最小二乘法综述及举例

合集下载

最小二乘法综述及举例

最小二乘法综述及举例

最小二乘法综述及算例一最小二乘法的历史简介1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

经过两百余年后,最小二乘法已广泛应用与科学实验和工程技术中,随着现代电子计算机的普及与发展,这个方法更加显示出其强大的生命力。

二最小二乘法原理最小二乘法的基本原理是:成对等精度测得的一组数据),...,2,1(,n i y x i i =,是找出一条最佳的拟合曲线,似的这条曲线上的个点的值与测量值的差的平方和在所有拟合曲线中最小。

设物理量y 与1个变量l x x x ,...,2,1间的依赖关系式为:)(,...,1,0;,...,2,1n l a a a x x x f y =。

其中n a a a ,...,1,0是n +l 个待定参数,记()21∑=-=mi i i y vs 其中 是测量值, 是由己求得的n a a a ,...,1,0以及实验点),...,2,1)(,...,(;,2,1m i v x x x i il i i =得出的函数值)(,...,1,0;,...,2,1n il i i a a a x x x f y =。

在设计实验时, 为了减小误差, 常进行多点测量, 使方程式个数大于待定参数的个数, 此时构成的方程组称为矛盾方程组。

通过最小二乘法转化后的方程组称为正规方程组(此时方程式的个数与待定参数的个数相等) 。

我们可以通过正规方程组求出a最小二乘法又称曲线拟合, 所谓“ 拟合” 即不要求所作的曲线完全通过所有的数据点, 只要求所得的曲线能反映数据的基本趋势。

基本最小二乘法

基本最小二乘法

基本最小二乘法全文共四篇示例,供读者参考第一篇示例:基本最小二乘法(Least Squares Method)是统计学中一种常用的参数估计方法,其基本思想是通过最小化实际观测值与理论值之间的残差平方和来求得模型参数。

最小二乘法常用于回归分析、拟合曲线以及解决线性方程组等问题。

最小二乘法的核心思想是寻找使得误差的平方和最小的参数估计值。

具体来说,假设有n个数据点(x_1,y_1), (x_2,y_2), …, (x_n,y_n),要拟合这些数据点,可以假设它们之间存在某种函数关系y=f(x),通过最小化残差平方和的方法来确定函数f(x)的参数值。

最小二乘法的数学表达式可以用下面的公式来表示:\min_{\beta} \sum_{i=1}^{n} (y_{i} - \beta^{T}x_{i})^{2}y_{i}是实际观测值,x_{i}是自变量,\beta是要求解的参数向量。

最小二乘法的优势在于它是一种封闭解的方法,能够直接获得参数的解析解,而不需要通过迭代算法来求解。

最小二乘法对于数据中的离群点具有一定的鲁棒性,能够有效地排除异常值的影响。

最小二乘法在实际应用中有着广泛的应用。

在回归分析中,最小二乘法可以用来拟合数据点并预测新的输出值;在信号处理中,最小二乘法可以用来估计信号的频率和幅度;在机器学习和人工智能领域,最小二乘法也被广泛应用于线性回归、岭回归等算法。

最小二乘法也存在一些限制。

最小二乘法要求数据满足线性关系,并且误差项服从正态分布。

如果数据不符合这些假设,最小二乘法的结果可能会出现偏差。

最小二乘法对数据中的离群点较为敏感,如果数据中存在大量离群点,最小二乘法的结果可能会受到影响。

为了解决最小二乘法的这些限制,人们提出了许多改进的方法。

岭回归(Ridge Regression)和Lasso回归(Lasso Regression)是两种常见的正则化方法,可以在最小二乘法的基础上引入惩罚项来减少模型的复杂度,并提高模型的泛化能力。

最小二乘法知识

最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。

它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。

最小二乘法的核心思想是最小化误差的平方和。

对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。

那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。

最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。

对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。

我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。

然而,对于复杂的非线性回归问题,解析方法通常不可行。

在实际应用中,最小二乘法通常使用迭代方法进行求解。

一种常用的迭代方法是梯度下降法。

梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。

具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。

迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。

学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。

最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。

在多项式回归中,我们可以通过增加高次项来拟合非线性关系。

同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。

除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。

最小二乘法概述

最小二乘法概述

最小二乘法一、简介最小二乘法,又称最小平方法,是一种数学技术。

它通过最小误差的平方和寻找数据函数的最佳匹配。

最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。

如已知两变量为线性关系bx a y +=,对其进行)2(>n n 次观测而获得n 对数据。

若将这n 对数据代入方程求解a ,b 之值则无确定解。

最小二乘法提供了一个求解方法,其基本思想就是寻找“最接近”这n 个观测点的直线。

最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。

相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。

作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。

最小二乘法之于数理统计学,有如微积分之于数学,这并非夸张之辞。

统计学应用的几个分支如相关分析、回归分析、方差分析和线性模型理论等,其关键都在于最小二乘法的应用不少现代的统计学研究是在此法的基础上衍生出来,作为其进一步发展或纠正其不足之处而采取的对策,如回归分析中一系列修正最小二乘法而产生的估计方法等就是最好的例子。

二、创立思想勒让德在先驱者解线性方程组的基础上,以整体的思想方法创立了最小二乘法;高斯由寻找随机误差函数为突破,以独特的概率思想导出了正态分布,详尽地阐述了最小二乘法的理论依据。

最小二乘法(OLSE)的思想就是要使得观测点和估计点的距离平方和达到最小,在各方程的误差之间建立一种平衡,从而防止某一极端误差,对决定参数的估计值取得支配地位,有助于揭示系统的更接近真实的状态。

这里的“二乘”指的是用平方来度量观测点与估计点的远近,“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。

三、原理设一组数据(,)i i x y (1,2,,)i n = ,现用近似曲线)(x y ϕ=拟合这组数据,“拟合得最好”的标准是所选择的()x ϕ在i x 处的函数值()i x ϕ(1,2,,)i n = 与i y (1,2,,)i n = 相差很小,即偏差(也称残差)()i i x y ϕ-(1,2,,)i n = 都很小.一种方法是使偏差之和()1ni i i x y ϕ=⎡⎤⎣⎦∑-很小来保证每个偏差都很小.但偏差有正有负,在求和的时候可能相互抵消.为了避免这种情况,还可使偏差的绝对值之和()1||ni i i x y ϕ=-∑为最小.但这个式子中有绝对值符号,不便于分析讨论.由于任何实数的平方都是正数或零,因而我们可选择使“偏差平方和21ni i i x y ϕ=-∑[()]最小”的原则来保证每个偏差的绝对值都很小,从而得到最佳拟合曲线y =()x ϕ.这种“偏差平方和最小”的原则称为最小二乘原则,而按最小二乘法原则拟合曲线的方法称为最小二乘法或称最小二乘曲线拟合法.一般而言,所求得的拟合函数可以使不同的函数类,拟合曲线()x ϕ都是由m 个线性无关函数()1x ϕ,()2x ϕ ,…, ()m x ϕ的线性组合而成,即()()()()1122m m x a x a x a x ϕϕϕϕ=+++…)1(-<n m ,其中1a ,2a ,…,m a 为待定系数.线性无关函数()1x ϕ,()2x ϕ ,…()m x ϕ,称为基函数,常用的基函数有: 多项式:1,x , 2x ,…,m x ;三角函数: sin x ,sin 2x ,…,sin mx ;指数函数:x x x m e e e λλλ,,,21 ,x λ2e,…,x λme.最小二乘法又称曲线拟合,所谓“ 拟合” ,即不要求所作的曲线完全通过所有的数据点,只要求所得的近似曲线能反映数据的基本趋势,它的实质是离散情况下的最小平方逼近.四、运用曲线拟合做最小二乘法 1 一元线性拟合已知实测到的一组数据(,)i i x y (1,2,,)i n = ,求作这组数据所成的一元线性关系式.设线性关系式为y a bx =+,求出a 和b 即可.法一:即要满足则)(令,0,0,,12=∂∂=∂∂--=∑=bsa sb a bx a y s ni i i ,则,a b 要满足s a ∂∂=0,sb∂∂=0.即 11()()ni i i n i i ii sy a bx a s y a bx x b==∂⎧--⎪⎪∂⎨∂⎪--⎪∂⎩∑∑=-2=0=-2=0化简得112111n n i i i i nn ni i i i i i i b a x y n n a x b x x y =====⎧⎪⎪⎨⎪⎪⎩∑∑∑∑∑1+=+= 从中解出1112211111n n n i i i ii i i n n i i i i n n i ii i n x y x yb n x x b a y x n n =======⎧⎪⎪⎪⎛⎫ ⎪⎨⎝⎭⎪⎪⎪⎩∑∑∑∑∑∑∑-=-=- (1) 法二:将i x ,i y 代入y a bx =+得矛盾方程组1122n y a bx y a bx y a bx n=+⎧⎪=+⎪⎨⎪⎪=+⎩ (2) 令A =12111n x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ ,B =12n y y y ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,则(2)式可写成b B A a ⎛=⎫⎪⎝⎭,则对应的正规方程组为TTa b A B A A ⎛=⎫ ⎪⎝⎭,所以a b ⎛⎫ ⎪⎝⎭=1()T TA A AB -,其中A 称为结构矩阵,B 称为数据矩阵,T A A 称为信息矩阵,TA B 称为常数矩阵.2 多元线性拟合设变量y 与n 个变量1x ,2x ,…,n x (1n ≥)内在联系是线性的,即有如下关系式∑=+=nj j j x a a y 10,设j x 的第i 次测量值为ij x ,对应的函数值为i y (1,2,,)i m = ,则偏差平方和为s ='220111()()mm ni i i i ij i i j y y y a a x ===-=--∑∑∑,为了使s 取最小值得正规方程组011001111011202020m n i j ij i j m n i j ij i i j m n i j ij in i j ns y a a x a s y a a x x a s y a a x x a ======⎧∂⎛⎫=---=⎪ ⎪∂⎝⎭⎪⎪∂⎛⎫=---=⎪⎪∂⎨⎝⎭⎪⎪⎪∂⎛⎫=---=⎪ ⎪∂⎝⎭⎩∑∑∑∑∑∑ (3) 即011101111n m mij j i j i i mn m mik ij ik jik i i j i i ma x a y x a x x a x y =======⎧⎛⎫+= ⎪⎪⎝⎭⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩∑∑∑∑∑∑∑1,2,,k n = . (4) 将实验数据(,)i i x y 代入(4)式,即得m a a a ,,,10 .3 指数函数拟合科学实验得到一组数据(,)i i x y (1,2,,)i n = 时,还可以考虑用指数函数为基函数来拟合,此时设拟合函数具有形式bxy ae =(,a b 为待定系数).对上式两端取自然对数可得:ln ln y a bx =+ (9)令Y =ln y ,0ln b a =,则(9)式可转化为一元线性函数形式0Y b bx =+,此时将指数函数拟合转化成了一元线性拟合,利用一元线性拟合中的两种方法均可求出0b 和b ,继而根据0b a e =可求出a ,从而得出因变量y 与自变量x 之间的函数关系式0b bx bx y ae e +==4 对数函数拟合科学实验得到一组数据(,)i i x y (1,2,,)i n = 时,还可以考虑用对数函数为基函数来拟合,此时设拟合函数具有形式ln y a b x =+(0)x >(,a b 为待定系数).0b >时,y 随x 增大而增大,先快后慢;0b <时,y 随x 增大而减小,先快后慢.当以y 和ln x 绘制的散点图呈直线趋势时,可考虑采用对数函数描述y 与x 之间的非线性关系,式中的b 和a 分别为斜率和截距.这时令X =ln x ,就可以利用一元线性拟合的方法来求解.更一般的对数函数还可设为y =()ln a b x k ++,式中k 为一常量.五 举例例1 使电流通过2Ω的电阻,用伏特表测量电阻两端的电压V .测得数据如下表:t I /A1 2 4 6 8 10 t V /V1.83.78.212.015.820.2试用最小二乘法建立I 与V 之间的一元经验公式(有效数字保留到小数点后第3位). 解:可取一次线性关系式V a bI =+作为I 与V 之间的一元经验公式. 将数据代入得矛盾方程组1.82 3.748.2612.0815.81020.2a b a b a b a b a b a b +=⎧⎪+=⎪⎪+=⎨+=⎪⎪+=⎪+=⎩ 令1112141618110A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 1.83.78.212.015.820.2B ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则上述矛盾方程组可写成矩阵形式0a A B b ⎛⎫-= ⎪⎝⎭由此得出其正规方程组0T T a A A A B b ⎛⎫-= ⎪⎝⎭,将数据代入即得63161.7031221442.4a b ⎛⎫⎛⎫⎛⎫-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,解之得0.212.032a b =-⎧⎨=⎩,故所求经验公式为0.2152.V I =-+. 例 2 在在开发一种抗过敏性的新药时,要对不同剂量的药效进行实验.10名患者各服用了该新药的一个特定的剂量.药物消失时立即纪录.观测值列于下表中.x 是剂量,y 是症状消除持续的日数.用7个不同的剂量, 其中3个剂量重复给两名患者.试给出y 与x 之间的一元经验公式(保留3位有效数字).1 2 3 4 5 6 7 8 9 10 ∑ /i x mg334566788959/i y d9 5 12 9 14 16 22 18 24 22 1512i x 9 9 16 25 36 36 49 64 64 81 389i i x y271548458496154144192198 1003解:可设y 与x 之间的经验公式为y a bx =+. 由上表可知,101i i x =∑59=,101i i y =∑151=,101i i i x y =∑1003=,1021i i x =∑389=,2101i i x =⎛⎫ ⎪⎝⎭∑3481= 再由(1)式可求得,1010101112101021110101003591512.7410389348110i i i ii i i i i i i x y x y b x x =====-⨯-⨯===⨯-⎛⎫- ⎪⎝⎭∑∑∑∑∑10101111 2.7415159 1.0710101010i i i i b a y x ===-=⨯-⨯=-∑∑所以y 与x 之间的经验公式为 1.07 2.74y x =-+.最小二乘法能将从实验中得出的一大堆看上去杂乱无章的数据中找出一定的规律,拟合成一条曲线来反映所给数据特点。

_最小二乘法

_最小二乘法
y(1) =θ1x1(1) +θ2x2 (1) +L+θmxm(1) +e(1) y(2) =θ1x1(2) +θ2x2 (2) +L+θmxm(2) +e(2) M M y(n) =θ1x1(n) +θ2x2 (n) +L+θmxm(n) +e(n)

• 线性模型 y = X θ + e 线性模型: 式中: 维输出向量; 维噪声向量; 式中: y 为n维输出向量;e 为n维噪声向量;θ 为m 维输出向量 维噪声向量 维参数向量; 维测量矩阵。 维参数向量;X 为 n × m 维测量矩阵。
足够大,当 只要 α 足够大 当 k > m 后,初值 P (0)、 0) 初值 θ ( 对估计的影响可以忽略. 对估计的影响可以忽略
LS法和 法和RLS法的比较 法和 法的比较
• • • LS法是一次完成算法,适于离线辩识,要记忆全部测 法是一次完成算法,适于离线辩识, 法是一次完成算法 量数据; 量数据; RLS法是递推算法,适于在线辩识和时变过程,只需 法是递推算法, 法是递推算法 适于在线辩识和时变过程, 要记忆n+1步数据; 步数据; 要记忆 步数据 RLS 法用粗糙初值时,如若 N 较小时,估计精度不 法用粗糙初值时, 较小时, 如 LS 法。
以上三式构成一组递推最小二乘估计算式 ^ ^ • 物理意义:新的参数估计 θ N +1是对上次老的估计 θ N 进行 物理意义: 修正而得出的。 修正而得出的。
初值选取方式
• 初值选取一般有两种方法可以考虑 初值选取一般有两种方法可以考虑: 1、先取一批数据,求取 θ ( N ) , P(N)做初值 、先取一批数据 求取 做初值,N>m 做初值

最小二乘法分类

最小二乘法分类

最小二乘法分类最小二乘法(Least Squares Method)是一种常用的参数估计方法,用于寻找一个函数模型的最佳拟合参数,使得模型的预测值与观测值的残差平方和最小化。

这种方法最早由高斯提出,并被广泛应用于统计学和计算机科学等领域。

本文将介绍最小二乘法的基本原理、应用场景以及相关的算法和评估指标。

一、基本原理:最小二乘法用于求解形如y = f(x;θ) 的函数模型的参数θ,其中y是观测值,x是自变量,f是函数模型。

最小二乘法的目标是找到最佳的参数θ,使得模型的预测值与实际观测值之间的残差平方和最小化。

具体步骤如下:1. 定义函数模型:根据具体问题,选择适当的函数模型,如线性模型、多项式模型、指数模型等。

2. 表达目标函数:根据函数模型和参数θ,将目标函数表达为关于θ的函数形式。

3. 定义损失函数:通常采用残差的平方和作为损失函数,即Loss = Σ(y_i - f(x_i;θ))^2 。

4. 求解参数θ:通过最小化损失函数,即求解使得∂Loss/∂θ = 0 的参数θ。

5. 参数估计:根据求解得到的参数θ,即可获得最佳的函数模型。

二、应用场景:最小二乘法在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 线性回归:最小二乘法用于拟合线性回归模型,求解自变量与因变量之间的关系。

2. 特征选择:最小二乘法可用于特征选择,筛选对目标变量影响最大的特征。

3. 数据压缩:通过最小二乘法可以估计出一个低维子空间,将高维数据进行压缩。

4. 图像处理:最小二乘法可用于图像去噪、图像恢复等问题,如使用低秩矩阵模型对图像进行恢复。

5. 信号处理:最小二乘法可用于信号滤波、信号恢复等问题,如基于 DCT 的音频和图像压缩。

三、算法与评估指标:1. 最小二乘法的数值解:在实际应用中,最小二乘法的数值解可以通过各种数值优化算法来求解,包括梯度下降法、牛顿法、共轭梯度法等。

2. 算法评估指标:常用的评估指标包括残差平方和(Residual Sum of Squares, RSS)、均方误差(Mean Square Error, MSE)以及决定系数(Coefficient of Determination, R^2)等。

第十八讲全面最小二乘法

第十八讲全面最小二乘法

Y
V H ,其中σ 1 ≥ σ 2 ≥ ≥ σ r > 0 。又设 0 m×n σ 1 Vn (s < r ) 则 U σs 0 m×n
z∈C rankz = s F
min X − Y= X −Z F m×n
H
首先来考虑 F-范数。设 Pm×n = UQV ,U、V 分别为 m 阶、n 阶酉
r
r
n
1 i= r +1 j =
∑ ∑ tij
m
n
2
对任意 Z 矩阵而言,各 tij 之间完全独立,则 X − Z 于零的。但是 rank ( Z )= s < r 。故 X − Z
F
F
是可能等
不可能为零。详细论证
F
可知 tij = 0(i ≠ j ), tii = 0(i > s ), tii = σ i (i = 1, 2,, s ) 时, X − Z 小 下 面 仅 考 虑 在 实 际 应 用 中 非 常 常 见 的 一 种 情 况 : A ∈ Cn
14
= min ∆ F =
显然满足
rank ( C +∆ ) =n
rank ( C +∆ )< n +1
min
C − (C + ∆ )
F
min
= C− ( C + ∆ ) σ n+1
0 H ∆ =U 0 V σ + n 1 O
15
定理 2: 设σ n +1 为 C 的 n-k+1 重奇异值,且 vk +1 , vk + 2 , vn +1 相应的为

第十节最小二乘法

第十节最小二乘法
1 2 3 4 5 6 78
3 6 9 12 15 18 21 24
57.6 41.9 31.0 22.7 16.6 12.2 8.9 6.5
其中 表示从实验开始算起的时间,
y 表示时刻 反应
物的量. 试根据上述数据定出经验公式
解: 由化学反应速度的理论知, 经验公式应取
其中k , m 为待定常数.
对其取对数得
(书中取的是常用对数)
(线性函数)ຫໍສະໝຸດ 因此 a , b 应满足法方程组:
经计算得 解得:
其均方误差为
所求经验公式为
通过计算确定某些经验公式类型的方法:
观测数据:
用最小二乘法确 定a, b
27.125
26.518
25.911
25.303
26.821
26.214 25.607
25.000
-0.125 -0.018
0.189 -0.003
-0.021
0.086
0.093 -0.200
偏差平方和为
称为均方误差,
对本题均方误差
它在一定程度上反映了经验函数的好坏.
例2. 在研究某单分子化学反应速度时, 得到下列数据:
解: 通过在坐标纸上描点可看出它们
大致在一条直线上,
故可设经验公式为
列表计算:
得法方程组 解得
0
0 27.0 0
7
49 24.8 137.6
28 140 208.5 717.0
故所求经验公式为
为衡量上述经验公式的优劣,
计算各点偏差如下:
0123456 7 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8
使
满足:

普通最小二乘法

普通最小二乘法
确定模型类型
选择合适的回归模型,如线性回归、多项式回归等。
设定模型假设
确保满足回归分析的基本假设,如误差项独立同分布、误差项无系统偏差等。
建立模型
利用最小二乘法计算回归参数的最优估计值。
分析估计量的性质,如无偏性、有效性等,确保估计结果可靠。
参数估计
检验估计量性质
计算最小二乘估计量
03
模型选择与优化
普通最小二乘法的历史与发展
02
普通最小二乘法的原理
01
02
03
线性回归模型是一种预测模型,通过找到最佳拟合直线来预测因变量的值。
在线性回归模型中,自变量和因变量之间存在线性关系,即因变量可以表示为自变量的线性组合。
线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + ... + βpxp + ε,其中y是因变量,x1, x2, ..., xp是自变量,β0, β1, β2, ..., βp是参数,ε是误差项。
详细描述
主成分回归是一种基于主成分分析的回归方法,通过提取解释变量中的主要成分,降低数据的维度,提高模型的解释性和稳定性。
总结词
主成分回归首先对解释变量进行主成分分析,提取出解释变量中的主要成分,然后将这些主成分作为新的解释变量进行回归分析。由于主成分能够反映原始变量中的大部分信息,因此这种方法能够减少数据的维度,降低多重共线性的影响,提高模型的稳定性和解释性。
无偏性
普通最小二乘法估计的参数具有无偏性,即估计的期望值等于真实值。
最佳线性无偏估计
普通最小二乘法能得到最佳线性无偏估计,即估计的方差最小。
优点
异方差性
普通最小二乘法对数据的异方差性敏感,可能导致估计结果失真。

最小二乘法的综述及算例

最小二乘法的综述及算例

题目:最小二乘法的综述及算例院系:航天学院自动化班级:学号:学生签名:指导教师签名:日期:2011年12月6日目录1.综述 (3)2.概念 (3)3.原理 (4)4.算例 (6)5.总结 (10)参考文献 (10)1.综述最小二乘法最早是由高斯提出的,这是数据处理的一种很有效的统计方法。

高斯用这种方法解决了天文学方面的问题,特别是确定了某些行星和彗星的天体轨迹。

这类天体的椭圆轨迹由5个参数确定,原则上,只要对它的位置做5次测量就足以确定它的整个轨迹。

但由于存在测量误差,由5次测量所确定的运行轨迹极不可靠,相反,要进行多次测量,用最小二乘法消除测量误差,得到有关轨迹参数的更精确的值。

最小二乘法近似将几十次甚至上百次的观察所产生的高维空间问题降到了椭圆轨迹模型的五维参数空间。

最小二乘法普遍适用于各个科学领域,它在解决实际问题中发挥了重要的作用。

它在生产实践、科学实验及经济活动中均有广泛应用。

比如说,我们引入等效时间的概念,根据Arrhenius 函数和指数函数研究水化热化学反应速率随温度的变化,最后采用最小二乘法回归分析试验数据,确定绝热温升和等效时间的关系式。

为了更好地掌握最小二乘法,我们引入以下两个问题:(1)假设已知一组二维数据(i i y x ,),(i=1,2,3···n ),怎样确定它的拟合曲线y=f(x)(假设为多项式形式f(x)=nn x a x a a +++...10),使得这些点与曲线总体来说尽量接近?(2)若拟合模型为非多项式形式bxae y =,怎样根据已知的二维数据用最小二乘线性拟合确定其系数,求出曲线拟合函数?怎样从给定的二维数据出发,寻找一个简单合理的函数来拟合给定的一组看上去杂乱无章的数据,正是我们要解决的问题。

2.概念在科学实验的统计方法研究中,往往要从一组实验数(i i y x ,)(i=1,2,3···m )中寻找自变量x 与y 之间的函数关系y=F(x).由于观测数据往往不准确,此时不要求y=F(x)经过所有点(i i y x ,),而只要求在给定i x 上误差i δ=F (i x )i y -(i=1,2,3···m )按某种标准最小。

【文献综述】最小二乘法的原理和应用

【文献综述】最小二乘法的原理和应用

文献综述数学与应用数学最小二乘法的原理和应用一、国内外状况天文学自古代至18世纪是应用数学中最发达的领域。

观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。

天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。

1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

勒让德是法国军事学校的教授,曾任多界政府委员,后来成了多科工艺学校的总监,直至1833年逝世。

有记载最小二乘法最早出现在勒让德1805年发表的论著《计算彗星轨道的新方法》附录中。

他在该书中描述了最小二乘法的思想、具体做法及其优点。

勒让德的成功在于它从一个新的角度来看待这个问题,不像其前辈那样致力于找出几个方程(个数等于未知数的个数)再去求解,而是考虑误差在整体上的平衡。

从某种意义讲,最小二乘法是一个处理观测值的纯粹代数方法。

要将其应用于统计推断问题就需要考虑观测值的误差,确定误差分布的函数形式。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。

最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。

如已知两变量为线性关系y=a+dx,对其进行n(n>2)次观测而获得n对数据,若将这n对数据代入方程求解a 、b 之值则无确定解。

最小二乘法及其应用

最小二乘法及其应用

---------------------------------------------------------------最新资料推荐------------------------------------------------------最小二乘法及其应用最小二乘法及其应用摘要最小二乘法是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

关键字最小二乘法经验公式近似计算 1 最小二乘法的简介及其定义 1. 1 关于最小二乘法的简介 1801 年,意大利天文学家朱赛普皮亚齐发现了第一颗小行星谷神星。

经过 40 天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年 24 岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于 1809 年他的著作《天体运动论》中。

1 / 5法国科学家勒让德于 1806 年独立发现最小二乘法,但因不为世人所知而默默无闻。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829 年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。

1. 2 最小二乘法的定义在科学研究和实际工作中, 常常会遇到这样的问题: 给定两个变量x, y 的 m组实验数据, 如何从中找出这两个变量间的函数关系的近似解析表达式(也称为经验公式) ,使得能对 x 与 y 之间的除了实验数据外的对应情况作出某种判断. 这样的问题一般可以分为两类:一类是对要对 x 与 y 之间所存在的对应规律一无所知, 这时要从实验数据中找出切合实际的近似解析表达式是相当困难的, 俗称这类问题为黑箱问题; 另一类是依据对问题所作的分析, 通过数学建模或者通过整理归纳实验数据, 能够判定出 x 与 y 之间满足或大体上满足某种类型的函数关系式, 其中是 n 个待定的参数, 这些参数的值可以通过 m 组实验数据来确定(一般要求) , 这类问题称为灰箱问题. 解决灰箱问题的原则通常是使拟合函数在处的值与实验数值的偏差平方和最小,即取得最小值.这种在方差意义下对实验数据实现最佳拟合的方法称为最小二乘法。

第5章最小二乘法

第5章最小二乘法
共得k个方程,称正规方程,求此联立方程的解可得 出诸参数估计值 aˆ j (j=1,2,…,k)。
第5章最小二乘法
最小二乘法的几何意义
从几何图形上可看出,最小二乘法就是要在穿过各 观测点(xi,yi)之间找出这样一条估计曲线,使各观测 点到该曲线的距离的平方和为最小。
Y
X
第5章最小二乘法
三、最小二乘法与最大似然法的关系
如果假定各观测值是相互独立且服从正态分布, 期望值是μ(xi;a1,a2,…,ak),方差是σi2, 则观测值的似然函数为
最大似然法要求上式取极大值,这就相当于要求指 数项中的
=最小 这就说明了在观测值服从正态分布的条件下,最 小二乘估计与最大似然估计是一致的。
第5章最小二乘法
观测值不服从正态分布时的最小二乘估计
选取的参数估值应使诸观测值yi与其估计值 yˆ i 之差的加 权平方和为最小。用式子表示就是要使
=最小 其中,wi为各观测值yi的权。wi=σ2/σi2,,i=1, 2,…,n。这里σ2为任选的正常数,它表示单位权 方差。
第5章最小二乘法
不等精度情况下的最小二乘法正规方程
同样地,根据数学分析中求函数极值的条件:
解得最小二乘法处理结果为
第5章最小二乘法
四、最小二乘原理与算术平均值原理 的关系
为了确定一个量X的估计量x,对它进 行n次直接测量,得到n个数据
l1,l2,…,ln,相应的权分别为p1, p2,…,pn,则测量的误差方程为
(5-35)
第5章最小二乘法
其最小二乘法处理的正规方程为 由误差方程知a=l,因而有
第5章最小二乘法
n
前面已证明
2 i
/
2
是自由度为(n-t)的χ2变量。

最小二乘法如何通过最小二乘法解决各种数学问题

最小二乘法如何通过最小二乘法解决各种数学问题

最小二乘法如何通过最小二乘法解决各种数学问题在数学领域,最小二乘法是一种常见且广泛应用的数据拟合方法。

它通过最小化误差平方和的方式来找到最接近实际观测值的拟合曲线或平面,并用于解决各种数学问题。

最小二乘法常用于统计学和回归分析中,例如线性回归问题和曲线拟合问题。

当我们想要找到一个数学模型来描述变量之间的关系时,最小二乘法提供了一种有效的方法。

下面将介绍最小二乘法的原理和应用。

一、最小二乘法的原理最小二乘法的核心思想是使得拟合函数与实际观测值之间的误差最小化。

在解决回归问题时,我们通常选择一个数学模型,如直线、曲线或多项式,以描述不同变量之间的关系。

对于一个线性模型而言,我们可以假设观测值 y 和自变量 x 之间的关系可以用 y = ax + b 表示,其中 a 和 b 是待求解的参数。

最小二乘法的目标就是找到最佳的参数 a 和 b,使得观测值与拟合函数之间的误差最小。

二、最小二乘法的应用1. 线性回归在线性回归问题中,最小二乘法被广泛应用于拟合直线到一组数据点。

通过最小化观测值与拟合直线之间的误差平方和,我们可以找到最佳的直线拟合。

举个例子,假设我们有一组二维数据点 (x1, y1), (x2, y2), ..., (xn, yn),我们想要找到一条直线 y = ax + b 来拟合这些数据。

通过最小二乘法,我们可以求解得到最佳的参数 a 和 b。

2. 曲线拟合不仅仅局限于直线拟合,最小二乘法还可以应用于曲线拟合问题。

如果我们有一组数据点 (x1, y1), (x2, y2), ..., (xn, yn),希望找到一个函数 y = f(x) 来拟合这些数据,最小二乘法可以帮助我们找到最佳的拟合曲线。

常见的曲线拟合问题包括多项式拟合和指数拟合。

通过选择不同的函数形式,最小二乘法能够适应各种曲线拟合问题,并提供较为准确的拟合结果。

3. 数据平滑在数据处理过程中,有时候我们会遇到数据中的噪声或异常值。

最小二乘法

最小二乘法

最小二乘法1:最小二乘法的原理与要解决的问题最小二乘法是由勒让德在19世纪发现的,形式如下式:标函数 = \sum(观测值-理论值)^2\\观测值就是我们的多组样本,理论值就是我们的假设拟合函数。

目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。

举一个最简单的线性回归的简单例子,比如我们有 m 个只有一个特征的样本: (x_i, y_i)(i=1, 2, 3...,m)样本采用一般的 h_{\theta}(x) 为 n 次的多项式拟合,h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+...\theta _nx^n,\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 为参数最小二乘法就是要找到一组\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 使得\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^2 (残差平方和) 最小,即,求 min\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^22 :最小二乘法的矩阵法解法最小二乘法的代数法解法就是对 \theta_i 求偏导数,令偏导数为0,再解方程组,得到 \theta_i 。

矩阵法比代数法要简洁,下面主要讲解下矩阵法解法,这里用多元线性回归例子来描:假设函数h_{\theta}(x_1,x_2,...x_n)=\theta_0+\theta_1x_1+...+\t heta_nx_n 的矩阵表达方式为:h_{\theta}(\mathbf{x})=\mathbf{X}\theta\\其中,假设函数 h_{\theta}(\mathbf{x})=\mathbf{X}\theta 为 m\times1 的向量, \theta 为 n\times1 的向量,里面有 n 个代数法的模型参数。

最小二乘法简介

最小二乘法简介

m
=
p( x ) y
i 0 i i
m
2
min
从几何意义上讲, 就是寻求与给定点 ( xi , yi ) (i=0,1,…,m)的距离平方和为最 小的曲线 y p( x) (图 6-1)。函数 p( x) 称为拟合 函数或最小二乘解,求拟 合函数 p( x) 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类 可有不同的选取方法.
(5) 可以证明,式(5)中的 p n ( x) 满足式(1),即 p n ( x) 为所求的拟合多项式。我
k 0
p n ( x) a k x k
n

们把 i 0

p
m
n
( xi ) y i
2
称为最小二乘拟合多项式 p n ( x) 的平方误差,记作
r
由式(2)可得
m
2 2
2 i 0 i 0 n m n n 0 2 (b j a j ) xij a k xik y i 2 b j a j a k xik y i xij i 0 j 0 j 0 i 0 k 0 k 0 m n
第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数 p( x) 同所给数据点 ( xi , yi ) (i=0,1,…,m)误差
ri p( xi ) yi (i=0,1,…,m)的大小,常用的方法有以下三种:一是误差
ri ri p( xi ) yi (i=0,1,…,m)绝对值的最大值 max 0i m ,即误差 向量
xij
m
( j 0,1,,2n)
x

最小二乘法的原理及证明

最小二乘法的原理及证明

最小二乘法的原理及证明最小二乘法是一种常用的数据拟合方法,它的本质是通过寻找最小化残差平方和的参数组合进行数据拟合。

在现实生活中,很多实际问题都可以通过最小二乘法来求解,如线性回归、曲线拟合、方程求解等。

本文将介绍最小二乘法的原理及证明。

一、最小二乘法的原理最小二乘法是一种基于误差最小化的思想进行模型参数求解的方法。

对于含有n个数据点的模型,其最小二乘法的表示形式为:$min[\sum_{i=1}^n(y_i-f(x_i))^2]$其中,$y_i$为第i个数据点的观测值,$f(x_i)$为模型在$x_i$处的预测值。

最小二乘法的目的是寻找一个最优的模型参数集合,使得预测值与观测值之间的误差平方和最小。

以线性回归为例,线性回归模型的基本形式为:$y=\beta_0+\beta_1x+\epsilon$其中,$\beta_0$和$\beta_1$为线性回归的系数,$\epsilon$为误差项。

通过最小二乘法,我们需要求解$\beta_0$和$\beta_1$,使得预测值与真实值之间的残差平方和最小。

在实际应用中,最小二乘法可以通过求解模型参数的偏导数,进而得到参数的估计值。

同时,最小二乘法还可以通过矩阵运算的形式进行求解,这种方法称为矩阵最小二乘法。

二、最小二乘法的证明最小二乘法的原理可以通过数学证明来得到。

在数学推导中,我们需要利用概率论和统计学的相关知识。

1、最小二乘法的基本假设首先,我们需要对最小二乘法做出一些假设。

最小二乘法的假设包括:(1)数据点满足线性关系;(2)误差项满足高斯分布;(3)误差项具有同方差性;(4)误差项之间相互独立。

在这些假设的基础上,我们可以得出以$X$为自变量,$Y$为因变量的线性模型:$Y=\beta_0+\beta_1X+\epsilon$其中,$\beta_0$和$\beta_1$为线性模型的系数,$\epsilon$为误差项。

我们需要利用概率论和统计学的方法,通过参数的似然函数来求解模型的系数。

最小二乘法

最小二乘法

感谢观看
1、线性特性
所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合 。
2、无偏性
无偏性,是指参数估计量的期望值分别等于总体真实参数 。
3、最小方差性
所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。最小方差性又称有效 性。这一性质就是著名的高斯一马尔可夫( Gauss-Markov)定理。这个定理阐明了普通最小二乘估计量与用其 它方法求得的任何线性无偏估计量相比,它是最佳的 。
基本思路
最小二乘法是解决曲线拟合问题最常用的方法。其基本思路是:令
其中,是事先选定的一组线性无关的函数,是待定系数,拟合准则是使与的距离的平方和最小,称为最小二 乘准则 。
基本原理
设(x,y)是一对观测量,且满足以下的理论函数 : 其中为待定参数 。 为了寻找函数的参数的最优估计值,对于给定组(通常 )观测数据,求解目标函数 取最小值的参数。求解的这类问题称为最小二乘问题,求解该问题的方法的几何语言称为最小二乘拟合 。 对于无约束最优化问题,最小二乘法的一般形式为 : 其中称为残差函数。当是的线性函数时,称为线性最小二乘问题,否则称为非线性最小二乘问题 。
最小二乘优化问题
在无约束最优化问题中,有些重要的特殊情形,比如目标函数由若干个函数的平方和构成,这类函数一般可 以写成 :
其中,通常要求m≥n,我们把极小化这类函数的问题 : 称为最小二乘优化问题。最小二乘优化是一类比较特殊的优化问题 。
最小二乘估计量的特性
根据样本数据,采用最小二乘估计式可以得到简单线性回归模型参数的估计量。但是估计量参数与总体真实 参数的接近程度如何,是否存在更好的其它估计式,这就涉及到最小二乘估计式或估计量的最小方差(或最佳) (Best)性、线性(Linear)及无偏( Unbiased)性,简称为BLU特性。这就是广泛应用普通最小二乘法估计 经济计量模型的主要原因。下面证明普通最小二乘估计量具有上述三特性 。

数值分析34(最小二乘法)

数值分析34(最小二乘法)

但遗憾的是,在实际中噪声的形式往往是 未知的。在上个世纪60年代,Tukey说明了在 现实情况中,噪声的形式与高斯或拉普拉斯规 律都相去甚远。
回到起点!
作业: 习题 16,17,18 (数据有删减)
S1(x)Abx
得法方程
1A 63.380 b77 3.5 26394 3.380A 71.3 584 b31 5.6 82229
解得
A 4 .48,0 b 7 1 .0 2567
从而得到 a e A 1.3 12 15 3 03
y 1 . 3 1 2 1 3 e 5 0 1 . 0t5 3 F 6 ( 2 ) ( t 7 )
根据这些条件,可设想两种形式的函数关系:
y = F(t) 是双曲线型
1ab,即 y t
yt
(a t b)
y = F(t) 是指数形式 yaeb/t
b<0
y = F(t) 是双曲线型
1ab,即 y t
yt
(a t b)
为了确定a、b,令
y 1, x1
y
t
于是可用 x 的线性函数 S1(x)abx拟合 数据 (x i,y i) (i 1 ,.1 .)。.6 (,xi, yi) 可由原始 数据 (ti , yi ) 计算出来。
例2. 在某化学反应里,根据实验所得生成物的 浓度与时间关系如下表,求浓度y与时间t的拟 合曲线y=F(t).
t 12345678 Y 4.00 6.40 8.00 8.80 9.22 9.50 9.70 9.86 t 9 10 11 12 13 14 15 16 y 10.00 10.20 10.32 10.42 10.50 10.55 10.58 10.60
高斯提出了最小二乘法,而拉普拉斯提出了 最小模方法。从那时起就有了下面的问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法综述及算例一最小二乘法的历史简介1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。

经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。

随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。

时年24岁的高斯也计算了谷神星的轨道。

奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

经过两百余年后,最小二乘法已广泛应用与科学实验和工程技术中,随着现代电子计算机的普及与发展,这个方法更加显示出其强大的生命力。

二最小二乘法原理最小二乘法的基本原理是:成对等精度测得的一组数据),...,2,1(,n i y x i i =,是找出一条最佳的拟合曲线,似的这条曲线上的个点的值与测量值的差的平方和在所有拟合曲线中最小。

设物理量y 与1个变量l x x x ,...,2,1间的依赖关系式为:)(,...,1,0;,...,2,1n l a a a x x x f y =。

其中n a a a ,...,1,0是n +l 个待定参数,记()21∑=-=mi i i y vs 其中 是测量值, 是由己求得的n a a a ,...,1,0以及实验点),...,2,1)(,...,(;,2,1m i v x x x i il i i =得出的函数值)(,...,1,0;,...,2,1n il i i a a a x x x f y =。

在设计实验时, 为了减小误差, 常进行多点测量, 使方程式个数大于待定参数的个数, 此时构成的方程组称为矛盾方程组。

通过最小二乘法转化后的方程组称为正规方程组(此时方程式的个数与待定参数的个数相等) 。

我们可以通过正规方程组求出a最小二乘法又称曲线拟合, 所谓“ 拟合” 即不要求所作的曲线完全通过所有的数据点, 只要求所得的曲线能反映数据的基本趋势。

三曲线拟合曲线拟合的几何解释: 求一条曲线, 使数据点均在离此曲线的上方或下方不远处。

(1)一元线性拟合设变量y 与x 成线性关系x a a y 10+=,先已知m 个实验点),...,2,1(,m i v x i i =,求两个未知参数1,0a a 。

令()2110∑=--=mi i i x a a y s ,则1,0a a 应满足1,0,0==∂∂i a si。

即i v i v化简得从中解出∑∑∑∑====-==⎪⎪⎪⎭⎫⎝⎛=-=-=∑∑∑m i m i mi mi ii mi m i i i mi i i i i x m a y m a xxm y x y x m a 112111011111(2)多元线性拟合设变量y 与n 个变量)1(,...,2,1≥n n xx x 的内在联系是线性的,即有下式∑==+nj j o x a a y 11设j x 的第i 次测量值为ij x ,对应的函数值为),...,2,1(m i i y ==,则偏差平方和()()∑∑=--=-==mi i mi i i x a a y y y s 11021'为使s 去得最小值的方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛∑-=∂∂=⎪⎭⎫ ⎝⎛∑-=∂∂=⎪⎭⎫ ⎝⎛∑-=∂∂∑∑∑=--=--=--===m i in ij j i n m i i ij j i m i ij i x x a a y a s x x a a y a s x a a y a s n j n j n j 101101110002....................................................0202111 即⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+∑∑∑∑∑∑∑=======n j mi ik j m i ik ij mi ik mi ij n j m i ij y x a x x a x y a x ma 111101110n k ,...,2,1=。

(4) 将实验数据()i ij y x ,代入(4)式,即得n a a a ,...,1,0。

∑∑=--=--=-=∂∂=-=∂∂m i i i mi i i i x a a y a sx a a y a s11011000)(20)(2∑∑∑∑====+=+mi m i m i m i ii i ii y x a x a y m x m a a 111110101(3)多项式拟合科学实验后得到一组数据时,常会遇到因变量y 与自变量x 之间根本不存在线性关系。

此可以考虑用一个n 次多项式来拟合y 与x 之间的函数关系。

对于n 次多项式∑==ni ii xa y 0,令),...,1,0(n x x j ij ==,则可将其化为线性形式:∑=+=nj j j x a a y 1对于i=1,2,...,m 个实验点有j i ij x x =,代入(3)式有n k y x a x x a x y a x ma mi n j mi i ik j m i ik ij ik mi ij n j m i ij ,...,2,1111101110=⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+∑∑∑∑∑∑∑======= 从而得出多项式的最小二乘法拟合的方程n k y x a x i mi k i i ni m i k j i ,...,1,0111==⎪⎭⎫⎝⎛∑∑∑===+写成矩阵的形式即为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑∑∑∑∑∑∑∑∑∑∑====+=+==+======mi i n i m i i i m i i n m i n i mi n imi n im i n i m i n i mi imi im i i mi mi nimi iiy x y x y a a a x xxx x xxx x xxm 1110121211111131211112.............................. 从中可以解出n a a a ,...,1,0。

(4)指数函数拟合此时拟合函数具有形式bxae y =(a ,b 为待定系数)。

两端取自然对数有(*)ln ln bxa y +=令a b yY ln ln 0==则(*)式化为线性形式 bx b Y +=0再利用(1)式和(2)式,即可求出b b ,0。

从而有ob e a =。

故bxb o e y +=。

四最小二乘法应用举例例:已知某铜棒的电阻与温度关系为:t R R t ⋅+=α0。

实验测得7组数据(见表1)如下:试用最小二乘法求出参量R 0、α 以及确定它们的误差。

此例中只有两个待定的参量R 0和α,为得到它们的最佳系数,所需要的数据有n 、∑i x 、∑iy 、∑2ix、∑2iy和∑iiyx 六个累加数,为此在没有常用的科学型计算器时,通过列表计算的方式来进行,这对提高计算速度将会有极大的帮助(参见表2),并使工作有条理与不易出错。

其中表内双线右边的计算是为了确定R 0和α的误差项用的。

根据表2中所求得的数据,代入公式(12))则可得: C k 02/28788.035.51156.1472)5.245(8.9340700.5665.2458.200607Ω==-⨯⨯-⨯==αΩ=⋅-==76078.7075.24528788.0700.5660b R 把测量数据代入式(13)和(15)中可求出相关系数)]7)00.566(45826[(]7)5.245(8.9340[700.5665.2458.20060])(1[])(1[1222222-⨯-⨯-=-⋅--=∑∑∑∑∑∑∑i i i i ii i i y n y x n x y x n y x γ99757.07)00.566(458267)5.245(8.934028788.0)(1)(1222222=--⨯=--⨯=∑∑∑∑i i i iy n y x n x k说明:电阻R t 与温度t 的线性关系良好,所以取R 0的有效数字与R 对齐,即R 0=70.76Ω;又因为t 7-t 1 = 31.0 ℃,R 7-R 1 = 8.80Ω,取k 有效数字为以上两个差值中较少的位数3位,则k = 0.288Ω/︒C 。

由此可以得到电阻与温度的相关关系为:t R t 288.076.70+=按补充资料中的公式计算k 和b 的不确定度,可得)(239.027102845242Ω=-⨯=-==-∑n S S iR y t ν)C /(0088.003699.0239.07)5.245(8.9340239.0)(222︒Ω=⨯=-=-==∑∑nx x S S S i i yk α)(33.078.93400088.020Ω=⨯===∑n xS S S ikR b故 Ω±=Ω±=)3.08.70()33.076.70(0R ,C /)009.0288.0(C /)009.02879.0(︒Ω±=︒Ω±=α 则 t R t 288.08.70+=参考文献:1.《最小二乘法与测量平差》 郭禄光,樊功瑜著 同济大学出版社 19852.《近代最小二乘法》 测绘出版社 19803.《最小二乘法的拟合及其应用》 邓亮章 兰州教育学院学报 2012.114.《最小二乘法的创立及其思想方法》 贾小勇,徐传胜,白欣 西北大学学报2006.6。

相关文档
最新文档