岩体力学岩石的变形特性

合集下载

《岩体力学》第六章岩体的力学性质

《岩体力学》第六章岩体的力学性质

图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。

岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。

岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。

其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。

第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。

按静力法得到静E ,动力法得到动E 。

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。

⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。

μm—岩体的泊松比。

★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。

岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。

图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。

二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。

两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。

岩体力学-第一章 岩石的力学特性.PPT

岩体力学-第一章 岩石的力学特性.PPT
第一章 岩石的力学特性
本章内容:
岩石的应力-应变关系(静力学瞬时和长期荷载荷载作用下); 岩石弹性参数确定;岩石的本构关系;岩石的破坏准则; 以及介绍影响岩石力学性质因素,常见岩石试验方法。
本章重点与难点:强度与变形特征 1.1 静力学特性 1.2 流变特性 1.3 影响岩石力学性质的因素 1.4 破坏判据
c c1 0.778 0.222 h
d
1
2
2.5
3
h/d
13
点荷载强度指标(point load strength index):
P D2 c ——为h/d为2的试件单轴抗压强度
c 24 I s I s
I s ——点荷载强度指标,
普通材料试验机: 柔性试验机; 刚度较小; 不能控制荷载和变形; 只能做出岩石受力在达 到极限强度以前的变形 特征。
类型Ⅰ弹性的
类型Ⅱ 弹塑性的
类型Ⅲ 塑弹性的
类型Ⅳ 塑-弹-塑性的
类型Ⅴ 塑-弹-塑的
类型Ⅵ 弹-塑-蠕变的
4
类型Ⅰ:直线型; 包括玄武岩,石英岩,辉绿岩,白云岩和非常坚硬的石灰岩 类型Ⅱ:直线+弯曲下降; 石灰岩,粉砂岩,凝灰岩等致密但岩性较软的岩石 类型Ⅲ:下凹+直线 ; 花岗岩和砂岩等具有孔隙和微裂隙坚硬岩石 类型Ⅳ:S型直线陡且长,曲线较短 坚硬致密的变质岩,如大理岩,片麻岩等 类型Ⅴ:S型直线平且短,曲线长; 压缩性较高的岩石,片岩在垂直片理方向受压 类型Ⅵ:直线+弯曲; 盐岩
2P d2 d 2a
0.8 0.7 0.6 0.5
抛物线型压力分布 均匀压力分布 常位移条件压力分布 光弹试验
t
2P dh
P t 0.3 0.2 A

岩石力学-岩体的变形特性

岩石力学-岩体的变形特性

2.5 岩体的变形特性
2.5.3 岩体各向异性变形 试件模型:
12mmX12mmX36mm的 块体单元 x=1表示贯通, x =0为完整试 件, x为分离度
①岩体力学性质具有各向异性, 变形、破坏机制、强度特征 不同。
②工程布置要考虑如何扬长避短, 充分发挥岩体自身强度,维 持工程稳定性。
④当卸荷至零并持续一定时间后,
有较大回弹变形,这是弹性后
效的表现。

⑤残余变形模量
E
a b
2.5 岩体的变形特性
2.5.2 岩体剪切变形特征 ①在屈服点前,变形曲线与抗压
变形相似,上凹型。 ②屈服点后,某个结构面或结构
体首先剪坏,随之出现一次应 力下降。峰值前可能发现多次 应力升降。升降程度与结构面 或结构体强度有关,岩体越破 碎,应力降反而不明显。 ③当应力增加到一定应力水平时, 岩体剪切变形已积累到一定程 度,没剪破的部位以瞬间破坏 方式出现,并伴有一次大的应 力降。 ④随后产生稳定滑移
2.5 岩体的变形特性
2.5.1 岩体的单轴和三轴压缩变形 特征
(1)岩体应力-应变全过程曲线 ①在加载过程,结构面压密与闭合,
应力-应变曲线,呈上凹型。 ②中途卸载有弹性后效现象和不可
恢复残余变形。这是结构面闭 合、滑移、错动造成的。 ③完全卸载,再加载形成形式上的 “开环型”曲线,这也是弹性 后效造成的。 ④峰值强度后,岩体开始破坏,应 力下降较缓慢,仍有残余应力, 这是岩体结构效应。
2.5 岩体的变形特性(单轴和三轴压缩变形特征)
(2)卸载时荷载不降至零时的应 力-应变曲线
①卸荷不降至零时的循环加载应力 -应变曲线呈“闭环型”。
②随着外荷加大、循环次数增多, 闭环后效,这是结构面逐级被 压密与啮合,这是结构面逐级 被压密与啮合所致。

岩石的基本物理力学性质-知识归纳整理

岩石的基本物理力学性质-知识归纳整理

知识归纳整理岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验想法参照标准:《工程岩体试验想法标准》(GB/T50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性求知若饥,虚心若愚。

第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,普通而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是延续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两慷慨面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、罗列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒经过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

岩体力学考试重点(经典)分析

岩体力学考试重点(经典)分析

第二章 岩石的基本物理力学性质1、全应力—应变曲线(岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程)(1)OA 阶段,通常被称为孔隙裂隙压密阶段。

其特征是应力—应变曲线呈上凹型,在此阶段岩石试件中原有的张开型结构面和微裂隙逐渐闭合,横向膨胀较小,试件体积随载荷的增大而减小。

本阶段对节理裂隙丰富的岩石表现较为明显,对坚硬少裂隙的岩石不明显。

(2)AC 阶段,通常称此阶段为弹性变形阶段。

其中AB 阶段为线弹性变形阶段;BC 为非线性变形阶段。

BC 阶段中出现了微裂隙的破裂,因此也称为破裂稳定发展阶段。

(3)CD 阶段,非稳定破裂发展阶段或称累积性破坏阶段。

C 点是岩石从弹性变为塑性的转折点,称为屈服点,其相应的应力称为屈服应力(屈服极限),数值约为峰值应力的三分之二左右。

进入此阶段后,微破裂的发展出现了质的变化,它们不断聚合形成了宏观裂隙,直至岩石试件完全破坏。

此时,试件由体积压缩转为扩容,轴向应变和体积应变速率迅速增大。

当达到D 点时,岩石已经破坏,此时的强度称为峰值强度。

(4)DE 阶段称为破坏后阶段。

当载荷达到D 点后,岩石试件内部结构已遭到破坏,但试件基本保持整体形状。

进入本阶段后,宏观裂隙快速发展,并且相互交叉联合形成宏观断裂面,岩块的变形主要表现为沿宏观断裂面的块体滑移,试件的承载能力迅速下降,但不会到零,岩石仍具有一定的承载能力。

应该指出,对于坚硬的岩石来说,这一塑性阶段很短,有的几乎不存在,它所表现的是脆性破坏的特征。

所谓脆性是指应力超出了屈服应力却并不表现出明显的塑性变形的特性,而因此达到破坏,即为脆性破坏。

2、单轴压缩条件下的岩石变形特征:①岩石的变形特性通常可以从试验时所记录下来的应力—应变曲线中获得;②岩石的应力—应变曲线反映了各种不同应力水平下所对应的应变(变形)规律;③岩石试件在(刚性试验机)单轴压缩载荷作用下产生变形的全过程,可全应力-应变曲线来表示。

3、三轴压缩条件下的岩石变形特征A 、 时岩石变形特征①岩石的强度随围压( )的增加,岩石的屈服应力随之提高;②总体来说,岩石的弹性模量变化不大,有随围压增大而增大的趋势;③随着围压的增加,峰值应力所对应的应变值23σσ=23σσ=有所增大,其变形特征表现出低围压的脆性向高围压的塑性转换的规律。

岩石力学讲义-岩石的变形特征

岩石力学讲义-岩石的变形特征

i
E i
i
o i
L
2)变形参数: 应力-应变关系不成直线
岩石的变形特征可以用以下几种模量说明:


m

0
M
① m
① 初始模量:曲线原点处切线斜率
Ei=dd 0
② 切线模量:曲线上任一点处切线的斜率
d Et d m
③ 割线模量:曲线上某点与原点连线的斜率
变形参数测定的动力法
设岩石为均质、各向同性、弹性体,则弹性波在 岩体介质中传播的纵波速度和横波速度可以用下 列公式表示:
纵波速度:
Vp
Ed
1 d
1 d 1 2d
横波速度:
Vs
Ed
1
21 d
变形参数测定的动力法
根据上述两个式子可以推导得出由纵横波速度表 示的动态弹性模量和泊松比:
1>2=3
真三轴实验示意图
常规三轴实验示意图
施加轴向压力 施加围压
围压对变形破坏的影响
• 围压增大,岩石的抗压强度(峰值强度)增大。 • 围压增大,岩石的变形模量(弹性模量)增大。软 岩增大明显,硬岩石增大不明显。 • 围压增大,岩石的塑性增强。 • 围压增大,岩石的破坏方式从脆性劈裂向延性破 坏(塑性流动)过渡。
类型Ⅰ
类型Ⅱ
σ σ
ε
ε
σ
3)峰值前的变形机理
类类型型 ⅢⅠ :塑-弹性—应力较低时类 ,曲型线Ⅱ略向上弯,应力增加 到一定数值逐渐变为直线,直至试样破坏。典型岩石:花 岗岩、片理平行于压力方向的片岩以及某些辉绿岩。
σ
类型Ⅳ:塑-弹-塑性—压力较低时,曲线向上弯曲;压力
增加到一定值后,曲线就成为直线;最后,曲线向下弯曲;

岩石力学 岩石的变形 破坏特征

岩石力学 岩石的变形 破坏特征

体胀系数:温度上升1℃所引起的体积增量与初始体积的比值。
vs
Vt V0 V0
线胀系数:温度上升1℃所引起的长度增量与初始长度的比值。
ls

Lt L0 L0
岩石的导热率是度量岩石的热传导能力的参数,是指当温度上升1℃时,热量
在单位时间内传递单位距离的损耗值。
Ct

QT LtT
3、岩石的各向异性和渗透性
A
r
o
a
空隙闭合应力:单轴压缩状态下使岩石中的空隙闭合的 最下应力。
2.岩石变形特征

v
r r
e B
A
o
a
比例弹性极限或弹性极限:应力-应变曲线保持直线 关系的极限应力
2.岩石变形特征
v
r r
p
C
e B
A
a
屈服应力:单轴压缩状态下岩石出现塑性变形的极限应力
2.岩石变形特征
抗冻性:岩石抵抗冻融破坏的能力。 膨胀性:岩石吸水后体积增大引起岩石结构破坏的
性能称膨胀性。 崩解性:岩石被水浸泡,内部结构遭到完全破坏呈
碎块状崩开散落的性能。具有强烈崩解性的岩石和 土,短时间内即发生崩解。
2、岩石的物理性质
岩石的热理性:是指岩石温度发生变化时所表现出来的
物理性质。(热胀冷缩)
大、小开空隙的相对比例关系。
Wp

mw2 ms
100 %
Wa

mw1 ms
100%
2、岩石的物理性质
岩石的软化性
岩石浸水饱和后强度降低的性质,称为软化性
软化系数(KR)为岩石试件的饱和抗压强度(σcw)与 干抗压强度(σc)的比值
KR

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩体力学

岩体力学

岩体:是位于一定地质环境中,在各种宏观地质界面分割下形成的有一定结构的地质体。

结构体:被结构面切割成的岩石块体。

结构面:是指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。

岩体复杂性表现:一.不连续性,二.非均质性,三.各向异性,四.岩体中存在着不同于自重应力场的天然应力场,五.岩体赋存于一定地质环境中,对岩体影响较大。

岩石的变形性状:1.塑性。

2.弹性。

3.粘性。

弹性:指材料在外力作用下产生变形,而撤去外力后立即恢复到它原有的形状和尺寸的性质。

弹性变形:外力撤去后能够恢复的变形。

如应力—应变关系呈直线关系,称线弹性,不呈直线关系称非线弹性。

塑性:指材料受力后,在应力超过屈服应力时仍能继续变形而不即行断裂,撤去外力后变形又不能完全恢复的性质。

不能恢复的变形,称塑性变形。

应变硬化:在屈服点之后,应力—应变关系呈上升曲线,说明晶粒滑到新位置后,导致粒间相嵌、挤紧和晶粒增大,如使之继续滑动,要相应增大应力的现象。

粘性:指材料受力后变形不能在瞬间完成,且应变的速率随应力的大小而改变的性质。

流动变形:应变速率随应力而变化的变形。

峰值前变形机理:1.以裂纹行为为主导的变形。

2.以弹性变形为主的变形。

3.以塑性变形为主的变形。

轴向应力—应变曲线:直线型(弹),下凹型(弹—塑),上凹形(塑—弹),S型(塑—弹—塑)。

扩容:随着裂纹的继续发生和扩展,岩石体积应变增量由压缩专为膨胀的力学过程。

弹性模量:E是指单轴压缩条件下轴向压应力与轴向应变之比。

有效弹性模量:包含裂纹的弹性模量。

固有弹性模量:E未受裂纹的存在所影响的岩石弹性模量。

刚性压力机:用岩石试件的变形作为控制变量,并用着一信号的反噬来控制机器压板的位移速率或加速速率的压力机。

单调加载:岩石在峰值前承受的荷载一直增加。

它可分为等加载速率加载和等应变速率加载两种方式。

循环加载:逐级循环加载:指在试验过程中,当荷载加到一定值时,将荷载全部卸除,然后又加载至比原来卸载点高的压力值,再卸载,如此不断循环的加载方式。

岩石的物理力学指标及其试验方法、强度特性、变形特性、强度理论、工程岩体分级标准

岩石的物理力学指标及其试验方法、强度特性、变形特性、强度理论、工程岩体分级标准

(一)掌握岩石的物理力学指标及其试验方法;了解岩石的强度特性、变形特性、强度理论;掌握工程岩体分级标准。

1.物理力学指标(物理性质指标)
岩石的容重:单位体积内岩石(包括孔隙体积)的重量称为岩石的容重,单位(N/m³)。

干容重:就是指不含水分状态下的容重。

一般用于表示土的压实效果,干容重越大表示压实效果越好。

最大干容重:是在实验室中得到的最密实状态下的干容重。

密度:单位体积所具有的质量称为密度,公式ρ=m/V(kg/m3);单位体积所具有的重量称为容重,公式γ=G/V(N/m3),容重等于密度和重力加速度的乘积,即γ=ρg,单位是牛/立方米(N/m³)。

岩石的比重:岩石的比重就是绝对干燥时岩石固体部分实体积(即不包含孔隙的体积)的重量与同体积水(4℃)的重量之比。

单轴压缩试验试件要求:
端部效应是指试样受压时,两端部受其与试验机承压极间摩擦力的束缚、不能自由侧向膨胀而产生的对强度试验值的影响。

渗透系数
2.物理力学指标(变形性质指标)
弹性模量
变形模量
泊松
弹性模量:单位应变的应力。

3.物理力学指标(强度性质指标)
强度指标:抗压强度、抗剪强度、抗剪断强度、抗切强度、抗拉强度
三轴压缩试验:
岩石的强度特性、变形特性、强度
岩石三轴试验要求尽可能地使岩石处于三轴受力情况下
、。

岩体力学02-岩石的物理力学性质

岩体力学02-岩石的物理力学性质
3
密度和重度在进行 岩体工程稳定性计 算评价、自重应力 计算时是常用的参 数
g—重力加速度,工程计算时一般取10m/s2。
3、岩石的颗粒密度 岩石的颗粒密度( s)是指岩石固体物质的质量与固体
的体积之比,即
s
ms Vs
g / cm
3
岩石颗粒密度只 取决于矿物成分。
Vs—颗粒体积; ms—颗粒质量
(一)岩石的质量与重量指标——密度与重度
1、天然密度() 岩石在天然条件下单位体积的质量,即
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
V—岩石试件的总体积; m—岩石试件的总质量

m V
g / cm
3
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个 2、饱和密度( sat) 岩石中空隙全部被水充填时单位体积的质量,即
量(mw1)与岩样干质量(ms)之比,即
Wa
大开空隙 率与吸水 率的关系
mw 1 100 % ms
VVb dWa nb 100% dWa V w
2、饱和吸水率(Wsat) 岩石试件在煮沸、高压(一般压力为15MPa)或真空条 件下吸入水的质量(mw2)与岩样干质量(ms)之比,即
kv
0.2~0.4 0.4~0.6 0.6~0.8 0.8~0.9
kf
<0.4 0.4~0.8 0.8~0.9
未风化
>5000
0.9~1.0
0.9~1.0
《岩土工程勘察规范》(GB50021-2001)
硬质岩石风化风化程度野外描述
硬质岩石风化风化程度野外描述
四、岩块的工程分类

岩石的岩石的力学性质

岩石的岩石的力学性质

岩石的1岩石的力学性质-岩石的变形岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。

岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。

岩石在荷载作用下,首先发生的物理力学现象是变形。

随着荷载的不断增加,或在恒定载荷作用下,随时间的增长,岩石变形逐渐增大,最终导致岩石破坏。

岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质。

▪ 1.5岩石变形性质的几个基本概念▪1)弹性(elasticity):物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。

▪弹性体按其应力-应变关系又可分为两种类型:▪线弹性体:应力-应变呈直线关系。

▪非线性弹性体:应力—应变呈非直线的关系。

▪2)塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。

▪不能恢复的那部分变形称为塑性变形,或称永久变形,残余变形。

▪在外力作用下只发生塑性变形的物体,称为理想塑性体。

▪理想塑性体,当应力低于屈服极限时,材料没有变形,应力达到后,变形不断增大而应力不变,应力-应变曲线呈水平直线.▪3)黏性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性。

▪应变速率与时间有关,->黏性与时间有关▪其应力-应变速率关系为过坐标原点的直线的物质称为理想粘性体(如牛顿流体),▪4)脆性(brittle):物体受力后,变形很小时就发生破裂的性质。

▪5)延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质,称为延性。

▪ 1.7岩石变形指标及其确定▪岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。

3)全应力-应变曲线的工程意义▪①揭示岩石试件破裂后,仍具有一定的承载能力。

▪②预测岩爆。

▪若A>B,会产生岩爆▪若B>A,不会产生岩爆▪③预测蠕变破坏。

▪当应力水平在H点以下时保持应力恒定,岩石试件不会发生蠕变。

岩石的变形

岩石的变形


σ
/dt
应力-应变速率关系:
σ=η dε


o
dε /dt
6
4)脆性 (brittle): 物体受力后,变形很小 时就发生破裂的性质。
工程上一般以5%为标准进行划分,总应变 大于5%者为塑性材料,反之为脆性材料。 按以上标准,大部分地表岩石在低围压条 件下都是脆性或半脆性的。 当然岩石的塑性与脆性是相对的,在一定 的条件下可以相互转化,如在高温高压条 件下,脆性岩石可表现很高的塑性。
类型Ⅳ 应力较低时,应力—应变曲线向上弯曲, 当压力增加到一定值后,变形曲线成为直线,最 后,曲线向下弯曲,曲线似S型。 由于这些岩石低应力时表现出塑性,高应力时表 现出弹性,破坏前又表现出塑性,所以被称为 塑—弹—塑性岩石。 例如:大多数为变质岩(大理岩、片麻岩等)。 类型Ⅴ 基本上与类型Ⅳ相同,也呈S型,不过曲 线斜率较平缓。一般发生在压缩性较高的岩石中。 应力垂直于片理的片岩具有这种性质。 类型Ⅵ 应力—应变曲线开始先有很小一段直线 部分,然后有非弹性的曲线部分,并继续不断地 蠕变。 这类材料被称为弹—粘性岩石。 例如:岩盐、某些软弱岩石。 13
1)弹性(elasticity): 物体在受外力作用 的瞬间即产生全部变形,而去除外力(卸载) 后又能立即恢复其原有形状和尺寸的性质 称为弹性。 弹性体按其应力-应变关系又可分为两种 类型: 线弹性体:应力-应变呈直线关系。 非线性弹性体:应力—应变呈非直线的关 系。
2
线弹性体,其应力-应变呈直线关系
8
1.3 岩石的变形特征
岩石应力应变曲线
图1-4
9
1.3 岩石的变形特征
1、岩石在单向受压状态下的变形

4.8 岩体的变形特性

4.8 岩体的变形特性

4.8 岩体的变形特性岩体变形特性通常采用变形曲线及其相关参数来描述,这是对工程岩体进行稳定性分析必须首先掌握的基本特性曲线和参数。

岩体的变形曲线,可分为法向变形性质与切向变形性质两类。

前者主要是指由承压板法、狭缝法、环形试验法、原位三铀试验法等试验获得的应力(或载荷)与应变(或位移)的关系曲线,后者是由原位直剪试验得到的剪应力与剪位移的关 系曲线。

4.8.1 岩体法向应力-应变曲线由于结构面的存在,岩体受法向压缩时,结构面产生闭合或结构面中的充填物产生变形,这些变形大部分属于不可恢复的永久变形。

因此,与岩石相比岩体不仅弹性模量或变形模量减小,而且永久变形大大增加,如图4.325的岩石与岩体法向应力-应变曲线(简称σε-曲线)对比所示。

作为典型岩体σε-曲线可分为三阶段分析其变形特性,类似于岩石。

图中OD 0A 1(加载)→A 1D 1(卸载)→D 1A 2(加载)→A 2D 2(卸载)→D 2A 3(加载)→A 3D 3(卸载)。

其中,D 0D 1,D 0D ,2,D 0D 3,分别表示加载到三个不同应力水平(123,,σσσ)时,再卸载到0σ后岩体产生的永久变形。

注意到,各卸载曲线一般是近似平行的,图中123ασσ≈≈,取平均值为α,则岩体的弹性模量为tan α。

图4.32 岩石与岩体σε-曲线对比示意图a-岩石;b-岩体由于岩体内部组成及结构面的不同,变形曲线亦不同,其应力-应变关系非常复杂,根据σε-曲线的形状,可以大致分为如下四种基本型式。

一、单线性型对较坚硬、完整、致密、层厚、裂隙少的岩体,原生结构面闭合变形很小,应力-位移(W σ-)曲线近似通过原点的一条直线,图4.33所示。

另外,被多组节理、裂隙切割,结构疏松、破碎的岩体,甚至破碎带、强烈挤压带,由于裂隙分布均匀,岩体也近似均质,也可能出现直线型的应力-位移(W σ-)曲线。

二、双线性型对于存在节理的坚硬岩体或层理不大发育的层状岩体,加压开始段变形较大,其Wσ-曲线,随应力增大变陡,有时会显现明显的拐点,显示双线性特征,如图4.34所示。

北京交通大学高等岩石力学1 岩石与岩体的力学特性

北京交通大学高等岩石力学1 岩石与岩体的力学特性
性质有关,其曲线形状可用初始法向刚度及最大闭合 量来确定。
Kn0
n
Vj
Vj 0
(5) 结构面的最大闭合量始终小于结构面的张开度。
2 结构面不抗拉时法向应力—应变关系 1) 古德曼(Goodman,1974) 双曲线模型
n0
n
Vj Vm Vj
1 n0

Vj
Vm 1
n0 n
(4)循环荷载作用条件下岩石的变形特征 岩石在循环荷载作用下的应力与应变关系,随加、
卸荷方法及卸荷应力大小的不同而异。
1) 卸荷点低于弹性极限
2) 循环荷载下岩石变形
特点:①加卸载曲线构成回滞环。
②岩石具有记忆现象。
③ 当应力在弹性极限以上某一 较高位下反复加荷、卸荷时,卸荷后 的再加荷曲线随反复加、卸荷次数的 增加而逐渐变陡,回滞环的面积变小, 残余变形逐次增加。
sincossincostantansincossincos所以tan当法向应力较小时tan当法向应力较大时应力较小应力较大2barton准则在低或中等有效正应力作用下jcslgjrctanjrc粗糙度系数jcs结构面岩石材料的单轴抗压强度结构面的残余摩擦角利用粗糙程度不同的种模拟结构面进行剪切试验测定了峰值剪应力和以及峰值剪胀角tan结构面粗糙度系数取值在高有效正应力或三轴应力条件下lgjrctan101520101520normalstressmpa充填物质影响如果结构面之间被某种物质充填后充填结构面的抗剪强度是由充填物质本身的抗剪强度结构面的壁面强度充填物的厚度以及结构面的起伏程度等因素所决定的
的影响; 4. 赋存环境的影响,特别是水和地应力的影响。
2.1.2 岩体的特点
1. 岩体是一种预应力体; 2. 岩体是一种多介质的裂隙体——不连续材料; 3. 岩体是地质体的一部分,它的边界条件就是周围

1.2岩石的力学性质

1.2岩石的力学性质

(5)硬度 岩石表面抵抗工具侵入的性能,与凿 岩性密切相关。凿岩时,比单向抗压强度 更有意义,指岩石表面被破坏的性能。
(6)磨蚀性
岩石对工具的磨蚀能力,主要与岩石 的成分有关。
视频1 视频2
(7)岩石的风化程度 它是指岩石在地质内力和外力的作用 下发生破坏疏松的程度。一般来说随着风 化程度的增大,岩石的孔隙率和变形性增 大,其强度和弹性性能降低。所以,同一 种岩石常常由于风化程度的不同,其物理 力学性质差异很大。
(7)纵波在自由面的倾斜入射
S(3) S(1) α' α α β β' S(5) S(4) S(2) 1 2
X
Z
纵波的反射和透射 应力波向交界面的倾斜入射的情况非常复杂,无论是纵波或 横波,经过交界面后,都要再度产生纵波和横波。 杨桂通, 张善元. 弹性动力学[M]. 北京: 中国铁道出版社, 1988
岩石种类
大理石 和泉砂岩 多湖砂岩
4500~6000
3700~4300 1800~3500 4100~5700 5300~6000 3700~5900 视频2
90~110
100~140 15~25 200~240 320~350 240~330
120~200
120~200 20~50 350~500 700~800 300~400
视频1
视频2
岩石风化程度划分(GB50218-1994)
名 称 未风化 风化特征 结构构造未变,岩质新鲜
微风化
弱风化
结构构造、矿物色泽未变,部分裂隙面有铁锰 质渲染
视频1 视频2
(3) 应力波的分类 ①波
波是质点振动或扰动在介质中的传播。
振动是指一定位置的指点有规则来回 地运动。

第三章 岩石的变形

第三章 岩石的变形

第六节 岩体的变形(P81)
承压板法:就是利用承压板进行岩体变形参数原位测 试方法的一种。用千斤顶通过刚性或柔性承压板(承 压板面积一般为2000-2500cm2)向半无限岩体表面施 力,测量岩体变形与压力。根据施加的单位压力P和实 测的岩面变形S绘制P-S关系曲线,按布西涅斯克的各 向同性半无限弹性表面局部受力公式计算岩体的变形 参数。 PD(1 2 ) E S
二、三轴压缩条件下的岩块变形性质 围压对岩块变形破坏的影响 ①σ3↑,破坏前的ε↑; ②σ3↑,破坏方式由脆性破坏→延性破坏; 根据延性度的不同,岩石的破坏方式主要有两种: (a)脆性破坏:指岩石在变形很小时,由弹性变形直接发展为 急剧、迅速的破坏,破坏后的应力降较大。 (b)延性破坏(塑性破坏)或延性流动:指岩石在发生较大 的永久变形后导致破坏的情况,且破坏后应力降很小。
③Ⅲ:BC段,非稳定破裂发展阶段(累进破裂阶段)→“扩容” 现
象发生; C-峰值强度或单轴抗压强度
“扩容”:在岩石的单轴压缩试验中,当压力达到一定程度以后, 岩石中的破裂(裂纹)继续发生和扩展,岩石的体积应变增量由 压缩转为膨胀的力学过程。就是体积增大的现象。 ④Ⅳ:C点以后,破坏后阶段(残余强度)。刚性压力机和伺服
第四节 岩石的蠕变性质(也称“岩石流变理 论”)
岩石流变:在外部条件不变的情况下,岩石的变形或应力随 时间而变化的现象。 蠕变:指岩石在恒定的荷载(应力)条件下,变形随时间增 长的现象(或性质)。 松弛:指应变一定时(不变),应力随时间增加而减小的现象。 1.蠕变曲线的特征 分三个阶段,如P92:图4-36所示: Ⅰ:初始蠕变阶段(AB段),减速蠕变阶段;下凹型,存在瞬时
粘弹性介质模型
①Maxwell(马克斯威尔)模型 弹性元件+粘性元件(串联)

第四章 1 岩石的变形

第四章 1 岩石的变形

第四章岩石的变形一、基本概念1、岩石变形的定义:岩石变形:指岩石在任何物理因素作用下形状和大小的变化。

工程上的岩石变形是指在外力作用下引起的形状和大小的变化。

变形类型:弹性变形、塑性变形、粘性变形。

①弹性变形:是指材料在外力的作用下发生变形并在外力撤去后立即恢复到它原有的形状和尺寸的性质。

把外力撤去后能够恢复的变形称为弹性变形。

线弹性:应力——应变关系呈直线关系。

非线性:应力——应变关系呈曲线关系(或完全弹性)。

②塑性变形:是指材料受力后,在应力超过屈服应力时仍能继续变形而不即行断裂,撤去外力后,变形又不能完全恢复的性质。

不能恢复的变形为塑性变形(永久变形)。

应力达屈服应力后转为塑性变形。

③粘性:指材料受力后变形不能在瞬间完成,切应变的速率随应力的大小而改变的性质。

应变速率随应力而变化的变形称为流变(流动变形)。

二、岩石变形的力学参数1、弹性模量线弹性:非线弹性:定义几个弹性模量:①初始弹性模量Ei应力为零时的曲线斜率,即②切线弹性模量Et Array曲线上任一点的斜率,即E③平均弹性模量av曲线上近于直线段的斜率。

④割线弹性模量ES曲线原点与曲线上任一点连线的斜率。

2、泊松比3、剪切模量4、拉梅常数:5、体积弹性模量:其中:)(31z y x m σσσσ++=z y x v VVεεεε++≈∆=6、卸载模量卸载曲线的割线斜率。

平均弹性模量w E ,与割线的斜率卸载模量代替弹性模量。

7、变形模量变形模量为总变形量与平均应力的比值。

对于弹塑性岩石,其变形由弹性变形和塑性变形组成则变形模量是描述岩石的总体变形。

三、岩石变形的基本特征1、变形阶段由岩石变形曲线的变化特征,可分为四个阶段:1) 0~A 段,为弹性阶段 应力 — 轴向应变(y σσ~)曲线微呈上凹形,即由初始弹性模量变到平均弹模。

2)A ~B 段,为弹性阶段应力—轴向应变曲线接近于直线,其弹性模量为常数,等于直线的斜率,即平均弹性模量av E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通试验机得到峰值应力前的变形特性,多数
岩石在峰值后工作。 注:C点不是破坏的 开始(开始点B), 也不是破坏的终。 说明:崩溃原因, Salamon1970年提 出了刚性试验机下 的曲线。
刚性机
(1)刚性试验机工作简介
压力机加压(贮存弹性应能) 岩石试件达峰点强度(释放 应变能)导致试件崩溃。 AA′O2O1面积——峰点后, 岩块产生微小位移所需的能。 ACO2O1面积——峰点后, 刚体机释放的能(贮存的能) ABO2O1——峰点后, 普通机释放的能(贮存的能)。
(2)应力、应变全过程曲线形态 在刚性机下,峰值前后的全部应力、应变曲线 分四个阶段:1-3阶段同普通试验机。 4阶段应变软化阶段
特点:
①岩石的原生和新生裂隙贯穿,到达D点,靠碎块间的摩擦 力承载,故 D —称为残余应力。 ②承载力随着应变增加而减少,有明显的软化现象。
(3)全应力——应变曲线的补充性质
线性弹性体。
本构方程:k
应力应变曲线(见右图):
模型符号:H
o
虎克体的性能:a.瞬变性 b.无弹应性力-后应变 效曲线
c.无应力松弛 d.无蠕变流动
5.1 描述流变性质的三个基本元件
(2)塑性元件
材料性质:物体受应力达到屈服极限0时便开始产生 塑性变形,即使应力不再增加,变形仍不 断增长,其变形符合库仑摩擦定律,称其 为库仑(Coulomb)体。是理想的塑性体。
b.弹性常数与强度的确定
弹性模量国际岩石力学学会(ISRH)建议三种方法
初始模量 割线模量
E0
d d
0
c
E50 / 50
切线模量 d / d 50
极限强度 c
2、反复循环加载曲线
特点: ①卸载应力越大,塑性 滞理越大(原因:由裂 隙的扩大,能量的消 耗); ②卸载线,相互平行 ③反复加、卸载、曲线、 总趋势保持不变(有 “记忆功能”)。
服,B点对应的 B 应力为屈服极限 。
(3)塑性变形阶段(BC) 特点: ① 1 1 曲线 ,软化现象; ② 塑性变形,变形不可恢复; ③ 应变速率 1 不断增大。 原因: 新裂纹产生,原生裂隙扩展。
岩石越硬,BC段越 短,脆性性质越显著。
脆性:应力超出屈 服应力后,并不表现 出明显的塑性变形的 特性,而破坏,即为 脆性破坏。
典型 蠕 变 曲 线
(二)岩石蠕变的影响因素
(1)岩石的力学性质 (强度,矿物组成)
应力水平 t
—第二阶段越长;
小到一定程度,
第三蠕变不会出现;
很高,第二阶段短,
立即进入三阶段
(2)温度对蠕变的影响
① t 总的应变量越大。
②第二阶段的斜率,温度高,斜率越大。
(3)湿度
饱和试件第二阶段 和总应变量都将
大于干燥状态下的试件结果。
(三)蠕变特性和常规变形特性的联系
五、岩石介质的力学模型
岩石性质变化范围大,用多种模型来 表述。
主要性质:弹性、塑性、粘性。
5.1 描述流变性质的三个基本元件
(1)弹性元件
力学模型:
材料性质:物体在荷载作用下,其变形完全符合虎克
(Hooke)定律。称其为虎克体,是理想的
a.分三全阶段 (1)原生微裂隙压密阶段(OA级)
特点: ① 1 1 曲线 ,应变率随应力增 加而减小; ②塑性变形(变形不可恢复) 原因:微裂隙闭合(压密)
(2)弹性变形阶段(AB段) 特点: ① 1 1 曲线是直线; ② 弹性模量,E为常数(变形可恢复) 原因:岩石固体部分变形,B点开始屈
3、岩石应力-应变曲线形态的类型
(1)直线型:弹性、脆性 石英英、玄武岩、坚硬砂岩。
(2)下凹型:弹—塑性 石灰岩、粉砂岩;软化效应。
(3)上凹型:塑—弹性 硬化效应,原生裂隙压密,实体部分坚硬的岩石。 例如:片麻岩。
(4)S型:塑—弹—塑型 多孔隙,实体部分较软的岩石:沉积岩(页岩)
(二)刚性试验机下的单向压缩的变形特性
(三) 2 为常数时,岩石的变形特性
(1) 3 B 不变;(2) 3 E不变;
(3)永保塑性变形的特性, 大。
3
塑性变形增
(四)岩石的体积应变特性
V
V V
1 2 3
扩容现象:
岩石在压力下, 发生非线性体积膨胀。
三、岩石的流变特性
弹性(可恢复)
岩 与时间无关的变形

变 形
与时间有关的—流变
伺服试验机原理示意图 1.岩石试件;2.垫块;3.上压板;4.下压板; 5.位移传感器。
二、岩石在三向压应力下的变形特性 (一) 2 3 时变形规律见图
2 3 越大,
B ,E越大
(二)当 3 为常数时,岩石的变形特性
(1) 响
2
B
;(2)E基本不受 2 变化影
(3) 2 脆性增强。
塑性(不恢复)
蠕变 岩石的时间效应
松弛
蠕变:应力恒定,岩石应变随时间增大,所产生的变形称为 蠕变(又称为流变)。
松驰:应变恒定,岩石中的应力随时间减少,这种现象称 “松 驰”。
(一)典型的蠕变曲线(分三阶段)
1、初始蠕变阶段(瞬变蠕变阶段)AB。
特点:① 有瞬时应变 0(OA);② t ,应
变率随时间增长而减小;③卸载后,有瞬时恢复变 形,后弹性后效,弹性后效,变形经过一段时间后, 逐渐恢复的现象。 2、稳定蠕变阶段(BC)(较长)
特点:①应变率 为常量;②卸载:有瞬弹性恢复,
弹后,不可恢复的永久变形。 3、非稳定蠕变阶段(蠕变破坏阶段)
特点:① 剧烈增加;② 曲线;③一般此阶段
比较短暂。
=0.15-0.35, 当 >0.5时,就是扩容.
体积应变 :
e 1 2 3 1 (1 2) 0 1/ 2
(3)克服岩石试件单向压缩时生产爆裂的途径
• 提高试验机的刚度 • 改变峰值后的加载方式 • 伺服控制试件的位移
普通试验机附加刚性组件的试 验装置(提高试验的刚度)
1岩石试件;2、6电阻应变片; 3金属圆筒;4位移计;5钢垫块
①近似对称性 ②B点后卸载有残余应变,重复加载沿另一曲线上 升形成滞环(hysteresis) ,加载曲线不过原卸载 点,但邻近和原曲线光滑衔接。
③ C点后有残余应变,重复加载滞环变大,反复加 卸载随着变形的增加,塑性滞环的斜率降低,总 的趋势不变。
④C点后,可能会出现压应力下的体积增大现象,
称此为扩容(dilatancy)现象。一般岩的
相关文档
最新文档