分布式数据库管理系统简介

合集下载

分布式数据库管理系统

分布式数据库管理系统

分布式数据库管理系统随着数据量和数据复杂性的快速增长,传统的集中式数据库管理系统已经不能满足当前大规模数据处理的需求。

分布式数据库管理系统成为了解决这一问题的重要手段。

本文将从分布式数据库管理系统的定义、特点、优势和应用场景等方面进行论述。

一、分布式数据库管理系统的定义分布式数据库管理系统是指将一个数据库分布在多个计算机节点上,并通过网络进行通信和协作,实现数据的存储、管理和访问的系统。

它允许用户在分布式环境下访问和操作全局数据,并提供数据一致性、高可用性和分布式事务处理等功能。

二、分布式数据库管理系统的特点1. 数据分布:分布式数据库将数据分散存储在不同节点上,提高了数据的存储能力和并行处理能力。

2. 数据复制:为了提高数据的可用性和容错性,分布式数据库通常采用数据复制技术,在不同节点之间同步数据副本。

3. 数据通信:分布式数据库通过网络进行数据通信和协作,需要保证数据的安全性和传输效率。

4. 数据一致性:分布式数据库需要保证数据的一致性,即在数据更新过程中保持数据的一致性状态。

5. 分布式事务处理:分布式数据库支持跨节点的事务处理,需要保证事务的原子性、一致性、隔离性和持久性。

三、分布式数据库管理系统的优势1. 数据可靠性和容错性:分布式数据库采用数据复制技术,即使某个节点发生故障,其他节点仍可以正常工作,保证数据的可靠性和容错性。

2. 数据并行处理:分布式数据库将数据分布在多个节点上,可以并行处理数据的读取和计算,提高了数据处理的效率。

3. 数据可扩展性:分布式数据库可以根据需求动态扩展节点数量,提高数据的存储能力和处理能力。

4. 数据共享和协作:分布式数据库允许不同节点之间共享数据和协作处理任务,提高了数据的利用效率和合作能力。

四、分布式数据库管理系统的应用场景1. 大规模数据处理:分布式数据库适用于大规模数据处理的场景,如互联网应用、金融交易系统等。

2. 高可用性系统:分布式数据库可以提供高可用性的数据存储和处理能力,适用于要求系统24/7在线运行的应用,如电子商务系统、社交网络等。

分布式数据库管理系统

分布式数据库管理系统

分布式数据库管理系统随着互联网的快速发展以及数据量的不断增加,企业和机构对于数据存储和处理的需求越来越大。

传统的单机数据库无法满足这种需求,因此分布式数据库管理系统应运而生。

本文将介绍分布式数据库管理系统的基本概念、特点、架构和应用场景。

一、基本概念分布式数据库管理系统是指将一个逻辑上完整的数据库分散在多台计算机上进行管理和处理的系统。

这其中包括两个重要的概念:分布式和数据库。

分布式指的是将整个系统分成多个子系统,每个子系统都有自己的物理节点。

这些节点通过网络互相连接,并协同工作完成任务。

与传统的集中式系统相比,分布式系统拥有更高的可扩展性、可靠性和容错性。

数据库则是指存储、管理和处理大量数据的系统。

数据库管理系统(DBMS)是一种软件,用于管理数据库,包括数据的创建、插入、更新、删除,以及查询、索引、优化等操作。

传统的数据库管理系统通常是以单一计算机为底层架构,但是分布式数据库管理系统在分布式架构上进行了改进,能够利用多台计算机的计算能力和存储空间来进行数据处理。

二、特点分布式数据库管理系统有如下几个特点:1. 可扩展性强。

由于分布式系统的特点,节点可以动态加入或退出,从而实现系统的可扩展性。

2. 可靠性高。

节点之间可以互相备份数据,防止单点故障导致数据丢失,从而提高系统的可靠性。

3. 数据分散。

将数据分散在多个节点上,让每个节点管理自己的数据,从而避免单节点瓶颈和数据拥塞,提高系统的处理效率。

4. 数据一致性。

分布式系统需要保证节点之间数据一致,通常采用分布式事务和副本机制来实现。

5. 数据局部性。

将经常访问的数据放在靠近用户的节点上,减少数据传输和网络开销,提高系统的性能。

三、架构分布式数据库管理系统的架构包括以下几个层次:1. 应用层。

可以是企业内部的信息系统、电子商务应用、在线社交网络等。

2. 中间层。

包括分布式事务管理、负载均衡、数据分片、数据分布和副本机制等。

3. 存储层。

包括分布式文件系统、对象存储和分布式数据库等。

什么是数据库介绍一下常见的数据库管理系统

什么是数据库介绍一下常见的数据库管理系统

什么是数据库介绍一下常见的数据库管理系统什么是数据库?介绍一下常见的数据库管理系统数据库是一种用来存储和组织数据的系统。

它是指一个可以进行数据集中存储、管理和维护的结构化数据集合。

数据库管理系统(DBMS)是在计算机系统中管理数据库的软件,它可以提供对数据库的访问、查询、更新和管理功能。

下面将介绍一些常见的数据库管理系统。

1. 关系型数据库管理系统(RDBMS)关系型数据库管理系统是目前应用最广泛的数据库管理系统之一。

它使用以表的形式组织数据,其中每个表包含多个行和列。

关系型数据库使用结构化查询语言(SQL)进行数据操作,它的优点是数据一致性和完整性较高。

常见的关系型数据库管理系统包括Oracle、MySQL和Microsoft SQL Server。

2. 非关系型数据库管理系统(NoSQL)非关系型数据库管理系统则是与关系型数据库管理系统相对的概念。

它不使用表结构,而是使用各种不同的数据模型,如键值对、文档型、列族和图等。

非关系型数据库管理系统更加适用于海量数据、高并发读写和数据模型灵活性要求较高的场景。

常见的非关系型数据库管理系统包括MongoDB、Cassandra和Redis。

3. 分布式数据库管理系统(DDBMS)分布式数据库管理系统用于管理分布在多个计算机节点上的数据。

它允许将数据分布在不同的物理位置,并提供了数据的分片、复制和故障容错等机制。

通过分布式数据库管理系统,可以实现数据的高可用性、容量扩展和负载均衡等特性。

Hadoop和Couchbase就是常见的分布式数据库管理系统。

总结起来,数据库管理系统是用于管理数据的软件系统,根据数据存储方式的不同,分为关系型数据库管理系统、非关系型数据库管理系统和分布式数据库管理系统。

不同的数据库管理系统适用于不同的应用场景,开发人员和企业可以根据自己的需求选择适合的数据库管理系统来进行数据管理。

分布式数据库系统

分布式数据库系统


P
场地A
场地B
在场地B选出红色零件的元组(10个),然后对每一 个元组逐一检查场地A,看北京供应商的装运单中是否有 这个零件装运单(若有则选出S#),每做这样一次检查 包括2次消息,共问答10次,通信时间为:
T[4]=2*10=20秒
26
查询处理和优化
策略5:
传(S#,P#)
(S)SP
P
场地A
14
分布透明性----包括分片透明性、位置透明性和局部数 据模型透明性。
分片透明性----分布透明性的最高层次。指用户或 应用程序只对全局关系进行操作而不考虑关系的分 片。当分片模式改变了,由于全局到分片模式的映 像、全局模式不变,应用程序不必改写。
位置透明性----分布透明的下一层次。指用户或应用 程序不必了解片段的场地,当存储场地改变了,由于 分片模式到分布模式的映像,应用程序不必改变。 局部数据模型透明性----用户或应用程序不必了解局 部场地上使用哪种数据模型,模型转换以及数据库语 言的转换由映像4完成。
分布式数据库系统中全局应用要涉及到两个以上结点的 数据,全局事务可能由不同场地的多个操作组成。所以应 该保证数据库的全局一致性、全局并发事务的可串行性和 系统的全局可恢复性。 当一个结点发生故障,操作失败后如何使全局事务回滚? 如何使另一个结点撤销已执行的操作或不必再执行其他操作。
采用的技术比集中式数据库系统更复杂和困难。
•提高系统的可靠性、可用性 当某一场地出现故障时,系统可以对另一场地上的相同 副本进行操作,不至于造成整个系统的瘫痪。
•提高系统性能 系统可选择用户最近的数据副本进行操作,减少通
信代价,改善整个系统性能。
存在的问题: 冗余副本之间存在数据不一致,必须着力解决。

分布式数据库总结

分布式数据库总结

%%%%%%%%%%%%%%%第一章:分布式数据库系统概述数据库:长期存储在计算机内的有组织的,可共享的相关数据的集合。

数据库管理系统:DBMS是介于用户与操作系统之间的一层数据管理软件。

为用户或应用程序提供访问DB的方法,包括DB的建立、查询、更新及各种数据控制。

DBMS基于某种数据模型。

数据库系统:数据库系统(DBS)通常是指带有数据库的计算机应用系统。

包括数据库、相应的硬件、软件和各类人员。

数据库技术:数据库技术是研究数据库的结构、存储、设计、管理和使用的一门软件学科;是一门综合性较强的学科。

数据抽象:视图抽象——外模式;概念抽象——概念模式;物理抽象——内模式数据模型:数据模型三要素:数据结构;数据操作;完整性约束模式/内模式映象:该映象存在于模式与内模式之间,用于定义模式与内模式之间的对应性。

本映象一般在内模式中描述。

外模式/模式映象:该映象存在于外模式与模式之间,用于定义外模式和模式之间的对应性。

本映象一般在外模式中描述。

物理独立性:在数据库系统的三级模式结构中,存在模式/内模式的映象,当内模式发生变化时,只要修改模式/内模式的映象,就可以保持模式不变,从而保证程序与数据的物理独立性。

逻辑独立性:在数据库系统的三级模式结构中,存在外模式/模式的映象,当模式发生变化时,只要修改外模式/模式的映象,即可保持外模式不变,从而保证程序和数据的逻辑独立性。

DDBS具有如下四个基本特点:物理分布性逻辑整体性场地自治性场地之间协作性计算机网络:定义为相互联接、彼此独立的计算机系统的集合。

相互联接指两台或多台计算机通过信道互连,从而可进行通信;彼此独立则强调在网络中,计算机之间不存在明显的主从关系,即网络中的计算机不具备控制其他计算机的能力,每台计算机都具有独立的操作系统。

计算机网络的组成:通信子网和资源子网分布式数据库定义:物理上分散而逻辑上集中的系统,它使用计算机网络将地理位置分散而管理和控制又需要不同程度集中的多个逻辑单位(通常是集中式数据库系统)连接起来,共同组成一个统一的数据库系统。

分布式数据库系统(DDBS)概述.

分布式数据库系统(DDBS)概述.

分布式数据库系统(DDBS概述一个远程事务为一个事务,包含一人或多个远程语句,它所引用的全部是在同一个远程结点上.一个分布式事务中一个事务,包含一个或多个语句修改分布式数据库的两个或多个不同结点的数据.在分布式数据库中,事务控制必须在网络上直辖市,保证数据一致性.两阶段提交机制保证参与分布式事务的全部数据库服务器是全部提交或全部回滚事务中的语句.ORACLE分布式数据库系统结构可由ORACLE数据库管理员为终端用户和应用提供位置透明性,利用视图、同义词、过程可提供ORACLE分布式数据库系统中的位置透明性.ORACLE提供两种机制实现分布式数据库中表重复的透明性:表快照提供异步的表重复;触发器实现同步的表的重复。

在两种情况下,都实现了对表重复的透明性。

在单场地或分布式数据库中,所有事务都是用COMMIT或ROLLBACK语句中止。

二、分布式数据库系统的分类:(1 同构同质型DDBS:各个场地都采用同一类型的数据模型(譬如都是关系型,并且是同一型号的DBMS。

(2同构异质型DDBS:各个场地采用同一类型的数据模型,但是DBMS的型号不同,譬如DB2、ORACLE、SYBASE、SQL Server等。

(3异构型DDBS:各个场地的数据模型的型号不同,甚至类型也不同。

随着计算机网络技术的发展,异种机联网问题已经得到较好的解决,此时依靠异构型DDBS就能存取全网中各种异构局部库中的数据。

三、分布式数据库系统主要特点:DDBS的基本特点:(1物理分布性:数据不是存储在一个场地上,而是存储在计算机网络的多个场地上。

逻辑整体性:数据物理分布在各个场地,但逻辑上是一个整体,它们被所有用户(全局用户共享,并由一个DDBMS统一管理。

(2场地自治性:各场地上的数据由本地的DBMS管理,具有自治处理能力,完成本场地的应用(局部应用。

(3场地之间协作性:各场地虽然具有高度的自治性,但是又相互协作构成一个整体。

DDBS的其他特点(1数据独立性(2集中与自治相结合的控制机制(3适当增加数据冗余度(4事务管理的分布性四、分布式数据库系统的优点:(1更适合分布式的管理与控制。

数据库分布式系统的说明书

数据库分布式系统的说明书

数据库分布式系统的说明书一、引言数据库分布式系统是一种基于分布式计算和存储的数据库系统,可以将数据和计算任务分散到多个节点上进行并行处理,从而提高系统的性能与可扩展性。

本文将详细介绍数据库分布式系统的原理、架构以及应用场景。

二、原理与架构1. 分布式数据存储数据库分布式系统中的数据通常被分散存储在多个节点上,每个节点负责管理一部分数据。

这样的分布方式可以提高数据的可用性和容错性,同时也增加了系统的并行处理能力。

2. 分布式数据访问为了实现对分布式存储的数据的高效访问,数据库分布式系统采用了一些常用的技术手段,如数据划分、数据复制、数据分片等。

这些技术可以提高数据的可靠性、查询效率和负载均衡能力。

3. 分布式事务处理在分布式环境下,事务处理变得更加复杂。

数据库分布式系统通过引入分布式事务协调器来协调多个节点上的事务执行,保证数据的一致性和可靠性。

4. 分布式查询与计算数据库分布式系统支持将查询和计算任务分发到多个节点上进行并行处理,从而提高系统的查询性能和计算能力。

常用的分布式查询与计算技术包括MapReduce、Spark等。

三、应用场景数据库分布式系统在许多领域都有广泛的应用,以下是几个典型的应用场景。

1. 大规模数据分析对于大规模的数据分析任务,传统的单机数据库往往无法满足性能要求。

通过将数据分散存储在多个节点上,并使用分布式查询和计算技术,可以大幅提高数据分析的效率和速度。

2. 云计算平台云计算平台需要支持大规模用户的数据存储和查询需求,因此数据库分布式系统是其基础设施之一。

通过将数据库分布在多个物理节点上,可以提供高可用性和扩展性的数据服务。

3. 实时数据处理对于实时数据处理场景,数据库分布式系统可以通过数据的并行处理和分布式计算来实现对实时数据的快速处理和分析。

这在金融、物联网等领域有着重要的应用价值。

四、总结数据库分布式系统是一个基于分布式计算和存储的数据库架构,可以提高系统的性能、可靠性和可扩展性。

分布式数据库管理系统简介

分布式数据库管理系统简介

分布式数据库管理系统简介一、什么是分布式数据库:分布式数据库系统是在集中式数据库系统的基础上发展来的。

是数据库技术与网络技术结合的产物。

分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。

这种分布式数据库只适宜用途比较单一的、不大的单位或部门。

另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。

由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。

分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)。

在分布式数据库系统中,一个应用程序可以对数据库进行透明操作,数据库中的数据分别在不同的局部数据库中存储、由不同的DBMS进行管理、在不同的机器上运行、由不同的操作系统支持、被不同的通信网络连接在一起。

一个分布式数据库在逻辑上是一个统一的整体:即在用户面前为单个逻辑数据库,在物理上则是分别存储在不同的物理节点上。

一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库。

它的分布性表现在数据库中的数据不是存储在同一场地。

更确切地讲,不存储在同一计算机的存储设备上。

这就是与集中式数据库的区别。

从用户的角度看,一个分布式数据库系统在逻辑上和集中式数据库系统一样,用户可以在任何一个场地执行全局应用。

就好那些数据是存储在同一台计算机上,有单个数据库管理系统(DBMS)管理一样,用户并没有什么感觉不一样。

分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性。

分布式数据库系统是一个客户/服务器体系结构。

在系统中的每一台计算机称为结点。

如果一结点具有管理数据库软件,该结点称为数据库服务器。

如果一个结点为请求服务器的信息的一应用,该结点称为客户。

在ORACLE客户,执行数据库应用,可存取数据信息和与用户交互。

在服务器,执行ORACLE软件,处理对ORACLE 数据库并发、共享数据存取。

分布式数据库管理

分布式数据库管理

分布式数据库管理随着信息技术的快速发展和数据量的不断增加,传统的数据库管理方式已经无法满足大规模数据处理和存储的需求。

分布式数据库管理系统(Distributed Database Management System,简称DDBMS)由此应运而生,成为了当前数据管理领域的一项重要技术。

本文将从什么是分布式数据库管理系统、其原理与特点、应用场景以及发展趋势等方面进行探讨。

一、什么是分布式数据库管理系统分布式数据库管理系统是由多个独立的、部分自治的数据库组成的集合,这些数据库分布在不同的地点,通过网络相互连接,共同提供数据管理服务。

相比于传统的集中式数据库管理系统,分布式数据库具有数据分布、透明性和高可用性等特点。

分布式数据库管理系统的架构通常由以下几个组件构成:数据服务器、查询优化器、事务管理器、并行处理器以及分布式锁管理器。

数据服务器用于存储和管理数据,查询优化器负责优化查询操作的执行计划,事务管理器用于处理事务的并发控制和恢复机制,并行处理器用于并行处理查询请求,分布式锁管理器则负责管理分布式环境中的锁。

二、分布式数据库管理系统的原理与特点1. 数据分布与复制分布式数据库将数据分布在多个服务器节点上,通过数据分片或数据复制的方式实现数据的分布与复制。

数据分布可以提高系统的扩展性和并发性能,数据复制则提供数据的冗余备份和高可用性。

2. 一致性与协调分布式数据库需要保证数据的一致性,确保数据在不同节点上的副本之间保持一致。

为了保证一致性,需要使用分布式事务管理机制来实现数据的协调。

3. 透明性与可扩展性分布式数据库管理系统提供了透明性,使得用户能够像使用集中式数据库一样操作分布式数据库,对用户来说无需关心数据的具体存放位置。

另外,分布式数据库管理系统具有良好的可扩展性,可以根据需要增加或减少节点来扩展系统的容量和性能。

4. 高可用性与容错性分布式数据库管理系统通过数据的复制和冗余备份提供了高可用性和容错性,即使某个节点发生故障,系统仍然可以提供服务,并且不会导致数据的丢失或不可用。

数据库管理系统及其应用

数据库管理系统及其应用

数据库管理系统及其应用数据库是计算机系统中用于存储和管理数据的一种工具。

数据库管理系统(DBMS)是一种软件,用于创建、操作、维护和管理数据库。

它为用户提供了一种方便和高效地访问数据库的方式,并且可以保证数据的安全性和一致性。

本文将介绍数据库管理系统及其应用领域。

一、数据库管理系统的概述数据库管理系统是计算机科学领域中重要的工具之一。

它可以看作是位于应用程序和数据之间的一层软件,用于管理和组织数据。

通过数据库管理系统,用户可以方便地进行数据的存储、查询、更新和删除等操作,而无需关注具体的数据存储细节。

数据库管理系统由数据库引擎、数据定义语言(DDL)、数据操作语言(DML)等组成。

数据库引擎是数据库管理系统的核心部分,负责数据的存储和管理;DDL用于定义数据库的结构,包括表、字段、索引等;DML用于对数据库进行操作,如插入、修改、删除数据等。

二、数据库管理系统的特点1. 数据的共享性:数据库管理系统可以实现多个应用程序共享同一个数据库,并保证数据的一致性和安全性。

2. 数据的独立性:数据库管理系统可以将数据与应用程序相互分离,使得应用程序可以独立于数据的变化而变化。

3. 数据的持久性:通过数据库管理系统,数据可以长期保存,即使在计算机断电或崩溃的情况下,数据也不会丢失。

4. 数据的安全性:数据库管理系统提供了对数据的访问控制和权限管理,可以保护数据的安全。

三、数据库管理系统的应用领域数据库管理系统在各个领域都有广泛的应用,以下列举几个常见的应用领域。

1. 企业管理:数据库管理系统在企业管理中发挥着重要的作用。

它可以用于存储和管理企业的各种信息,包括员工信息、客户信息、销售信息等。

通过数据库管理系统,企业可以高效地管理和查询这些信息,从而提高工作效率。

2. 电子商务:数据库管理系统是电子商务的基础设施之一。

通过数据库管理系统,电子商务平台可以存储和管理商品信息、订单信息、用户信息等。

同时,数据库管理系统还能够支持交易的处理和查询,保证电子商务平台的正常运行。

分布式数据库系统架构与原理

分布式数据库系统架构与原理

分布式数据库系统架构与原理分布式数据库系统架构:分布式数据库系统是指将数据库系统分布在多个节点上,每个节点都有自己的数据存储和处理能力。

其架构设计可以分为两种常见模式:集中式架构和分散式架构。

1. 集中式架构:集中式架构是指将所有数据库管理系统的功能和数据都集中在一个节点上。

其中,有一个中央服务器负责协调所有数据节点之间的数据请求和处理。

这种架构的好处是集中管理,方便维护和扩展。

同时,数据的一致性和完整性也相对容易控制。

然而,这种架构的缺点是单点故障,如果中央服务器出现故障,整个系统将无法使用。

2. 分散式架构:分散式架构是指将数据库系统的功能和数据分散到多个节点上,每个节点都可以独立响应请求和处理数据。

节点之间通过网络进行通信和数据同步。

这种架构的好处是可以提高系统的可靠性和性能。

例如,当系统负载过重时,可以通过增加节点来分担负载。

然而,分散式架构也存在一些挑战,如节点间的数据一致性和同步问题,以及系统的安全性。

分布式数据库系统原理:1. 数据分片:为了实现数据在多个节点间的分配和存储,分布式数据库系统通常采用数据分片技术。

数据分片将数据按照某种规则划分为多个片段,并分配到不同的节点上。

这样可以提高数据的并行处理能力,提高系统的性能和扩展性。

2. 数据复制:为了提高系统的可靠性和容错性,分布式数据库系统通常采用数据复制技术。

数据复制将数据在多个节点之间进行同步,并保持数据的一致性。

当一个节点发生故障时,可以从其他节点上获取备份数据,保证系统的可用性。

3. 数据一致性:在分布式环境下,由于节点之间的通信延迟和网络故障等原因,可能导致数据的一致性问题。

为了解决这个问题,分布式数据库系统采用了一致性协议和分布式事务管理机制。

其中,一致性协议如Paxos和Raft保证了节点之间的数据一致性,而分布式事务管理机制如两阶段提交和多阶段提交保证了分布式事务的原子性和持久性。

4. 查询优化:分布式数据库系统需要对查询进行优化,以提高系统的性能和效率。

云计算环境下的分布式数据库管理系统设计与实现

云计算环境下的分布式数据库管理系统设计与实现

云计算环境下的分布式数据库管理系统设计与实现随着互联网的不断发展和大数据的普及,分布式数据库管理系统(Distributed Database Management System,简称DDMS)成为了云计算环境下数据存储和管理的重要组成部分。

分布式数据库管理系统是指将数据分布在多个节点上,从而实现数据的集中存储和管理的系统。

在云计算环境下,分布式数据库管理系统有助于提高数据存储和查询的效率,防止系统出现故障,保证数据的安全性等方面都具有重要作用。

本文将从分布式数据库管理系统的设计与实现方面,探讨云计算环境下分布式数据库管理系统的相关问题。

一、分布式数据库管理系统的设计要点1、地理位置分布:分布式数据库管理系统最基本的要求是能够将数据分布的在多个节点上。

要实现地理位置分布,需要考虑以下几个方面:(1)数据分布的均匀性:对于一个分布式数据库管理系统来说,数据的分布均匀性是非常重要的。

如果不同节点的数据量过于不平衡,将会导致一些节点的压力过大,甚至可能导致系统出现故障。

因此,在设计分布式数据库管理系统时,需要考虑如何使数据分布均匀。

(2)故障恢复:分布式数据库管理系统中的节点可能会受到各种故障,如断电、网络故障等等。

在这种情况下,需要设计一种系统来保证数据的可靠性。

一般来说,需要将数据备份到其他节点上,以确保数据的安全性。

2、数据一致性:分布式数据库管理系统中,要保证数据的一致性非常重要。

在设计分布式数据库管理系统时,需要考虑如何保证数据在不同节点的一致性。

一般来说,需要采用如下两种方法:(1)主节点机制:主节点机制是指将一个节点指定为主节点,在主节点上进行数据的修改,随后将修改后的数据同步到其他节点上。

这种方法能够保证数据的一致性,但是由于主节点的故障可能会导致整个系统无法正常运行。

(2)多版本机制:多版本机制是指在每个节点上都保存数据的多个版本。

在进行修改操作时,会向其他节点发送消息,告知其他节点需要更新数据的版本。

分布式数据库系统.

分布式数据库系统.

9.2.3 分布透明性
分布(网络)透明性
分片透明性(全局视图和分片视图之间)
用户或应用程序只对全局关系进行操作而不必考虑关系 的分片。如果分片模式改变了,通过调整全局模式与分
片模式之间的映象关系来保持全局模式不变。
位置透明性(分片视图和分配视图之间)
用户或应用程序不必了解片段的存储位置。
where DNO=DNUMBER
分布式查询处理
传送时间T=总传输延迟+总数据量/传输速度
⒈把关系EMPLOYEE和DEPARTMENT分布从场地1和场地2传 到场地3,然后在场地3站进行查询 传送时间T=(104 100 +100 35 )/104=100s
1
3
2
分布式查询处理
⒉把关系EMPLOYEE传送到场地2,在场地2作联接, 再把操作结构从场地2传到场地3:
1、与集中式DB相比,分布式DB具有()特点,与分 散式DB相比,又具有()特点。
2、区别系统是分散式还是分布式就是判定系统是否 支持().
3、在分布式DB中,用户看到的系统如同一个集中式 DBS,这是因为分布式系统具有()和()特点。
4、如果各个场地都采用同类型数据模型,但DBMS不 同型号,这种系统属于()型DBMS.
9.1 分布式数据库系统概述
与集中式数据库相比,分布式DB具有: 数据分布式的特点。
与分散式数据库相比,分布式DB具有: 逻辑整体性的特点。
9.1.2 分布式数据库系统的定义
背景
数据库系统+计算机网络
T1
T2 计算机2
T3 DB1
DB1 T1
计算机1 T2 T3
通讯网络
T1 计算机3 T2

分布式数据库系统

分布式数据库系统

分布式数据库系统在当今数字化的时代,数据成为了企业和组织的重要资产。

随着数据量的不断增长以及对数据处理性能和可用性的要求越来越高,传统的集中式数据库系统逐渐显露出了其局限性。

而分布式数据库系统作为一种新兴的技术,正逐渐成为解决这些问题的有力手段。

那么,什么是分布式数据库系统呢?简单来说,分布式数据库系统是由多个相互连接的数据库节点组成的,这些节点通过网络协同工作,共同完成数据的存储和管理任务。

与传统的集中式数据库系统不同,分布式数据库系统将数据分布在多个节点上,从而实现了数据的分散存储和处理。

分布式数据库系统具有许多显著的优点。

首先,它能够有效地处理大规模的数据。

当数据量增长到一定程度时,集中式数据库系统可能会面临性能瓶颈,而分布式数据库系统可以通过增加节点来轻松扩展存储和处理能力。

这意味着企业可以更从容地应对不断增长的数据需求,而无需频繁地进行大规模的硬件升级。

其次,分布式数据库系统提供了更高的可用性和容错性。

在分布式架构中,如果某个节点出现故障,其他节点可以继续提供服务,确保业务的连续性。

这对于那些对系统可用性要求极高的应用场景,如金融交易、在线服务等,具有至关重要的意义。

再者,分布式数据库系统能够实现更灵活的数据分布和管理策略。

可以根据数据的访问频率、数据的重要性等因素,将数据合理地分布在不同的节点上,以提高数据访问的效率。

然而,分布式数据库系统也并非完美无缺。

首先,数据的分布和一致性维护是一个复杂的问题。

在多个节点上同时进行数据操作时,如何确保数据的一致性是一个巨大的挑战。

如果处理不当,可能会导致数据的错误和不一致。

其次,分布式数据库系统的管理和维护也相对复杂。

需要对多个节点进行监控、配置和优化,这对管理员的技术水平和经验提出了更高的要求。

此外,网络延迟和带宽限制也可能会影响分布式数据库系统的性能。

在数据传输过程中,如果网络出现问题,可能会导致数据操作的延迟甚至失败。

为了实现一个高效可靠的分布式数据库系统,需要综合考虑多个方面的因素。

云计算下的分布式数据库管理系统设计与实现

云计算下的分布式数据库管理系统设计与实现

云计算下的分布式数据库管理系统设计与实现云计算作为当前计算机领域的热点技术,已经在诸多领域得到了广泛的应用,其中就包括分布式数据库管理系统。

云计算下的分布式数据库管理系统可以采用多种方式实现,这里将介绍一种采用虚拟化技术的方法。

一、背景与介绍云计算下的分布式数据库管理系统,是指使用云计算技术实现的分布式数据库管理系统。

它可以使用户通过网络连接远程访问数据,实现数据的共享和备份等功能。

同时,云计算下的分布式数据库管理系统还支持多用户、高性能、高可用等特性。

为了实现这些特性,需要利用分布式系统的技术,将数据库分布到多个节点上存储和处理。

这些节点可以是物理服务器,也可以是虚拟服务器。

然而,将数据库分布到多个节点上面存在着诸多挑战,如如何实现数据的一致性、如何进行负载均衡等问题。

本文将介绍一种基于虚拟化技术的云计算下的分布式数据库管理系统的设计和实现。

二、技术方案的选择在实现云计算下的分布式数据库管理系统之前,我们需要选择一种合适的技术方案。

常见的技术方案包括基于共享存储的方案、基于传统网络技术的方案、基于虚拟化技术的方案等。

各种方案的优缺点如下:1、基于共享存储的方案基于共享存储的方案,将所有的节点都连接到同一块存储器上,所有节点共享同一份数据。

这种方案的优点是可以共享所有资源,使整个系统更为简单和高效。

但是,由于所有节点访问的是同一块存储器,所以存在单点故障的风险。

2、基于传统网络技术的方案基于传统网络技术的方案,将所有的节点通过网络连接起来,各个节点之间通过消息传递实现数据同步和处理。

这种方案的优点是可以轻松地扩展系统规模,设置和维护也相对简单。

但是,由于存在网络传输时延和带宽问题,系统可靠性和数据一致性问题需要加以关注。

3、基于虚拟化技术的方案基于虚拟化技术的方案使用Hypervisor将物理服务器分隔成若干个虚拟服务器,将数据库分布在不同的虚拟服务器上。

这种方案的优点是虚拟机之间运行相互隔离,方便隔离和管理。

常见的数据库管理系统及特点

常见的数据库管理系统及特点

常见的数据库管理系统及特点数据库管理系统(Database Management System,简称DBMS)是一种用于管理和组织数据的软件系统,它提供了一种结构化数据的创建、查询、更新和删除的机制,并且可以有效地存储和检索大量数据。

常见的数据库管理系统有以下几种:1. 关系型数据库管理系统(Relational Database Management System,简称RDBMS):关系型数据库采用表格的形式来组织数据,数据之间的关系通过键值来建立。

常见的关系型数据库管理系统包括MySQL、Oracle、SQL Server等。

特点是具有良好的数据一致性、完整性和可靠性,支持事务处理和并发控制,但在处理大规模数据时性能相对较低。

2. 非关系型数据库管理系统(NoSQL Database Management System):非关系型数据库管理系统是一种不使用传统的关系表格来组织数据的数据库系统。

它可以存储非结构化和半结构化的数据,例如键值对、文档、图形等。

常见的非关系型数据库管理系统包括MongoDB、Redis、Cassandra等。

特点是具有高可伸缩性和高性能,适用于大规模数据和高并发访问,但不支持复杂的查询和事务处理。

3. 分布式数据库管理系统(Distributed Database ManagementSystem):分布式数据库管理系统是将数据分布在多台计算机上进行存储和处理的数据库系统。

它可以提供更好的可扩展性和高可用性,减少单点故障的风险。

常见的分布式数据库管理系统包括Hadoop、HBase、Cassandra等。

特点是具有高性能的数据分布和查询效率,但对于数据一致性和并发控制的处理较为复杂。

4. 内存数据库管理系统(In-Memory Database Management System):内存数据库管理系统是将数据存储在内存中进行管理和处理的数据库系统。

它通过使用内存而不是磁盘来加快数据的访问速度,提高系统的性能。

分布式数据库管理系统优化研究

分布式数据库管理系统优化研究

分布式数据库管理系统优化研究引言:现代企业面临的数据量不断增长的挑战,传统的集中式数据库管理系统已经无法满足高效、可扩展和容错的需求。

分布式数据库管理系统(Distributed Database Management System,简称DDBMS)应运而生,它将数据库分布在多个节点上,实现数据的存储和访问的分布式处理。

然而,DDBMS在设计和优化方面面临着诸多挑战。

本文将从分布式数据库设计、数据复制、查询优化和容错性等方面探讨DDBMS的优化研究。

一、分布式数据库设计1. 数据分片:在DDBMS中,数据被分成多个片段存储在不同的节点上。

合理的数据分片策略可以提高数据的访问效率和负载均衡。

一种常见的分片策略是基于哈希函数的分片,通过对数据的关键属性进行哈希运算,使得相同哈希值的数据分配到同一个节点上。

2. 数据复制:数据复制是提高系统的可用性和容错性的重要手段。

通过将数据复制到多个节点上,当某个节点发生故障时,可以快速切换到备用节点上继续提供服务。

但是,数据复制也带来了数据一致性和更新延迟的问题。

因此,需要合理的数据复制策略来平衡数据一致性和性能。

二、数据复制1. 一致性模型:在DDBMS中,维护数据的一致性是一项挑战。

一致性模型定义了数据复制的行为,可以分为强一致性模型和弱一致性模型。

强一致性模型要求所有副本上的数据保持一致,但会带来更高的延迟和更低的可用性。

而弱一致性模型放宽了数据一致性的要求,可以提高系统的可用性和性能。

根据应用的需求,选择适合的一致性模型是数据复制的关键。

2. 数据冲突解决:当多个节点同时修改同一份数据副本时,可能会产生数据冲突。

解决数据冲突的常用方法是使用冲突检测和解决机制,如版本控制和冲突检测算法。

这些机制可以帮助系统自动解决数据冲突,保证数据的一致性和完整性。

三、查询优化1. 查询分发:在DDBMS中,查询被分发到不同的节点上进行并行处理。

选择合适的查询分发策略可以提高查询性能和吞吐量。

分布式数据库管理系统的研究与设计

分布式数据库管理系统的研究与设计

分布式数据库管理系统的研究与设计随着海量数据的日益增长,传统的中心化数据库管理系统已经难以满足企业和个人对于数据存储与查询的需求。

分布式数据库管理系统(Distributed Database Management System,DDMS)的出现解决了这一问题,它将数据分布在多个节点上,提高了系统的可扩展性、可靠性和容错性。

本文将从DDMS的基础结构、分布式事务管理以及数据分片等方面来探讨DDMS的研究与设计。

一、DDMS的基础结构DDMS的基础结构由以下几个组成部分。

首先是分布式数据模型,包括水平分割和垂直分割两种方式。

其次是数据分布策略,即把不同的数据分配到不同的节点上。

第三是数据通信机制,包括数据同步和数据传输。

最后是查询处理机制,主要是查询优化和并行查询。

DDMS的分布式数据模型可以分为水平分割和垂直分割两种方式。

水平分割是将一张表划分为多个子表,每个子表只存储一部分数据。

垂直分割是将一张表的列分成若干个组,每个组存储在不同的节点上。

这样可以让数据更加紧凑,减少了传输的数据量。

同时也可以提高查询速度和并行处理能力。

对于数据的分布策略,可以根据数据的访问频率、数据的类型、数据的大小等因素来做出安排。

通常情况下,数据访问频率高的数据会被放置在节点数较多的节点上,保证数据访问的快速性。

对于数据的类型,不同类型的数据可以被分配到不同的节点上,保证性能的最大化。

在数据的大小方面,大的数据可以被分配到存储能力更大的节点上。

在数据通信机制方面,DDMS需要保证数据在不同节点之间的同步和传输。

对于数据同步,可以通过主从复制的方式来实现。

主节点维护一个数据的主副本,各个从节点通过复制主副本来完成数据的同步。

对于数据传输,可以通过独立的网络传输协议来实现,保证数据传输的效率和稳定性。

最后是查询处理机制。

在DDMS中,查询处理机制主要包括查询优化和并行查询。

查询优化技术可以从查询的语句、数据的分割和存储、索引的创建等方面来优化查询操作。

分布式数据库系统的设计及其应用

分布式数据库系统的设计及其应用

分布式数据库系统的设计及其应用一、概述分布式数据库系统是指在多台独立的计算机上分别安装数据库管理系统,通过网络连接实现数据的共享和交换,构成一个完整的系统。

由于分布式数据库系统具有分布式、并行、高可用等优点,所以得到了越来越广泛的应用。

本文将介绍分布式数据库系统的设计及其应用。

二、分布式数据库系统的设计分布式数据库系统的设计主要包括以下几个方面:1.数据划分数据划分是指将一个大的数据库分散到多个节点中,以达到更好的性能和可用性。

数据划分的方式有水平划分和垂直划分两种。

水平划分是将数据按照某个规则进行分割,每个分片中包含部分数据和相应的索引,各个分片之间的数据没有交集。

水平划分能够提高数据库的查询性能,但是可能会增加数据的一致性维护难度。

垂直划分是将数据按照数据表的列进行分割,每个分片中包含某些列。

垂直划分能够有效减少不必要的数据冗余,但是也容易造成查询的复杂度。

数据复制是指将数据在多个节点之间进行复制,以达到更好的性能和可用性。

数据复制的方式有主从复制和多主复制两种。

主从复制是指在一个节点上设置主库,向其他节点复制数据;其他节点称为从库,只能读取数据不能修改数据。

主从复制能够提供更好的性能和可用性,但是可能会造成数据一致性问题。

多主复制是指在多个节点之间进行数据复制,每个节点都可以读取和修改数据。

多主复制能够避免单点故障,但是可能会造成写入冲突和数据不一致问题。

3.数据一致性分布式数据库系统由于涉及多个节点之间的数据共享和交换,所以必须考虑数据一致性的问题。

在分布式数据库系统中,数据一致性通常分为强一致性、弱一致性和最终一致性三种。

强一致性要求所有节点之间的数据必须保持一致,这种方式对系统的性能影响较大,但是可以保证数据的准确性。

弱一致性要求所有节点之间的数据在一定时间内达到一致,这种方式可以提高系统的性能,但是可能会牺牲一定的数据准确性。

最终一致性要求所有节点之间的数据在一定时间内最终达到一致,这种方式能够在保证系统性能的同时保证一定的数据准确性。

数据库管理系统的分类包括

数据库管理系统的分类包括

数据库管理系统的分类包括数据库管理系统(Database Management System,简称DBMS)是计算机系统中重要的软件之一,用于管理和操作数据库。

根据其特性和功能,可以将数据库管理系统分为以下几类:层次型数据库管理系统、网络型数据库管理系统、关系型数据库管理系统、面向对象数据库管理系统和分布式数据库管理系统。

层次型数据库管理系统是早期的数据库管理系统之一,其中数据以层次结构组织。

这种系统使用树形结构存储数据,每个节点表示一个记录,父节点和子节点之间存在一对多的关系。

层次型数据库管理系统的优点是查询速度快,但其缺点是不灵活,对数据的结构变化较为敏感。

网络型数据库管理系统是对层次型数据库管理系统的改进和扩展,其中数据以网状结构组织。

这种系统使用图形结构存储数据,可以更灵活地表示记录之间的关系。

网络型数据库管理系统的优点是相较于层次型系统,其更加灵活,可以表示更复杂的关系。

然而,网络型系统的查询效率较低,维护复杂度较高。

关系型数据库管理系统是目前应用最广泛的数据库管理系统之一。

它以关系模型作为数据的组织方式,使用行和列的方式来存储和管理数据。

关系型数据库管理系统具有结构清晰、数据一致性强、具备ACID特性(原子性、一致性、隔离性、持久性)等优点。

另外,关系型数据库还提供了强大的查询功能,如SQL语言的支持。

然而,关系型数据库管理系统在处理大量数据和复杂查询时,性能可能不如其他系统。

面向对象数据库管理系统是在关系型数据库管理系统基础上发展而来的,它支持面向对象的数据模型和操作方法。

面向对象数据库管理系统将数据存储为对象,对象之间可以建立继承、关联等关系。

这种系统特别适合处理复杂的数据结构和对象之间的关系。

然而,由于其复杂性和资源消耗较大,面向对象数据库管理系统并没有得到广泛应用。

分布式数据库管理系统是为了满足分布式计算环境下的数据处理需求而设计的。

它将数据存储在多个计算机节点上,并通过网络连接进行通信和协调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分布式数据库管理系统简介一、什么是分布式数据库:分布式数据库系统是在集中式数据库系统的基础上发展来的。

是数据库技术与网络技术结合的产物。

分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。

这种分布式数据库只适宜用途比较单一的、不大的单位或部门。

另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。

由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。

分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)。

在分布式数据库系统中,一个应用程序可以对数据库进行透明操作,数据库中的数据分别在不同的局部数据库中存储、由不同的DBMS进行管理、在不同的机器上运行、由不同的操作系统支持、被不同的通信网络连接在一起。

一个分布式数据库在逻辑上是一个统一的整体:即在用户面前为单个逻辑数据库,在物理上则是分别存储在不同的物理节点上。

一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库。

它的分布性表现在数据库中的数据不是存储在同一场地。

更确切地讲,不存储在同一计算机的存储设备上。

这就是与集中式数据库的区别。

从用户的角度看,一个分布式数据库系统在逻辑上和集中式数据库系统一样,用户可以在任何一个场地执行全局应用。

就好那些数据是存储在同一台计算机上,有单个数据库管理系统(DBMS)管理一样,用户并没有什么感觉不一样。

分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性。

分布式数据库系统是一个客户/服务器体系结构。

在系统中的每一台计算机称为结点。

如果一结点具有管理数据库软件,该结点称为数据库服务器。

如果一个结点为请求服务器的信息的一应用,该结点称为客户。

在ORACLE客户,执行数据库应用,可存取数据信息和与用户交互。

在服务器,执行ORACLE软件,处理对ORACLE 数据库并发、共享数据存取。

ORACLE允许上述两部分在同一台计算机上,但当客户部分和服务器部分是由网连接的不同计算机上时,更有效。

分布处理是由多台处理机分担单个任务的处理。

在ORACLE数据库系统中分布处理的例子如:客户和服务器是位于网络连接的不同计算机上。

单台计算机上有多个处理器,不同处理器分别执行客户应用。

参与分布式数据库的每一服务器是分别地独立地管理数据库,好像每一数据库不是网络化的数据库。

每一个数据库独立地被管理,称为场地自治性。

场地自治性有下列好处:◆系统的结点可反映公司的逻辑组织。

◆由局部数据库管理员控制局部数据,这样每一个数据库管理员责任域要小一些,可更好管理。

◆只要一个数据库和网络是可用,那么全局数据库可部分可用。

不会因一个数据库的故障而停止全部操作或引起性能瓶颈。

◆故障恢复通常在单个结点上进行。

◆每个局部数据库存在一个数据字典。

◆结点可独立地升级软件。

可从分布式数据库的所有结点存取模式对象,因此正像非分布的局部的DBMS,必须提供一种机制,可在局部数据库中引用一个对象。

分布式DBMS必须提供一种命名模式,以致分布式数据库中一个对象可在应用中唯一标识和引用。

一般在层次结构的每一层实施唯一性。

分布式DBMS简单地扩充层次命名模型,实施在网络上唯一数据库命名。

因此一个对象的全局对象名保证在分布式数据库内是唯一。

ORACLE允许在SQL语句中使用全局对象名引用分布式数据库中的模式对象(表、视图和过程)。

在ORACLE中,一个模式对象的全局名由三部分组成:包含对象的模式名、对象名、数据库名、其形式如:SCOTT.EMP@一个远程查询为一查询,是从一个或多个远程表中选择信息,这些表驻留在同一个远程结点.一个分布式查询可从两个或多个结点检索数据.一个分布式更新可修改两个或两个以上结点的数据.一个远程事务为一个事务,包含一人或多个远程语句,它所引用的全部是在同一个远程结点上.一个分布式事务中一个事务,包含一个或多个语句修改分布式数据库的两个或多个不同结点的数据.在分布式数据库中,事务控制必须在网络上直辖市,保证数据一致性.两阶段提交机制保证参与分布式事务的全部数据库服务器是全部提交或全部回滚事务中的语句.ORACLE分布式数据库系统结构可由ORACLE数据库管理员为终端用户和应用提供位置透明性,利用视图、同义词、过程可提供ORACLE分布式数据库系统中的位置透明性.ORACLE提供两种机制实现分布式数据库中表重复的透明性:表快照提供异步的表重复;触发器实现同步的表的重复。

在两种情况下,都实现了对表重复的透明性。

在单场地或分布式数据库中,所有事务都是用COMMIT或ROLLBACK语句中止。

二、分布式数据库系统的分类:(1) 同构同质型DDBS:各个场地都采用同一类型的数据模型(譬如都是关系型),并且是同一型号的DBMS。

(2)同构异质型DDBS:各个场地采用同一类型的数据模型,但是DBMS的型号不同,譬如DB2、ORACLE、SYBASE、SQL Server等。

(3)异构型DDBS:各个场地的数据模型的型号不同,甚至类型也不同。

随着计算机网络技术的发展,异种机联网问题已经得到较好的解决,此时依靠异构型DDBS就能存取全网中各种异构局部库中的数据。

三、分布式数据库系统主要特点:DDBS的基本特点:(1)物理分布性:数据不是存储在一个场地上,而是存储在计算机网络的多个场地上。

逻辑整体性:数据物理分布在各个场地,但逻辑上是一个整体,它们被所有用户(全局用户)共享,并由一个DDBMS统一管理。

(2)场地自治性:各场地上的数据由本地的DBMS管理,具有自治处理能力,完成本场地的应用(局部应用)。

(3)场地之间协作性:各场地虽然具有高度的自治性,但是又相互协作构成一个整体。

DDBS的其他特点(1)数据独立性(2)集中与自治相结合的控制机制(3)适当增加数据冗余度(4)事务管理的分布性四、分布式数据库系统的优点:(1)更适合分布式的管理与控制。

分布式数据库系统的结构更适合具有地理分布特性的组织或机构使用,允许分布在不同区域、不同级别的各个部门对其自身的数据实行局部控制。

例如:实现全局数据在本地录入、查询、维护,这时由于计算机资源靠近用户,可以降低通信代价,提高响应速度,而涉及其他场地数据库中的数据只是少量的,从而可以大大减少网络上的信息传输量;同时,局部数据的安全性也可以做得更好。

(2)具有灵活的体系结构。

集中式数据库系统强调的是集中式控制,物理数据库是存放在一个场地上的,由一个DBMS集中管理。

多个用户只可以通过近程或远程终端在多用户操作系统支持下运行该DBMS 来共享集中是数据库中的数据。

而分布式数据库系统的场地局部DBMS的自治性,使得大部分的局部事务管理和控制都能就地解决,只有在涉及其他场地的数据时才需要通过网络作为全局事务来管理。

分布式DBMS可以设计成具有不同程度的自治性,从具有充分的场地自治到几乎是完全集中式的控制。

(3)系统经济,可靠性高,可用性好。

与一个大型计算机支持一个大型的集中式数据库在加一些进程和远程终端相比,由超级微型计算机或超级小型计算机支持的分布式数据库系统往往具有更高的性价比和实施灵活性。

分布式系统比集中式系统具有更高的可靠性和更好的可用性。

如由于数据分布在多个场地并有许多复制数据,在个别场地或个别通信链路发生故障时,不致于导致整个系统的崩溃,而且系统的局部故障不会引起全局失控。

(4)在一定条件下响应速度加快。

如果存取的数据在本地数据库中,那么就可以由用户所在的计算机来执行,速度就快。

(5)可扩展性好,易于集成现有系统,也易于扩充。

对于一个企业或组织,可以采用分布式数据库技术在以建立的若干数据库的基础上开发全局应用,对原有的局部数据库系统作某些改动,形成一个分布式系统。

这比重建一个大型数据库系统要简单,既省时间,又省财力、物力。

也可以通过增加场地数的办法,迅速扩充已有的分布式数据库系统。

五、分布式数据库系统的劣势:(1)通信开销较大,故障率高。

例如,在网络通信传输速度不高时,系统的响应速度慢,与通信相关的因素往往导致系统故障,同时系统本身的复杂性也容易导致较高的故障率。

当故障发生后系统恢复也比较复杂,可靠性有待提高。

(2)数据的存取结构复杂。

一般来说,在分布时数据库中存取数据,比在集中时数据库中存取数据更复杂,开销更大。

(3)数据的安全性和保密性较难控制。

在具有高度场地自治的分布时数据库中,不同场地的局部数据库管理员可以采用不同的安全措施,但是无法保证全局数据都是安全的。

安全性问题式分布式系统固有的问题。

因为分布式系统式通过通信网络来实现分布控制的,而通信网络本身却在保护数据的安全性和保密性方面存在弱点,数据很容易被窃取。

分布式数据库的设计、场地划分及数据在不同场地的分配比较复杂。

数据的划分及分配对系统的性能、响应速度及可用性等具有极大的影响。

不同场地的通信速度与局部数据库系统的存取部件的存取速度相比,是非常慢的。

通信系统有较高的延迟,在CPU上处理通信信息的代价很高。

分布式数据库系统中要注意解决分布式数据库的设计、查询处理和优化、事务管理及并发控制和目录管理等问题。

六、分布式数据库系统:数据分片类型:1、水平分片:按一定的条件把全局关系的所有元组划分成若干不相交的子集,每个子集为关系的一个片段。

2、垂直分片:把一个全局关系的属性集分成若干子集,并在这些子集上作投影运算,每个投影称为垂直分片。

3、导出分片:又称为导出水平分片,即水平分片的条件不是本关系属性的条件,而是其他关系属性的条件。

4、混合分片:以上三种方法的混合。

可以先水平分片再垂直分片,或先垂直分片再水平分片,或其他形式,但他们的结果是不相同的。

条件:(1)完备性条件:必须把全局关系的所有数据映射到片段中,决不允许有属于全局关系的数据却不属于它的任何一个片段。

(2)可重构条件:必须保证能够由同一个全局关系的各个片段来重建该全局关系。

对于水平分片可用并操作重构全局关系;对于垂直分片可用联接操作重构全局关系。

(3)不相交条件:要求一个全局关系被分割后所得的各个数据片段互不重叠(对垂直分片的主键除外)。

七、分布式数据库系统:数据分配方式(1)集中式:所有数据片段都安排在同一个场地上。

(2)分割式:所有数据只有一份,它被分割成若干逻辑片段,每个逻辑片段被指派在一个特定的场地上。

(4)全复制式:数据在每个场地重复存储。

也就是每个场地上都有一个完整的数据副本。

(5)混合式:这是一种介乎于分割式和全复制式之间的分配方式。

八、分布式数据库系统:体系结构数据分片和数据分配概念的分离,形成了“数据分布独立型”概念。

数据冗余的显式控制。

数据在各个场地的分配情况在分配模式中一目了然,便于系统管理。

相关文档
最新文档