转 30 后与 b r i 同向,其中 i 1 , 2, 3,则()r r r rrr rrr r r rA . b 1 b 2 b 3 0B . b 1 b 2b 3C . b 1 b 2b 3 0D . b 1 b 2 b 3ur uur ur uur 9.( 2016 ?上海)设单位向量 e 1 与 e 2 既不平行也不垂直,对非零向量a r x 1e 1 y 1e 2 、①若 x 1 y 2 x 2 y 1 0 ,则 a r / /b ;r②若 x 1x 2 y 1y 2 0,则 a b .关于以上两个结论,正确的判断是 ( )A .8B .4C .2D .111.( 2018?新课标Ⅰ)在ABC 中, AD 为 BC 边上的中线, uuurE 为 AD 的中点,则 EB ()7.(2008?辽宁)已知 O ,A ,B 是平面上的三个点, uuur uuur直线AB 上有一点 C ,满足 2AC CB 0, x 2 e 1uur y 2 e 2 有结A .① 成立, ② 不成立B . ① 不成立, ②成立C .① 成立, ② 成立D .① 不成立, ②不成立10.( 2010?四 川)设 点 M 是线 段 BC 的 中点, 点 A 在直线 BC 外,uuur 2BC 16 ,uuur uuur uuur | AB AC | | AB uuur uuuur AC|,则|AM | (A . AB4AC 4B . 12.(2011?全国)点D,E,uuur uuur uuur设 AFABAC ,则( 4 2A . ( , )B . 7 71 uuur 3 uuur 3 uuur 1AB ACC . AB 4 4 4 4 uuur F 是 ABC 内三点,满足 AD ,)()14 41 (,)C . ( , )7777uuur13 uuurACD ABAC4 4uuur uuur uuur uuu r uuur DE , BE EF , CF FD ,2 4D(, )7 73 uuur 1 uuur则x , y .uuur uuur uuur16.(2013?四川)在平行四边形 ABCD 中,对角线 AC 与BD 交于点 O , AB AD AO ,则.17.(2013?北京)向量 a r ,b r ,c r 在正方形网格中的位置如图所示, 若c ra rb r ( , R ) ,13.(2010?全国大纲版Ⅱ) A BC 中,点 D 在边 AB 上,CD 平分uuur r uuur r ACB ,若CB a ,CA b ,1r2r2r1r A . a b B . a b 3333二.填空题(共 4 小题)14.(2017?江苏) 如图, 在同一个平面内,C . 3r 4rD . 4r 3ra ba b5555uuur uuu r uuuruu ur 向量 OB , OC 的模分别1, 1, 2 , OAuuur uuur uuur与 OC 的夹角为 ,且 tan 7 , OB 与 OC 的夹角为 45.若 uuurOCuuur mOA uuurnOB (m,n R) ,uuuur15.(2015?北京)在 ABC 中,点 M ,N 满足uuuur 2MC , uuu rBN uuur NC,若 uuuur uuur MN xAB uuur yAC , 2 r br则m历年高考数学真题精选(按考点分类) 专题十八 平面向量的线性运算 (教师版)一.选择题(共 13 小题) uuur uuur1.( 2015?新课标Ⅰ)设 D 为 ABC 所在平面内一点, BC 3CD ,则 ( )uuur uuur足 | CD | 1,则 | OA uuur OB uuurOD | 的取值范围是 ()A .[4, 6]B.[ 19 1 , 19 1] C .[2 3 , 2 7]D . [ 7 1,7 1]答案】 DB(0, 3), C(3,0) 3.( 2014?湖南)在平面直角坐标系中,O 为原点, ,动点 D 满A( 1,0) , 可设 D (3 cos, sin )([0 ,2)).u u A u u r C 4 3 u u A 1 u r B u u A u u r B 1 3 u u A4 u u r D u r D u u A uuAu uu r A D u uu ru r B uuA 1u uu r A C 4uuur 解析】 由uuuruuur AB BDuuu r AB 4 uuur BC 3uuu rAB 4 uuur (AC 3uuurAB) 1 uuur 4 uuurAB AC 33故选: A .2.(2008?湖南) 设 D 、E 、 F 分别是 ABC 的三边 BC 、CA 、 AB 上的点, uuur 且 DC uuur2 BD , uuur uuur uuur uuurCE 2EA , AF 2FB ,则 uuur uuur AD BE uuur uuur CF 与 BC( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直答案】 A解析】 由定比分点的向量式得:uuu r AD uuur uuur AC 2 AB 2 uuuruuur 1 uuur 2 uuur CF 1 CA 2CB ,以上三式相加得3uu ur AD12 uuur uuur BECF1uuurAC 3 1 uuur BC,2 uuurAB , 3 uu ur BE 1 uuur BC 3 2 uuurBA , 3 故选: A . uuur解析】 Q 动点 D 满足|CD| 1, C又 A( 1,0) , B(0, 3) ,uuur uuur uuur OA OB OD (2 cos , 3 sin ).uuur uuur uuur |OA OB OD | (2cos ) 2 ( 3 sin ) 28 4cos 2 3sin8 2 7 sin(),u uu r A B所以满足条件的 M 只有一个,故选: B .uuur uuur uuuur5 .( 2010 ?湖 北)已 知 ABC 和点 M 满 足 MA MB MC uuur uuur uuuurAB AC mAM 成立,则 m ( ) A .2B .3C . 4D . 5【答案】 B【解析】 由u M u A ur u M uu B r u M uu C ur 0r 知,点 M 为 ABC 的重心,设点 D 为底边 BC 的中点,uuuur 2 uuur 2 1 uuur uuur 1 uuur uuur 则 AM AD (AB AC) (AB AC) ,3 3 2 3uuur uuur uuuur所以有 AB AC 3AM ,故 m 3 ,故选: B .6.( 2009?湖南)如图, D ,E ,F 分别是 ABC 的边 AB ,BC ,CA 的中点,则 ( )其中sin Q 1剟sin( ) 1 , ( 7 1)2 8 2 7剟8 2 7 sin( ) 8 2 7 ( 7 1)2 ,uuur uuur | OA OB uuurOD | 的取值范围是 [ 7 1, 7 1]. uuur uuur uuur uuur uuuruuur uuur uuuruuur uuur或, ,将其起点平移到 D 点,由其与 CD 同向反向时分别取最大值、最小值,即 uuur uuur uuur |OA OB OD | 的取值范围是 [ 7 1, 7 1] .故选: D .是 平面 上 给定 的 4 个不 同点 , 则使 uuuur MA 1 uuuur MA 2 uuuur MA 3 uuuur MA 4 r 0 成立的点 M 的个数为 ( )A .0B. 1C .2D . 4 答案】Buuuur uuuur uuuur uuuur r解析】 根据所给的四个向量的和个零向量MA 1 MA 2 MA 3 MA 4 0r,uuur uuuur uuuur uuuur uuuur uuuur uuuur uuuur r uuuur uuur uuuur uuuur uuuur则 OA 1 OM OA 2 OM OA 3 OM OA 4 OM 0 ,即 4OM OA 1 OA 2 OA 3 OA 4 , uuuur 1 uuur uuuur uuuur uuuur 所以 OM (OA 1 OA 2 OA 3 OA 4 ).4当A 1 , A 2 , A 3 , A 4 是平面上给定的 4 个不同点确定以后,则 uuuurOM 也是确定的,0r .若存在实数 m 使 得cos4 .( 2011 ? 上 海 ) 设 A 1 , A ,A 3 , A 4uuuruuur uuur r uuur uuur uuur rA.AD DF CF 0 B.BD CF DF 0uuur uuur uuur r uuur uuur uuurC AD CE CF 0 D BD BE FC答案】A解析】由图可知AD DB ,CF FA ED在DBE 中,DB BE ED 0 ,即AD CF BE 0 .故选: A.uuur uuur7.(2008?辽宁)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC CB 0 ,uuur则OC 等于()uuur uuur uuur uuur 2 uuur 1uuur1uuur2 uuurA.2OA OB B.OA 2OB C.OA OB D.OA OB3 3 3 3 【答案】 Auuur 【解析】Q 依题uuurOBuuurBCuuurOBuuur2ACuuurOBuuur2(OCuuurOA).uuurOCuuur2OAuuurOB.故选:A8.(2006?全国卷Ⅰ)设平面向量a r1、a r2、a r3的和a r1 a r2 a r3 0 .如果向量b1、b2、b3,满足| b r i | 2|a r i|,且a r i顺时针旋转30 后与b r i同向,其中i 1,2,3,则()A .b1 b2 b3 0B .b1 b2 b3 0 C.b1 b2 b3 0 D .b1 b2 b3 0【答案】 D【解析】向量a r1、a r2、a r3的和a r1a r2a r30,向量a r1、a r2、a r3顺时针旋转30后与b1、b2、r r r r r rb3 同向,且|b i | 2|a i |,b1 b2 b3 0 ,故选:D.ur uur r ur uur 9.(2016?上海)设单位向量e1 与e2 既不平行也不垂直,对非零向量a r x1e1 y1e2 、b x2 e1 y2 e2 有结论:r①若x1y2 x2y1 0,则a r //b;②若x1x2 y1y2 0,则a r 关于以上两个结论,正确的判断是()A .① 成立,② 不成立B.① 不成立,②成立平行也不垂直, x 1x 2 , y 1 y 2 ,满足 x 1y 2x 2y 1 0 ,r r因此 a / /b .②若x 1x 2 y 1y 2 0 ,r r ur uur uruurur uur ur uur则 agb (x 1e 1 y 1 e 2 )g( x 2 e 1y 2 e 2 ) x 1x 2 y 1y 2 (x 2y 1x 1y 2 )e 1 ge 2 (x 2y 1 x 1 y 2 )e 1 ge 2 ,无法得到定正确.故选: A .答案】答案】 A答案】 BC .① 成立, ②成立 答案】 AD .① 不成立, ②不成立解析】 ① 假设存在实数 u r 11则rbra得使y 2 e 2 ) ,Q 向量 e 1 与e 2既不r g r10 .( 2010?四川设 点 M 是线 段 BC 的 中点, 点 A 在直线 BC 外uuu r 2 BC16uuur uuur uuur | AB AC | | AB uuur uuuur AC|,则|AM | ( A .8B .4C .2D .1解析】 uuur2 由 BC 16 uuur ,得 | BC| 4, uuur Q | AB uuur uuur uuur AC | | AB AC | uuur uuur |BC | 4,而 | AB uuur uuuurAC| 2|AM |uuuur | AM | 2故选:11.( 2018?新课标Ⅰ)ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,uuu r EB3 uuur A .3 AB 1 uuur AC 41uuur B . AB3 uuur 3AC 43uuurC . 3 ABuu ur ACD . 1uuurAB 4uuu r AC解析】 ABC 中, AD 为BC 边上的中线, E 为 AD 的中点,uu ur EB uuu rABuuur uuurAE AB uuu r ADuuur 1 AB 21 uuur12(AB uuur AC)3uuurAB 4 1 uuurAC ,4 故选: A . 12. 2011?全国)F 是 ABC 内三点,满足 uuur uuur AD DE uu ur BE uu ur EF uuu r CF uuurFDuuur 设 AF uuu r AB uuu r AC则(A .(472 27)1 B .(174 74)C . 4 (74,7)D . 2 (72 447)解析】 如图可得 D 是 AE 中点, E 是 BF 中点, F 为 CD 中点,(x 2e 1y 1uuur 1 uuur 1 uuur 1 uuur1uuur 1 uuur 1 uuurAF ACAD AC1AE AE 1 AF AB22 2 422 uuur 1 uuur 4 uuur 1 4AF ABAC,故B777 7uuur r uuur rABC 中,点 D 在边 AB 上,CD 平分 ACB ,若 CB a ,CA b ,r r uuur |a r| 1,|b| 2,则 CD ( ) 1 r 2rB.2 r 1 r 3r 4r 4 r3 r A . ab ab C . ab D . a b 33335555答案】B解析】 Q CD 为角平分线,BD BC 1,AD AC2uuur uuur uuur r Q AB CB CA a二.填空题(共 4 小题)uuur uuur uuur uuur 14.( 2017?江苏)如图,在同一个平面内, 向量 OA ,OB ,OC 的模分别为 1,1, 2,OA与u O uu C r 的夹角为 ,且 tan 7 , O uu B ur 与 u O uu C r 的夹角为 45 .若 u O u C ur mO uu A ur nO uu B ur(m,n R ) ,解析】 如图所示,建立直角坐标系. A (1,0) .13.(2010?全国大纲版Ⅱ)u uuru u urb2 ra 2rr32a r 13br故选: B .ruuur uuur 由 OA 与 OC 的夹角为 ,且 tan7.coscos( 45 )B( 5,5).2(cos(cos 2 uuur OC sin sin( 45uuuruuur mOA nOB( m,n R),1 , sin 522(sin 2 3 5n ,7 52cosC(15,75).解得则m 15.(2015?北京) n 3 .故答案为: 3.在 ABC 中,点 M , N 满足 uuuurAM uuuur 2MC uuu rBNuuur NC ,若 uuu ur MNuuur xAB uuur yAC ,则x 答案】解析】 由已知得到uuu ur MN uuu ur MC uu ur CN1 uuur AC 31uuurCB 21 uuur 1AC 32 uuur (AB uuur AC)uuu r ABuuur AC ;由平面向量基本定理,得到 16.(2013?四川)在平行四边形ABCD 中,对角线 AC 与 BD 交于点 O uuu r AB uuur ADuuur AO ,答案】 2. 解析】 Q 四边形 ABCD 为平行四边形, 对角线 AC 与 BD 交于点 O , uuu r AB uuu r ADuuur AC ,又O 为 AC 的中点,uuur uuur uuur uuur AC 2AO , AB AD uuur 2AO , uuur uuur uuurQ AB ADAO 2 .故答案为: 2 . 17.(2013?北京)向量a r ,b ,c r在正方形网格中的位置如图所示, 若 c r b( ,R),答案】4.解析】以向量a r、b r的公共点为坐标原点,建立如图直角坐标系2因此,21 4 故答案为:42ra得可3)Q c r a r b (16R) 3126,解之得 2 且26。

高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题

高考数学    平面向量的概念及线性运算、平面向量基本定理及坐标表示    高考真题

专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)
⃗ =0,|⃗|=|⃗|=|⃗ |=2,则△ABC 的面积等于(
A.√3
B.2√3
C.3√3
D.4√3
)
)
10.(多选)设 M 是△ABC 所在平面内一点,则下列说法正确的是(
A.若⃗
1 ⃗

2
1 ⃗
,则
2

M 是边 BC 的中点
B.若⃗=2⃗
⃗ ,则点 M 在边 BC 的延长线上
C.若⃗=-⃗
⃗,则 M 是△ABC 的重心
1
1
D.若⃗=x⃗+y⃗ ,且 x+y= ,则△MBC 的面积是△ABC 面积的
2
2
1
4
11.(历年山东德州高三模拟)设向量 a,b 不平行,向量 a+ λb 与-a+b 平行.则实数 λ=
.
12.(历年浙江杭州二中高二期中)在等腰梯形 ABCD 中,设⃗=a,⃗=b,⃗ =2⃗,M 为 BC 的中点,则
2
3
1
3
A. a+ b
2
3
1
3
C. a- b
2
3
)
(
)
1
3
B.- a+ b
2
3
1
3
D.- a- b
5.(历年四川宜宾叙州区第一中学月考)在▱ABCD 中,若|⃗
A.▱ABCD 为菱形
(
⃗|=|⃗
⃗|,则必有(
)
B.▱ABCD 为矩形
C.▱ABCD 为正方形 D.▱ABCD 为梯形
6.设 a,b 是非零向量,则“a=2b”是“|a+b|≥|a|+|b|”的
A.充分不必要条件

高考数学专题之平面向量及算法

高考数学专题之平面向量及算法

一层堆起来的,形成了堆垛.沈括在其代表作《梦溪笔谈》中提出了计算堆垛中酒缸的总数
的公式.图 1 是长方垛:每一层都是长方形,底层长方形的长边放置了 a 个酒缸,短边放置
了 b 个酒缸,共放置了 n 层.某同学根据图 1,绘制了计算该长方垛中酒缸总数的程序框
图,如图 2,那么在 和 两个空白框中,可以分别填入( )
6.(2019·北京高考)执行如图所示的程序框图,输出的 s 值为( )
A.1
B.2
C.3
D.4
7.(2019·湖南省五市十校联考)已知向量 a,b 满足|a|=1,|b|=2,a·(a-2b)=0,则|a
+b|=( )
A. 6
B. 5
C.2
D. 3
8.(2019·湖南省湘东六校联考)若向量 a,b 满足|a|=|b|=1,a·(a-b)=32,则向量 a,
B.6 D.8
[专题过关检测]
一、选择题
1.(2019·蓉城名校第一次联考)已知向量 e1,e2,|e1|=1,e2=(1, 3),e1,e2 的夹角为 60°,则(e1+e2)·e2=( )
35 A. 5
B.2 55
C.5
D. 5
2.(2019·武昌区调研考试)已知向量 a=(2,1),b=(2,x)不平行,且满足(a+2b)⊥(a-
1 A.3
B.34
4 C.7
D.171
5.(2019·广州市调研测试)已知△ABC 的边 BC 上有一点 D 满足―B→D =
4―D→C ,则―AD→可表示为( )
A.―A→D =14―A→B +34―A→C
B.―A→D =34―A→B +14―A→C
C.―A→D =45―A→B +15―A→C

平面向量的线性运算及练习试题

平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,a b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量. ②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型. (2)向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC 。

说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,(3)特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:(a +b ) +c =a + (b +c )知识点二:向量的减法(1)相反向量:与a 长度相同、方向相反的向量.记作 -a 。

历年高考数学真题精选18 平面向量的线性运算

历年高考数学真题精选18 平面向量的线性运算

历年高考数学真题精选(按考点分类)专题十八 平面向量的线性运算(学生版)一.选择题(共13小题)1.(2015•新课标Ⅰ)设D 为ABC ∆所在平面内一点,3BC CD =,则( ) A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+ D .4133AD AB AC =- 2.(2008•湖南)设D 、E 、F 分别是ABC ∆的三边BC 、CA 、AB 上的点,且2DC BD =,2CE EA =,2AF FB =,则AD BE CF ++与(BC )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直3.(2014•湖南)在平面直角坐标系中,O 为原点,(1,0)A -,B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )A .[4,6]B .11]+C .,D .11]4.(2011•上海)设1A ,2A ,3A ,4A 是平面上给定的4个不同点,则使12340MA MA MA MA +++=成立的点M 的个数为( )A .0B .1C .2D .45.(2010•湖北)已知ABC ∆和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC mAM +=成立,则(m = )A .2B .3C .4D .56.(2009•湖南)如图,D ,E ,F 分别是ABC ∆的边AB ,BC ,CA 的中点,则( )A .0AD DF CF ++=B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --=7.(2008•辽宁)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC 等于( ) A .2OA OB -B .2OA OB -+C .2133OA OB -D .1233OA OB -+8.(2006•全国卷Ⅰ)设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足||2||i i b a =,且i a 顺时针旋转30︒后与i b 同向,其中1i =,2,3,则( ) A .1230b b b -++=B .1230b b b -+=C .1230b b b +-=D .1230b b b ++=9.(2016•上海)设单位向量1e 与2e 既不平行也不垂直,对非零向量1112a x e y e =+、2122b x e y e =+有结论:①若12210x y x y -=,则//a b ; ②若12120x x y y +=,则a b ⊥.关于以上两个结论,正确的判断是( ) A .①成立,②不成立 B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立10.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,216BC =,||||AB AC AB AC +=-,则||(AM = )A .8B .4C .2D .111.(2018•新课标Ⅰ)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 12.(2011•全国)点D ,E ,F 是ABC ∆内三点,满足AD DE =,BE EF =,CF FD =,设AF AB AC λμ=+,则(λ,)(μ= ) A .4(7,2)7B .1(7,4)7C .4(7,1)7D .2(7,4)713.(2010•全国大纲版Ⅱ)ABC ∆中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,||1a =,||2b =,则(CD = ) A .1233a b +B .2133a b +C .3455a b +D .4355a b +二.填空题(共4小题)14.(2017•江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45︒.若(,)OC mOA nOB m n R =+∈,则m n += .15.(2015•北京)在ABC ∆中,点M ,N 满足2AM MC =,BN NC =,若MN xAB y AC =+,则x = ,y = .16.(2013•四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ= .17.(2013•北京)向量a ,b ,c 在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈,则λμ= .历年高考数学真题精选(按考点分类) 专题十八 平面向量的线性运算(教师版)一.选择题(共13小题)1.(2015•新课标Ⅰ)设D 为ABC ∆所在平面内一点,3BC CD =,则( ) A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A【解析】由4414()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+;故选:A .2.(2008•湖南)设D 、E 、F 分别是ABC ∆的三边BC 、CA 、AB 上的点,且2DC BD =,2CE EA =,2AF FB =,则AD BE CF ++与(BC )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直【答案】A【解析】由定比分点的向量式得:2121233AC AB AD AC AB +==++,1233BE BC BA =+,1233CF CA CB =+,以上三式相加得13AD BE CF BC ++=-,故选:A .3.(2014•湖南)在平面直角坐标系中,O 为原点,(1,0)A -,B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )A .[4,6]B .11]+C .,D .11]【答案】D【解析】动点D 满足||1CD =,(3,0)C ,∴可设(3cos D θ+,sin )([0θθ∈,2))π.又(1,0)A -,B ,∴(2cos sin )OA OB OD θθ++=+.||(2OA OB OD ∴++=,(其中sinϕ=cos ϕ1sin()1θϕ-+,∴22(71)8827sin()827(71)θϕ=-+++=+,||OA OB OD ∴++的取值范围是1].或||||OA OB OD OA OB OC CD ++=+++,OA OB OC ++=,将其起点平移到D 点,由其与CD 同向反向时分别取最大值、最小值,即||OA OB OD ++的取值范围是1].故选:D .4.(2011•上海)设1A ,2A ,3A ,4A 是平面上给定的4个不同点,则使12340MA MA MA MA +++=成立的点M 的个数为( )A .0B .1C .2D .4【答案】B【解析】根据所给的四个向量的和是一个零向量12340MA MA MA MA +++=,则12340OA OM OA OM OA OM OA OM -+-+-+-=,即12344OM OA OA OA OA =+++, 所以12341()4OM OA OA OA OA =+++.当1A ,2A ,3A ,4A 是平面上给定的4个不同点确定以后,则OM 也是确定的, 所以满足条件的M 只有一个,故选:B .5.(2010•湖北)已知ABC ∆和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC mAM +=成立,则(m = )A .2B .3C .4D .5【答案】B【解析】由0MA MB MC ++=知,点M 为ABC ∆的重心,设点D 为底边BC 的中点, 则2211()()3323AM AD AB AC AB AC ==⨯+=+, 所以有3AB AC AM +=,故3m =,故选:B .6.(2009•湖南)如图,D ,E ,F 分别是ABC ∆的边AB ,BC ,CA 的中点,则( )A .0AD DF CF ++=B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --=【答案】A【解析】由图可知AD DB =,CF FA ED ==在DBE ∆中,0DB BE ED ++=,即0AD CF BE ++=.故选:A .7.(2008•辽宁)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC 等于( ) A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+【答案】A【解析】依题22()OC OB BC OB AC OB OC OA =+=+=+-.∴2OC OA OB =-.故选:A .8.(2006•全国卷Ⅰ)设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足||2||i i b a =,且i a 顺时针旋转30︒后与i b 同向,其中1i =,2,3,则( ) A .1230b b b -++= B .1230b b b -+=C .1230b b b +-=D .1230b b b ++=【答案】D【解析】向量1a 、2a 、3a 的和1230a a a ++=,向量1a 、2a 、3a 顺时针旋转30︒后与1b 、2b 、3b 同向,且||2||i i b a =,∴1230b b b ++=,故选:D .9.(2016•上海)设单位向量1e 与2e 既不平行也不垂直,对非零向量1112a x e y e =+、2122b x e y e =+有结论:①若12210x y x y -=,则//a b ;②若12120x x y y +=,则a b ⊥. 关于以上两个结论,正确的判断是( ) A .①成立,②不成立B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立【答案】A【解析】①假设存在实数λ使得a b λ=,则11122122()x e y e x e y e λ+=+,向量1e 与2e 既不平行也不垂直,12x x λ∴=,12y y λ=,满足12210x y x y -=,因此//a b . ②若12120x x y y +=,则111221221212211212211212()()()()a b x e y e x e y e x x y y x y x y e e x y x y e e =++=+++=+,无法得到0a b =,因此a b ⊥不一定正确.故选:A .10.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,216BC =,||||AB AC AB AC +=-,则||(AM = )A .8B .4C .2D .1【答案】C【解析】由216BC =,得||4BC =,||||||4AB AC AB AC BC +=-==,而||2||AB AC AM +=∴||2AM =故选:C . 11.(2018•新课标Ⅰ)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A【解析】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点, 12EB AB AE AB AD =-=-11()22AB AB AC =-⨯+3144AB AC =-,故选:A . 12.(2011•全国)点D ,E ,F 是ABC ∆内三点,满足AD DE =,BE EF =,CF FD =,设AF AB AC λμ=+,则(λ,)(μ= ) A .4(7,2)7B .1(7,4)7C .4(7,1)7D .2(7,4)7【答案】B【解析】如图可得D 是AE 中点,E 是BF 中点,F 为CD 中点,∴11112224AF AC AD AC AE =+=+,1122AE AF AB =+. ∴1477AF AB AC =+,∴14,77λμ==,故选:B .13.(2010•全国大纲版Ⅱ)ABC ∆中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,||1a =,||2b =,则(CD = ) A .1233a b +B .2133a b +C .3455a b +D .4355a b +【答案】B【解析】CD 为角平分线,∴12BD BC AD AC ==, AB CB CA a b =-=-,∴222333AD AB a b ==-, ∴22213333CD CA AD b a b a b =+=+-=+故选:B . 二.填空题(共4小题)14.(2017•江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45︒.若(,)OC mOA nOB m n R =+∈,则m n += .【答案】3【解析】如图所示,建立直角坐标系.(1,0)A .由OA 与OC 的夹角为α,且tan 7α=.cosα∴,sin α=.17(,)55C ∴.3cos(45)sin )5ααα+︒=-=-.4sin(45)cos )5ααα+︒+=. 34(,)55B ∴-.(,)OC mOA nOB m n R =+∈,∴1355m n =-,74055n =+,解得74n =,54m =. 则3m n +=.故答案为:3.15.(2015•北京)在ABC ∆中,点M ,N 满足2AM MC =,BN NC =,若MN xAB y AC =+,则x = ,y = . 【答案】11,26-.【解析】由已知得到111111()323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-;由平面向量基本定理,得到12x =,16y =- 16.(2013•四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ= . 【答案】2.【解析】四边形ABCD 为平行四边形,对角线AC 与BD 交于点O ,∴AB AD AC +=, 又O 为AC 的中点,∴2AC AO =,∴2AB AD AO +=, AB AD AO λ+=,2λ∴=.故答案为:2.17.(2013•北京)向量a ,b ,c 在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈,则λμ= .【答案】4.【解析】以向量a 、b 的公共点为坐标原点,建立如图直角坐标系 可得(1,1)a =-,(6,2)b =,(1,3)c =--(,)c a b R λμλμ=+∈∴1632λμλμ-=-+⎧⎨-=+⎩,解之得2λ=-且12μ=-因此,2412λμ-==-故答案为:4。

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09平面向量考点三年考情(2022-2024)命题趋势考点1:平面向量线性运算2022年新高考全国I 卷数学真题平面向量数量积的运算、化简、证明及数量积的应用问题,如证明垂直、距离等是每年必考的内容,单独命题时,一般以选择、填空形式出现.交汇命题时,向量一般与解析几何、三角函数、平面几何等相结合考查,而此时向量作为工具出现.向量的应用是跨学科知识的一个交汇点,务必引起重视.预测命题时考查平面向量数量积的几何意义及坐标运算,同时与三角函数及解析几何相结合的解答题也是热点.考点2:数量积运算2022年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题2024年北京高考数学真题考点3:求模问题2023年新课标全国Ⅱ卷数学真题2024年新课标全国Ⅱ卷数学真题2023年北京高考数学真题2022年高考全国乙卷数学(文)真题考点4:求夹角问题2023年高考全国甲卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国II 卷数学真题考点5:平行垂直问题2024年上海夏季高考数学真题2024年新课标全国Ⅰ卷数学真题2022年高考全国甲卷数学(文)真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(理)真题考点6:平面向量取值与范围问题2024年天津高考数学真题2023年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2022年新高考天津数学高考真题2022年新高考浙江数学高考真题2023年天津高考数学真题考点1:平面向量线性运算1.(2022年新高考全国I 卷数学真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【解析】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .考点2:数量积运算2.(2022年高考全国甲卷数学(理)真题)设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= .【答案】11【解析】设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.3.(2023年高考全国乙卷数学(文)真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A 5B .3C .25D .5【答案】B【解析】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:5,2ED EC CD ===,在CDE 中,由余弦定理可得2223cos 25255DE CE DC DEC DE CE +-∠==⋅⨯⨯,所以3cos 5535EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.4.(2022年高考全国乙卷数学(理)真题)已知向量,a b 满足||1,||3,|2|3a b a b ==-= ,则a b ⋅=()A .2-B .1-C .1D .2【答案】C【解析】∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,∴1a b ⋅= 故选:C.5.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.考点3:求模问题6.(2023年新课标全国Ⅱ卷数学真题)已知向量a ,b满足3a b -= ,2a b a b +=- ,则b = .3【解析】法一:因为2a b a b +=- ,即()()222a ba b +=-,则2222244a a b b a a b b +⋅+=-⋅+r r r r r r r r ,整理得220a a b -⋅= ,又因为3a b -= ()23a b -= ,则22223a a b b b -⋅+==r r r r r ,所以3b = 法二:设c a b =-r rr ,则3,2,22c a b c b a b c b =+=+-=+r r r r r r r r r ,由题意可得:()()2222c b c b +=+r r r r ,则22224444c c b b c c b b +⋅+=+⋅+r r r r r r r r ,整理得:22c b =r r ,即3b c ==r r 37.(2024年新课标全国Ⅱ卷数学真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .22C .32D .1【答案】B【解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.8.(2023年北京高考数学真题)已知向量a b,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A .2-B .1-C .0D .1【答案】B【解析】向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B9.(2022年高考全国乙卷数学(文)真题)已知向量(2,1)(2,4)a b ==-,,则a b -r r ()A .2B .3C .4D .5【答案】D【解析】因为()()()2,12,44,3a b -=--=- ,所以()22435-=+-a b .故选:D考点4:求夹角问题10.(2023年高考全国甲卷数学(文)真题)已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A .117B .1717C 55D 255【答案】B【解析】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则225334,112a b a b +=+-=+= ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,342a b a b a b a b a b a b+⋅-+-==⨯+-.故选:B.11.(2023年高考全国甲卷数学(理)真题)已知向量,,a b c 满足1,2a b c === 0a b c ++=,则cos ,a c b c 〈--〉=()A .45-B .25-C .25D .45【答案】D【解析】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c ===,由题知,1,2,OA OB OC OAB === 是等腰直角三角形,AB 边上的高2222OD AD =所以22222CD CO OD =+=,1tan ,cos 310AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-2421510=⨯-=.故选:D.12.(2022年新高考全国II 卷数学真题)已知向量(3,4),(1,0),t ===+ a b c a b ,若,,<>=<>a cbc ,则t =()A .6-B .5-C .5D .6【答案】C【解析】()3,4c t =+ ,cos ,cos ,a c b c =,即931635t t c c+++= ,解得5t =,故选:C考点5:平行垂直问题13.(2024年上海夏季高考数学真题))已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为.【答案】15【解析】//a b,256k ∴=⨯,解得15k =.故答案为:15.14.(2024年新课标全国Ⅰ卷数学真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .2【答案】D【解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.15.(2022年高考全国甲卷数学(文)真题)已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =.【答案】34-/0.75-【解析】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.16.(2023年新课标全国Ⅰ卷数学真题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .17.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件【答案】C【解析】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得13x =,即必要性不成立,故B 错误;对D ,当13x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.考点6:平面向量取值与范围问题18.(2024年天津高考数学真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.【答案】43518-【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.19.(2023年高考全国乙卷数学(理)真题)已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO =,则PA PD ⋅的最大值为()A .122+B .1222+C .12+D .22+【答案】A【解析】如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-122224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+122224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅有最大值122.综上可得,PA PD ⋅的最大值为122.故选:A.20.(2022年新高考北京数学高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- ,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈- ;故选:D21.(2022年新高考天津数学高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为,若AB DE ⊥ ,则ACB ∠的最大值为【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-= ,2234b a a b +=⋅ 222333cos 244a b a b b a ACB a b a b a b⋅+⇒∠==≥= 3a b = 时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x y DE AB x y +=--=-- ,23()(1)022x y DE AB x +⊥⇒-+ 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.22.(2022年新高考浙江数学高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是.【答案】[122,16]+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,82222A ⎛⎫ ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[1222,16]+.故答案为:[1222,16]+.23.(2023年天津高考数学真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b == ,用,a b 表示AE = ;若13BF BC = ,则AE AF ⋅ 的最大值为.【答案】1142a b + 1324【解析】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC⎧+=⎪⎨+=⎪⎩ ,两式相加,可得到2AE AD AC =+ ,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB ⎧+=⎪⎨+=⎪⎩,得到()22AF FC AF FB AC AB +++=+ ,即32AF a b =+ ,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭ .记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅ 有最大值1324.故答案为:1142a b + ;1324.。

高中数学:平面向量的概念及其线性运算练习

高中数学:平面向量的概念及其线性运算练习

高中数学:平面向量的概念及其线性运算练习1.设a 是非零向量,λ是非零实数,下列结论中正确的是( B ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a |D .|-λa |≥|λ|·a解析:对于A,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.(合肥质检)已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( C )A .23OA →-13OB → B .-13OA →+23OB →C .2OA→-OB → D .-OA→+2OB → 解析:因为AC→=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA→+OB →=0,所以OC →=2OA →-OB →. 3.(济宁模拟)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB→=mAM →,AC →=nAN →,则m +n 的值为( B )A .1B .2C .3D .4解析:∵O 为BC 的中点,∴AO →=12(AB →+AC →)=12(mAM →+nAN→)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.4.(河南中原名校联考)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC→,F 为AE 的中点,则BF →=( C )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →解析:BF→=BA →+AF →=BA →+12AE → =-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+CE →=-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+13CB →=-AB→+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.5.(长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD→=13AB →+12AC →,则S △BCD S △ABD=( B )A .16B .13C .12 D .23解析:由AD →=13AB →+12AC →得点D 在平行于AB 的中位线上,从而有S△ABD=12S △ABC ,又S △ACD =13S △ABC ,所以S △BCD =⎝ ⎛⎭⎪⎫1-12-13S △ABC =16S △ABC ,所以S △BCDS △ABD=13.故选B .6.(太原模拟)在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λ·AC →,则|AP →|的取值范围为( D ) A .⎣⎢⎡⎦⎥⎤2,210+333 B .⎣⎢⎡⎦⎥⎤2,83 C .⎣⎢⎡⎦⎥⎤0,2133 D .⎣⎢⎡⎦⎥⎤2,2133 解析:在AB 上取一点D ,使得AD→=23AB →,过D 作DH ∥AC ,交BC 于H .∵AP→=23AB →+λAC →,且点P 是△ABC 内一点(含边界),∴点P 在线段DH 上. 当P 在D 点时,|AP→|取得最小值2;当P 在H 点时,|AP →|取得最大值,此时B ,P ,C 三点共线, ∵AP→=23AB →+λAC →,∴λ=13, ∴AP→=13AC →+23AB →,∴AP →2=19AC →2+49AB →2+49AB →·AC→=529,∴|AP →|=2133.故|AP→|的取值范围为⎣⎢⎡⎦⎥⎤2,2133.故选D . 7.已知△ABC 和点M 满足MA→+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m=3__.解析:由已知条件得MB→+MC →=-MA →,如图,延长AM 交BC 于D 点, 则D 为BC 的中点.延长BM 交AC 于E 点,延长CM 交AB 于F 点, 同理可证E ,F 分别为AC ,AB 的中点,即M 为△ABC 的重心,∴AM→=23AD →=13(AB →+AC →),即AB→+AC →=3AM →,则m =3.8.(郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为-94.解析:由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2, 所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k +1)e 2, 所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,又e 1与e 2不共线,所以⎩⎨⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.9.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB→,则μ的取值范围是⎣⎢⎡⎦⎥⎤0,12 . 解析:由题意可求得AD =1,CD =3,∴AB →=2DC →,∵点E 在线段CD 上,∴DE→=λDC →(0≤λ≤1).∵AE →=AD →+DE →,又AE→=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2,∵0≤λ≤1,∴0≤μ≤12. 即μ的取值范围是⎣⎢⎡⎦⎥⎤0,12. 10.(太原质检)设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为60°__.解析:∵G 是△ABC 的重心,∴GA→+GB →+GC →=0,GA →=-(GB →+GC →), 将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB→+(sin C -sin A )GC →=0. 又GB→,GC →不共线,∴sin B -sin A =0,sin C -sin A =0. 则sin B =sin A =sin C . 根据正弦定理知,b =a =c , ∴△ABC 是等边三角形,则B =60°.11.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO→.解:由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),①又BO→=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b=-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎪⎨⎪⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO→=-23a +13B . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).12.(四川成都外国语学校月考)设P 是△ABC 所在平面内的一点,若AB →·(CB →+CA →)=2AB →·CP →且|AB →|2=|AC →|2-2BC →·AP→,则点P 是△ABC 的( A ) A .外心 B .内心 C .重心D .垂心解析:由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+P A →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.因为|AB →|2=|AC →|2-2BC →·AP →,所以(AC →+AB →)·(AC →-AB →)=2BC →·AP →,所以BC →·(AC →+AB →-2AP →)=0.设BC 的中点为E ,同理可得BC →·PE→=0, 所以P 为AB 与BC 的垂直平分线的交点, 所以P 是△ABC 的外心.故选A .13.如图所示,在△ABC 中,AD =DB ,点F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +4y +1的最小值为( D )A .6+2 2B .6 3C .6+4 2D .3+2 2解析:由题意知AF →=x a +y b =2xAD →+yAC →, 因为C ,F ,D 三点共线,所以2x +y =1,即y =1-2x . 由题图可知x >0且x ≠1. 所以1x +4y +1=1x +21-x =x +1x -x 2.令f (x )=x +1x -x 2,则f ′(x )=x 2+2x -1(x -x 2)2,令f ′(x )=0,得x =2-1或x =-2-1(舍). 当0<x <2-1时,f ′(x )<0, 当x >2-1且x ≠1时,f ′(x )>0.所以当x =2-1时,f (x )取得极小值,亦为最小值,最小值为f (2-1)=2(2-1)-(2-1)2=3+2 2.14.(河北百校联盟联考)已知在△ABC 中,点D 满足2BD→+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM→=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为3+223.解析:连接AD .因为2BD→+CD →=0,所以BD →=13BC →,AD→=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)= 23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R , 使AD→=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB→+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝ ⎛⎭⎪⎫2λ+1μ=13⎝ ⎛⎭⎪⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.15.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin 〈a ,b 〉,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是①③④__.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin 〈a ,b 〉, (λa )⊗b =|λa |·|b |sin 〈a ,b 〉,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin 〈a ,b 〉=0, 故a ⊗b =0恒成立,④a =λb ,且λ>0,则a +b =(1+λ)b ,(a +b )⊗c =|(1+λ)||b |·|c |sin 〈b ,c 〉,(a ⊗c )+(b ⊗c )=|λb |·|c |sin 〈b ,c 〉+|b |·|c |sin 〈b ,c 〉=|1+λ||b |·|c |sin 〈b ,c 〉, 故(a +b )⊗c =(a ⊗c )+(b ⊗c )恒成立.。

向量的线性运算真题汇编及解析

向量的线性运算真题汇编及解析

向量的线性运算真题汇编及解析一、选择题1.下列命题正确的是()A.如果|a|=|b|,那么a=bB.如果a、b都是单位向量,那么a=bC.如果a=k b(k≠0),那么a∥bD.如果m=0或a=0,那么m a=0【答案】C【解析】【分析】根据向量的定义和要素即可进行判断.【详解】解:A.向量是既有大小又有方向,|a|=|b|表示有向线段的长度,a=b表示长度相等,方向相同,所以A选项不正确;B.长度等于1的向量是单位向量,所以B选项不正确;C. a=k b(k≠0)⇔a∥b,所以C选项正确;D.如果m=0或a=0,那么m a=0,不正确.故选:C.【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.2.在中,已知是边上一点,,则( ) A.B.C.D.【答案】A【解析】【分析】根据A,B,D三点共线得出入的值,即可完成解答.【详解】解:在∆ABC中,已知D是AB边上一点,若=2,,则,∴,故选A.【点睛】本题考查了平面向量的基本定理,识记定理内容并灵活应用是解答本题的关键.3.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.4.计算45a a -+的结果是( ) A .a B .aC .a -D .a -【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键5.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12ab B .12a b -C .12a b -+D .12a b --【答案】A 【解析】 【分析】根据AE AB BE =+,只要求出BE 即可解决问题. 【详解】 解:四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==,BE CE =,1BE b 2∴=,AE AB BE,AB a =+=,1AE a b 2∴=+,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=,正确; B 、0a 0⋅=,正确; C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-,正确; 故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.7.已知1,3a b ==,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .3a b = B .3a b =-C .3b a =D .3b a =-.【答案】D【分析】根据平面向量的性质即可解决问题. 【详解】∵1,3a b ==,而且b 和a 的方向相反 ∴3b a =-. 故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.8.已知a 、b 为非零向量,下列判断错误的是( ) A .如果a =3b ,那么a ∥b B .||a =||b ,那么a =b 或a =-b C .0的方向不确定,大小为0D .如果e 为单位向量且a =﹣2e ,那么||a =2 【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a =3b ,那么两向量是共线向量,则a ∥b ,故A 选项不符合题意. B 、如果||a =||b ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意. C 、0的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a =2|e |=2,故D 选项不符合题意. 故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.9.已知平行四边形ABCD ,O 为平面上任意一点.设=,=,=,=,则( ) A .+++= B .-+-= C .+--= D .--+=【答案】B 【解析】 【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;;而 ;∴B 正确. 故选B. 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.对于非零向量a 、b ,如果2|a |=3|b |,且它们的方向相同,那么用向量a 表示向量b 正确的是( )A .b =32a B .b =23a C .b =﹣32a D .b =-23a 【答案】B 【解析】 【分析】根据已知条件得到非零向量a 、b 的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a |=3|b |,∴|b |23=|a |. 又∵非零向量a 与b 的方向相同,∴23b a =. 故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.11.如图,在ABC 中,点D 是在边BC 上,且2BD CD =,AB a =,BC b =,那么AD 等于( )A .a b +B .2233a b + C .23a b -D .23a b +【答案】D 【解析】 【分析】根据2BD CD =,即可求出BD ,然后根据平面向量的三角形法则即可求出结论. 【详解】 解:∵2BD CD = ∴2233BD BC b == ∴23AD AB BD a b =+=+ 故选D . 【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.12.下列说法中,正确的是( )A .如果k =0,a 是非零向量,那么k a =0B .如果e 是单位向量,那么e =1C .如果|b |=|a |,那么b =a 或b =﹣aD .已知非零向量a ,如果向量b =﹣5a ,那么a ∥b 【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a 是非零向量,那么k a =0,错误,应该是k a =0. B 、如果e 是单位向量,那么e =1,错误.应该是e =1.C 、如果|b |=|a |,那么b =a 或b =﹣a ,错误.模相等的向量,不一定平行.D 、已知非零向量a ,如果向量b =﹣5a ,那么a ∥b ,正确. 故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.13.如图,在平行四边形ABCD 中,如果AB a =,AD b =,那么a b +等于( )A .BDB .ACC .DBD .CA【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∵AD b =, ∴BC b =, ∵AB a =,∴a b +=AB +BC =AC . 故选B .14.化简()()AB CD BE DE -+-的结果是( ). A .CA B .AC C .0 D .AE【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+ AE CE =- AE EC =+AC =,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.15.如图,在平行四边形ABCD 中,设AB a =,AD b =,那么向量OC 可以表示为. ( )A .1122a b + B .1122a b - C .1122a b -+ D .1122a b --【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可. 【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+ 【点睛】 本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.16.已知a =3,b =5,且b 与a 的方向相反,用a 表示b 向量为( )A .35b a =B .53b a =C .35b a =-D .53b a =-【答案】D 【解析】 【分析】根据a =3,b =5,且b 与a 的方向相反,即可用a 表示b 向量. 【详解】a =3,b =5,b =53a ,b 与a 的方向相反,∴5.3b a =-故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.17.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( ) A .a //b B .a -2b =0C .b =12a D .2ab =【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误. 故选B.18.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =B .12CB AB =C .0AC BC +=D .0AC CB +=【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答. 解:A 、12CA BA =,故本选项错误; B 、12CB AB =,故本选项正确; C 、0AC BC +=,故本选项错误; D 、AC CB AB +=,故本选项错误.故选B .19.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+【答案】D 【解析】 【分析】利用平面向量的加法即可解答. 【详解】 解:根据题意得=,+ .故选D. 【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.20.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ). A .()12a b - B .()12b a - C .()12a b + D .()12a b -+【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b = ∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==-∴()()1122AM AC CM b b b a a -=+=+=+ 故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.。

历年高三数学高考考点之平面向量的线性问题必会题型及答案

历年高三数学高考考点之平面向量的线性问题必会题型及答案

历年高三数学高考考点之<平面向量的线性问题>必会题型及答案体验高考1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m 等于( ) A.-8 B.-6 C.6 D.8 答案 D解析 由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D.3.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-94答案 B解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t m ·n +|n |2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4,故选B.4.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.高考必会题型题型一 平面向量的线性运算及应用例1 (1)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 (2)已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →, CD →=13CA →+λCB →,则λ=_____.答案 (1)D (2)23解析 (1)设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. ∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0. (2)因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.点评 平面向量的线性运算应注意三点 (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.答案 (1)A (2)6解析 (1)根据向量的基本定理可得, AD →=AC →+CD →=AC →+(ED →-EC →) =AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →, 所以λ=22,k =1+22, 所以λ+k =1+ 2.故选A.(2)由GA →+GB →+GC →=0,知点G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA→+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.题型二 平面向量的坐标运算例2 (1)已知点A (-3,0),B (0,3),点O 为坐标原点,点C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.答案 1解析 由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°,知∠xOC =150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1.(2)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),求实数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k ,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),则d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0,x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)如图所示,在△ABC 中,D 为AB 的中点,F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +2y的最小值为( )A.8+2 2B.8C.6D.6+2 2(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)B (2)m ≠12解析 (1)因为点D 为AB 的中点,所以AB →=2AD →,因为AF →=x a +y b ,所以AF →=2xAD →+yAC →.因为点F 在线段CD 上,所以2x +y =1,又x ,y >0,所以1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4xy=8, 当且仅当y =2x =12时取等号,所以1x +2y的最小值为8.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线,而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时,实数m 满足的条件是m ≠12.高考题型精练1.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|a答案 B解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.设点M 是△ABC 所在平面上的一点,且MB →+32MA →+32MC →=0,点D 是AC 的中点,则|MD →||BM →|的值为( )A.13B.12 C.1 D.2 答案 A解析 ∵D 是AC 的中点,延长MD 至E ,使得DE =MD , ∴四边形MAEC 为平行四边形,∴MD →=12ME →=12(MA →+MC →).∵MB →+32MA →+32MC →=0,∴MB →=-32(MA →+MC →)=-3MD →,∴|MD →||BM →|=|MD →||-3MD →|=13,故选A. 3.已知点A (-3,0),B (0,2),点O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过点C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →, 即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.4.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A.矩形 B.平行四边形 C.梯形 D.以上都不对 答案 C解析 由已知,得AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →,故AD →∥BC →.又因为AB →与CD →不平行,所以四边形ABCD 是梯形.5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件 答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.在四边形ABCD 中,AB ∥CD ,AB =3DC ,点E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝ ⎛⎭⎪⎫AD →-23AB →=23AB →+12AD →.7.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A.②③ B.①② C.③④ D.④⑤ 答案 A解析 ①方向不一定相同;④方向可能相反;⑤若b =0,则不对.8.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2)解析 在矩形ABCD 中,因为点O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2).9.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.答案 45解析 依题意得,AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →,AN →=AB →+BN →=AB →+12BC →.又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μAB →+⎝⎛⎭⎪⎫λ+μ2BC →.又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.10.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,点O 是坐标原点,则|OA →|的最大值为________.答案 2解析 因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.11.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.(1)证明 由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB →=2e 1-8e 2,∴AB →=2BD →. 又∵AB →与BD →有公共点B , ∴A ,B ,D 三点共线.(2)解 由(1)可知BD →=e 1-4e 2, ∵BF →=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF →=λBD →(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时,a 的值. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0. (2)证明 当t 1=1时, 由(1)知OM →=(4t 2,4t 2+2). ∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 又∵AM →与AB →有公共点A ,∴不论t 2为何实数,A ,B ,M 三点共线.(3)解 当t 1=a 2时, OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →, ∴4t 2×4+(4t 2+2a 2)×4=0, ∴t 2=-14a 2,故OM →=(-a 2,a 2). |AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2, 故所求a 的值为±2.。

高中数学高考总复习平面向量的概念及线性运算习题及详解

高中数学高考总复习平面向量的概念及线性运算习题及详解

高考总复习高中数学高考总复习平面向量的概念及线性运算习题及详解一、选择题→→→1.在四边形 ABCD 中,AB =a+ 2b,BC=- 4a-b,CD =- 5a- 3b,其中a,b不共线,则四边形 ABCD 为 ()A .梯形B.平行四边形C.菱形D.矩形[答案 ]A[解析 ]→ → →→→→由已知得 AD = AB+ BC+CD =- 8a- 2b,故 AD= 2BC,由共线向量知识知 AD∥BC ,且 |AD |= 2|BC|,故四边形 ABCD 为梯形,所以选 A.2. (文 )(2010 芜·湖十二中 )已知平面向量a= (2m+ 1,3),b= (2, m),且a∥b,则实数 m 的值等于 ()33A.2 或-2 B.232C.- 2 或2D.-7[答案 ]C[解析 ]∵ a∥b,∴(2m+1)m-6=0,∴ 2m2+ m-6= 0,∴ m=- 2 或3.2(理 )(2010 广·东湛江一中 )已知向量a= (1,2) ,b= (x,1),c=a+ 2b,d= 2a-b,且c∥d,则实数 x 的值等于 ()A .-1B.-1 2611C.6D.2[答案 ]D[解析 ]c= a+2b=(1+2x,4),d=2a- b=(2-x,3),∵ c∥d,∴(1+2x)×3-4(2-x)=0,∴x=1.2→→与 e2不共线,且点P 在线段 AB 上, |AP |PB|= 2,如图3.设 OA =e1,OB=e2,若e1→)所示,则 OP= (12e2A. e1-3321B. e1+e23312 C.3e 1+3e 221D. 3e 1- 3e 2[答案 ]C[解析 ] →→→→→→, AP = 2PB ,∴ AB = AP +PB = 3PB→ → → → 1→OP = OB + BP = OB -3AB→→ →1e 1+ 2e 2.= OB -1(OB - OA)=33 34. (2010 重·庆南开中学 )已知一正方形,其顶点依次为 A 1, A 2, A 3, A 4,在平面上任取一点 P 0,设 P 0 关于 A 1 的对称点为 P 1,P 1 关于 A 2 的对称点为 P 2,P 2 关于 A 3 的对称点为 P 3,→P 3 关于 A 4 的对称点为 P 4 ,则向量 P 0P 4等于 ()→ → A. A 1A 2B.A 1A 4 →D . 0 C .2A 1A 4[答案 ]D1[解析 ]如图,由题意知 A 2A 3 是△ P 1P 2P 3 的中位线,故 A 2A 3 綊 2P 1P 3,又正方形 A 1A 2A 3A 4中, A 1A 4 綊 A 2A 3,∴ A 1A 4 1綊 P 1P 3,2∴ A 1A 4 是△ P 0P 1 P 3 的中位线,故 →P 0P 4= P 4P 3,P 3 关于 A 4 的对称点 P 4 ,即 P 0,∴ P 0P 4=0.5. (2010 胶·州三中 )已知平面向量 a = (1,- 3), b =(4 ,- 2), λa + b 与 b 垂直,则 λ等于() A .-1 B .1C .-2D .2[答案]C[解析 ]λa +b = (λ+ 4,- 3λ- 2),∵ λa + b 与 b 垂直,∴ (λ+ 4,- 3λ- 2) ·(4,- 2)= 4(λ+ 4) - 2(- 3λ- 2)= 10λ+ 20=0,∴ λ=- 2.→ →→→6.(文 )(2010 河·北唐山 )已知 P 、A 、B 、C 是平面内四个不同的点, 且 PA+PB +PC =AC ,则()A.A、B、C 三点共线B.A、 B、 P 三点共线C.A、 C、 P 三点共线D. B、 C、 P 三点共线[答案 ]B[解析 ]→→→∵AC= PC-PA,∴原条件式变形为:→→→→PB=-2PA,∴ PB∥PA,∴ A、 B、 P 三点共线.(理 )若点 M 为△ ABC 的重心,则下列各向量中与→共线的是 () AB→→→→→→A.AB+BC +AC B.AM+ MB+ BC→→→→→C.AM+ BM +CM D. 3AM+ AC [答案 ]C[解析 ]→→→→→→→ →AB+ BC+ AC= 2AC,与 AB不共线,故排除A;AM+MB+BC→→B;如图,设 E 为 BC 的中点,则→→=AC ,与AB不共线,故排除MB+ MC=→→→→→→→→→2ME=- MA ,∴ MA+MB+ MC=0,即 AM + BM + CM = 0,与 AB共线,→→→由图可知, 3AM+ AC显然不与 AB共线.7.(2010 湖·北文 )已知→→→→→ABC和点 M 满足 MA+MB+ MC= 0.若存在实数m 使得 AB+ AC→成立,则 m= ()=mAMA . 2B. 3C.4D. 5[答案 ]B[解析 ]→→→→→→∵AB+ AC= (AM+ MB )+ (AM + MC)→→→=MB+MC+ 2AM→→→→→→由MA+MB+MC=0 得, MB+MC=AM→→→∴ AB+ AC= 3AM,故 m= 3.→→→→→+ s 的值是 () 8.已知△ ABC 中,点 D 在 BC 边上,且 CD= 2DB,CD = rAB + sAC,则 r24A. 3B.3C.- 3D. 0含详解答案[解析 ]→ → → → → → CD = AD -AC ,DB = AB - AD . →→ → → → 1 → →∴ CD =AB - DB -AC =AB - CD - AC.23 → → →∴ CD =AB - AC ,2→ 2 → 2 →∴ CD = AB - AC .3 3→→→2 , s =-2 又 CD = rAB + sAC ,∴ r =,33∴ r + s = 0.9. (文 )(2010 重·庆一中 )已知 a , b 是不共线的向量,若 → = λ1 → = a + λ2 1, λ2AB a + b , AC b (λ∈R ),则 A 、 B 、 C 三点共线的充要条件为 ()= λ=- 1 B . λ= λ= 1 A . λ1 21 2λ-1= 0D . λλ+ 1=0C .λ1 2 1 2[答案 ] C[解析 ]→ →→ →∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数λ使 AB = λAC ,即 λ1a +b = λ(a+λ2b ),∴ (λ-1 λ)a = (λλ-2 1)b ,λ1- λ= 0∵ a 与 b 不共线,∴ ,λλ2- 1= 0∴ λ1λ2= 1.→→ → , O(理 )(2010 江·西萍乡中学 )设 OA = (1 ,- 2),OB = (a ,- 1), OC = (-b,0), a>0, b>0 为坐标原点,若A 、B 、C 三点共线,则 1+2的最小值是 ()a b A . 2 B . 4 C .6D . 8[答案 ]D[解析 ]→ →λ,使 (a - 1,1)= λ(- b - 1,2),∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数∴a + b = 1,∵ a>0 ,b>0,∴ 1+2= 1+ 24a + b≥ 8,等号在 a = 1, b =1时2 2a ba b ·(2a + b)= 4+ ba42成立.10.(文 )(2010 河·北邯郸 )如图,在等腰直角三角形ABC 中,点 O 是斜边 BC 的中点,过点O 的直线分别交直线AB 、 AC 于不同的两点M 、→ → → →)N ,若 AB = mAM , AC = nAN(m>0,n>0),则 mn 的最大值为 (1C .2D . 3[答案 ] B[解析 ]以 A 为原点,线段AC 、 AB 所在直线分别为x 轴、 y 轴建立直角坐标系,设三角形 ABC 的腰长为→ → →→2,则 B(0,2), C(2,0), O(1,1) .∵ AB =mAM , AC = nAN ,2 2nx my m n∴ M 0, m ,N ,0.∴直线 MN 的方程为2 +2 = 1.∵直线 MN 过点 O(1,1),∴2 + 2n2= 1? m + n = 2.∴mn ≤m + n= 1,当且仅当 m = n = 1 时取等号,4∴ mn 的最大值为 1. (理 )(2010 山·东日照一中 )已知向量a = (x 1,y 1),b = (x 2,y 2),若 |a |= 2,|b |= 3,a ·b =- 6,则x 1+y1的值为() x2+ y 222A. 3B .- 355 C.6D .- 6[答案 ] B[解析 ]因为 |a |= 2,|b |= 3,又 a ·b =|a ||b |cos 〈 a , b 〉= 2× 3× cos 〈 a ,b 〉=- 6,可得cos 〈a , b 〉=- 1.即 a ,b 为共线向量且反向,又 |a |= 2,|b |= 3,所以有 3(x 1, y 1 )=- 2(x 2,2y 2)? x 1 =- 2 , y =- 2 ,所以 x 1+ y 1= - 3 x 2+ y 2=- 2,从而选 B.x 2 1y 22+ y 2 2+ y 2 333xx二、填空题11. (文 )(2010 北·京东城区 )已知向量 a = (1,2),b = (- 3,2),则 a ·b = ______,若 k a + b与 b 平行,则 k = ______.[答案 ] 1,0[解析 ]a ·b =1× (- 3)+ 2× 2= 1,∵ k a + b 与 b 平行,k a + b = (k - 3,2k + 2),∴ (k - 3)× 2- ( -3) ×(2k + 2)= 0,∴ k = 0.(理 )(2010 天·津南开区模拟 ) 在直角坐标系xOy 中, i ,j 分别是与 x ,y 轴正方向同向的单→ →k 的值为 ______.位向量, OB = 2i + j , OC = 3i +k j ,若△ OBC 为直角三角形,则 [答案 ]-6或-1[解析 ] → → → → →∵OB =2i +j ,OC = 3i +k j ,∴ BC = OC - OB = i + (k - 1)j ,→ → → → → → ∵△ OBC 为 Rt △,∴ OB ·OC =6+ k = 0 或 OB ·BC = 2+ k - 1= 0,或 OC ·BC = 3+ k(k - 1)=0,∴ k =- 6 或- 1.π12.(2010 温·州十校 )非零向量a = (sin θ,2),b = (cos θ,1),若 a 与 b 共线, 则 tan θ- 4含详解答案[答案 ]13[解析 ] ∵非零向量 a 、 b 共线,∴存在实数λ,使 a = λb ,即 (sin θ, 2)= λ(cos θ, 1),∴λ= 2, sin θ= 2cos θ,π tan θ- 11 .∴ tan θ= 2,∴ tan(θ-)==4 1+ tan θ 313. (2010 浙·江宁波十校 )在平行四边形→ →→1→→ABCD 中, AB = e 1,AC =e 2,NC = AC ,BM =41 → →MC ,则 MN = ________(用 e 1, e 2 表示 )2[答案 ]2 5- e 1+e 23 12[解析 ]→ 1 →1→1 e2 ,∵NC = AC = e 2,∴ CN =-44 4→ 1→→→→→→∵ BM = 2MC , BM + MC =BC =AC - AB = e 2-e 1,→2→→ → 21 21+ 5∴ MC =2- e 1),∴ MN = MC + CN =2- e 12=-23(e3(e ) -4e3e12e.→ → →14.(文 )(2010 聊·城市模拟 )已知 D 为三角形 ABC 的边 BC 的中点,点 P 满足 PA + BP + CP → →=0, AP = λPD ,则实数 λ的值为 ________.[答案 ] - 2[解析 ]如图,∵ D 是 BC 中点,将△ ABC 补成平行四边形ABQC ,则 Q 在 AD 的延长→→→→→→ → 线上,且 |AQ|= 2|AD |= 2|DP |,∵ PA +BP + CP =BA +CP = 0,∴ BA = PC ,→ → 又BA =QC ,∴ P 与 Q 重合,→ → → 又∵ AP = λPD =- 2PD ,∴ λ=- 2.(理 )(2010 金·华十校 )△ ABO 三顶点坐标为 A(1,0),B(0,2),O(0,0),P(x ,y)是坐标平面内一点,满足 → → → →→ → AP ·OA ≤0, BP ·OB ≥ 0,则 OP ·AB 的最小值为 ________.[答案 ] 3[解析 ]→ →·(1,0)= x - 1≤ 0,∵AP ·OA = (x - 1, y)∴ x ≤ 1,∴- x ≥ -1,→ →∵ BP ·OB = (x , y - 2) ·(0,2)= 2(y -2) ≥0,∴ y ≥ 2.→ →∴ OP ·AB = (x , y) ·(- 1,2)= 2y -x ≥ 3.三、解答题→ → 15.如图,在平行四边形ABCD 中, M 、N 分别为 DC 、BC 的中点,已知 AM =c ,AN =→→d ,试用 c 、d 表示 AB 、 AD .→ →→ 1 →[解析 ] 解法一: AD = AM - DM =c - 2AB ①→ → → 1 →AB = AN - BN = d - AD ②2→2由①②得 AB = 3(2d - c ),→= 2(2c - d ).AD3→ →→ 1→解法二:设 AB = a , AD = b ,因为 M 、N 分别为 CD 、 BC 的中点,所以BN = b ,DM =212a ,于是有:1 2c = b + 2aa = 3 2d - c1,解得2,d = a + 2bb = 3 2c - d→ 2→2(2c - d ).即 AB =(2d - c ), AD =33→ → →16. (2010 重·庆市南开中学 )已知向量 OA = (3,- 4), OB = (6,- 3), OC = (5- m ,- 3-m).(1)若 A , B , C 三点共线,求实数 m 的值;(2)若∠ ABC 为锐角,求实数m 的取值范围.→ → →[解析 ] (1)已知向量 OA = (3,- 4), OB =(6 ,- 3), OC = (5- m ,- (3+m)).→ → ∴ AB = (3,1), AC = (2- m,1- m),∵ A 、 B 、 C 三点共线,∴ → →AB 与 AC 共线,1 ∴ 3(1- m)= 2- m ,∴ m = 2.→ →(2)由题设知 BA = (- 3,- 1), BC = (- 1-m ,- m) ∵∠ ABC 为锐角,→ → 3m + m>0? m>- 3 ∴ BA ·BC = 3+ 4又由 (1)可知,当 m = 12时,∠ ABC = 0°故 m ∈ - 3,1 ∪ 1,+ ∞ .4 2217. (文 )(2010 安·徽江南十校联考 )在锐角△ ABC 中,已知内角 A 、B 、C 所对的边分别为 a 、 b 、 c ,向量 m = (2sin(A + C), 3), n =(cos2B,2cos2B- 1),且向量 m ,n 共线. 2(1)求角 B 的大小;(2)如果 b = 1,求△ ABC 的面积 S △ ABC 的最大值.[解析 ] (1)由向量 m ,n 共线有: 2sin( A + C)(2cos 2B- 1)= 3cos2B ,2化简得 sin2B = 3cos2B ,即 tan2B = 3,又 0<B< ππ π,所以 0<2B<π,则 2B = ,即 B = .236(2)由余弦定理 b 2= a 2+ c 2- 2accosB 知,1= a 2+ c 2- 3ac = (a + c)2- (2+ 3)ac ≥ (2- 3) ac.等号在 a = c 时成立,∴ S △ ABC =121 π 1 1 11(2+3).因此△ ABC 面积的最大值为1 acsinB = acsin =ac ≤ ×= (2+ 3)26 442-34411π(理 )(2010 河·北正定中学模拟 )已知向量 a = sinx ,-sinx ,b =(2 ,cos2x) ,其中 x ∈ 0,2 .(1)试判断向量 a 与 b 能否平行,并说明理由? (2)求函数 f(x)=a ·b 的最小值.11[解析 ](1)若 a ∥ b ,则有 sinx ·cos2x + sinx ·2= 0.π∵ x ∈ 0, 2 ,∴ cos2x =- 2,这与 |cos2x|≤ 1 矛盾,∴ a 与 b 不能平行.2 -cos2x(2)∵ f(x)= a ·b =sinx sinx= 2- cos2x = 1+ 2sin 2x = 2sinx +1 , sinx sinxsinx∵ x ∈ 0, π,∴ sinx ∈ (0,1] ,2∴ f(x)=2sinx + 1 ≥ 2 2sinx ·1= 2 2.sinxsinx高考总复习当 2sinx=1,即 sinx=2时取等号,sinx2故函数 f(x)的最小值为 2 2.含详解答案。

向量数乘和线性运算精选题32道附参考答案与试题解析

向量数乘和线性运算精选题32道附参考答案与试题解析

向量数乘和线性运算精选题32道附参考答案与试题解析一.选择题(共12小题)1.如图,在平行四边形ABCD中,E是BC的中点,F是线段AE上靠近点A的三等分点,则=()A.B.C.D.2.如图,在△ABC中,,,若,则的值为()A.﹣3B.3C.2D.﹣23.如图,若=,=,=,B是线段AC靠近点C的一个四等分点,则下列等式成立的是()A.=﹣B.=+C.=﹣D.=+4.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心5.如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若,则λ•μ等于()A.B.C.D.6.已知点O是△ABC内部一点,满足+2=m,=,则实数m为()A.2B.﹣2C.4D.﹣47.在平行四边形ABCD中,=,=,若E是DC的中点,则=()A.B.C.﹣+D.﹣+8.已知D为△ABC所在平面内一点,3=,则=()A.﹣+B.+C.﹣D.+9.在△ABC中,,则=()A.B.C.D.10.如图,在△ABC中,,,BE和CD相交于点F,则向量等于()A.B.C.D.11.△ABC中,AB=6,BC=8,AB⊥BC,M是△ABC外接圆上一动点,若=λ+μ,则λ+μ的最大值是()A.1B.C.D.212.设点M是线段BC的中点,点A在直线BC外,||2=16,|+|=|﹣|,则||=()A.8B.4C.2D.1二.多选题(共4小题)(多选)13.设点M是△ABC所在平面内一点,则下列说法正确的是()A.若=,则点M是边BC的中点B.若=,则点M在边BC的延长线上C.若=,则点M是△ABC的重心D.若=,且x+y=,则△MBC的面积是△ABC面积的(多选)14.若点O是线段BC外一点,点P是平面上任意一点,且(λ,μ∈R),则下列说法正确的有()A.若λ+μ=1且λ>0,则点P在线段BC的延长线上B.若λ+μ=1且λ<0,则点P在线段BC的延长线上C.若λ+μ>1,则点P在△OBC外D.若λ+μ<1,则点P在△OBC内(多选)15.已知正方形ABCD的边长为2,向量,满足,,则()A.B.C.D.(多选)16.下列四式可以化简为的是()A.+()B.()+()C.+D.三.填空题(共12小题)17.如图,在四边形ABCD中,∠B=60°,AB=3,BC=6,且=λ,•=﹣,则实数λ的值为,若M,N是线段BC上的动点,且||=1,则•的最小值为.18.已知O在△ABC内,且S△AOB:S△BOC:S△AOC=4:3:2,,则λ+μ=19.已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是.20.在△ABC中,点D,E分别在边AB,BC上,且AD=DB,BE=2EC,记,=,若,则x+y的值为.21.在四边形ABCD中,AB=6,若,则=.22.已知△ABC的一内角,AB=10,AC=6,O为△ABC所在平面上一点,满足|OA|=|OB|=|OC|,设=m+n,则m+3n的值为.23.在直角坐标系中,O为原点,,则x+y=.24.已知,,,则=.25.已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q.若=,则当ABC与△APQ的面积之比为时,实数λ的值为.26.如图,给定单位向量和,它们的夹角为120°,点C在以O为圆心的上运动.若,其中x,y∈R,则x+2y的最大值是.27.已知点O是△ABC内部一点,并且满足,△BOC的面积为S1,△ABC 的面积为S2,则=.28.设λ是正实数,三角形ABC所在平面上的另三点A1,B1,C1满足:=λ(+),=λ(+),=λ(+),若三角形ABC与三角形A1B1C1的面积相等,则λ的值为.四.解答题(共4小题)29.如图,已知△ABC中,D为BC的中点,AE=EC,AD,BE交于点F,设=,=.(1)用,分别表示向量,;(2)若=t,求实数t的值.30.如图所示,在△ABO中,,,AD与BC相交于点M,设,.(1)试用向量,表示;(2)过点M作直线EF,分别交线段AC,BD于点E,F.记,,求证:为定值.31.如图,在平面直角坐标系中,点A(﹣,0),B(,0),锐角α的终边与单位圆O 交于点P.(Ⅰ)用α的三角函数表示点P的坐标;(Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x轴上是否存在定点M,使得||=||恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.32.已知O是△ABC所在平面内一点,D为BC边中点.(1)若点O满足,求证:;(2)已知E为AC边中点,O在线段DE上,且满足,△BOC的面积为2,求△ABC的面积.向量数乘和线性运算精选题32道参考答案与试题解析一.选择题(共12小题)1.如图,在平行四边形ABCD中,E是BC的中点,F是线段AE上靠近点A的三等分点,则=()A.B.C.D.【解答】解:由可知,=﹣=﹣=﹣++=,故选:C.2.如图,在△ABC中,,,若,则的值为()A.﹣3B.3C.2D.﹣2【解答】解:∵=+,==(﹣)=﹣=×﹣=﹣,∴=+(﹣)=+;又=λ+μ,∴λ=,μ=;∴=×=3.故选:B.3.如图,若=,=,=,B是线段AC靠近点C的一个四等分点,则下列等式成立的是()A.=﹣B.=+C.=﹣D.=+【解答】解:=,=,=,则=+=+=+(﹣)=﹣=﹣.故选:C.4.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心【解答】解:∵、分别表示向量、方向上的单位向量∴+的方向与∠BAC的角平分线一致又∵,∴=λ(+)∴向量的方向与∠BAC的角平分线一致∴一定通过△ABC的内心故选:B.5.如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若,则λ•μ等于()A.B.C.D.【解答】解:由题意及图,可知:=+=+=+(+)=﹣,∴λ=,μ=﹣,∴λ•μ=﹣.故选:A.6.已知点O是△ABC内部一点,满足+2=m,=,则实数m为()A.2B.﹣2C.4D.﹣4【解答】解:如图所示,点O是△ABC内部一点,满足+2=m,延长OB到D点,以OA,OD为邻边作平行四边形AODF,连接CF分别交AB,AD于E,G点.则点E是△OAD的重心.∵=,不妨设CE=7,则OC=3,OE=4,EG=2,OF=12.∴m==﹣4,解得m=﹣4.故选:D.7.在平行四边形ABCD中,=,=,若E是DC的中点,则=()A.B.C.﹣+D.﹣+【解答】解:如图所示,平行四边形ABCD中,=,=,则==﹣=﹣,又E是DC的中点,则=+=(﹣)+=﹣=﹣+.故选:C.8.已知D为△ABC所在平面内一点,3=,则=()A.﹣+B.+C.﹣D.+【解答】解:因为D为△ABC所在平面内一点,3=,所以.故选:A.9.在△ABC中,,则=()A.B.C.D.【解答】解:∵;∴;∴.故选:B.10.如图,在△ABC中,,,BE和CD相交于点F,则向量等于()A.B.C.D.【解答】解:设=k=k(﹣)=k(﹣),∵=+=k(﹣)+﹣=(k﹣1)+(1﹣k),=﹣=﹣.∵∥,∴=λ,则(k﹣1)+(1﹣k)=λ(﹣).∴,∴k=,=﹣,∴=+=+.故选:B.11.△ABC中,AB=6,BC=8,AB⊥BC,M是△ABC外接圆上一动点,若=λ+μ,则λ+μ的最大值是()A.1B.C.D.2【解答】解:以B为坐标原点,BC方向为X轴正方向建立直角坐标系,∴A(0,6)C(8,0),∴外接圆的方程为:(x﹣4)2+(y﹣3)2=25,即,∴设M(4+5cosθ,3+5sinθ),∴,,∵,∴,∴,∴,故选:C.12.设点M是线段BC的中点,点A在直线BC外,||2=16,|+|=|﹣|,则||=()A.8B.4C.2D.1【解答】解:由=16,得||=4,∵=||=4,而∴=2故选:C.二.多选题(共4小题)(多选)13.设点M是△ABC所在平面内一点,则下列说法正确的是()A.若=,则点M是边BC的中点B.若=,则点M在边BC的延长线上C.若=,则点M是△ABC的重心D.若=,且x+y=,则△MBC的面积是△ABC面积的【解答】解:若=,则点M是边BC的中点,故A正确;若=,即有﹣=﹣,即=,则点M在边CB的延长线上,故B错误;若=,即++=,则点M是△ABC的重心,故C正确;若=,且x+y=,可得2=2x+2y,设=2,由右图可得M为AN的中点,则△MBC的面积是△ABC面积的,故D正确.故选:ACD.(多选)14.若点O是线段BC外一点,点P是平面上任意一点,且(λ,μ∈R),则下列说法正确的有()A.若λ+μ=1且λ>0,则点P在线段BC的延长线上B.若λ+μ=1且λ<0,则点P在线段BC的延长线上C.若λ+μ>1,则点P在△OBC外D.若λ+μ<1,则点P在△OBC内【解答】解:因为若λ+μ=1且λ>0,故即又λ>0则点P在线段BC或其反向延长线上,A错误;若λ+μ=1且λ<0,同上可得而λ<0则点P在线段BC的延长线上,B正确;若λ+μ>1,,同上可得,当λ+μ>1时,λ+μ﹣1>0根据向量加法的平行四边形法则可以看出则点P在△OBC外,C正确;若λ+μ<1,不防令λ=0,μ=﹣1则,很显然此时点P在线段CO的延长线上,不在△OBC内,D错误.故选:BC.(多选)15.已知正方形ABCD的边长为2,向量,满足,,则()A.B.C.D.【解答】解:由条件可得:,所以,A正确;,与不垂直,B错误;,C错误;,根据正方形的性质有AC⊥BD,所以,D项正确.故选:AD.(多选)16.下列四式可以化简为的是()A.+()B.()+()C.+D.【解答】解:==,A正确;+==,B正确;=,C正确;=,D错误.故选:ABC.三.填空题(共12小题)17.如图,在四边形ABCD中,∠B=60°,AB=3,BC=6,且=λ,•=﹣,则实数λ的值为,若M,N是线段BC上的动点,且||=1,则•的最小值为.【解答】解:以B为原点,以BC为x轴建立如图所示的直角坐标系,∵∠B=60°,AB=3,∴A(,),∵BC=6,∴C(6,0),∵=λ,∴AD∥BC,设D(x0,),∴=(x0﹣,0),=(﹣,﹣),∴•=﹣(x0﹣)+0=﹣,解得x0=,∴D(,),∴=(1,0),=(6,0),∴=,∴λ=,∵||=1,设M(x,0),则N(x+1,0),其中0≤x≤5,∴=(x﹣,﹣),=(x﹣,﹣),∴•=(x﹣)(x﹣)+=x2﹣4x+=(x﹣2)2+,当x=2时取得最小值,最小值为,故答案为:,.18.已知O在△ABC内,且S△AOB:S△BOC:S△AOC=4:3:2,,则λ+μ=【解答】解:如图,根据题意不妨设△ABC的边,AB=4,AC=2,BC==2,建立如图坐标系,则BC的方程为x+2y﹣4=0,则3a﹣4<0,设O点坐标为(a,a),点O在三角形内,则O到BC的距离d==,则根据S△AOB:S△BOC:S△AOC=4:3:2,得(•4a):(2×):(×2a),解得a=,∴=(,),=(4,0),=(0,2),由,得,解得,,所以:λ+μ=,故填:19.已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是6.【解答】解:如图,设,,由||=1,且|﹣|∈{1,2},分别以A1,A2为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k的最大值为6.故答案为:6.20.在△ABC中,点D,E分别在边AB,BC上,且AD=DB,BE=2EC,记,=,若,则x+y的值为.【解答】解:如图,∵AD=DB,BE=2EC;∴,=,且;∴=;又;∴根据平面向量基本定理得,;∴.故答案为:.21.在四边形ABCD中,AB=6,若,则=12.【解答】解:根据题意,如图,在AB上取一点E,使=,则有=+=+=+(﹣)=+,又由,则有=,四边形AECD为平行四边形,则有==,又由AB=6,则=6×2=12;故答案为:12.22.已知△ABC的一内角,AB=10,AC=6,O为△ABC所在平面上一点,满足|OA|=|OB|=|OC|,设=m+n,则m+3n的值为.【解答】解:由得:||=||=||,则点O是△ABC的外心,则,由=10×=30所以,所以,所以m+3n=,故答案为:23.在直角坐标系中,O为原点,,则x+y=0.【解答】解:∵,∴x+y=2(﹣),∴(x+2)+(y﹣2)=,∴x=﹣2,y=2,x+y=0,故答案为:0.24.已知,,,则=2.【解答】解:因为,,,所以=7,所以=1,则2==4﹣4×1+4=4,则=2.故答案为:2.25.已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q.若=,则当ABC与△APQ的面积之比为时,实数λ的值为或.【解答】解:G为△ABC的重心,所以=+,设=μ,故=+,因为P,G,Q三点共线,故+=1①,所以+=3,===②,由①②得或,故答案为:或.26.如图,给定单位向量和,它们的夹角为120°,点C在以O为圆心的上运动.若,其中x,y∈R,则x+2y的最大值是.【解答】解:根据题意,建立如图所示的坐标系,则A(1,0),B(cos120°,sin120°),即B(﹣,);设∠AOC=α,则=(cosα,sinα),∵,∴(cosα,sinα)=(x,0)+(﹣y,y);即cosα=x﹣y,sinα=y,解得:x=sinα+cosα,y=sinα;∴x+2y=sinα+cosα=sin(α+θ),其中tanθ=;又sin(α+θ)≤1,∴x+2y≤.故答案为:.27.已知点O是△ABC内部一点,并且满足,△BOC的面积为S1,△ABC 的面积为S2,则=.【解答】解:因为,所以,分别取AC,BC的中点D,E,则,,所以,即O,D,E三点共线且,则,因为D为AC中点,所以,所以.故答案为:.28.设λ是正实数,三角形ABC所在平面上的另三点A1,B1,C1满足:=λ(+),=λ(+),=λ(+),若三角形ABC与三角形A1B1C1的面积相等,则λ的值为.【解答】解:△ABC的重心为点G,由题意可知△ABC与△A1B1C1关于中心点G对称,由,=(+)=λ(+),故,故答案为:.四.解答题(共4小题)29.如图,已知△ABC中,D为BC的中点,AE=EC,AD,BE交于点F,设=,=.(1)用,分别表示向量,;(2)若=t,求实数t的值.【解答】解:(1)由题意,D为BC的中点,且=,∵+=2,∴=2﹣,∴=﹣=2﹣﹣=﹣+2;(2)∵=t=t,∴=﹣=﹣+(2﹣t),∵=﹣+2,,共线,∴,∴t=.30.如图所示,在△ABO中,,,AD与BC相交于点M,设,.(1)试用向量,表示;(2)过点M作直线EF,分别交线段AC,BD于点E,F.记,,求证:为定值.【解答】解:(1)由A,M,D三点共线,可设=,由B,M,C三点共线,可设=,因为,不共线,所以,解得,,故.(2)因为E,M,F三点共线,设=,由(1)知,,即,,所以,故为定值,即得证.31.如图,在平面直角坐标系中,点A(﹣,0),B(,0),锐角α的终边与单位圆O 交于点P.(Ⅰ)用α的三角函数表示点P的坐标;(Ⅱ)当•=﹣时,求α的值;(Ⅲ)在x轴上是否存在定点M,使得||=||恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.【解答】解:锐角α的终边与单位圆O交于点P.(Ⅰ)用α的三角函数表示点P的坐标为(cosα,sinα);(Ⅱ),,•=﹣时,即(cos)(cos)+sin2α=,整理得到cos,所以锐角α=60°;(Ⅲ)在x轴上假设存在定点M,设M(x,0),,则由||=||恒成立,得到=,整理得2cosα(2+x)=x2﹣4,所以存在x=﹣2时等式恒成立,所以存在M(﹣2,0).32.已知O是△ABC所在平面内一点,D为BC边中点.(1)若点O满足,求证:;(2)已知E为AC边中点,O在线段DE上,且满足,△BOC的面积为2,求△ABC的面积.【解答】解:(1)∵D为BC边中点;∴;∴由得,;∴;(2)如图,根据条件:==;∴;∴DE=3DO;又AB=2DE;∴AB=6DO;∴S△ABC=6S△BOC=12;即△ABC的面积为12.。

平面向量的线性运算(解析版)

平面向量的线性运算(解析版)

专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑常考问题8平面向量的线性运算及综合应用[真题感悟] 1.(2018·辽宁卷>已知点A(1,3>,B(4,-1>,则与向量A错误!同方向的单位向量为( >.b5E2RGbCAPA.错误!B.错误!p1EanqFDPwC.错误!D.错误!DXDiTa9E3d解读A错误!=(4,-1>-(1,3>=(3,-4>,∴与A错误!同方向的单位向量为错误!=错误!.RTCrpUDGiT答案A 2.(2018·福建卷>在四边形ABCD中,错误!=(1,2>,错误!=(-4,2>,则该四边形的面积为( >5PCzVD7HxAA.错误!B.2错误!C.5D.10解读因为错误!·错误!=0,所以错误!⊥错误!.jLBHrnAILg 故四边形ABCD的面积S=错误!|错误!||错误!|=错误!×错误!×2错误!=5.xHAQX74J0X答案C 3.(2018·湖北卷>已知点A(-1,1>,B(1,2>,C(-2,-1>,D(3,4>,则向量错误!在错误!方向上的投影为( >LDAYtRyKfEA.错误!B.错误!C. -错误!D.-错误!解读错误!=(2,1>,错误!=(5,5>,所以错误!在错误!方向上的投Zzz6ZB2Ltk影为错误!=错误!=错误!=错误!.dvzfvkwMI1答案A 4.(2018·新课标全国Ⅰ卷>已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b.若b·c=0,则t=________.rqyn14ZNXI 解读因为向量a,b为单位向量,又向量a,b的夹角为60°,所以a·b=错误!,由b·c=0,得∴b·c=ta·b+(1-t>·b2=错误!t+(1-t>×12=错误!t+1-t=1-错误!t=0.∴t=2.EmxvxOtOco答案2 5.(2018·山东卷>已知向量错误!与错误!的夹角为120°,且|错误!|=3,|错误!|=2.若A错误!=λ错误!+错误!,且错误!⊥错误!,则实数λ的值为________.SixE2yXPq5解读由错误!⊥错误!知错误!·错误!=0,即错误!·错误!=(λ错误!+错误!>·(错误!-错误!>=(λ-1>错误!·错误!-λA 错误!2+错误!2=(λ-1>×3×2×错误!-λ×9+4=0,解得λ=错误!.6ewMyirQFL答案错误![考题分析]题型选择题、填空题难度低档考查平面向量的有关概念(如单位向量>、数量积的运算(求模与夹角等>.中档在平面几何中,求边长、夹角及数量积等.高档在平面几何中,利用数量积的计算求参数值等.1.向量的概念(1>零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2>长度等于1个单位长度的向量叫单位向量,a的单位向量为±错误!.(3>方向相同或相反的向量叫共线向量(平行向量>.(4>如果直线l的斜率为k,则a=(1,k>是直线l的一个方向向量.(5>|b|cos〈a,b〉叫做b在向量a方向上的投影.2.两非零向量平行、垂直的充要条件设a=(x1,y1>,b=(x2,y2>,(1>若a∥b⇔a=λb(λ≠0>;a∥b⇔x1y2-x2y1=0.(2>若a⊥b⇔a·b=0;a⊥b⇔x1x2+y1y2=0.3.平面向量的性质(1>若a=(x,y>,则|a|=错误!=错误!.(2>若A(x1,y1>,B(x2,y2>,则|A错误!|=错误!.kavU42VRUs (3>若a=(x1,y1>,b=(x2,y2>,θ为a与b的夹角,则cosθ=错误!=错误!.y6v3ALoS89 4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量错误!=错误!-错误!(其中O为我们所需要的任何一个点>,这个法则就是终点向量减去起点向量.M2ub6vSTnP 5.根据平行四边形法则,对于非零向量a,b,当|a+b|=|a-b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a+b|=|a-b|等价于向量a,b互相垂直,反之也成立.0YujCfmUCw 6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.eUts8ZQVRd热点一平面向量的线性运算【例1】(2018·江苏卷>设D,E分别是△ABC的边AB,BC上的点,AD=错误!AB,BE=错误!BC.若错误!=λ1错误!+λ2错误!(λ1,λ2为实数>,则λ1+λ2的值为________.sQsAEJkW5T解读如图,错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!>=-错误!错误!+错误!错误!,则λ1=-错误!,λ2=错误!,λ1+λ2=错误!.GMsIasNXkA答案错误![规律方法]在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1>题就是把向量错误!用TIrRGchYzg 错误!,错误!表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.7EqZcWLZNX【训练1】(2018·天津卷>在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若错误!·错误!=1,则AB的长为________.lzq7IGf02E 解读在平行四边形ABCD中,取AB的中点F,则错误!=错误!,∴错误!=错误!=错误!-错误!错误!,又错误!=错误!+错误!,zvpgeqJ1hk ∴错误!·错误!=(错误!+错误!>·(错误!-错误!错误!>=错误!2-错误!错误!·错误!+错误!·错误!-错误!错误!2=|错误!|2+错误!|错误!||错误!|·cos60°-错误!|错误!|2=1+错误!×错误!|错误!|-错误!|错误!|2=1.NrpoJac3v1∴错误!|错误!|=0,又|错误!|≠0,∴|错误!|=错误!.1nowfTG4KI答案错误!热点二平面向量的数量积【例2】若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量b与a+b的夹角为( >.A.错误!B.错误!C.错误!D.错误!fjnFLDa5Zo 解读法一由已知|a+b|=|a-b|,两边平方,整理可得a·b=0.①由已知|a+b|=2|a|,两边平方,整理可得a2+b2+2a·b=4a2.②把①代入②,得b2=3a2,即|b|=错误!|a|.③而b·(a+b>=b·a+b2=b2,故cos〈b,a+b〉=错误!=tfnNhnE6e5错误!=错误!=错误!.HbmVN777sL又〈b,a+b〉∈[0,π],所以〈b,a+b〉=错误!.法二如图,作O错误!=a,O错误!=b,以OA,OB为邻边作平行四边形OACB,则O错误!=a+b,B错误!=a-b.V7l4jRB8Hs 由|a+b|=|a-b|,可知|O错误!|=|B错误!|,所以平行四边形OACB是矩形.又|a+b|=|a-b|=2|a|,可得|O错误!|=|B错误!|=2|O错误!|,故在Rt△AOB中,|错误!|=错误!83lcPA59W9=错误!|O错误!|,故tan∠OBA=错误!=错误!,所以∠BOC=∠OBA=错误!.而〈b,a+b〉=∠BOC=错误!.mZkklkzaaP答案A [规律方法]求解向量的夹角,关键是正确求出两向量的数量积与模.本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.AVktR43bpw 【训练2】(2018·湖南卷>已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是( >.ORjBnOwcEd A.[错误!-1,错误!+1] B.[错误!-1,错误!+2]2MiJTy0dTTC.[1,错误!+1] D.[1,错误!+2]解读由a,b为单位向量且a·b=0,可设a=(1,0>,b=(0,1>,又设c=(x,y>,代入|c-a-b|=1得(x-1>2+(y-1>2=1,又|c|=错误!,故由几何性质得错误!-1≤|c|≤错误!+1,即错误!-1≤|c|≤错误!+1.答案A热点三平面向量与三角函数的综合【例3】已知向量m=(sinx,-1>,n=(cosx,3>.(1>当m∥n时,求错误!的值;(2>已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,错误!c=2asin(A+B>,函数f(x>=(m+n>·m,求f错误!的取值范围.gIiSpiue7A解(1>由m∥n,可得3sinx=-cosx,于是tanx=-错误!,∴错误!=错误!=错误!=-错误!.uEh0U1Yfmh(2>在△ABC中A+B=π-C,于是sin(A+B>=sinC,由正弦定理,得错误!sinC=2sinAsinC,∵sinC≠0,∴sinA=错误!.又△ABC为锐角三角形,∴A=错误!,于是错误!<B<错误!.∵f(x>=(m+n>·m=(sinx+cosx,2>·(sinx,-1>=sin2x+sinxcosx-2=错误!+错误!sin2x-2=错误!sin错误!-错误!,IAg9qLsgBX ∴f错误!=错误!sin错误!-错误!=错误!sin2B-错误!.由错误!<B<错误!得错误!<2B<π,∴0<sin2B≤1,-错误!<错误!sin2B-错误!≤错误!-错误!,WwghWvVhPE即f(B+错误!>∈错误!.asfpsfpi4k [规律方法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.ooeyYZTjj1【训练3】(2018·江苏卷>已知向量a=(cosα,sinα>,b=(cosβ,sinβ>,0<β<α<π.BkeGuInkxI(1>若|a-b|=错误!,求证:a⊥b;(2>设c=(0,1>,若a+b=c,求α,β的值.(1>证明由|a-b|=错误!,即(cosα-cosβ>2+(sinα-sinβ>2=2,整理得cosαcosβ+sinαsinβ=0,即a·b=0,因此a⊥b.PgdO0sRlMo(2>解由已知条件得错误!3cdXwckm15 cosβ=-cosα=cos(π-α>,由0<α<π,得0<π-α<π,又0<β<π,故β=π-α.则sinα+sin (π-α>=1,即sinα=错误!,故α=错误!或α=错误!.当α=错误!时,β=错误!(舍去>h8c52WOngM 当α=错误!时,β=错误!.审题示例(四> 突破有关平面向量问题的思维障碍图1解读法一设直角三角形ABC的两腰长都为4,如图1所示,以C为原点,CA,CB所在的直线分别为x轴,y轴,建立平面直角坐标系,则A(4,0>,B(0,4>,因为D为AB的中点,所以D(2,2>.因为P为CD的中点,所以P(1,1>.故|PC|2=12+12=2,|PA|2=(4-1>2+(0-1>2=10,|PB|2=(0-1>2+(4-1>2=10,所以错误!=错误!=10.v4bdyGious图2法二如图2所示,以C为坐标原点,CA,CB所在的直线分别作为x轴,y轴建立平面直角坐标系.设|CA|=a,|CB|=b,则A(a,0>,B(0,b>,则D错误!,P错误!,J0bm4qMpJ9∴|PC|2=错误!2+错误!2=错误!+错误!,XVauA9grYP|PB|2=错误!2+错误!2=错误!+错误!,bR9C6TJscw|PA|2=错误!2+错误!2=错误!+错误!,pN9LBDdtrd 所以|PA|2+|PB|2=10错误!=10|PC|2,DJ8T7nHuGT∴错误!=10.法三如图3所示,取相互垂直的两个向量C错误!=a,C错误!=b 作为平面向量的基向量,显然a·b=0.QF81D7bvUA图3则在△ABC中,B错误!=a-b,因为D为AB的中点,所以C错误!=错误!(a+b>.4B7a9QFw9h 因为P为CD的中点,所以P错误!=-错误!C错误!=-错误!×错误!(a+b>=-错误!(a+b>.在△CBP中,P错误!=P错误!+C 错误!=-错误!(a+b>+b=-错误!a+错误!b,在△CAP中,P 错误!=P错误!+C错误!=-错误!(a+b>+a=错误!a-错误!b.所以|P错误!|2=错误!2=错误!(a2+b2+2a·b>=错误!(|a|2+|b|2>,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2.故错误!=错误!=10.ix6iFA8xoX答案D 方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征.wt6qbkCyDE [针对训练]在△ABC中,已知BC=2,错误!·错误!=1,则△ABC的面积S△ABC最大值是________.Kp5zH46zRk解读以线段BC所在直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,则B(-1,0>,C(1,0>.设A(x,y>,则错误!=(-1-x,-y>,错误!=(1-x,-y>,于是错误!·错误!=(-1-x>(1-x>+(-y>(-y>=x2-1+y2.Yl4HdOAA61由条件错误!·错误!=1知x2+y2=2,ch4PJx4BlI这表明点A在以原点为圆心,错误!为半径的圆上.当OA⊥BC时,△ABC面积最大,即S△ABC=错误!×2×错误!=错误!.(建议用时:60分钟>1.(2018·陕西卷>设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( >.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解读由|a||b||cos〈a,b〉|=|a||b|,则有cos〈a,b〉=±1.即〈a,b〉=0或π,所以a∥b.由a∥b,得向量a与b同向或反向,所以〈a,b〉=0或π,所以|a·b|=|a||b|.qd3YfhxCzo答案C 2.已知向量a与b的夹角为120°,|a|=3,|a+b|=错误!则|b|等于( >.E836L11DO5A.5B.4C.3D.1解读向量a与b的夹角为120°,|a|=3,|a+b|=错误!,则a·b=|a||b|·cos120°=-错误!|b|,|a+b|2=|a|2+2a·b+|b|2.所以13=9-3|b|+|b|2,则|b|=-1(舍去>或|b|=4.答案B 3.(2018·辽宁一模>△ABC中D为BC边的中点,已知A错误!=a,A错误!=b则在下列向量中与A错误!同向的向量是( >.S42ehLvE3MA.错误!+错误!B.错误!-错误!501nNvZFisC.错误!D.|b|a+|a|b解读∵A错误!=错误!(A错误!+A错误!>=错误!(a+b>,jW1viftGw9∴向量错误!与向量A错误!是同向向量.xS0DOYWHLP答案C 4.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( >.LOZMkIqI0wA.30°B.60°C.120°D.150°解读因为a+b+c=0,所以c=-(a+b>.所以|c|2=(a+b>2=a2+b2+2a·b=2+2cos60°=3.所以|c|=错误!.ZKZUQsUJed 又c·a=-(a+b>·a=-a2-a·b=-1-cos60°=-错误!,设向量c与a的夹角为θ,则cosθ=错误!=错误!=-错误!.又0°≤θ≤180°,所以θ=150°.dGY2mcoKtT答案D5.(2018·安徽卷>在平面直角坐标系中,O是坐标原点,两定点A,B满足|错误!|=|错误!|=错误!·错误!=2,则点集{P|错误!=λ错误!+μ错误!,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( >.rCYbSWRLIA A.2错误!B.2错误!C.4错误!D.4错误!FyXjoFlMWh 解读由|错误!|=|错误!|=错误!·错误!=2,知cos∠AOB=错误!,又0≤∠AOB≤π,则∠AOB=错误!,又A,B是两定点,可设A(错误!,1>,B(0,2>,P(x,y>,由错误!=λ错误!+μ错误!,可得错误!⇒错误!TuWrUpPObX 因为|λ|+|μ|≤1,所以错误!+错误!≤1,当错误!7qWAq9jPqE 由可行域可得S0=错误!×2×错误!=错误!,所以由对称性可知点P所表示的区域面积S=4S0=4错误!,故选D.llVIWTNQFk答案D 6.(2018·新课标全国Ⅱ卷>已知正方形ABCD的边长为2,E为CD的中点,则错误!·错误!=________.yhUQsDgRT1解读由题意知:错误!·错误!=(错误!+错误!>·(错误!-错误!>=(错误!+错误!错误!>·(错误!-错误!>=错误!2-错误!错误!·错误!-错误!错误!2=4-0-2=2.MdUZYnKS8I答案2 7.(2018·江西卷>设e1,e2为单位向量,且e1,e2的夹角为错误!,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.09T7t6eTno 解读a在b方向上的射影为|a|cos〈a,b〉=错误!.∵a·b=(e1+3e2>·2e1=2e错误!+6e1·e2=5.|b|=|2e1|=2.∴错误!=错误!.答案错误! 8.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P 是腰DC上的动点,则|P错误!+3P错误!|的最小值为______.e5TfZQIUB5解读建立如图所示的直角坐标系,设DC=m,P(0,t>,t∈[0,m],由题意可知,A(2,0>,B(1,m>,P错误!=(2,-t>,P错误!=(1,m-t>,P错误!+3P错误!=(5,3m-4t>,|P错误!+3P 错误!|=错误!≥5,当且仅当t=错误!m时取等号,即|P错误!+3P错误!|的最小值是5.s1SovAcVQM答案59.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为错误!,|OB|=2,设∠AOB=θ,θ∈错误!.GXRw1kFW5s(1>用θ表示点B的坐标及|OA|;(2>若tanθ=-错误!,求O错误!·O错误!的值.UTREx49Xj9解(1>由题意,可得点B的坐标为(2cosθ,2sinθ>.在△ABO中,|OB|=2,∠BAO=错误!,∠B=π-错误!-θ=错误!-θ.由正弦定理,得错误!=错误!,8PQN3NDYyP即|OA|=2错误!sin错误!.mLPVzx7ZNw(2>由(1>,得O错误!·O错误!=|O错误!||O错误!|cosθAHP35hB02d=4错误!sin错误!cosθ.NDOcB141gT因为tanθ=-错误!,θ∈错误!,1zOk7Ly2vA所以sinθ=错误!,cosθ=-错误!.又sin错误!=sin错误!cosθ-cos错误!sinθ=错误!×错误!-错误!×错误!=错误!,fuNsDv23Kh 故O错误!·O错误!=4错误!×错误!×错误!=-错误!.tqMB9ew4YX 10.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m =(a,b>,n=(sinB,sinA>,p=(b-2,a-2>.HmMJFY05dE(1>若m∥n,求证:△ABC为等腰三角形;(2>若m⊥p,边长c=2,C=错误!,求△ABC的面积.(1>证明因为m∥n,所以asinA=bsinB,即a·错误!=b·错误!(其中R是△ABC外接圆的半径>,所以a=b.所以△ABC为等腰三角形.ViLRaIt6sk(2>解由题意,可知m·p=0,即a(b-2>+b(a-2>=0,所以a+b =ab,由余弦定理,知4=c2=a2+b2-2abcos错误!=(a+b>2-3ab,即(ab>2-3ab-4=0,所以ab=4或ab=-1(舍去>.9eK0GsX7H1所以S△AB C=错误!absinC=错误!×4×sin错误!=错误!.naK8ccr8VI11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π>,C点坐标为(-2,0>,平行四边形OAQP的面积为S.B6JgIVV9ao(1>求O错误!·O错误!+S的最大值;P2IpeFpap5(2>若CB∥OP,求sin错误!的值.3YIxKpScDM解(1>由已知,得A(1,0>,B(0,1>,P(cos θ,sin θ>,因为四边形OAQP是平行四边形,所以O错误!=O错误!+O错误!=(1,0>+(cosθ,sinθ>gUHFg9mdSs=(1+cosθ,sinθ>.所以O错误!·O错误!=1+cos θ.uQHOMTQe79又平行四边形OAQP的面积为S=|O错误!|·|O错误!|sinθ=sinθ,IMGWiDkflP 所以O错误!·O错误!+S=1+cosθ+sinθ=错误!sin错误!+1.WHF4OmOgAw又0<θ<π,所以当θ=错误!时,O错误!·O错误!+S的最大值为错误!+1.aDFdk6hhPd(2>由题意,知C错误!=(2,1>,O错误!=(cosθ,sinθ>,ozElQQLi4T因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=错误!,cosθ=错误!,所以sin2θ=2sinθcosθ=错误!,cos2θ=cos2θ-sin2θ=错误!.CvDtmAfjiA 所以sin错误!=sin2θcos错误!-cos2θsin错误!=错误!×错误!-错误!×错误!=错误!.QrDCRkJkxh申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

高中数学平面向量精选题目(附答案)

高中数学平面向量精选题目(附答案)

高中数学平面向量精选题目(附答案)一、平面向量的概念及线性运算1.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.[解析] ∵AM ―→=2MC ―→,∴AM ―→=23AC ―→. ∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→), ∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→ =12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16. [答案] 12 -16 注:向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D ∵AB ―→=(-8,8),AC ―→=(3,y +6). 又∵AB ―→∥AC ―→,∴-8(y +6)-24=0.∴y =-9.3.如图,点A ,B ,C 是圆O 上不重合的三点,线段OC 与线段AB 交于圆内一点P .若OC ―→=m OA ―→+2m OB ―→,AP ―→=λAB ―→,则λ=( )A.56B.45C.34D.23解析:选D 由题意,设OP ―→=n OC ―→. 因为AP ―→=OP ―→-OA ―→=λ(OB ―→-OA ―→), 故n OC ―→-OA ―→=λ(OB ―→-OA ―→),n (m OA ―→+2m OB ―→)-OA ―→=λ(OB ―→-OA ―→), 即(mn +λ-1)OA ―→+(2mn -λ)OB ―→=0.而OA ―→与OB ―→不共线,故有⎩⎨⎧mn +λ-1=0,2mn -λ=0,解得λ=23.选D.4.如图,半径为1的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°.若OC ―→=λOA ―→+μOB ―→,则λ+μ=________.解析:由已知,可得OA ⊥OC ,以O 为坐标原点,OC ,OA 所在直线分别为x 轴、y 轴建立平面直角坐标系(图略),则有C (1,0),A (0,1),B (cos 30°,-sin 30°),即B ⎝ ⎛⎭⎪⎫32,-12.于是OC ―→=(1,0),OA ―→=(0,1),OB ―→=⎝ ⎛⎭⎪⎫32,-12,由OC ―→=λOA ―→+μOB ―→,得(1,0)=λ(0,1)+μ⎝ ⎛⎭⎪⎫32,-12=⎝ ⎛⎭⎪⎫32μ,λ-12μ,∴⎩⎪⎨⎪⎧32μ=1,λ-12μ=0,解得⎩⎪⎨⎪⎧μ=233,λ=33.∴λ+μ= 3. 答案:3二、平面向量的数量积5.(1)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D.32(2)设四边形ABCD 为平行四边形,|AB ―→|=6,|AD ―→|=4.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.(2)如图所示,由题设知:AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,NM ―→=NC ―→-MC ―→=13AB ―→-14AD ―→, ∴AM ―→·NM ―→=⎝ ⎛⎭⎪⎫AB ―→+34 AD ―→ ·⎝ ⎛⎭⎪⎫13 AB ―→-14 AD ―→ =13|AB ―→|2-316|AD ―→|2+14AB ―→·AD ―→-14AB ―→·AD ―→=13×36-316×16=9. [答案] (1)A (2)C 注:(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行计算.6.已知△ABC 中,AB ―→=c ,BC ―→=a ,CA ―→=b ,若a ·b =b ·c 且c ·b +c ·c =0,则△ABC 的形状为( )A .锐角三角形B .等腰非直角三角形C .钝角三角形D .等腰直角三角形解析:选D 由c ·b +c ·c =c ·(b +c )=0,即AB ―→·(CA ―→+AB ―→)=AB ―→·CB ―→=0,可得∠B 是直角. 又由a ·b =b ·c ,可得b ·(a -c )=0, 即CA ―→·(BC ―→+BA ―→)=0, 所以CA 与CA 边的中线垂直, 所以△ABC 是等腰直角三角形.7.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2D .2解析:选B 由题意,知a 2=1,b 2=1,c 2=1,由a ·b =0及(a -c )·(b -c )≤0,知(a +b )·c ≥c 2=1.因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =3-2(a ·c +b ·c )≤1,故|a +b -c |的最大值为1.8.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.答案:19.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ―→·BE ―→=1,则AB 的长为________.解析:设|AB ―→|=x ,x >0,则AB ―→·AD ―→=12x .又AC ―→·BE ―→=(AD ―→+AB ―→)·⎝ ⎛⎭⎪⎫AD ―→-12 AB ―→ =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:12三、平面向量与三角函数的综合问题10.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值. [解] (1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3, ∴m ·n =|m |·|n |cos π3, 即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 注:在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.11.已知向量a =(6sin α,2)与向量b =(3,4sin α)平行,则锐角α=( ) A.π4B.π6C.π3D.5π12解析:选B 因为向量a =(6sin α,2)与向量b =(3,4sin α)平行,所以24sin 2α=6,所以sin 2α=14,sin α=±12.又α是锐角,所以sin α=12,α=π6.12.(2017·江苏高考)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x . 则tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3; 当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.巩固练习:1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→=( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0B .1C .2 D. 53.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( ) A. 3 B .2 C. 5D .35.在△ABC 中,(BC ―→+BA ―→)·AC ―→=|AC ―→|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .67.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 8.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 9.已知向量OA ―→=(1,7),OB ―→=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA ―→·MB ―→的最小值是________.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.11.已知a =(cos α,sin α),b =(cos β,sin β),a 与b 满足|ka +b |=3|a -kb |,其中k >0.(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求出此时a ,b 的夹角.12.已知平面上三个向量a ,b ,c 的模均为1,它们两两之间的夹角均为120°. (1)求证:(a -b )⊥c ;(2)若|ka +b +c |>1(k ∈R),求实数k 的取值范围.参考答案:1.解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→, ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→.③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,④将④代入③,得2AP ―→=a +b -12⎝ ⎛⎭⎪⎫a -12 AP ―→ ,解得AP ―→=27a +47b .2.解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D.3.解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12(舍去).故选B.5.解析:选C 由(BC ―→+BA ―→)·AC ―→=|AC ―→|2,得AC ―→·(BC ―→+BA ―→-AC ―→)=0,即AC ―→·(BC ―→+BA ―→+CA ―→)=0,∴2AC ―→·BA ―→=0,∴AC ―→⊥BA ―→,∴A =90°.故选C.6.解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝ ⎛⎭⎪⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝ ⎛⎭⎪⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝ ⎛⎭⎪⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝ ⎛⎭⎪⎫-1-3-32=3,∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-28.解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6. 答案:-69.解析:设M ⎝ ⎛⎭⎪⎫x ,12x ,则MA ―→=⎝ ⎛⎭⎪⎫1-x ,7-12x ,MB ―→=⎝ ⎛⎭⎪⎫5-x ,1-12x ,MA ―→·MB―→=(1-x )(5-x )+⎝ ⎛⎭⎪⎫7-12x ⎝ ⎛⎭⎪⎫1-12x =54(x -4)2-8.所以当x =4时,MA ―→·MB ―→ 取得最小值-8.答案:-810.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13.11.解:(1)将|ka +b |=3|a -kb |两边平方,得|ka +b |2=(3|a -kb |)2,k 2a 2+b 2+2ka ·b =3(a 2+k 2b 2-2ka ·b ),∴8ka ·b =(3-k 2)a 2+(3k 2-1)b 2, a ·b =(3-k 2)a 2+(3k 2-1)b 28k.∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=1,b 2=1,∴a ·b =3-k 2+3k 2-18k =k 2+14k .(2)∵k 2+1≥2k (当且仅当k =1时等号成立),即k 2+14k ≥2k 4k =12,∴a ·b 的最小值为12.设a ,b 的夹角为γ,则a ·b =|a ||b |cos γ. 又|a |=|b |=1,∴12=1×1×cos γ,∴γ=60°,即当a ·b 取最小值时,a 与b 的夹角为60°.12.解:(1)证明:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°, ∴(a -b )·c =a ·c -b ·c =|a ||c |cos 120°-|b ||c |·cos 120°=0,∴(a -b )⊥c . (2)∵|ka +b +c |>1,∴(ka +b +c )2>1, 即k 2a 2+b 2+c 2+2ka ·b +2ka ·c +2b ·c >1,∴k 2+1+1+2k cos 120°+2k cos 120°+2cos 120°>1. ∴k 2-2k >0,解得k <0或k >2.∴实数k 的取值范围为(-∞,0)∪(2,+∞).。

平面向量-三年(2017-2019)高考真题数学(文)专题

平面向量-三年(2017-2019)高考真题数学(文)专题

平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π62.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .503.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1 BC .2D .26.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .07.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥bD .>a b8.【2017年高考北京卷文数】设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________. 16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________. 19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.平面向量1.【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷文数】已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b , 故选A.【名师点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.3.【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-,故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算. 4.【2018年高考全国II 卷文数】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.【名师点睛】本题主要考查平面向量的数量积,考查考生的运算求解能力,考查的数学核心素养是数学运算.5.【2018年高考浙江卷】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b满足b 2−4e ·b +3=0,则|a −b |的最小值是A 1B C.2 D .2【答案】A【解析】设 ,则由 得,由b 2−4e ·b +3=0得 因此|a −b |的最小值为圆心 到直线的距离21,为 选A. 【名师点睛】本题主要考查平面向量的夹角、数量积、模及最值问题,考查数形结合思想,考查考生的选算求解能力以及分析问题和解决问题的能力,考查的数学核心素养是直观想象、数学运算.6.【2018年高考天津卷文数】在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .0【答案】C【解析】如图所示,连结MN ,由 可知点 分别为线段 上靠近点 的三等分点,则, 由题意可知:, , 结合数量积的运算法则可得: . 本题选择C 选项.【名师点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 7.【2017年高考全国II 卷文数】设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥bB .=a bC .a ∥bD .>a b【答案】A【解析】由向量加法与减法的几何意义可知,以非零向量a ,b 的模长为边长的平行四边形是矩形,从而可得a ⊥b .故选A.【名师点睛】本题主要考查向量的数量积与向量的垂直.8.【2017年高考北京卷文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.【名师点睛】本题考查平面向量的线性运算,及充分必要条件的判断,属于容易题.9.【2019年高考北京卷文数】已知向量a =(–4,3),b =(6,m ),且⊥a b ,则m =__________.【答案】8【解析】向量(4,3),(6,)m =-=⊥,,a b a b 则046308m m ⋅=-⨯+==,,a b . 【名师点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.【2019年高考全国III 卷文数】已知向量(2,2),(8,6)==-a b ,则cos ,=a b ___________.【答案】10-【解析】2826cos ,||||10⨯-+⨯⋅===-⋅a b a b a b .【名师点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.11.【2019年高考天津卷文数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE,其方程为y x =-, 直线AE的斜率为y x =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)12BD AE =-=-.【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.12.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-, ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】0;【解析】以, AB AD 分别为x 轴、y 轴建立平面直角坐标系,如图.则(1,0),(0,1),(1,0),(0,1),(1,1),(1,1)AB BC CD DA AC BD ===-=-==-, 令(123456y AB BC CD DA AC BD λλλλλλλ=+++++=0.又因为(1,2,3,4,5,6)i i λ=可取遍1±,所以当1345621,1λλλλλλ======-时,有最小值min 0y =. 因为()135λλλ-+和()245λλλ-+的取值不相关,61λ=或61λ=-, 所以当()135λλλ-+和()245λλλ-+分别取得最大值时,y 有最大值,所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.14.【2018年高考全国III 卷文数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.15.【2018年高考北京卷文数】设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.【答案】【解析】 , ,由 得: , ,即 .【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.16.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-,;∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3.故答案为:﹣3.【名师点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.17.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________.【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a = 【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.18.【2017年高考全国III 卷文数】已知向量(2,3),(3,)m =-=a b ,且⊥a b ,则m =________.【答案】2【解析】由题意可得02330,m ⋅=⇒-⨯+=a b 解得2m =.【名师点睛】(1)向量平行:1221∥x y x y ⇒=a b ,,,∥≠⇒∃∈=λλ0R a b b a b ,111BA AC OA OB OC λλλλ=⇔=+++. (2)向量垂直:121200x x y y ⊥⇔⋅=⇔+=a b a b .(3)向量的运算:221212(,),||,||||cos ,x x y y ±=±±=⋅=⋅a b a a a b a b a b .19.【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.20.【2017年高考江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA 与OC 的夹角为α,且t a n α=7,OB 与OC 的夹角为45°.若O C m O A n O B =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2100210n m n m +=⎪-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==, 所以3m n +=. 【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.21.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+, 据此可得:()()max min 4++-==++-==a b a b a b a b , 即++-a b a b 的最小值是4,最大值是【名师点睛】本题通过设向量,a b 的夹角为θ,结合模长公式,可得++-=a b a b能力有一定的要求.22.【2017年高考天津卷文数】在ABC △中,60A =︒∠,3AB =,2AC =.若2B D D C =,AE AC λ=- ()AB λ∈R ,且4AD AE ⋅=-,则λ的值为________. 【答案】311【解析】由题可得1232cos603,33AB AC AD AB AC ⋅=⨯⨯︒==+,则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 【名师点睛】根据平面向量基本定理,利用表示平面向量的一组基底可以表示平面内的任一向量,利用向量的定比分点公式表示向量,则可获解.本题中,AB AC 已知模和夹角,作为基底易于计算数量积.23.【2017年高考山东卷文数】已知向量a =(2,6),b =(1,)λ- ,若∥a b ,则λ=________.【答案】3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-【名师点睛】平面向量共线的坐标表示问题的常见类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则∥a b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考数学真题精选(按考点分类) 专题十八 平面向量的线性运算(学生版)一.选择题(共13小题)1.(2015•新课标Ⅰ)设D 为ABC ∆所在平面内一点,3BC CD =u u u r u u u r,则( )A .1433AD AB AC =-+u u u r u u ur u u u rB .1433AD AB AC =-u u u r u u u r u u u rC .4133AD AB AC =+u u u r u u u r u u u rD .4133AD AB AC =-u u u r u u u r u u u r2.(2008•湖南)设D 、E 、F 分别是ABC ∆的三边BC 、CA 、AB 上的点,且2DC BD =u u u r u u u r,2CE EA =u u u r u u u r ,2AF FB =u u u r u u u r ,则AD BE CF ++u u u r u u u r u u u r 与(BC u u ur )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直3.(2014•湖南)在平面直角坐标系中,O 为原点,(1,0)A -,B ,(3,0)C ,动点D 满足||1CD =u u u r ,则||OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[4,6]B .11]+C .,D .11]4.(2011•上海)设1A ,2A ,3A ,4A 是平面上给定的4个不同点,则使12340MA MA MA MA +++=u u u u r u u u u r u u u u r u u u u r r成立的点M 的个数为( )A .0B .1C .2D .45.(2010•湖北)已知ABC ∆和点M 满足0MA MB MC ++=u u u r u u u r u u u u r r.若存在实数m 使得AB AC mAM +=u u u r u u u r u u u u r成立,则(m = )A .2B .3C .4D .56.(2009•湖南)如图,D ,E ,F 分别是ABC ∆的边AB ,BC ,CA 的中点,则( )A .0AD DF CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r r D .0BD BE FC --=u u u r u u u r u u u r r7.(2008•辽宁)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r,则OC u u u r等于( )A .2OA OB -u u u r u u u rB .2OA OB -+u u u r u u u rC .2133OA OB -u u ur u u u rD .1233OA OB -+u u ur u u u r8.(2006•全国卷Ⅰ)设平面向量1a r 、2a r 、3a r 的和1230a a a ++=r r r.如果向量1b r 、2b r 、3b r ,满足||2||i i b a =r r ,且i a r顺时针旋转30︒后与i b r 同向,其中1i =,2,3,则( ) A .1230b b b -++=r r rB .1230b b b -+=r r rC .1230b b b +-=r r rD .1230b b b ++=r r r9.(2016•上海)设单位向量1e u r 与2e u u r 既不平行也不垂直,对非零向量1112a x e y e =+u r u u r r、2122b x e y e =+u r u u r r有结论:①若12210x y x y -=,则//a b rr ; ②若12120x x y y +=,则a b ⊥rr .关于以上两个结论,正确的判断是( ) A .①成立,②不成立 B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立10.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,216BC =u u u r ,||||AB AC AB AC +=-u u u r u u u r u u u r u u u r ,则||(AM =u u u u r)A .8B .4C .2D .111.(2018•新课标Ⅰ)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r)A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u u r u u u rD .1344AB AC +u u ur u u u r 12.(2011•全国)点D ,E ,F 是ABC ∆内三点,满足AD DE =u u u r u u u r ,BE EF =u u u r u u u r ,CF FD =u u u r u u u r,设AF AB AC λμ=+u u u r u u u r u u u r,则(λ,)(μ= )A .4(7,2)7B .1(7,4)7C .4(7,1)7D .2(7,4)713.(2010•全国大纲版Ⅱ)ABC ∆中,点D 在边AB 上,CD 平分ACB ∠,若CB a =u u u r r ,CA b =u u u r r,||1a =r,||2b =r ,则(CD =u u u r ) A .1233a b +r rB .2133a b +rrC .3455a b +rrD .4355a b +rr二.填空题(共4小题)14.(2017•江苏)如图,在同一个平面内,向量OA u u u r ,OB u u u r ,OC u u u r 的模分别为1,1OAu u u r与OC u u u r 的夹角为α,且tan 7α=,OB u u u r 与OC u u u r的夹角为45︒.若(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r ,则m n += .15.(2015•北京)在ABC ∆中,点M ,N 满足2AM MC =u u u u r u u u u r ,BN NC =u u u r u u u r,若MN xAB y AC =+u u u u r u u u r u u u r ,则x = ,y = .16.(2013•四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=u u u r u u u r u u u r ,则λ= .17.(2013•北京)向量a r ,b r ,c r 在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈r r r ,则λμ= .历年高考数学真题精选(按考点分类) 专题十八 平面向量的线性运算(教师版)一.选择题(共13小题)1.(2015•新课标Ⅰ)设D 为ABC ∆所在平面内一点,3BC CD =u u u r u u u r,则( )A .1433AD AB AC =-+u u u r u u ur u u u rB .1433AD AB AC =-u u u r u u u r u u u rC .4133AD AB AC =+u u u r u u u r u u u rD .4133AD AB AC =-u u u r u u u r u u u r【答案】A【解析】由4414()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ;故选:A .2.(2008•湖南)设D 、E 、F 分别是ABC ∆的三边BC 、CA 、AB 上的点,且2DC BD =u u u r u u u r,2CE EA =u u u r u u u r ,2AF FB =u u u r u u u r ,则AD BE CF ++u u u r u u u r u u u r 与(BC u u ur )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直【答案】A【解析】由定比分点的向量式得:2121233AC AB AD AC AB +==++u u u r u u u r u u u r u u u r u u u r ,1233BE BC BA =+u u u r u u u r u u u r,1233CF CA CB =+u u u r u u u r u u u r ,以上三式相加得13AD BE CF BC ++=-u u u r u u u r u u u r u u ur ,故选:A .3.(2014•湖南)在平面直角坐标系中,O 为原点,(1,0)A -,B ,(3,0)C ,动点D 满足||1CD =u u u r ,则||OA OB OD ++u u u r u u u r u u u r的取值范围是( )A .[4,6] B.11]+ C., D.11]【答案】D【解析】Q 动点D 满足||1CD =u u u r,(3,0)C ,∴可设(3cos D θ+,sin )([0θθ∈,2))π. 又(1,0)A -,B ,∴(2cos sin )OA OB OD θθ++=+u u u r u u u r u u u r.||OA OB OD ∴++=u u u r u u u r u u u r ,(其中sinϕ=cos ϕ1sin()1θϕ-+Q 剟,∴221)88)81)θϕ=-+++=,||OA OB OD ∴++u u u r u u u r u u u r的取值范围是1].或||||OA OB OD OA OB OC CD ++=+++u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,OA OB OC ++=u u u r u u u r u u u r,将其起点平移到D 点,由其与CD 同向反向时分别取最大值、最小值,即||OA OB OD ++u u u r u u u r u u u r的取值范围是1].故选:D .4.(2011•上海)设1A ,2A ,3A ,4A 是平面上给定的4个不同点,则使12340MA MA MA MA +++=u u u u r u u u u r u u u u r u u u u r r成立的点M 的个数为( )A .0B .1C .2D .4【答案】B【解析】根据所给的四个向量的和是一个零向量12340MA MA MA MA +++=u u u u r u u u u r u u u u r u u u u r r,则12340OA OM OA OM OA OM OA OM -+-+-+-=u u u r u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r r ,即12344OM OA OA OA OA =+++u u u u r u u u r u u u u r u u u u r u u u u r ,所以12341()4OM OA OA OA OA =+++u u u u r u u u r u u u u r u u u u r u u u u r .当1A ,2A ,3A ,4A 是平面上给定的4个不同点确定以后,则OM u u u u r也是确定的,所以满足条件的M 只有一个,故选:B .5.(2010•湖北)已知ABC ∆和点M 满足0MA MB MC ++=u u u r u u u r u u u u r r.若存在实数m 使得AB AC mAM +=u u u r u u u r u u u u r成立,则(m = )A .2B .3C .4D .5【答案】B【解析】由0MA MB MC ++=u u u r u u u r u u u u r r知,点M 为ABC ∆的重心,设点D 为底边BC 的中点,则2211()()3323AM AD AB AC AB AC ==⨯+=+u u u u r u u u r u u u r u u u r u u u r u u u r ,所以有3AB AC AM +=u u u r u u u r u u u u r,故3m =,故选:B .6.(2009•湖南)如图,D ,E ,F 分别是ABC ∆的边AB ,BC ,CA 的中点,则( )A .0AD DF CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r r D .0BD BE FC --=u u u r u u u r u u u r r【答案】A【解析】由图可知AD DB =,CF FA ED ==在DBE ∆中,0DB BE ED ++=,即0AD CF BE ++=.故选:A .7.(2008•辽宁)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r,则OC u u u r等于( ) A .2OA OB -u u u r u u u rB .2OA OB -+u u u r u u u rC .2133OA OB -u u ur u u u rD .1233OA OB -+u u ur u u u r【答案】A【解析】Q 依题22()OC OB BC OB AC OB OC OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴2OC OA OB =-u u u r u u u r u u u r.故选:A .8.(2006•全国卷Ⅰ)设平面向量1a r 、2a r 、3a r 的和1230a a a ++=r r r.如果向量1b r 、2b r 、3b r ,满足||2||i i b a =r r ,且i a r顺时针旋转30︒后与i b r 同向,其中1i =,2,3,则( ) A .1230b b b -++=r r r B .1230b b b -+=r r rC .1230b b b +-=r r rD .1230b b b ++=r r r【答案】D【解析】向量1a r 、2a r 、3a r 的和1230a a a ++=r r r ,向量1a r 、2a r 、3a r顺时针旋转30︒后与1b r 、2b r 、3b r 同向,且||2||i i b a =r r,∴1230b b b ++=r r r ,故选:D .9.(2016•上海)设单位向量1e u r 与2e u u r 既不平行也不垂直,对非零向量1112a x e y e =+u r u u r r 、2122b x e y e =+u r u u r r有结论:①若12210x y x y -=,则//a b r r ;②若12120x x y y +=,则a b ⊥rr .关于以上两个结论,正确的判断是( ) A .①成立,②不成立B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立【答案】A【解析】①假设存在实数λ使得a b λ=r r,则11122122()x e y e x e y e λ+=+u r u u r u r u u r ,Q 向量1e u r 与2e u u r 既不平行也不垂直,12x x λ∴=,12y y λ=,满足12210x y x y -=,因此//a b rr .②若12120x x y y +=,则111221221212211212211212()()()()a b x e y e x e y e x x y y x y x y e e x y x y e e =++=+++=+u r u u r u r u u r u r u u r u r u u r rr g g g g ,无法得到0a b =r r g ,因此a b ⊥r r 不一定正确.故选:A .10.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,216BC =u u u r ,||||AB AC AB AC +=-u u u r u u u r u u u r u u u r ,则||(AM =u u u u r)A .8B .4C .2D .1【答案】C【解析】由216BC =u u u r ,得||4BC =u u u r,Q ||||||4AB AC AB AC BC +=-==u u u r u u u r u u u r u u u r u u u r ,而||2||AB AC AM +=u u u r u u u r u u u u r ∴||2AM =u u u u r故选:C .11.(2018•新课标Ⅰ)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r) A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 【答案】A【解析】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,12EB AB AE AB AD =-=-u u u r u u u r u u u r u u u r u u u r 11()22AB AB AC =-⨯+u u u r u u u r u u u r 3144AB AC =-u u ur u u u r ,故选:A .12.(2011•全国)点D ,E ,F 是ABC ∆内三点,满足AD DE =u u u r u u u r ,BE EF =u u u r u u u r ,CF FD =u u u r u u u r,设AF AB AC λμ=+u u u r u u u r u u u r,则(λ,)(μ= )A .4(7,2)7B .1(7,4)7C .4(7,1)7D .2(7,4)7【答案】B【解析】如图可得D 是AE 中点,E 是BF 中点,F 为CD 中点,∴11112224AF AC AD AC AE =+=+u u u ru u ur u u u r u u u r u u u r ,1122AE AF AB =+u u u r u u u r u u u r .∴1477AF AB AC =+u u u r u u u r u u u r ,∴14,77λμ==,故选:B .13.(2010•全国大纲版Ⅱ)ABC ∆中,点D 在边AB 上,CD 平分ACB ∠,若CB a =u u u r r ,CA b =u u u r r,||1a =r,||2b =r ,则(CD =u u u r ) A .1233a b +r rB .2133a b +rrC .3455a b +rrD .4355a b +rr【答案】B【解析】CD Q 为角平分线,∴12BD BC AD AC ==, Q AB CB CA a b =-=-u u u r u u u r u u u r r r ,∴222333AD AB a b ==-u u u r u u u r r r ,∴22213333CD CA AD b a b a b =+=+-=+u u u r u u u r u u u r r r rr r 故选:B .二.填空题(共4小题)14.(2017•江苏)如图,在同一个平面内,向量OA u u u r ,OB u u u r ,OC u u u r 的模分别为1,1OAu u u r与OC u u u r 的夹角为α,且tan 7α=,OB u u u r 与OC u u u r的夹角为45︒.若(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r ,则m n += .【答案】3【解析】如图所示,建立直角坐标系.(1,0)A .由OA u u u r 与OC u u u r 的夹角为α,且tan 7α=.cosα∴,sin α=.17(,)55C ∴.3cos(45)sin )5ααα+︒=-=-.4sin(45)cos )5ααα+︒+=. 34(,)55B ∴-.Q (,)OC mOA nOB m n R =+∈u u u r u u u r u u u r ,∴1355m n =-,74055n =+,解得74n =,54m =. 则3m n +=.故答案为:3.15.(2015•北京)在ABC ∆中,点M ,N 满足2AM MC =u u u u r u u u u r ,BN NC =u u u r u u u r,若MN xAB y AC =+u u u u r u u u r u u u r ,则x = ,y = . 【答案】11,26-.【解析】由已知得到111111()323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-u u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ;由平面向量基本定理,得到12x =,16y =- 16.(2013•四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=u u u r u u u r u u u r,则λ= . 【答案】2.【解析】Q 四边形ABCD 为平行四边形,对角线AC 与BD 交于点O ,∴AB AD AC +=u u u r u u u r u u u r , 又O 为AC 的中点,∴2AC AO =u u u r u u u r,∴2AB AD AO +=u u u r u u u r u u u r , Q AB AD AO λ+=u u u r u u u r u u u r,2λ∴=.故答案为:2.17.(2013•北京)向量a r ,b r ,c r在正方形网格中的位置如图所示,若(,)c a b R λμλμ=+∈r r r ,则λμ= .【答案】4.【解析】以向量a r、b r 的公共点为坐标原点,建立如图直角坐标系可得(1,1)a =-r ,(6,2)b =r ,(1,3)c =--rQ (,)c a b R λμλμ=+∈r r r ∴1632λμλμ-=-+⎧⎨-=+⎩,解之得2λ=-且12μ=-因此,2412λμ-==-故答案为:4。

相关文档
最新文档