【最新】九年级数学上册概率初步讲义新版新人教版
《概率》概率初步-九年级上册数学人教版PPT课件
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
地 理 课 件 : /kejian/dili/
历 史 课 件 : /kejian/lishi/
等,事件
PPT素 材 : /sucai/
PPT背 景 : /beijing/
PPT图 表 : /tubiao/
PPT下 载 : /xiazai/
PPT教 程 : /powerpoint/
资 料 下 载 : /ziliao/
科 学 课 件 : /kejian/kexue/ 物 理 课 件 : /kejian/wuli/
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
地 理 课 件 : /kejian/dili/
PPT课 件 : /kejian/
语 文 课 件 : /kejian/yuwen/ 数 学 课 件 : /kejian/shuxue/
英 语 课 件 : /kejian/yingyu/ 美 术 课 件 : /kejian/meishu/
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
地 理 课 件 : /kejian/dili/
历 史 课 件 : /kejian/lishi/
知识点1
历 史 课 件 : /kejian/lishi/
数学·九年级(上)·配人教
第二十五章 概率初步
概率
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
2
以练助学
PPT模 板 : /moban/
PPT素 材 : /sucai/
新人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 概率》公开课课件_4
【揭示规律】
思考:根据求概率的方法,事件A发生的概率 P(A)的取值范围是什么?
记随机事件A在n次试验中发生了m次,那么
在 PA m 中,由m和n的含义可知, 0≤m≤n,
n
进而有0≤m≤1,因此 0≤P(A) ≤1。 n
【揭示规律】
1.当A是必然发生的事件时,P(A)是多少 ? 必然事件发生的可能性是100% ,P(A)=1;
2.当A是不可能发生的事件时,P(A)是多少? 不可能事件发生的可能性是 0; P(A)= 0;
3.不确定事件发生的可能性是大于0而小于1的.
即随机事件的概率为 0<PA<1
0 事件发生的可能性越来越小 1 概率的值
不可能事件 事件发生的可能性越来越大 必然事件
【揭示规律】
(1)概率反映了随机事件发生的可能性的大小。 事件发生的可能性越大,它的概率越接近1;反之, 事件发生的可能性越小,它的概率越接近0;
6
【揭示规律】
概率是从数值上刻 画了一个随机事件发生 的可能性的大小。
• 概率的定义: 一般地,对于一个随机事件A,把刻
画其发生可能性大小的数值,称为随机 事件A发生的概率,记为P(A)。
【揭示规律】
思考: 以上两个试验有哪些共同特征?
• 共同特征: 1.每一次试验中,可能出现的结果是有限个。 2. 每一次试验中,各种结果出现的可能性相等。
2
【解决问题】
例1 掷一枚骰子,观察向上一面的点数, 求下列事件的概率。
①点数为2. P(点数为2)=
1 6
一共有多少种等可 能的结果?分别是
②点数为奇数。 P(点数为奇)=
31 62
什么?
③点数大于2且小于5. P(点数大于2且小于5)=
最新人教版初中九年级上册数学【解概率初步全章复习】教学课件
重点名词解析
一般地,如果在一次试验中,有n种 可能的结果,并且它们发生的可能性相 等,事件A包含其中的m种结果,那么事
件A发生的概率 P A m .
n
重点名词解析
在使用公式 P A m 求概率时,应充分分析事件的 所有等可能的结果和所关n 注的结果数,要做到不重不漏.
布置作业
1. 下列事件中,必然事件是( ). A.掷一枚硬币,正面朝上.
B
B. a是实数,a ≥0.
C.某运动员跳高的最好成绩是20 .1米.
D.从车间刚生产的产品中任意抽取一个,是次
品.
布置作业
2.有五张形状、大小、质地都相同的卡片,这些卡片
上面分别画有下列图形:①正方形;②等边三角形;
③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上
30000 26430 0.881
例题精讲
分析:幼树移植成活率是实际问题中的一个概率.这个问题中幼
树移植“成活”与“不成活”两种结果可能性是否相等未知,所以
成活率要由频率去估计.
在同样条件下,对这种幼树进行大量移植,并统计成活情况,计
算成活的频率,随着移植数m越来越大,频率 m 会越来越稳定,于
是就可以把频率作为成活率的估计值.
3.
10
枚举法:当事件涉及的对象比较单一且出现的等可能结果 数目较少时.
例题精讲
例3 袋中有大小相同、标号不同的白球2个,黑球2个. (1)从袋中不放回地连取2个球,取出的2个球中有1个白 球,1个黑球的概率是多少? (2)从袋中有放回地取出2个球,取球顺序为黑、白的概 率是多少?
25.1.2 概率课件 2024-2025学年人教版数学九年级上册
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(2) 掷出的点数是偶数的概率是多少?
解:任意掷一枚质地均匀的骰子,掷出的点数可能是1,2,3,4,
5,6,即所有可能的结果有6种.因为骰子是质地均匀的,所以每种
结果出现的可能性相等.
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(1)掷出的点数大于4的结果只有2种,即
掷出的点数分别是5,6.
所以P(掷出的点数大于4)=
= .
随堂练习
2. 任意掷一枚质地均匀的骰子.
(2) 掷出的点数是偶数的概率是多少?
(2)掷出的点数是偶数的结果有3种,即掷
出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=
知识点2 简单随机事件的概率的求法
【例 4】一儿童行走在如图所示的地板上,当他随意停下时,最终停
在地板上阴影部分的概率是( A )
A.
B.
C.
D.
解析:观察这个图可知,阴影区域(3块)的面积占
总面积(9块)的
,故其概率为 .
知识讲解
知识点2 简单随机事件的概率的求法
【例 5】如图所示的是一个可以自由转动的转盘,转盘分成7个大小相
1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出
现如图所示的情况.我们把与标号3的方格相邻的方格记为A区
域(画线部分),A区域外的部分记为B区域.数字3表示在A区域
有3颗地雷.下一步应该点击A区域还是B区域?
人教版九年级数学上册《概率》概率初步PPT优质课件
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
人教版九年级上册数学教学课件 第25章 概率初步25.1.1 随机事件
(4)你能列举与事件(3)相 似的事件吗?
(1)上述活动中的事件,必然事件和 不可能事件的区别在哪里?
(2)怎样的事件称为随机事件呢?
随机事件的特 点:可能发生 也可能不发生.
袋中装有4个黑球,2个白球,这些球的形 状、大小、质地等完全相同,在看不到球的 条件下,随机地从袋子中摸出一个球.
【解析】图中有9块黑色 方块,15块白色方块,所以 停在白色方块上的可能 性大.
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
检测反馈
1.下列事件中,是必然事件的为( C ) A.抛掷一枚质地均匀的硬币,落地后正面朝上 B.江汉平原7月份某一天的最低气温是-2℃ C.通常加热到100℃时,水沸腾 D.打开电视,正在播放节目《男生女生向前冲》
【解析】选项A和D是随机事件;选项B是 不可能事件;选项C是必然事件,故选C.
2.下列说法正确的是( ) A.如果一件事情发生的机会只有十万分之
九年级数学上 新课标 [人]
第二十五章 概率初步
学习新知
检测反馈
(1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数);
(4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同;
(7)一元二次方程x²+2x+3=0无实数解.
学习新知
3.下列事件: ①在足球赛中,弱队战胜强队; ②任意取两个有理数,这两个数的和为正数; ③任取两个正整数,其和大于1; ④长分别为3,5,9厘米的三条线段能围成一 个三角形.其中确定事件的个数是( )
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案
25.1随机事件与概率25.1.2概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.出示课件7:活动2掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1. 5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1. 6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1. 2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1. 5出示课件14,15:教师归纳:一般地,如果一个试验有n 个可能的结果,并且它们发生的可能性都相等.事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m p A n=事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A 为必然事件时,P(A)=1,当A 为不可能事件时,P(A)=0.出示课件16:例1任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=63.教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=1 6;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=1 2;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=1 3.出示课件19:例2袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)=23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)=;P(摸到白球)=;P(摸到黄球)=.学生独立思考后口答:19;1 3;59.出示课件21:例3如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.(1)指向红色有3种等可能的结果,P(指向红色)=3 7;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5 7 ;(3)不指向红色有4种等可能的结果,P(不指向红色)=4. 7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是3 8;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772;由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P(小红胜)=9π4π59π9-=,P(小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为3 8 .你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.16解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.14;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=1 10 .7.解:⑴P(数字3)=1 7;⑵P(数字1)=2 7;⑶P(数字为奇数)=4 7.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为:().mP An(0≤P(A)≤1)九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
最新人教部编版九年级数学上册《第25章 概率初步【全章】》精品PPT优质课件
果,并且它们发生的可能性相等,事件A包括其中
的m种结果,那么事件A发生的概率P(A)=
m n
.
在P(A)=
m n
中,由m和n的含义,可知0≤m
≤n,进而有0≤
m n
≤1.
因此,0≤ P(A) ≤1 .
不可能事件 必然事件
0
不可能 事件
0≤ P(A) ≤1 . 事件发生的可 能性越来越小
事件发生的可 能性越来越大
2.从1、2、3、4、5中任取两个数字,得到的都 是偶数,这一事件是 随机 事件.
3.下列所描述的事件: ①某个数的绝对值小于0; ②守株待兔; ③某两个负数的积大于0; ④水中捞月. 其中属于不可能事件的有 ① ④ .
4.一个口袋中装有红、黄、蓝三个大小和形状都相 同的球,从中任取一球,得到红球与得到蓝球的可 能性 相同 .
在一定的条件下, 必然会发生的事件
在一定的条件下,必 然不会发生的事件
在一定的条件下,可能发 生也可能不发生的事件
必然 事件
不可能 事件
随机 事件
确定性事件 不确定性事件
【出题角度】认识事件
下列事件中,是随机事件的是(A ) A.他坚持锻炼身体,今后能成为飞行员 还有其他因素 不可能事件 B.在一个只装着白球和黑球的袋中摸球,摸出红球 必然事件 C.抛掷一块石头,石头终将落地 不可能事件 D.有一名运动员奔跑的速度是20m/s
的是( B )
A.瓮中捉鳖
B.守株待兔
C.旭日东升
D. 夕阳西下
已知地球表面陆地面积与海洋面积的比约为 3∶7.如果宇宙中飞来一块陨石落在地球上,“落 在海洋里”与“落在陆地上”哪个可能性更大?
“落在海洋里”的可能性更大.
人教版数学九上课件《概率》教学课件
(2)点数为奇数有3种可能,即点数为1,3,5,
P(点数为奇数)= 3 1
62
(3)点数大于2且小于5有2种可能,即点数为3,
4,
P(点数大于2且小于5)=
2 6
1 3
思考:两人在掷骰子比大小,
第一个人先掷出一个2点,
那么另一个人胜它的概率有多大?
8/9/2019
例2、如图:是一个转盘,转盘分成7个相同 的扇形,颜色分为红黄绿三种,指针固定, 转动转盘后任其自由停止,某个扇形会停在 指针所指的位置,(指针指向交线时当作指 向右边的扇形)求下列事件的概率。
必然事件
8/9/2019
例题解析
例1、掷一个骰子,观察向上的一面的点数, 求下列事件的概率:
(1)点数为2; (2)点数为奇数; (3)点数大于2且小于5.
8/9/2019
解:掷一个骰子时,向上一面的点数可能为1,2,
3,4,5,6,共6种,这些点数出现的可能性相
(等1).P(点数为2)=1 6
8/9/2019
例题解析
解:(1)A区域的方格共有8个,标号3表示在这
8个方格中有3个方格各藏有1颗地雷.因此,踩A 区域的任一方格,遇到地雷的概率是 3
8
(2)B区域中共有 9×9-9=72 个小方格,其中有10-3=7 个方格内各藏有1颗地雷.因此,
踩B区域的任一方格,遇到地雷 的概率是 7
72
8/9/2019
提高练习
如图所示,转盘被等分为16个扇形。请在转盘的适 当地方涂上颜色,使得自由转动这个转盘,当它停 止转动时
①指针落在红色区域的
概率为多少?
3 8
②你还能再举出一个不确
定事件,使得它发生的概
人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)
(4)已知地球表面陆地面积与海洋面积的比均为3:7.如
果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“
到学校上学.
下午放学后,我开始写作业.今天作业太多了,我
不停的写啊,一直写到太阳从西边落下.
小明从盒中任意摸出一球,一定能摸到红球吗?
小米从盒中摸出的球一定是红球吗?
小麦从盒中摸出的球一定是白球吗?
三人每次都能摸到红球吗?
降水概率90%
同学们听过“天有不测风云”这句话吧!它的原
意是指刮风、下雨、阴天、晴天这些天气状况很难预
除了颜色外无其他差别.从袋子中随机摸出 1 个球,“摸出
红球”和“摸出绿球”的可能性相等吗?它们的概率分别为多
少?为什么?
5
3
解:P(摸出红球)= ,P(摸出绿球)= .
8
8
5
3
∵ ≠ ,
8
8
∴“摸出红球”和“摸出绿球”的可能性不相等.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红
25.1.2 概率
第2课时
复习引入
问题1 10 件外观相同的产品中有 2 件不合格.现从中任
意抽取 1 件进行检测,抽到不合格产品的概率为多少?为什么?
P(A)= .
解:∵在10件外观相同的产品中,有2件不合格产品
2
1
∴从中任意抽取1件检测,则抽到不合格产品的概率是: = .
10
5
复习引入
问题2 不透明袋子中装有 5 个红球、3 个绿球,这些球
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红
黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由
人教版九年级上册数学《概率》概率初步研讨复习说课教学课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.
1
5
B.
C.
3
5
D.
第二十五章 概率初步
2
5
4
5
上一页
返回导航
下一页
数学·九年级(上)·配人教
9.【贵州毕节中考】平行四边形 ABCD 中,AC、BD 是两条对角线,现从以下
四个关系:①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC 中随机取出一个作为
课件 课件
课件 课件
课件 课件
课件
课件
m
等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= n .
m
注意:在 P(A)= n 中,①当 A 为必然事件时,P(A)=1;②当 A 为不可能事件时,
P(A)=0;③当 A 为随机事件时,0<P(A)<1.
第二十五章 概率初步
上一页
以练助学
名 师 点 睛
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
知识点1
概率的意义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随
机事件A发生的概率,记为P(A).
4
第二十五章 概率初步
上一页
返回导航
九年级数学上册 第二十五章 概率初步知识归纳 新人教版
第二十五章 概率初步25.1 随机事件与概率1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用e 表示,e 称为样本空间中的样本点,记作{}e Ω=.2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.频率与概率的定义(1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =.(3) 古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型:(i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=; (ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·25.2 用列举法求概率1、当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,可以用被关注的结果在全部试验结果中所占的比分析出事件中该结果发生的概率,此时可采用列举法.2、列举法就是把要数的对象一一列举出来分析求解的方法.但有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.3、利用列表法或树形图法求概率的关键是:①注意各种情况出现的可能性务必相同;②其中某一事件发生的概率各种情况出现的次数某一事件发生的次数=;③在考查各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏; 4、用列表法或树形图法求得的概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率。
人教版九年级上册数学《概率》概率初步PPT电子教学课件
学习目标
1.会在具体情境中求出一个事件的概率.
2.会进行简单的概率计算及应用.
课堂导入
上节课我们学习了概率的定义,那么在具体情境中, 我们怎样求出一个事件的概率呢?本节课我们将会解 决这个问题.
新知探究 知识点
计算简单事件的概率的主要类型: ① 个数类型:如摸球、掷骰子等可以表示出所有可能 出现的结果的试验; ② 面积类型:如向区域S内任意掷一点,求恰好出现 在区域A(A在S内)内的概率 .
对接中考
1.(2020·深圳中考)一口袋内装有编号分别为1,2,3,
4,5,6,7的七个球(除编号外都相同),从中随机摸
出一个球,则摸出编号为偶数的球的概率是
3 7
.
解:∵从袋子中随机摸出一个球共有7种等可能结果,
其中摸出编号为偶数的球的结果数为3,
∴摸出编号为偶数的球的概率为
3 7
.
2.任意转动正六边形转盘一次,当转盘停止转动时,指
为什么以每个扇形为一种结果, 而不以每一种颜色为一种结果?
例1中,P(指向红色)= ;P(不指向红色) = .
同一事件,发生的概率与不发生的 概率之和为1.
例2 如图是计算机中“扫雷”游戏的画面.在一个有 9×9的方格的正方形雷区中,随机埋藏着10颗地雷, 每个方格内最多只能藏1颗地雷. 小王在游戏开始时随机地点击一个方格, 点击后出现如图所示的情况.我们把与标 号3的方格相邻的方格记为A区域(画线部 分),A区域外的部分记为B区域.数字3表 示在A区域有3颗地雷.下一步应该点击A 区域还是B区域?
事件发生的可能性越来越大
例1 掷一个骰子,2) 点数为奇数; (3) 点数大于2小于5.
向上一面的点数可能为1,2, 3,4,5,6,共6种,且每种 出现的可能性相同
25.1.2概率 教学课件(共35张PPT)初中数学人教版九年级上册
=3=1. 因此P(点数为奇数)
(3)点数大于2且小于5有2种可能,即点数为3、4,因此
归纳总结
应用
求简单事件的概率的步骤:
1.判 断 :试验所有可能出现的结果必须是有限的,各种结果出现的 可能性必须相等;
2. 确定:试验发生的所有的结果数 n 和事件A 发生的所有结果数m;
3.计 算 :套入公式
计算 .
如图是一个可以自由转动的转盘,转盘分成7个大小相同的扇形, 颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停 止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两
个扇形的交线时,当作指向右边的扇形).求下列事件的概率: (1)指针指向红色; (2)指针指向红色或黄色; (3)指针不指向红色.
练习6 一个袋中装有4个红球,6个白球,8个黑球,每个球 除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率; (2)从袋中摸出6个白球和a(a>2) 个红球,再从剩下的球中 摸出一个球. ①若事件“再摸出的球是红球”为不可能事件,求a 的 值 ; ②若事件“再摸出的球是黑球”为随机事件,求这个事件的概率.
1
A. 4
1
B.
2
3
C.
D.1
4
解 析:设小正方形的边长为1,则小猫最终停留
在黑色方砖上的概率是
; 故 选A.
练 习 3有一只小猫咪随机的走在如图所示的圆形地砖上,那么
它走在阴影区域上的概率是( B )(π 的 值 取 3 )
1
A. 6
1
B. 12
0
1
D. 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步
知识点睛
1. 事件 必然事件 确定事件 不可能事件
随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件. 2. 概率
(1)对于一个随机事件 A ,我们刻画其发生可能性大小的数值,称为随机事件 A 发生的概率,记为 P (A).
注:0≤P (A)≤1,P (A)表示的是事件 A 发生的可能性大小, 当 A 为必然事件时,P (A)=1;当 A 为不可能事件时,P (A)=0. 事件发生的可能性越大,它的概率越接近 1;反之事件发生的可能性越小,它的概率越接近 0.
(2)一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 种结果,那
么事件 A 发生的概率 P (A)= m .
n
(3)用列举法求事件的概率
在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.常使用列表法和画树状图两种方法列举事件所有可能出现的结果.
①用列表法求概率适用于求涉及两步试验的随机事件发生的概率; ②当事件要经过多个步骤(三步或三步以上)完成时,用画树状图法来求事件的概率很有效.
3. 频率与概率
在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定 性.因此,可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.
事件
N M
精讲精练
1.下列事件中,必然事件是()
A.抛掷 1 个均匀的骰子,出现 6 点向上
B.两条直线被第三条直线所截,同位角相等
C.366 人中至少有2 人的生日相同D.实
数的绝对值是非负数
2.下列事件是随机事件的是()
A.画一个三角形,其内角和为 361°
B.任意做一个矩形,其对角线相等C.任取一
个实数,其与相反数之和为 0
D.外观相同的 10 件同种产品中有 2 件是不合格产品,现从中抽取一件为合格品
3.下列说法中,正确的是()
A.不可能事件发生的概率为 0
B.随机事件发生的概率是
1
2
C.概率很小的事件不可能发生
D.抛掷一枚质地均匀的硬币 100 次,正面朝上的次数一定是
50 次
4.下列说法正确的是()
A.袋中有形状、大小、质地完全一样的5 个红球和1 个白球,从中随机抽出一个球,一定是红球
B.天气预报“明天降水概率为 10%”,是指明天有 10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1 000 张,一定会中奖
D.连续掷一枚均匀硬币,若5 次都是正面朝上,则第6 次仍然可能正面朝上
5.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,E,
F 分别是矩形ABCD 的两边AD,BC 上的点,EF∥AB,M,
N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率
为. A E D
B F C
6.实验中学安排四辆车组织九年级学生团员去敬老院参加学雷锋活动,
已知这四辆车的编号分别是1,2,3,4,小王和小李都可以从这四辆车中任选一辆搭乘,那么小王和小李搭乘的车编号相邻的概率是.
7.学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九
(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是
()
A.
2
3 B.
5
6
C.
1
6
D.
1
2
8.如图,在4×4 正方形网格中,有3 个小正方形已经涂黑,若再涂黑
任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.
9.一个家庭有 3 个小孩,则:
(1)这个家庭有3 个男孩的概率是;
(2)这个家庭有2 男1 女的概率是;
(3)这个家庭至少有1 个男孩的概率是.
10.某市初中毕业男生体育测试项目有四项,其中“立定跳远”“1
000 米跑”“掷实心球”为必测项目,另一项从“篮球运动”和“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”和“一分钟跳绳”中选择同一个测试项目的概率是.
11.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人
要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50 元,那么他一次就能猜中的概率是.
12.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2
,3,4.
如图 2,正方形ABCD 顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A 起跳,第一次掷得 3,就顺时针连续跳 3 个边长,落到圈D;若第二次掷得 2,就从D 开始顺时针连续跳 2 个边长,落到圈B;
……
设游戏者从圈A 起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A 的概率P1;
(2)琪琪随机掷两次骰子,用列表法或树状图求最后落回到圈A 的概率P2,并指出她与嘉嘉回到圈A 的可能性一样吗?
A
D B
4 1
C
图1 图2
13.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确
的是()
A.频率就是概率
B.频率与试验次数无关
C.在相同的条件下进行试验,如果试验次数相同,则各试验小组所得频率的值也会相同
D.随着试验次数的增加,频率一般会越来越接近概率
14.下列说法:①不可能事件发生的概率为0;②一个对象在试验中出现的次
数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.其中正确的个数是()
A.1 B.2 C.3 D.4
15.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的
频率,绘制了如下的表格,则符合这一结果的试验最有可能的是()
率
C.抛一枚硬币,出现正面的概率 D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是 5
【参考答案】 精讲精练 1. D 2. D 3. A 4. D 5. 1
2
6. 3
8
7. A 8. 3
13 1 3 7 ; ; 8 8 8 10. 1
4
11. 1
5
12. (1) P
1 ;(2) P 1 ,与嘉嘉回到圈 A 的可能性一样
1
4 2 4 13. D 14. C 15. B
9.。