第五章控制系统的频率特性分析法

合集下载

控制工程 第5章 系统的频率特性

控制工程 第5章 系统的频率特性
解:系统的频响函数(频响特性)、幅频特性和相频 特性分别为
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-1

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-1

5.1 频率特性的基本概念
在工程实践中, 往往并不需要准确地计算系 统响应的全部过程,而是希望避开繁复的计算, 简单、直观地分析出系统结构、参数对系统性能 的影响。因此,主要采用两种简便的工程分析方 法来分析系统性能,这就是根轨迹法与频率特性 法,本章将详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频 率特性(元件或系统对不同频率正弦输入信号的 响应特性)来分析系统性能的方法,研究的问题 仍然是控制系统的稳定性、快速性及准确性等, 是工程实践中广泛采用的分析方法,也是经典控 制理论的核心内容。
5.1 频率特性的基本概念
二、频率特性和传递函数之间的关系
( j ) ( s ) s j
频率特性就是在s=jω时的传递函数,它也是 系统或环节的数学模型,描述了系统的运动规律 及其性能。 频率特性可以通过传递函数求取(解析法), 也可以用专门的仪器、通过实验的方法求取。
5.1 频率特性的基本概念
yss ( j 2) X sin(2t ) 0.35sin(2t 45 )
5.1 频率特性的基本概念
频率特性的物理意义
1、在某一特定频率下,系统输入输出的幅值比与相位差 是确定的数值,不是频率特性。当输入信号的频率ω在0→∞的 范围内连续变化时,则系统输出与输入信号的幅值比与相位差 随输入频率的变化规律将反映系统的性能,才是频率特性 。 2、频率特性反映系统本身性能,取决于系统结构、参数, 与外界因素无关。 3、 频率特性随输入频率变化的原因是系统往往含有电容、 电感、弹簧等储能元件,导致输出不能立即跟踪输入,而与输 入信号的频率有关。 4、频率特性表征系统对不同频率正弦信号的跟踪能力, 一般有“低通滤波”与“相位滞后”作用。

第五章 频率特性法 (2)

第五章  频率特性法 (2)
1 1
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .

自动控制系统—— 第5章-1 频率特性及其表示法

自动控制系统—— 第5章-1 频率特性及其表示法
Mod5_1_1.mdl Mod5_1_1Prg.m
7
(1)输入为 ui (t) sin t 相对输入,输出有相位差,幅度不同
8
(2)输入为 ui (t) sin 2t 输出有相位差,峰值衰减,输入峰值不变
9
(3)输入为 ui (t) sin 3t 输出有相位差,初始段峰值衰减,之后峰值稳定
2
引言
频域分析法:应用频率特性研究线性系统的经典 方法称为频域分析法 引入频域模型:频率特性函数
线性定常系统的数学模型: 时域模型: 常微分方程
复数域模型: 传递函数 频域模型: 频率特性函数
3
频域分析的内容: 1.频率特性及其表示:幅相曲线,Bode图 2.典型环节的频率特性:一阶环节,二阶环节 3.Nyquist稳定判据:基于幅相曲线、Bode图 4.稳定裕度:幅值稳定裕度,相位稳定裕度 5.频域指标:带宽、谐振频率、谐振峰值等
cs (t) Kce jt K ce jt
K c 和 K c 可以由留数计算得到
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
Kc
G(s)
(s
A j)(s
j)
(s
j)
s j
G( j)A
2j
22
由于 G( j) A()e j()
G( j) 与 G( j) 是共轭的
所以 G( j) A()e j()
Kc
G( j,) A
2j
A 2j
A()e j()
Kc
G( j)A
2j
A 2j
A()e
j ( )
代入 cs (t) Kce jt K ce jt

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-7
(c ) 0 (c ) 0 (c ) 0
系统是稳定的 系统是临界稳定的 系统是不稳定的
5.7用开环频率特性分析系统的动态性能
3. 增益裕量G.M. (幅值裕量) 相角为-180o这一频率值ωg所对应的幅值倒数的分贝数。
1 G.M . 20lg 20lg Gk ( jg ) 20lg A(g ) Gk ( jg )
5.7用开环频率特性分析系统的动态性能
1.低频段 表征了系统的稳态性能即控制精度。从稳态而 言,总希望K大些,系统类型高些,这样稳态误差 就小些。 2.高频段 反映系统的抗干扰能力,斜率越负,抗干扰能 力越强。
5.7用开环频率特性分析系统的动态性能
三、频域性能与时域性能的关系 对于二阶系统 1. γ(ωc)与σ%的关系(平稳性)
自动控制原理
第五章 控制系统的频率特性分析法
5.7 用开环频率特性分析系统的动态性能
5.7用开环频率特性分析系统的动态性能
一、开环频域性能指标
1.截止频率ωc 对数幅频特性等于0分贝时的ω值,即截止频率ωc表 征响应的快速性能, ωc越大,系统的快速性能越好。
L(c ) 20lg A(c ) 0 A(c ) 1
2.相位裕量γ(ωc)
相频特性曲线在ω= ωc时的相角值φ(ωc)与-180°之差。
(c ) (c ) 180
5.7用开环频率特性分析系统的动态性能
相位裕量的物理意义是,为了保持系统稳定, 系统开环频率特性在ω= ωc时所允许增加的最大相 位滞后量。 如果将矢量顺时针旋过γ角度,系统就处于临 界稳定状态。 对于最小相位系统,相位裕量与系统的稳定性 有如下关系:
②中频段的斜率为-40dB/dec,系统相当于阻尼系数 ζ=0的二阶系统,所以h不宜过宽; h越宽,平稳性越差。 ③中频段的斜率为-60dB/dec,系统不稳定。 重要结论:控制系统要具有良好的性能,中频段的 斜率必须为-20dB/dec,而且要有一定的宽度(通常 为5~10); 应提高截止频率来提高系统的快速性。

第五章频率特性法

第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性

频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2

1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。

第五章 频率特性分析法

第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、

控制系统--第五章 系统频率响应分析

控制系统--第五章 系统频率响应分析

第五章 系统频率响应分析 5.1.2 频率特性的特点和作用 1. 频率特性可通过频率响应试验求取
根据频率特性的定义,首先改变输入正弦信号 Xie jt 的频率 并测出与此相应的输出幅值Xo ()与相移 ()。然后作出幅值比 Xo () / Xi 对频率 的函数曲线,此即幅频特性曲线;作出相移 () 对频率 的函数曲线,此即相频特性曲线。
Im
[G(jω)] 0
ω=∞
Re -90°
定的相位滞后。
ω
3. 微分环节
图5.7 积分环节的Nyquist图
传递函数 频率特性
G(s) Xo (s) Ts Xi (s)
G( j) = jT
第五章 系统频率响应分析
实频特性恒为0,虚频特性则为 ;
幅频特性|G(j)| = ,相频特性∠ G(j) = 90°。
G(s)Xi (s)
bmsm ansn
bm1sm-1 b1s bo a n1sn1 a1s a o
Xi s2 2
(5.5) (5.6)
第五章 系统频率响应分析
若系统无重极点,则上式可写为
Xo (s)
n i1
Ai s si
( B s j
B* ) s j
(5.7)
其中,si为系统特征方程的根;Ai、B、B* (B*为B 的共轭负数)
(5.12)
式中 u()是频率特性的实部,称为实频特性;
v()是频率特性的虚部,称为虚频特性。
综上所述,一个系统可以用微分
微分方程 dtd
sபைடு நூலகம்
dt d

方程或传递函数来描述,也可以用频
系统
率特性来描述。他们之间的相互关系 如图5.3所示。

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3

比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )

1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处

自动控制原理第5章

自动控制原理第5章

自动控制原理
第五章 频域分析法-频率法
1 sin(t arctanT ) 1 2T 2
1
e jarctanT
j 1
e 1 jT
1 2T 2
jT
1
1 jT
RC网络的频率特性
只要把传递函数式中的s以j置换,就可以 得到频率特性,即
1
1
1 jT 1 Ts sj
自动控制原理
第五章 频域分析法-频率法
对数相频特性:( ) arctan 特征点: 1 , L( ) 3dB, 45
自动控制原理
第五章 频域分析法-频率法
一阶微分环节的伯德图 幅相曲线
自动控制原理
第五章 频域分析法-频率法
六、振荡环节
传递函数: 频率特性:
G(s)
2 n
s2 2n s n2
1
s
n
2
2 n
s1
G( j
M ( ) G(j )
G1(j ) G2 (j ) G3(j ) M1( ) M2 ( ) M3 ( )
( ) G(j ) G1(j ) G2(j ) G3(j ) 1( ) 2( ) 3( )
自动控制原理
第五章 频域分析法-频率法
1.开环幅相特性曲线的绘制
例 某0型单位负反馈控制系统,系统开环
频率特性: G(j) 2 j 2 2 j 1
对数幅频特性:
L() 20lg G j 20lg 1 22 2 2 2
对数相频特性:
arctan
1
2 2
2
自动控制原理
第五章 频域分析法-频率法
幅相曲线: 0时,M 1, 0 ; 时,M =, =180
自动控制原理

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

自动控制原理第5章

自动控制原理第5章

8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。

控制系统的频域分析法

控制系统的频域分析法

(5-
53)
(554)
图5-9不稳定惯性环节的频率特性
图5-4 惯性环节的频率响应
不稳定环节的频率特性如图5-9。比较图5-4可知,它与惯性 环节的频率特性相比,是以平面的虚轴为对称的。
26
(八)滞后环节的传递函数
滞后环节的传递函数为: 其对应的频率特性是:
幅频特性和相频特性分别为:
如图5-10所示,滞后环节的 频率特性在平面上是一个顺 时针旋转的单位圆。
频率ω无关且平行于横轴的直线,其纵坐标为20lgK。
当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
34
(二)积分环节 积分环节的频率特性是: 其幅频特性为:
对数幅频特性是:
(5-65) (5-66)
(547) (548)
(549) (550)
24
二阶微分环节频率特性曲线如图5-8所示, 它是一个相位超前环节,最大超前相角为 。
图5-8 二阶微分环节频率特性
(七)不稳定图环节
不稳定环节的传递函数为:
不稳定环节有一个正实极点 , 对应的频率特性是:
(551)
(5-
52)
25
幅频特性和相频特性分别为:
(5-67)
35

,则有:
可见,其对数幅频特性是一条
在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率
降低20分贝的速度(-20dB/dec) 变化的直线。
积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环

第5章 频率特性分析法

第5章 频率特性分析法

( ) : 0 900
3. 积分环节
1 G( s) s 1 G ( j ) j
A( )
1

( ) 90o
Im
Re

0
4. 振荡环节 n2 G( s) 2 2 s 2n s n
2 n G ( j ) 2 2 ( j ) 2n ( j ) n 1 ( ) 2 j 2 n n = 22 2 2 [1 ( ) ] 4 ( ) n n
Im

G ( s ) 1
A( ) 1 2 2 P( ) 1 ( ) arctan ,Q ( )
1 0
0
Re
6. 延迟环节
G ( s) e
s
G ( j ) e
j
1* e
j
A( ) 1 常数, 单位圆 ( ) 0, 0 Im
二、对数频率特性曲线
对数幅频特性曲线 20 lg A( )
伯德(Bode)曲线,Bode图
对数相频特性曲线
( )
半对数坐标:横坐标是对数刻度,纵坐标是均匀 刻度。
1
10
100
1000
横坐标采用对数分度,但标出的是 的实际值。
L( ) 20 lg A( ) 对数幅值,单位为分贝(dB)
因此,
G j频率特性 Gs s j 传函
K 例5-1 已知系统的传递函数为, 求频 G( s) Ts 1 率特性
解:令s=jω得系统的频率特性
K K G ( j ) e jarctg T 1 jT 1 (T ) 2

K K KT G( j ) j 2 2 1 jT 1 T 1 2T 2

第五章频率特性分析法

第五章频率特性分析法

146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。

如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。

然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。

而且,按照给定的时域指标设计高阶系统也不是容易实现事。

本章介绍的频域分析法,可以弥补时域分析法的不足。

频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。

频率法的优点较多。

首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。

其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。

因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。

此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。

这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。

因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。

5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。

设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。

若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4

孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-4

渐近线
5.4 系统开环频率特性绘制
相频特性表达式为
ω
φ(ω)/° -40
-80 -120 -160 -200 -240
arctan 0.25 arctan
5.4 系统开环频率特性绘制
对渐近线进行误差修正 在振荡环节转折处,ζ=0.4/(2*0.5)=0.4, 修正值+6dB; 在惯性环节转折处,修正值-3dB。
40
L(ω)/dB
精确曲线
20dB 1
+6dB
20
0 -20 -40
-40dB/dec ω1=2 ω2=4
振荡
-3dB
10
惯性
ω /s-1
-60dB/dec
1 2 3
5.4 系统开环频率特性绘制
一、极坐标图 方法一: 根据不同的ω值,计算出相应的P(ω)和Q(ω)或A(ω) 和φ (ω) ,并在直角坐标平面上描出相应的点,然 后用光滑线段连接各点。 方法二:利用典型环节的频率特性,步骤为 (1)分别计算出各典型环节的幅频特性和相频特性; (2)各典型环节的幅频特性相乘得到系统的幅频特性, 各典型环节的相频特性相加得到系统的相频特性。 (3)给出不同的ω值,计算出相应的A(ω)和φ (ω),描点 连线。
5.4 系统开环频率特性绘制
起点 G(0) 15 j 零虚频特性为0,解得 1 / 2 将此代入实频特性,求 得与实轴交点为-3.33。
终点
G() 0 j 0
根据幅相频率特性曲线的起 点、与实轴交点及终点,幅 相频率特性曲线如图所示。
5.4 系统开环频率特性绘制
10 例 设系统的频率特性为 Gk ( j ) j ( j 0.2 1)( j 0.05 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

50 验证:高频段渐近线斜率为-20(n-m)dB/dec
例题40:开环传函 解: γ=1
G (S )
10 (1 0 . 1 S ) S (1 0 . 5 S )
画其频率特性图。
G ( j )
10 (1 0 . 1 j ) j (1 0 . 5 j )
dB
转折频率:2、10
它相当与两个环节,超前、滞后,谁小就先起作 用,就称为那种补偿器。
频率特性:
G ( j ) 1 Tj 1 Tj 1T
2 2 2 2
1 T 1T
2 2 2 2
e
2
j ( tg
1
T tg
1
T )
20 lg G ( j ) 20 lg
Tω>>1时
20 lg G ( j ) 10 lg T
2
2
20 lg T
转折频率: 20lgTω=0
ω=1/T
dB
转折频率 lgω
υ
lgω
-900
一阶超前环节
G ( S ) TS 1 G ( j ) Tj 1 T
2 2
1e
jtg
lg G ( j ) lg G ( j ) lg e
lg G 0 . 434 j
取对数的目的是为了简化运算,使乘积变为加法运算 以20lg|G(jω)|(db,分贝)为纵坐标,以频率的对数为 横坐标绘制的图形称之为幅频特性图;以相角为为纵坐标, 以频率的对数为横坐标绘制的图形称之为相频特性图。以上 二图称之为Bode图。 一、典型因子的Bode图 比例;微积分;一阶超前、滞后系统;二阶超前、 滞后系统; 纯滞后超前补偿器与滞后补偿器
y ( t ) ae
j t
ae
j t
a G ( S ) R ( S )( S j ) a G ( S ) R ( S )( S j )
G ( j ) G ( j ) e y (t )
j j
S j
G ( j ) G ( j )
0.1
1
10
lgω
三、由Bode图估计系统的传递函数: 步骤: 根据实验数据画出Bode图; 作对 数幅频特性的渐近线; 根据渐近线斜率的变化来识别传函中的所有因子。
四、对数幅频特性与相频特性间的关系
Bode定理: 对于最小相位系统,对数幅频特性的 斜率为-20Ndb/dec,对应的相角位移为 -90N。 例题41:已知某系统的开环传递函数为
1 T
( ) tg
2
1
T tg
1
T
二、开环对数频率特性的绘制 (将开环传函表示成时间常数形式) 10根据开环传函,写出其频率特性表达式,确定各组成 因子的转折频率,由小到大标于频率轴上;
20低频段:斜率为-20γ dB/dec(γ为积分阶次),在 ω=1处,L(ω)=20lg|G(jω)|=20lgK 30 沿着频率增大的方向,每遇到一次转折,频率改变一 次分段直线的斜率; 遇到惯性环节的交接频率,斜率增加-20dB/dec; 遇到一阶微分环节的交接频率,斜率增加+20dB/dec; 遇到震荡环节的交接频率,斜率增加-40dB/dec; 遇到二阶微分环节的交接频率,斜率增加+40dB/dec; 40按照误差曲线修正;
20lg|G(jω)|=-20lgω
;υ(ω)=-900
纯微分环节
传函:
G(S)=S ;υ(ω)=900 Φ(jω) dB 900 lgω
频率特性 G(jω)=jω=ω ej90 20lg|G(jω)|=20lgω
积分环节乘积: 传函: G(S)=K/Sr
1
20lg|G(jω)|
频率特性 G(jω)=K/(jω)r=K/ωr e-j90r 20lg|G(jω)|=20(lgK-rlgω) ;υ(ω)=-900 r
ω=1/T
υ dB 900
lgω
lgω
转折频率
由此看出,误差在转折频率处最大
二阶超前、滞后系统
G (S ) S G ( j )
0
2
2
2
S 0 0
2
0

2
2 2
2 j 0 0
1 2 j
2 jtg
1
1
0
0 0
)
比例环节: 传函: G(S)=K 频率特性 G(jω)=K ej0 20lg|G(jω)|=20lgK ;υ(ω)=0 dB 20lg|G(jω)| dB 20lg|G(jω)| 20lgK Φ(jω)
Φ(jω) 微积分环节: 积分环节 传函: 频率特性 lgω -900 G(S)=1/S G(jω)=1/jω=(1/ω) e-j90 1 lgω
G (S )

K (1 T 1 S )( 1 T
'
' 2
S) S
S (1 T 1 S )( 1 T 2 S ) (1 2
0

S
2 2

)
1、起点:ω=0 γ =0 0型 0型 |G|=K ∠G=00
γ=1
γ=2
Ⅰ型
Ⅱ型
Ⅰ型 |G|=∞
∠G=-900
2、终点:ω→∞
y (t ) r (t ) G ( j )
1
K Tj 1

K T
2 2
e 1
j
tg T
y (t ) K T
2 2
1
A sin( t )
第二节频率特性的对数坐标图 (Bode图)
G ( j ) G ( j ) e
j j
0 K Re
微积分
微分 积分
G (S ) S G ( j ) j
G (S )
1 S
G ( j )
1 j

1

j
一阶滞后系统
G (S ) 1 TS 1 1 1 jT
2
jQ(ω) 微分
G ( j ) 1 1T
2
Re
(1 jT )
积分
A j j A

A G ( j ) 2j

A G ( j ) 2j
S j
j j
G ( j ) G ( j ) e e
j t
j
A G ( j ) e 2j

A G ( j ) e 2j
j
e
j t

A G ( j ) [e 2j
Ⅱ型 |G|=∞ ∠G=-1800 此结果仅适用于最 小相位系统!! |G|=0
令分子为m阶,分母为n阶∠G=-(n-m)900
ω→0 jQ(ω) 3型 ω→0 ω=0 K 2型 Re Re jQ(ω)
ω/ω0>>1时,
20 lg G ( j ) 20 lg
(
0
)
4
转折频率:ω=ω0
插入图5-12
插入图5-13
纯滞后:
G(S)=eτS

G(jω)=e-jτω
180
0
G ( j ) 1
( )


超前补偿器与滞后补偿器:
传函:
G (S ) 1 TS 1 TS

2
[1 (
0
) ] ( 2
2 2
0
)
2
g ' 0 得 0 1 2 时 g 有极值,即
G ( j ) 有极大值
称此时的ω为谐振频率,即1-2ξ2>0,ξ<0.707 即在ξ<0.707时才可能产生谐振。
渐近线: ω/ω0<<1时, 20lg|G(jω)|=0
— 2
y ( t ) L [ Y ( S ) L [ ] ae
j t
1
1
a S j

a S j
Pn t

b1 S P1

b2 S P2

bn S Pn
]
ae
j t
b1 e
P1 t
bn e
当 t→∞时(即稳态时)
-40dB/dec
40dB
20dB
0dB/dec -20dB/dec 0.01 0.1 1.0 20 8 -40dB/dec ω
-20dB -40dB -60dB -60dB/dec
作业:5-5①、②、③、⑥、5-6
第三节频率特性的极坐标图 (Nyquist图)
一、典型因子的极坐标图
比例;微积分;一阶滞后系统; 二阶滞后系统; 纯滞后 比例 G(S)=K jQ(ω) G(jω)=K+j0
j ( t )
e
j ( t )
]
A G ( j ) sin( t ) B sin( t )
Y ( j ) R ( j )
G ( j ) e
j ( )
G ( j )
例题39:若G(S)=K/(TS+1) r(t)=Asinωt 求y(t)
一阶超前、滞后系统
滞后环节: G ( S )
1 TS 1
2
G ( j )
2
1 Tj 1

e
jtg
1
T
T
2
2
1
20 lg G ( j ) 10 lg( T
1)
( ) tg
1
T
渐近线: Tω<<1时,
20 lg G ( j ) 10 lg 1 0
相关文档
最新文档