高中物理——物理计算题难题

合集下载

高中物理考试题难题及答案

高中物理考试题难题及答案

高中物理考试题难题及答案一、选择题1. 一个物体从静止开始做匀加速直线运动,经过时间t后,其速度变为v。

若物体在前一半时间内的位移与后一半时间内的位移之比为1:3,则物体的加速度a是多少?A. v/2tB. v/tC. 2v/tD. 3v/2t答案:D2. 一个质量为m的物体放在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ。

若物体沿斜面下滑,求物体受到的摩擦力的大小。

A. mgsinθB. mgcosθC. μmgcosθD. μmgsinθ答案:D二、计算题3. 一个质量为2kg的物体从高度h=10m的平台上自由落体。

忽略空气阻力,求物体落地时的速度和动能。

解:根据自由落体运动公式,v² = v₀² + 2gh,其中v₀为初始速度,g为重力加速度(取9.8m/s²),h为高度。

由于物体是从静止开始下落,所以v₀=0。

将数值代入公式得:v² = 0 + 2 * 9.8 * 10v = √(2 * 9.8 * 10) ≈ 14.1 m/s动能Ek = 1/2 * m * v²,将数值代入得:Ek = 1/2 * 2 * (14.1)² ≈ 200.1 J4. 一个电路中包含一个电阻R=10Ω,一个电容器C=2μF,一个电源电压U=12V。

当电路稳定后,求电容器两端的电压。

解:当电路稳定后,电容器充满电,此时电容器两端的电压等于电源电压。

因此,电容器两端的电压Uc = U = 12V。

三、实验题5. 在一次物理实验中,学生使用弹簧测力计测量物体的重力。

如果弹簧测力计的读数为5N,弹簧的原长为0.1m,物体的位移为0.05m,求弹簧的劲度系数k。

解:根据胡克定律,F = kx,其中F为弹力,x为弹簧的形变量。

将数值代入得:k = F / x = 5N / 0.05m = 100N/m结束语:本套高中物理考试题涵盖了力学的基础知识点,包括运动学、动力学、能量守恒以及电路知识,旨在测试学生对物理概念的理解和应用能力。

高中物理速度选择器和回旋加速器压轴难题复习题及答案解析

高中物理速度选择器和回旋加速器压轴难题复习题及答案解析

高中物理速度选择器和回旋加速器压轴难题复习题及答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为qm的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为23mEqB ,带电粒子的重力不计。

(1)求下极板上 N 、P 两点间的距离;(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。

【答案】(1)3mEx =2)'4'7q q m m = 【解析】 【分析】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,根据几何关系求解圆周运动的半径,然后根据2''m v q vB R= 求解比荷。

【详解】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动, qEqvB粒子过 MN 时的速度大小 E v B=仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,沿电场方向:22322mE qE t qB m= 垂直于电场方向:x vt =由以上各式计算得出下极板上N 、 P 两点间的距离3mEx =(2)仅将虚线MN右侧的电场去掉,粒子在MN 右侧的匀强磁场中做匀速圆周运动,设经过P点的粒子的比荷为' ' q m,其做匀速圆周运动的半径为R,由几何关系得:22223()2mER x RqB=+-解得274mERqB=又2''m vq vBR=得比荷'4'7q qm m=2.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d,三金属板上小孔O1、O2、O3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场E1,Ⅱ、Ⅲ间有水平向左电场强度为E2的匀强电场及垂直于纸面向里磁感应强度为B2的匀强磁场.一质子由金属板I上端O1点静止释放,经电场E1加速,经过O2进入E2、B2的复合场中,最终从Ⅲ的下端O3射出,已知质子带电量为e,质量为m.则A.O3处出射时粒子速度为222EvB=B.Ⅰ、Ⅱ两板间电压2122mEUeB=C.粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1D.把质子换成α粒子,则α粒子也能从O3射出【答案】AB【解析】【详解】A.经过O2点进入E2、B2的复合场中,最终沿直线从Ⅲ的下端O3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据qE2=B2qv解得:v=22E B故A 正确;B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=12mv 2,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么Ⅰ、Ⅱ两板间电压U 1=2222 2mE eB 故B 正确;C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有d =102vt +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误; D .若将质子换成α粒子,根据qU 1=12mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.3.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U =2×104V ,静止质子经电场加速后,进入D 形盒,其最大轨道半径R =1m ,磁场的磁感应强度B =0.5T ,质子的质量为1.67×10-27kg ,电量为1.6×10-19C ,问: (1)质子最初进入D 形盒的动能多大? (2)质子经回旋加速器最后得到的动能多大? (3)交流电源的频率是多少?【答案】(1)153.210J -⨯; (2)121.910J -⨯; (3)67.610Hz ⨯. 【解析】 【分析】 【详解】(1)粒子在第一次进入电场中被加速,则质子最初进入D 形盒的动能411195210 1.610J 3.210J k E Uq -==⨯=⨯⨯⨯-(2)根据2v qvB m R=得粒子出D 形盒时的速度为m qBRv m=则粒子出D 形盒时的动能为22219222212271 1.610051J 1.910J (22211).670km m q B R E mv m ---⨯⨯⨯====⨯⨯⨯. (3) 粒子在磁场中运行周期为2mT qBπ=因一直处于加速状态,则粒子在磁场中运动的周期与交流电源的周期相同,即为2mT qBπ=那么交变电源的频率为196271.6100.5Hz 7.610Hz 22 3.14 1.6710qB f m π--⨯⨯===⨯⨯⨯⨯4.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D 1和D 2,磁感应强度为B ,金属盒的半径为R ,两盒之间有一狭缝,其间距为d ,且R ≫d ,两盒间电压为U 。

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

高中物理典型计算题100道及解析

高中物理典型计算题100道及解析

一.计算题如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg ,长为L=1.4m ;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸小于L 。

小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s (1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。

问:m 在M 上面滑动的时间是多大?解析:(1)小滑块与木板间的滑动摩擦力f N mg==μμ小滑块在滑动摩擦力f 作用下向右匀加速运动的加速度a f m g m s 124===//μ木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加速度a F f M2=-()/使m 能从M 上面滑落下来的条件是a a 21>即Ng m M F m f M f F 20)(//)(=+>>-μ解得(2)设m 在M 上滑动的时间为t ,当恒力F=22.8N ,木板的加速度a F f M m s 2247=-=()/./)小滑块在时间t 内运动位移S a t 1122=/木板在时间t 内运动位移S a t 2222=/因S S L21-=即s t t t 24.12/42/7.422==-解得二.有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。

现取以下简化模型进行定量研究。

如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。

设两板之间只有一个质量为m 的导电小球,小球可视为质点。

已知:高中物理典型计算题100道及解析若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。

高中物理牛顿第三定律计算题专题训练含答案

高中物理牛顿第三定律计算题专题训练含答案

高中物理牛顿第三定律计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共11题)1、如图K12-5所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间的相互作用,则地面对B的支持力F N为多大?图K12-52、如图K12-6所示,质量均为m的甲、乙两同学分别静止于水平地面的台秤P、Q上,他们用手分别竖直牵拉一只弹簧测力计的两端,稳定后弹簧测力计的示数为F,若弹簧测力计的质量不计,求:(1)台秤P的读数;(2)两台秤的读数之和为多少?图K12-63、如图K12-7所示,在台秤上放半杯水,台秤示数为G′=50 N,另用挂在支架上的弹簧测力计悬挂一边长a=10 cm的金属块,金属块的密度ρ=3×103 kg/m3,当把弹簧测力计下的金属块平稳地浸入水中深b=4 cm处时,弹簧测力计和台秤示数分别为多少?(水的密度是ρ=103 kg/m3,g取10 m/s2)水图K12-74、如图所示,竖直悬挂的弹簧测力计吊一物体,处于静止状态,弹簧测力计示数表示物体对弹簧的拉力,其大小为F,试论证物体受到重力大小等于F,每一步推导都要写出所根据的物理规律。

5、皮划艇选手与艇的总质量为100 kg,他冲刺时的加速度可达10 m/s2,求此时他的桨对水的推力是多少?(设水的阻力可忽略)6、如图所示,质量M=60 kg的人通过光滑的定滑轮用绳拉着质量为m=20 kg的物体.当物体以加速度a=5 m/s2上升时,人对地面的压力是多少?(g取10 m/s2)7、如下图所示,质量M=60 kg的人通过光滑的定滑轮拉着m=20 kg的物体,当物体以加速度a=5 m/s2上升时,人对地面的压力多大?(g=10 m/s2)8、图为马戏团中猴子爬杆的装置.已知底座连同直杆总质量为20 kg,猴子质量为5 kg,现让猴子沿杆以1 m/s2的加速度从杆底部向上爬,设猴子与杆之间的作用力为恒力,则底座对水平面的压力为多少?9、一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为Ff,则此时箱子对地面的压力大小为多少?10、质量为,m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,水平地面后,反跳的最大高度为h2=0.2m,已知小球与地面接触的时间为t=0.1s,取g=10m/s2。

高中物理计算题专项训练附答案解析

高中物理计算题专项训练附答案解析

1.道路千万条,安全第一条.行车不规范,亲人两行泪.近日,道路上某酒驾人员驾乘汽车A以v A=4 m/s的速度向右做匀速直线运动,同时后方相距x0=24 m处正以v B=2 m/s 的速度同向运动的警车B开始做a=2 m/s2的匀加速直线运动,从此时开始计时,求:(1)B追上A之前,A、B之间的最远距离是多少?(2)经多长时间,警车B才能追上A车?2.舰载机着舰被称为“在刀尖上跳舞”,指的是舰载机着舰有很大的风险,一旦着舰不成功,飞行员必须迅速实施“逃逸复飞”,“逃逸复飞”是指制动挂钩挂拦阻索失败后飞机的复飞.若航母跑道长为280 m,某飞行员在一次训练“逃逸复飞”科目时,战斗机在跑道一端着舰时的速度为55 m/s,着舰后以10 m/s2的加速度做匀减速直线运动,3 s后制动挂钩挂拦阻索失败,于是战斗机立即以6.25 m/s2的加速度复飞,起飞需要的最小速度为50 m/s.求:(1)战斗机着舰3 s时的速度大小;(2)本次“逃逸复飞”能否成功?若不能,请说明理由;若能,达到起飞速度时战斗机离跑道终端的距离.3.如图所示,在水平地面上有一高h=4.2 m的竖直墙,现将一小球以v0=6 m/s的速度,从离地面高为H=6 m的A点水平抛出,小球撞到墙上B点时的速度与竖直墙成37°角,不计空气阻力和墙的厚度,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小球从A到B所用的时间t;(2)抛出点A到墙的水平距离s;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?4.当地时间2021年7月30日,东京奥运会女子蹦床决赛,整套动作完美发挥的朱雪莹,以56.635分夺得金牌,帮助中国蹦床队时隔13年重获该项目冠军.队友刘灵玲收获一枚银牌.已知朱雪莹的体重为45 kg,在比赛中,朱雪莹从离水平网面3.2 m高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m高处.已知朱雪莹与网接触的时间为0.15 s,g 取10 m/s2,求:(1)朱雪莹下落接触网面前瞬间的速率v1和上升离开网面瞬间的速率v2;(2)网面对朱雪莹的平均作用力F.5.如图所示,半径R =0.40 m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m =0.10 kg 的小球,以初速度v 0=7.0 m/s 在水平地面上向左做加速度a =3.0 m/s 2的匀减速直线运动,运动4.0 m 后,冲上竖直半圆环.(取重力加速度g =10 m/s 2).(1)求小球在A 点的速度大小; (2)通过计算得出小球能否通过B 点;(3)若能通过B 点,最后小球落在C 点,求A 、C 间的距离.6.如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道 AB 、圆心为O 1的半圆形光滑轨道 BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值.7.如图所示,质量为M=4 kg的木板静止在光滑的水平面上,在木板的右端放置一个质量为m=1 kg,大小可以忽略的铁块,铁块与木板之间的动摩擦因数μ=0.4,在铁块上加一个水平向左的恒力F=8 N,铁块在长L=6 m的木板上滑动.取g=10 m/s2.求:(1)经过多长时间铁块运动到木板的左端;(2)在铁块到达木板左端的过程中,恒力F对铁块所做的功;(3)在铁块到达木板左端时,铁块和木板的总动能.8.如图所示,光滑固定斜面上有一个质量为10 kg的小球被轻绳拴住悬挂在天花板上,已知绳子与竖直方向的夹角为45°,斜面倾角为30°,整个装置处于静止状态,取g=10 m/s2,结果中可保留根号.求:(1)绳中拉力的大小和斜面对小球支持力的大小;(2)若另外用一个外力拉小球,能够把小球拉离斜面,其最小拉力的大小.9.如图所示,倾角为θ=37°的足够长光滑斜面AB与长L BC=2 m的粗糙水平面BC用一小段光滑圆弧(长度不计)平滑连接,半径R=1.5 m的光滑圆弧轨道CD与水平面相切于C 点,OD与水平方向的夹角也为θ=37°.质量为m的小滑块从斜面上距B点L0=2 m的位置由静止开始下滑,恰好运动到C点.已知重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D点,求小滑块的释放位置与B点的最小距离.10.如图所示,在半径为a、圆心角为90°的扇形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,圆弧部分为绝缘弹性挡板.一带电量为+q、质量为m的粒子以某一速度垂直OM边界射入匀强磁场,进入磁场后仅与挡板碰撞(电荷不发生转移)一次后又垂直ON边界射出,已知粒子与挡板碰撞后速度大小不变、方向反向.不计粒子重力,求:(1)粒子入射点到O点距离;(2)粒子的入射速度.11.如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,极板与可调电源相连.正极板上O 点处的粒子源垂直极板向上发射速度为v 0、带正电的粒子束,单个粒子的质量为m 、电荷量为q .一足够长的挡板OM 与正极板成37°倾斜放置,用于吸收打在其上的粒子.C 、P 是负极板上的两点,C 点位于O 点的正上方,P 点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,CP 长度为L 0.忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力,sin 37°=35.(1)若粒子经电场一次加速后正好打在P 点处的粒子靶上,求可调电源电压U 0的大小; (2)调整电压的大小,使粒子不能打在挡板OM 上,求电压的最小值U min ;(3)若粒子靶在负极板上的位置P 点左右可调,则负极板上存在H 、S 两点(CH ≤CP <CS ,H 、S 两点未在图中标出),对于粒子靶在HS 区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n (n ≥2)种能量的粒子,求CH 和CS 的长度(假定在每个粒子的整个运动过程中电压恒定).12.一名潜水员在夜间进行深水作业,其头盔上的照明灯可看做是点光源向各个方向发射光线,在平静的水面上可看到该光源发出的光只从一个半径r =1.8 m 的圆形区域内射出水面,若水的折射率n =53.求:(1)此时潜水员的头部在水面下方的深度h ;(2)若在8 s 的时间内,我们发现透光的圆形水域半径从1.8 m 扩大到6 m ,试根据光学知识求出潜水员在水下竖直方向匀速运动的速度v y .13.如图所示,一导热性能良好的球形容器内部不规则,某兴趣小组为了测量它的容积,在容器上插入一根两端开口的长玻璃管,接口密封.玻璃管内部横截面积为S=0.2 cm2,一长为h =15 cm的静止水银柱封闭了一定质量的气体,其下方玻璃管内空气柱长度为l1=10 cm,此时外界温度为t1=27 ℃.现把容器浸在100 ℃的沸水中,水银柱缓慢上升29.2 cm后稳定.实验过程中认为大气压强没有变化,大气压强p=1.0×105 Pa(相当于75 cm高汞柱压强).(结果保留两位有效数字)(1)容器的容积为多少?(2)若实验过程中管内气体内能增加了 1.3 J,请判断气体是从外界吸收热量还是向外界放出热量,并计算热量的多少.14.如图所示,水平地面与一半径为L的竖直光滑圆弧轨道相接于B点,轨道上的C 点位置处于圆心O的正下方.质量为m的小球在距离地面高度也为L的水平平台边缘上的A 点以2gL的初速度水平抛出,小球在空中运动至B点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g.求:(1)B点与抛出点A正下方的水平距离x;(2)圆弧BC段所对的圆心角θ;(3)小球经B点时,对圆轨道的压力大小.15.如图所示,足够长,间距为L的平行光滑金属导轨ab、de构成倾角为θ的斜面,上端接有阻值为R的定值电阻,足够长的平行光滑金属导轨bc、ef处于同一水平面内,倾斜导轨与水平导轨在b、e处平滑连接,且b、e处装有感应开关;倾斜导轨处于垂直导轨平面向上的匀强磁场中,水平导轨处于竖直向上的匀强磁场中,磁感应强度大小均为B;距离b足够远处接有未闭合的开关S,在开关S右侧垂直导轨放置导体棒N,在倾斜导轨上距b、e足够远的位置放置导体棒M,现将导体棒M由静止释放,当导体棒M通过b、e处后瞬间感应开关自动断开.已知导体棒M的质量为m,电阻为R,导体棒N的质量为2m,电阻为2R,两导体棒运动过程中始终与导轨接触良好且与导轨垂直,重力加速度为g,不计导轨电阻及空气阻力.(1)保持开关S断开,求导体棒M通过感应开关前瞬间的速度大小;(2)若固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒M在水平导轨上运动的位移;(3)若不固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒N上产生的焦耳热.16.如图所示,足够长的平行金属导轨在水平面上,间距为L,一端连接有阻值为R的电阻;导轨上放质量为m的金属杆,金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力大小时,相对应的匀速运动速度v也会变化,v和F的关系如图所示.若m=0.5 kg,L=0.5 m,R=0.5 Ω;(取重力加速度g=10 m/s2)求:(1)磁感应强度B为多大?(2)金属杆与导轨间的摩擦力.17.如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C.在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10 m/s2,问:(1)油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比;(2)油滴在第一象限运动的时间.18.如图所示,y轴左侧有沿x轴正方向的匀强电场,电场强度为E,屏CD与y轴垂直,OACD为一矩形,OA边长为L,OD边长为2L,矩形OACD内某区域存在磁感应强度为B的匀强磁场.质量为m、电荷量为q、重力不计的正粒子从x轴负半轴上的P点由静止释放,从O点进入磁场后最终垂直于屏打到C点,且从x轴PO段上任意位置由静止释放的同种正粒子最终都能垂直打到屏CD上,求:(1)PO之间的距离x;(2)上述由P点释放的粒子,从P到C经历的时间t;(3)磁场区域的最小面积S.19.如图,容积均为V0、缸壁可导热的A、B两汽缸放置在压强为p0、温度为T0的环境中;两汽缸的底部通过细管连通,A汽缸的顶部通过开口C与外界相通;汽缸内的两活塞将缸内气体分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,其中第Ⅱ、Ⅲ部分的体积分别为18V0和14V0.环境压强保持不变,不计活塞的质量和体积,忽略摩擦.(1)将环境温度缓慢升高,求B汽缸中的活塞刚到达汽缸底部时的温度;(2)将环境温度缓慢改变至2T0,然后用气泵从开口C向汽缸内缓慢注入气体,求A汽缸中的活塞到达汽缸底部后,B汽缸内第Ⅳ部分气体的压强.20.如图所示,一种光学传感器是通过接收器Q接收到光的强度变化而触发工作的.光从挡风玻璃内侧P点射向外侧M点再折射到空气中,测得入射角为α,折射角为β;光从P 点射向外侧N点,刚好发生全反射并被Q接收,求光从玻璃射向空气时临界角θ的正弦值表达式.答案及解析1.(1)25 m (2)6 s 解析:追及和相遇问题(1)两车速度相等时,相距最远,则由有v A =v B +at 1 解得t 1=1 s ,此段时间内A 车的位移x A =v A t 1 B 车的位移x B =v B t 1+12at 21A 、B 之间的最远距离Δx =x A +x 0-x B以上各式联立解得最远距离Δx =25 m.(2)设经过时间t B 车追上A 车,则通过的位移关系有x ′B =x ′A +x 0 即v B t +12at 2=v A t +x 0代入数据解得t =6 s .2.(1)25 m/s (2)能成功,起飞时离跑道终端的距离为10 m 解析:匀变速直线运动规律的应用 (1)战斗机着舰减速过程,根据速度公式得v 1=v 0+a 1t 1代入数据解得v 1=25 m/s(2)战斗机减速过程,根据位移公式得x 1=v 0t 1+12a 1t 21代入数据解得x 1=120 m.假设战斗机能“逃逸复飞”成功,根据速度-位移关系式得v 22 -v 21 =2a 2x2 代入数据得战斗机复飞过程的最小位移x 2=150 m , 飞机的总位移x =x 1+x 2=270 m<L =280 m , 因此本次“逃逸复飞”训练能成功. 离跑道终端的距离Δx =L -x =10 m .3.(1)0.8 s (2)4.8 s (3)v ′0≥8 m/s 解析:抛体运动(1)将B 点的速度分解到水平和竖直方向,有tan 37°=v 0v y竖直方向上是自由落体运动v y =gt 代入数据解得t =0.8 s(2)平抛运动在水平方向上是匀速直线运动,s =v 0t 代入数据解得s =4.8 m(3)恰好从墙上越过时,由平抛运动规律得H -h =12gt ′2s =v ′0t ′解得v ′0=8 m/s.均使小球能越过竖直墙,抛出时的初速度应满足v ′0≥8 m/s.4.(1)8 m/s ,10 m/s (2)5 850 N 解析:动量和动量定理(1)运动员下落接触网面前瞬间的速度大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s运动员上升离开网面瞬间的速度大小为v 2=2gh 2=2×10×5.0 m/s =10 m/s(2)取竖直向上为正方向,运动员和网接触过程中,由动量定理知 (F -mg )t =mv 2-mv 1 可解得F =mv 2-m (-v 1)t+mg=45×10-45×(-8)0.15N +45×10 N =5 850 N5.(1)5 m/s (2)见解析 (3)1.2 m 解析:机械守恒定律 (1)匀减速运动过程中,有:v 2A -v 20 =-2as ,解得v A =5 m/s(2)假设物体能到达圆环的最高点B ,由机械能守恒: 12mv 2A =2mgR +12mv 2B 解得:v B =3 m/s恰好通过最高点B 满足:mg =m v 2B 1 R.解得:v B 1=2 m/s因为v B >v B 1,所以小球能通过最高点B . (3)小球从B 点做平抛运动,有: 2R =12gt 2s AC =v B ·t解得:s AC =1.2 m6.(1)7 N (2)v =12l x -0.96(m/s)(0.85 m ≤l x ≤3 m) (3)1315 m 或95 m 或4115 m解析:能量守恒定律(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12mv 2C C 点时F N =mg +m v 2CR=7 N(2)要使得滑块到达F 点,则必过圆弧轨道DEF 的最高点,即有mgl x sin 37 °-mg (3R cos 37 °+R )=12mv 20 ≥0即l x ≥0.85 m滑块运动到F 的过程中,由机械能守恒定律有mgl x sin 37 °-4mgR cos 37 °=12mv 2解得v =12l x -9.6(m/s)(0.85 m ≤l x ≤3 m)(3)设摩擦力做的功为滑块第一次到达FG 中点时的n 倍 由动能定理得mgl x sin 37°-mgl FG2sin 37°-n μmgl FG2cos 37°=0l x =7n +615m 将0.85 m ≤l x ≤3 m 代入上式可得2728≤n ≤397,由运动过程可知,n 只能取1、3、5 当n =1时l x =1315m当n =3时l x =95m当n =5时l x =4115m.7.(1)2 s (2)64 J (3)40 J解析:传送带模型和滑块—木板模型中的能量问题(1)铁块与木板间的滑动摩擦力F f =μmg =0.4×1×10 N =4 N 铁块的加速度a 1=F -F f m =4 m/s 2木板的加速度a 2=F f M=1 m/s 2设铁块滑到木板左端的时间为t ,则12a 1t 2-12a 2t 2=L解得t =2 s(2)铁块位移x 1=12a 1t 2=12×4×22m =8 mF 对铁块做的功W =Fx 1=8×8 J =64 J(3)由功能关系可知E k 总=W -μmgL =(64-24) J =40 J8.(1)51.8 N 73.2 N (2)70.7 N解析:平衡中的临界和极值问题(1)如图,沿水平方向和竖直方向建立直角坐标系,对小球受力分析,把不在坐标轴上的力沿轴分解,则水平方向上有F T sin 45°-F N sin 30°=0竖直方向上有F T cos 45°+F N cos 30°-mg=0由以上两式得F N=100(3-1) N≈73.2 NF T=50(6-2) N≈51.8 N(2)外力方向与绳子垂直时,拉力最小.拉力的最小值为F min=mg sin 45°代入数据,解得F min=50 2 N≈70.7 N9.(1)0.6 (2)6.75 m解析:动能和动能原理(1)滑块恰好运动到C点,由动能定理得mgL0sin 37°-μmgL BC=0-0解得:μ=0.6(2)滑块能够通过D点,在D点的最小速度,由mg sin θ=m v 2DR解得:v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12mv 2D -0解得:L =6.75 m10.(1)(2-1)a (2)qaB m解析:带电粒子在有界匀强磁场中的运动(1)根据题意可知,粒子与挡板碰撞为弹性碰撞,碰撞后速度大小不变,根据运动的对称性可知,粒子在碰撞挡板前的运动轨迹与碰撞后的轨迹完全对称,由此可作运动轨迹如图所示.设半径为r ,由图几何关系可得r =a 由入射点到O 的距离为d =2r -r 即d =(2-1)a(2)由洛伦兹力提供向心力可得qvB =mv 2r即v =qaB m11.(1)qB 2L 20 8m -mv 20 2q (2)7mv 218q(3)见解析解析:磁场对运动电荷的作用 (1)根据动能定理得qU 0=12mv 2-12mv 20 ,带电粒子进入磁场,由洛伦兹力提供向心力得qvB =m v 2r,又有r =L 02,联立解得U 0=qB 2L 20 8m -mv 22q.(2)使粒子不能打在挡板OM 上,则加速电压最小时,粒子的运动轨迹恰好与挡板OM 相切,如图甲所示,设此时粒子加速后的速度大小为v 1,在上方磁场中运动的轨迹半径为r 1,在下方磁场中运动的轨迹半径为r 2,由几何关系得 2r 1=r 2+r 2sin 37°, 解得r 1=43r 2,由题意知,粒子在下方磁场中运动的速度为v 0,由洛伦兹力提供向心力得qv 1B =m v 21r 1,qv 0B =mv 20 r 2,由动能定理得 qU min =12mv 21 -12mv 20 ,解得U min =7mv 218q.(3)画出粒子的运动轨迹,由几何关系可知P 点的位置满足k (2r P -2r 2)+2r P =x CP (k =1,2,3…).当k =1时,轨迹如图乙所示;当k =5时,轨迹如图丙所示.由题意可知,每个粒子的整个运动过程中电压恒定,粒子在下面的磁场中运动时,根据洛伦兹力提供向心力,有qv 0B =m v 20 r 2,解得r 2=mv 0qB ,为定值,由第(2)问可知,r P ≥43r 2,所以当k 取1,r P =43r 2时,x CP 取最小值,即CH =x CP min =103·mv 0qB,CS →无穷远.12.(1)2.4 m (2)0.7 m/s ,方向竖直向下 解析:光的反射、折射、全反射(1)由题意可知潜水员头盔上照明灯发出的光线在透光区域边缘恰好发生全反射,则根据几何关系可知sin C =r r 2+h2=1n解得h =2.4 m(2)当透光的圆形水域半径扩大到r ′=6 m 时,设潜水员的深度为h ′,由于全反射临界角不变,则根据几何关系可得r h =r ′h ′解得h ′=8 m潜水员在水下竖直方向匀速运动的速度为v y =h ′-ht=0.7 m/s ,方向竖直向下.13.(1)22 cm 3(2)吸热 2.0 J 解析:热力学定律(1)设容器的容积为V ,封闭气体等压膨胀T 1=300 K ,T 2=373 K由盖—吕萨克定律V +l 1S T 1=V +l 2ST 2l 2=l 1+29.2 cm =39.2 cm得V =(T 1l 2-T 2l 1)S T 2-T 1=22 cm 3(2)气体压强为p =1.2×105Pa因为气体膨胀,对外做功W =-p (l 2-l 1)S 得W =-0.70 J根据热力学第一定律ΔU =W +Q 可得Q =2.0 J ,气体从外界吸收热量14.(1)2L (2)45° (3)(4+22)mg 解析:圆周运动(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得x =v 0t L =12gt 2联立解得x =2L(2)小球到达B 点时竖直分速度为v y ,由运动学规律得v 2y =2gL 由运动分解得tan θ=v y v 0解得θ=45°(3)设小球到B 点时速度大小为v B ,则有v B =2v 0由牛顿第二定律得F -mg cos θ=mv 2BL解得F =(4+22)mg 根据牛顿第三定律小球对圆轨道的压力大小为F ′=F =(4+22)mg15.(1)2mgR sin θB 2L 2 (2)6m 2gR 2sin θB 4L 4 (3)8m 3g 2R 2sin 2θ9B 4L 4解析:电磁感应中能量和动量问题(1)由题意可知导体棒M 到达b 、e 前已做匀速直线运动,由法拉第电磁感应定律得E =BLv由闭合电路欧姆定律得I =E2R由平衡条件得mg sin θ=BIL 解得:v =2mgR sin θB 2L2(2)若固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 构成回路,最终导体棒M 静止,由法拉第电磁感应定律得E -=BL Δx Δt由闭合电路欧姆定律得I -=E -3R对导体棒M ,由动量定理得-B I -L Δt =0-mv解得:Δx =6m 2gR 2sin θB 4L 4 (3)若不固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 组成的系统动量守恒,最终它们共速,则mv =3mv 共由能量守恒定律得12mv 2=12×3mv 2共 +Q 导体棒N 上产生的焦耳热为Q N =2R R +2RQ 解得:Q N =8m 3g 2R 2sin 2θ9B 4L 4.16.(1)1 T (2)2 N 解析:电磁感应中的动力学问题 设摩擦力为F f ,平衡时有F =F f +F 安=F f +B 2L 2v R由图像可知,如当F =4 N 时v =4 m/s当F =10 N 时v =16 m/s代入F =F f +B 2L 2v R,解得B =1 T ,F f =2 N .17.(1)1∶1∶ 2 (2)0.828 s解析:带电粒子在叠加场中的运动(1)恰好能沿PO 做匀速直线运动,受力分析如图所示则qvB cos 45°=Eq ,qvB sin 45°=mg因此mg ∶qE ∶qvB =1∶1∶ 2(2)因为qvB =2Eq可知,粒子速度v =4 2 m/s粒子从O 到A ,受重力和电场力,二力合力为0,因此粒子匀速直线运动,运动时间t 1=x 1v =hsin 45°v=0.1 s 粒子在磁场部分做匀速圆周运动qvB =m v 2r周期T =2πr v =2πm Bq磁场中运动时间t 2=α2πT =14T =0.628 s 由对称性可知,粒子从C 到N 与O 到A 时间相同,因此运动总时间t =2t 1+t 2=0.828 s .18.(1)qB 2L 22mE (2)BL E +m (π+2)2qB (3)π-24L 2 解析:带电粒子在组合场中的运动(1)如图所示,由几何关系得垂直于屏打在C 点的粒子在磁场中的运动半径为L ,根据带电粒子在磁场中的运动规律qBv =mv 2r 得R =mv qB=L 由P 到O 运用动能定理得 qEx =12mv 2得x =qB 2L 22mE (2)第一阶段由P 到O 粒子做匀加速直线运动由x =v 2t 1 解得t 1=BL E第二阶段在磁场中粒子经历1/4圆周,故 t 2=14·2πm qB =πm 2qB第三阶段粒子做匀速直线运动x =2L -R v =m qB故总时间t =t 1+t 2+t 3=BL E +m (π+2)2qB (3)磁场下边界为半径为L 的1/4圆弧,磁场的上边界上任意一点坐标x 、y 始终满足y =x ,故磁场的上边界是一条y =x 的直线,如(1)中图所示,月牙部分即为磁场区域面积,故S =14πR 2-12L 2=π-24L 2.19.(1)43T 0 (2)94p 0 解析:热学(1) 选第Ⅳ部分气体为研究对象,在B 汽缸中的活塞到达汽缸底部的过程中发生等压变化:V 0-14V 0T 0=V 0T 1,解得T 1=43T 0. (2) (2)以第Ⅱ、Ⅲ部分气体整体为研究对象,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫18V 0+14V 0T 0=p 1V 12T 0.对第Ⅳ部分气体,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫V 0-14V 0T 0=p 1(V 0-V 1)2T 0,解得p 1=94p 0.20.sin αsin β 解析:光学根据光的折射定律有n =sin βsin α. 根据光的全反射可得sin θ=1n. 联立解得sin θ=sin αsin β.。

高中物理难题集锦

高中物理难题集锦

高中物理难题集锦1.如图所示,在平行板电容器的两板之间,存在相互垂直的匀强磁场和匀强电场,磁感应强度B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B2=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.0×10-19C的同位素正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间,不计离子重力,求:【小题1】离子运动的速度为多大?【小题2】x轴上被离子打中的区间范围?【小题3】离子从Q运动到x轴的最长时间?【小题4】若只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B2´应满足什么条件?答案:【小题1】v=5.0×105m/s【小题2】0.1m≤x≤【小题3】【小题4】B2´≥0.60T解析:(1):离子在两板间时有:解得:v=5.0×105m/s(2)当通过x轴时的速度方向与x轴正方向夹角为45°时,到达x轴上的M点,如图所示,则:r1="0.2m " 所以:OM=当通过x轴时的速度方向与x轴正方向夹角为90°时,到达x轴上的N点,则:r2="0.1m " 所以:ON=r2="0.1m "所以离子到达x轴的区间范围是0.1m≤x≤(3)所有离子速度都相同,当离子运动路程最长时,时间也最长,由图知当r=r1时离子运动时间最长,则:t m=(4)由牛顿第二定律有:则:当r=r1时,同位素离子质量最大:若质量最大的离子不能穿过直线OA,则所有离子必都不能到达x轴,由图可知使离子不能打到x轴上的最大半径:设使离子都不能打到x轴上,最小的磁感应强度大小为B0,则解得B0=="0.60T " 则:B2´≥0.60T2.为了有效地将重物从深井中提出,现用小车利用“双滑轮系统”(两滑轮同轴且有相同的角速度,大轮通过绳子与物体相连,小轮通过另绳子与车相连)来提升井底的重物,如图所示。

高中物理竞赛热学超级经典难题

高中物理竞赛热学超级经典难题

高中物理竞赛热学超级经典难题1.已知大气压强p为l高水银柱,水银的密度为ρ.有一U型管由三段长度均为l,横截面积均为S的直细管构成,其两平行边沿竖直方向.U型管一端封闭,另一端敞开.在U 型管中有一段长度为/2l的水银柱.开始时,水银柱刚好位于U型管左竖直边的下半部,此时被封闭的气柱的温度为T,如图所示.现使气柱中的气体缓慢膨胀,直到水银从U型管的开口端全部逸出为止.(1)求整个过程中封闭气柱中的气体压强p与气柱长度x的函数关系,并画出/~/p p x l关系曲线;(2)求整个过程中封闭气柱中的气体温度T与气柱长度x的函数关系,并画出/~/T T x l关系曲线;(3)已知封闭气柱中气体的内能E与温度T的关系为32E RTν=,其中ν为气体的摩尔数,R为气体普适常量,求在整个过程中封闭气柱中的气体与外界交换的热量(忽略水银柱与气柱之间的热交换).(1)依题意可得(a)2lx l≤≤:()p p g l x gxρρ=−−=;(b)32l x l≤≤:p glρ=;(c)322l x l<≤:0(2)()22l lp p g x l g xρρ=++−=−+;(d)522l x l<≤:322lp p g glρρ=+=;(e)532l x l<<:0(3)(4)p p g l x g l xρρ=+−=−;故得()23()23()(2)2235(2)225(4)(3)2lgx x lgl l x llp g x l x lgl l x lg l x l x lρρρρρ⎧≤≤⎪⎪⎪≤≤⎪⎪⎪=−+<≤⎨⎪⎪<≤⎪⎪⎪−<<⎪⎩(2)根据(/2)(/2)pxS gl l ST Tρ=可得p/p3/21/211/213/225/23x/ll/2l/2T200004()()234()()2134()()(2)2256()(2)254(4)()(3)2x l T x l l x T l x l l x x T T l x l l l xT l x l l x x T l x l l l ⎧≤≤⎪⎪⎪≤≤⎪⎪⎪=−+<≤⎨⎪⎪<≤⎪⎪⎪−<<⎪⎩(3)01113313[(1)1(1)(1)]22222222i i i i i ilW p V p x S p S=∆=∆=+++++++∑∑2238gl S ρ=,2000033333333()(12)2222228gl l E R T T R T T RT S gl S ρνννρ∆=−=−===,27Q E W gl S ρ=∆+=2.有一除底部外都是绝热的气筒,被一位置固定的导热板隔成相等的两部分A 和B ,如图所示,A 、B 分别盛有1mol 氮气和氦气,今将336J 的热量缓慢地由底部传给气体,设活塞上的压强始终保持为1atm ,求(1)A 部和B 部气体温度的改变量,系统对外所作的功(设导热板的热容量可忽略不计);(2)将位置固定的导热板换成可自由滑动的导热板,重复上述讨论.(3)将位置固定的导热板换成可自由滑动的绝热板,重复上述讨论.(1)52A Q R T =∆,3522B Q R T p V R T =∆+∆=∆,5A B Q Q Q R T =+=∆,8.085Q T K R ∆==,5367.222B B A Q E R T R T J =−∆=∆−∆=.(2)5722A Q R T p V R T =∆+∆=∆,3522B Q R T p V R T =∆+∆=∆,6A B Q Q Q R T =+=∆, 6.746Q T K R ∆==,35611222A Q E R T R T R T J =−∆=∆−∆−∆=.(3)557222Q E A R T p V R T R T R T =∆+=∆+∆=∆+∆=∆,211.67Q T K R ∆==,759822A Q E R T R T J =−∆=∆−∆=.T /T 011/213/225/23x /l4612153.双原子理想气体经如图所示的直线过程从状态a 过渡到状态b .(1)求此过程中系统内能的改变、做功和热传递.(2)过程a →b 中哪一状态对应的温度最高.(3)过程a →b 哪一状态为吸、放热转折点.(1)55()()500()22b a b b b a E R T T p V p V J ν∆=−=−=−,i i i A p V =∆=∑1()()400()2a b b a p p V V J +−=,100()Q E A J =∆+=−. (2)22410125/4(25/2)(410)p V pV V T V V pV RT R R R νννν=−+⎧−−→==−+=⎨=⎩,335(10)4V m −=为温度极大值点.切线法:~p V 线与等温线相切点为温度极值点()()0p p V V pV pV p V +∆+∆−=∆+∆=,4104p p V V V V ∆−+=−=−=−→∆335(10)4V m −=为温度极大值点.(3)考虑一微小过程:(,)()p V p p V V →+∆+∆,,p V V p R T ν∆+∆=∆.575222Q E A R T p V p V V p ν∆=∆+∆=∆+∆=∆+∆7(410)2V V =−+∆+5(4)(2435)2V V V V −∆=−+∆,3335(10)24V m −=,吸放热转折点.切线法:~p V 线与绝热线相切点为吸放热转折点pV c γ=,()()0p p V V pV γγ+∆+∆−=,()(1/)()(1/)/0p p V V V pV p p V V V pV pV pV V V γγγγγγγγγ+∆+∆−≈+∆+∆−≈∆+∆=,//p V p V γ∆∆=−,741045p V V Vγ−+−=−=−→3335(10)24V m −=,吸放热转折点.4.有一方形气缸被两楔形活塞I 和II 分割成两室A 和B .活塞I 和II 的斜面倾角均为045θ=,质量可忽略不计,两者均可沿气缸滑动,它们与气缸接触面间的摩擦系数为0.5μ=.开始时,A 和B 两室体积相等,分别装有1mol 温度为T 0,压强等于外界气压0p 的同种理想气体,气体的内能E 与温度T 的关系为3E RT =,其中R 为气体普适常量,该气体在绝热过程中温度T 和体积V 满足:1/3TV =常量.现将量值为Q 的热量缓慢地由气缸底部传给A 中的气体,试求A 和B 中气体的最终温度.假设:除了气缸底部外,气缸壁和两活塞均绝热,活塞与气缸接触面间的摩擦所产生的热量不传给A 和B 中的气体.p 0p 0, T 0p 0, T 0QA BIIIθθ分3种情况:(1)热量Q 不足以使A 中的气体推动活塞I 移动.此时A 中气体的末态压强A p 满足(S 为气缸的横截面积)0()A A p p S p S μ−≤(1),即0021Ap p p μ≤=−(2),A 中气体所经历的过程为等容过程,因此03()A A Q E R T T ∆==−(3),解得03A QT T R=+(4),B 中气体状态不变,因此0B T T =(5),A 中气体的末态压强0000(1)3A A T Q p p p T RT ==+(6),根据02A p p ≤可得此时03Q RT ≤(7).(2)热量Q 足以使A 中的气体推动活塞I 移动,但不足以使B 中的气体推动活塞II 移动.此时A 、B 中气体的末态压强满足0()B B p p S p S μ−≤(8),()A B A p p S p S μ−=(9),即0021B p p p μ≤=−(10),21B A B pp p μ==−(11),B 中气体所经历的过程为绝热过程,活塞I 对B中气体所做的功03()B B B W E R T T ∆'==−(12),A 中气体对活塞I 所做的功026()A B B W W R T T '==−(13),对A 中气体,由热力学第一定律:A A Q E W ∆=+可得003()6()A B Q R T T R T T =−+−(14),即000233A B T T QT T RT +=+(15),对B 中的气体,根据绝热过程方程:1/31/300B B T V T V =可得300()B B T V V T =(16),另一方面,根据理想气体状态方程:000A A B B A Bp V p V p V T T T ==可得3001()2A B A A BB A B B T T p T V V V T p T T ==(17),根据(16)(17)和02A B V V V +=得400024()A B B T T T T T T +=(18),联立(15)和(18)解得1/400034(3)33A Q Q T T RT RT ⎧⎫⎡⎤⎪⎪=+−+⎨⎬⎢⎥⎣⎦⎪⎪⎩⎭(19),1/4001(3)43B Q T T RT ⎡⎤=+⎢⎥⎣⎦(20),B 中末态的压强000001(3)43B B B V T Q p p p V T RT ==+(21),由03Q RT >和02B p p ≤可得此时Q 的范围为00315RT Q RT <≤(22).(3)015Q RT >,此时热量Q 足以使A 中的气体推动活塞I 移动,也足以使B 中的气体推动活塞II 移动.当系统吸收热量015Q RT '=时,根据(19)和(20),A 、B 中的温度分别为5/40(82)AT T '=−(23),1/402B T T '=(24),此后B 中气体状态不变,A 中气体所经历的过程为等压过程,由此015()3()4()A A AA A A A Q RT p V V R T T R T T '''−=−+−=−(25),解得5/4001517(2)444A A Q RT Q T T T R R−'=+=−+(26),B 中末态的温度1/402B B T T T '==(27).综合上述结果,可得(1)03Q RT ≤时003A B Q T T R T T ⎧=+⎪⎨⎪=⎩(28);(2)00315RT Q RT <≤时1/4001/40034(3)331(3)43A B Q Q T T RT RT Q T T RT ⎧⎧⎫⎡⎤⎪⎪⎪=+−+⎨⎬⎢⎥⎪⎣⎦⎪⎪⎪⎩⎭⎨⎪⎡⎤=+⎪⎢⎥⎪⎣⎦⎩(29);(3)015Q RT >时5/401/4017(2)442A BQ T T R T T ⎧=−+⎪⎨⎪=⎩(30).5.有一个空的气球,初始体积为0,在恒温T下对气球充气,在充气过程中气球外面的压力0P保持不变,充入质量为m的理想气体后,体积膨胀为0V.如果在充气过程中气球外面的压力是变化的,压力每次变化NP/,每次在定压下充入质量为Nm/的理想气体,经N次充气后,气球外面的压力从NP/增加到0P,质量为m的理想气体全部被充入气球.假设气球在每次充气的始末时刻是球形的.试求:(1)在第i次(Ni≤≤1)充气的始末时刻气球的半径比fibirr/,(2)气球在第i次被压缩过程中传给环境的热量.00PV mRT=,111fPV m RT=,101//P P N m m N==,,10fV V=,1212bPV m RT=,210/2/2b fV V V==,12122fPV m RT=,20fV V=,….,11(1)biiPV i m RT=−,11fiiPV im RT=,/(1)/bi fiV V i i=−,1/3/[(1)/](1)bi fir r i i i N=−≤≤,.气球在第i次被压缩过程中,气体的压力为1/P im RT V=,气体所做的功111lim lim[/]n nj j j jn nj jW P V im RT V V→∞→∞===∆=∆∑∑.当n→∞时,1()/0j j jV V V+−→,令1()//j j jV V V a n+−=,则有1/1/j jV V a n+=+,(1)11lim/lim/lim(1/)nn ab i fi j jn n njV V V V a n e++→∞→∞→∞===+=∏,(1)ln/b i fia V V+=,11lim/nj jnjW im RT V V→∞==∆∑1(1)ln(/)b i fiim RT V V+=.利用11fiiPV im RT=和1()1(1)b i ii PV im RT++=得(1)//(1)b i fiV V i i+=+,(1)i N≤<,1ln[(1)/]W im RT i i=−+,负号表示此过程是外界对气体做功,从而使气体的体积缩小.根据理想气体的内能仅是温度的函数,气球在第i次被压缩过程中传给环境的热量为100ln[(1)/]ln[(1)/]iQ W im RT i i PV i iN==+=+.6.有一个质量均匀分布、长度为L、定压热容量为常量PC的物体,两端的温度分别为1T和2T且1T<2T.已知1niix L=∆=∑,11lim ln(1)()ln(1)ni inix bx L bL Lb→∞=∆+=++−∑.试问(1)当1T等于环境温度T、物体各处的温度都降到T时所能做出的最大功和物体放给环境的热量.(2)当1T>T、物体各处的温度都降到1T时所能做出的最大功和放给环境的热量.(3)当1T>T、物体各处的温度都降到环境温度T时所能做出的最大功和放给环境的热量.如图所示,先求单位长度热容量为c、长度为i xΔ、温度为f T的物体,当温度降到gT时所能做出的最大功111()(1/)m mi ij i j j g jj jW W c x T T T T−====∆−−=∑∑11()mi j jjc x T T−=∆−−∑11()/mi g j j jjc x T T T T−=∆−∑11()()/mi f g i g j j jjc x T T c x T T T T−==∆−−∆−∑.(1)当m→∞时,1()/0j j jT T T−−→,令1()//j j jT T T a m−−=,则有1/1/j jT T a m−=+,11lim/lim/lim(1/)mmf g j jm m mjT T T T a m−→∞→∞→∞===+∏a e=,ln/f ga T T=,()i i f gW c x T T=∆−−ln/i g f gc x T T T∆.根据题意/Pc C L=,当020()/f iT T T T x L=+−,gT T=,则有020210110()[ln ]n ni P i i i i i LT T T x C T T W W x x T L L LT ==+−−==∆−∑∑2101[ln(1)]nP i i i i C T Tx x T bx L L =−=∆−+∑,其中200()T T b LT −=.因为1ni i x L =∆=∑,21/2n i i i x x L =∆=∑,11lim ln(1)()ln(1)n i i n i x bx L bL L b →∞=∆+=++−∑,可得当温度降到0T 时物体所能做出的最大功为200200222001{[()ln(1)]}(ln )22P P T T T T T T T T W C L bL L C L b T T T −+=−++−=−−,物体放出的总热量为2020011()2nnP i f i i P i i T T T T C Q c x T T x x C L L ==−−=∆−=∆=∑∑.物体放给环境的热量为20200222200200200(ln )(ln 1)22P P P T T T T T T T T TQ Q W C C C T T T T T T T −+=−=−−=−−−.(2)当121()/f i T T T T x L =+−,1g T T =,则有1212111111()[ln ]n n i P i i i i i LT T T x C T T W W x x T L L LT ==+−−==∆−∑∑,因为1ni i x L =∆=∑,21/2n i i i x x L =∆=∑,11lim ln(1)()ln(1)ni i n i x bx L bL L b →∞=∆+=++−∑,211()T T b LT −=,可得2112112212111{[()ln(1)]}(ln )22P P T T T T T TT T W C L bL L C L b T T T −+=−++−=−−.物体的温度降到1T 时放出的总热量为2121111()2nn P i f i i Pi i C T T T T Q c x T T x x C L L ==−−=∆−=∆=∑∑;物体放给温度为1T 的热源的热量为212112222111211211(ln )(ln 1)22P P P T T T T TT T T T Q Q W C C C T T T T T T T −+=−=−−=−−−;热量1Q 所能做出的功为22210110211(1/)()(ln 1)P T T W Q T T C T T T T T =−=−−−.所以当物体的温度降到1T 时所能做出的最大功21122221210211211(ln )()(ln 1)2P P T T TT T T T W W W C C T T T T T T T T +=+=−+−−=−−202120211(ln )2P T T T T TC T T T T −−+−,物体放给环境的热量为202121222000211211(ln )(ln 1)22P P P T T T T T T T T TQ Q W C C T C T T T T T T T −−=−=−−+=−−−.(3)当121()/f i T T T T x L =+−,g T T =,则有12121100110()[ln ]n ni P i i i i i LT T T x C T TW W x x T T T L L LT ==+−−==∆+−−=∑∑211100010[ln ln(1)]nP i i ii C T T T x x T T T T bx LL T =−∆+−−−+∑.其中211()T T b LT −=,因为1nii xL =∆=∑,21/2ni ii x x L =∆=∑,11lim ln(1)()ln(1)ni i n i x bx L bL L b →∞=∆+=++−∑,可得当温度降到0T 时物体所能做出的最大功为021110001{ln [()ln(1)]}2P T T T T W C T T T L bL L T L b−=+−−−++−022********(ln ln )2P T T T T T TC T T T T T +=−−−.物体放出的总热量为2121010011()()()2nn P i f i i Pi i C T T T T Q c x T T x x T T C T L L ==−+=∆−=∆+−=−∑∑,物体放给环境的热量为0202212112120000002010201()(ln ln )(ln ln )22P P P T T T T T T T T T T T TQ Q W C T C T C T T T T T T T T T T ++=−=−−−−=+−−−7.有两个质量相同、且定压热容量同为常数P C 的物体,它们的初始温度分别为1T 和2T (12T T >),并满足1002T T T T −=−,其中0T 为环境温度.试算利用这两个物体所能做出的最大功.(1)10(1/)i i P i i W Q C T T T η==−−∆,1011()n ni ii P i i i T T W W C T T T +==−==−∆−∑∑,当n →∞时,1()/0i i i T T T +−→,令1()//i i i T T T a n+−=,则有1/1/i i T T a n+=+,0111lim /lim /lim(1/)nn a i i n n n j T T T T a n e +→∞→∞→∞===+=∏,01ln /a T T =,110010[ln(/)]P W C T T T T T =−−(2)102(1/)()i i i i i W Q T T W Q η==−+,00201//i ii i P i i iT T T TW Q C T T T T −−==∆0/i i P i P C T T T C T =∆−∆,10()i nni ii P i ni niT T W W C T T T +==−==−∆∑∑,当n →∞时,1()/0i i i T T T +−→,令1()//i i i T T T a n +−=,则有1/1/i i T T a n +=+,0211lim /lim /lim(1/)n n a i i n n n j T T T T a n e +→∞→∞→∞===+=∏,02ln /a T T =,200202[ln(/)()]P W C T T T T T =−−,1210010[ln(/)]P W W C T T T T T +=−−+00202[ln(/)()]P C T T T T T −−2010020012[ln(/)ln(/)]ln[/()]P P C T T T T T C T T TT =−+=,202()0T T −>,0220//2T T T T +>,22202000220121/[(2/)/]/[(2)]/()1T T T T T T T T T TT −=−=>.8.【已知卡诺热机的效率121/1/W Q T T η==−,其中1Q 是热机从温度为1T 的高温热源吸取的热量,2Q 是热机放给温度为2T 的低温热源的热量,12W Q Q =−是热机的输出功.】现有一卡诺热机工作在温度分别为T 和0T 的热源之间,其效率为01/T T η=−,每单位时间从温度为H T 的热源传递热量q 到温度为T 的热源后,其中一部分热量L q 成为热损失传到环境中,剩余的热量()L q q −传到热机中,热量q 和L q 的大小分别为()H q k T T =−和0()L L q k T T =−,其中k 和L k 是两个常数且有0L k k >>和0L q q ≥≥.当高、低温热源的温度H T 和0T 不变,而中间热源的温度T 可变时,试求(1)卡诺热机的输出功率P (每单位时间的输出功)和该系统(由热机和热源构成)的总效率/T P q η=;(2)当T 为何值时,0=P ;(3)当T 为何值时,输出功率达到最大值和所对应的系统总效率; (4)当T 为何值时,系统总效率达到最大值和所对应的输出功率.(1)000[()()](1/)()(1/)H L P k T T k T T T T a bT T T =−−−−=−−,0()[1]()L T H k T T k T T η−=−−0(1/)T T −,其中0H L a kT k T =+,L b k k =+.(2)0T T =或0()/()/H L L H T kT k T k k a b T =++=<,0=P .(3)利用222()20x y x y xy −=+−≥且222x y xy +≥(当x y =时,等号成立)可证2000()(1/)()/P a bT T T bT aT bT T aT T =−−=−++−00[(/)/]a bT b T a b T T =+−+≤0a bT +−2002(/)()b a b T a bT =−.当0(/)T a b T =时,等号成立,输出功率达到最大值2max 0()P a bT =−,对应的总效率0000(/)[1](1/)(/)L T H k aT b T bT a k T aT b η−=−−−.(4)由0(1/)()T H a bTT T k T T η−=−−可得0()()()T H k T T T a bT T T η−=−−和200()()0T T H b k T a bT kT T aT ηη−−+−+=,当200()4()0T H T a bT kT b k aT ηη∆=+−−−=时,总效率达到最大值,对应的温度02()T HT a bT kT T b k ηηη+−=−.解上述方程得220000()2[()2]()40T H H T kT kT a bT akT a bT abT ηη−+−++−=,220002[()2/]/()0T H T H a bT aT T kT ηηη−+−+=,其中001/H T T η=−,00[()2/]/()H H a bT aT T kT +−00001(1)2(1)/L L L H H H H k T Tk T k T T kT k T kT =+++−+0000002221(/)(1)L L L H H H H Hk T T k T k T T T kT T kT kT η=+−−=+,2200022(1)0L T T Hk T kT ηηηη−++=,000max22(11)()L L H T T H H L k T k T kTkT kT k T ηηη=+−+≡,002/0T H a bT kT aT T ηη+−−=.000000000000000000000002222(11)2(1)22(1)(11)2(1)2222(1)T H L L H H H H L L HL L L L H H H H H H L L HL L L H H H H H L aT aT T a bT kT k T k T kTa bT kT kT kT k T k T T kT k T T k T k T k T kT kT T kT kT kT k T k T T kT T k T k T k T kT T kT kT kT k T ηηηηη==+−+−+−++=+++−+−++=+−−+000(1)11)L H HL L H H L k T T kT T k T k kT kT k k T ηη+=+++,20/()0T aT T b k ηη−−=000/()()/()2()T HT T T T a bT kT T aT b k aT b k b k b k ηηηηηη+−=−=−−=−9.太阳能是自然界中一种丰富的清洁能源.太阳能的利用、开发和转换成为人类寻求新能源的热点.近年来,各种利用太阳能的装置应运而生,如太阳能热机、太阳能热泵、太阳能制冷机,等等.现有一个光学效率为η的太阳能集热器,当入射到集热器的总太阳能为Tq时,可输出的有用热能为()u T h cq q k T Tη=−−,其中()h ck T T−为集热器的热损失,hT为集热器的工作温度,cT为环境温度,k是一个比例系数,η、Tq、cT和k均为给定的常数.如果人们构建一个热力学系统,利用太阳能集热器输出的有用热能u q,对温度为p T的空间供热,该供热空间获得的热量p q可大于T qη,达到有效利用能源的目的,其中T qη为直接将太阳能Tq 传到温度为p T的供热空间时该空间所吸收到的太阳能.(1)画出由太阳能驱动的包括太阳能集热器的供热系统的示意图.(2)求出供热量p q的表示式.(3)求出该供热空间在Tq给定的情况下获得最大供热量时,太阳能集热器的工作温度hT和效率Tusqqη/=的表示式.(4)求出最大供热量max()pq.(5)max()pq>Tqη的必要条件是ck k<,求出ck的表示式(用给定常数η、Tq、cT和pT表示).(1)依题意得,如下图所示.(2)()()00[][]ph cp u T h c T h ch p cTT Tq q q k T T q k T TT T Tψηψη−==−−=−−−,其中ph ch p cTT TT T Tψ−=−.(3)令0T ca q kTη=+,则()(1)pcp T s hh p cTTq q a kTT T Tηψ==−−−2[()][2]()p p pc ccc h ch p c p c p cT T TaT aTa kT k T a kT k a kTkT T T k T T T T=+−+≤+−=−−−−.当chaTTk=时,供热量达到最大值,太阳能集热器的效为()[]/()/s T h c T c Tq k T T q a kaT qηη=−−=−.(4)最大供热量为2max()()pcpp cTq a kTT T=−−.(5)当2max0()()pcp Tp cTq a kT qT Tη=−>−时,2c ca kTb kT b>++,其中0p cTpT Tb qTη−=,04()T ccp p cq Tk kT T Tη<≡−.10.下图为半导体温差发电器的示意图.它是由P 型和N 型半导体元件及负载电阻R 所组成,工作在温度分别为1T 和2T 的高、低温热源之间.P 型和N 型导体元件的长度、横截面积及电导率分别为P l 、P A 、P σ和N l 、N A 、N σ.当半导体温差发电器工作时,由于珀尔贴效应,每单位时间发电器从高温热源吸取的热量1Q 和放给低温热源的2Q 分别为11 T I Q α=和22 T I Q α=,其中I 为发电器回路中的电流,α为P 型和N 型半导体的总温差电势率.当电流I 通过发电器时,半导体元件中产生焦耳热流2I r Q J =,其中r 为发电器中半导体元件的总电阻.为了计算方便,通常假设半导体元件侧面绝热隔离,并可证明元件中产生的焦耳热的一半流向高温热源、一半流向低温热源.当发电器工作时,由于半导体元件两端存在一定的温差,根据牛顿传热定律有一热流)(21T T K Q K −=经元件内部由高温端传往低温端,其中K 为发电器中半导体元件的总热传导系数.图中的H Q 和L Q 分别为每单位时间半导体温差发电器从高温热源吸取的和放给低温热源的净热量.为了计算方便,假设1T 、2T 、P l 、P A 、P σ、N l 、N A 、N σ、r 、α和K 均为常数,半导体温差发电器中的其它效应和金属导线中的电阻可忽略不计.(在半导体温差发电器的设计中,人们总是希望获得尽可能大的输出功率和效率.对于半导体温差发电器,有时设计它工作在最大输出功率状态;有时设计它工作在最大效率状态;有时为了兼顾它的输出功率和效率,设计它工作在其它的合理状态:既不是最大输出功率状态又不是最大效率状态).请根据上述模型,回答如下问题:(1)写出r 的表示式; (2)写出H Q 和L Q 的表示式;(3)写出半导体温差发电器的输出功率P 和效率η的表示式; (4)确定半导体温差发电器的电流范围;(5)求出半导体温差发电器的最大输出功率max P 和所对应的电流P I 和效率P η的表示式; (6)确定当半导体温差发电器的效率大于最大输出功率的效率P η时的电流范围; (7)定性地讨论和画出P 和η随I 变化的曲线,定性地标注出半导体温差发电器工作在最大效率时的电流ηI 的位置;(8)讨论并确定电流的最佳范围;(9)计算当半导体温差发电器工作在最大输出功率时所需匹配的负载电阻P R ,并分析当半导体温差发电器工作在最大效率时所需匹配的负载电阻ηR 是应该大于P R 还是小于P R ;(10)定性地确定负载电阻的最佳范围.(1)) /() /(N N N P P P A l A l r σσ+=.RPINQLQ HT HT L(2)211111222()H J K Q Q Q Q ITrI K T T α=−+=−+−,122L J K Q Q Q Q =++=212122()IT rI K T T α++−. (3)21212()H L J P Q Q Q Q Q I T T rI α=−=−−=−−,212211122()()H I T T rI PQ IT rI K T T αηα−−==−+−. (4)当12max ()0,T T I I I rα−==≡时,0P =;当0P >时,要求max 0I I <<. (5)2221212()[()]42T T P r T T I r rαα−=−−−,12()2P I T T I r α=−≡,2212max ()4T T P P r α−=≡.(6)22212122221121()[()]42()()22H T T r T T I P r r T r Q K T T T I r rααηαα−−−−==−+−−,12(),2P Pb I T T I r a αη=−≡=,2122(),2()2b r I T T r r ac αη−∆=−+∆=−∆−∆.当P ηη=时,0∆=,/20/2bc b a∆=<−;当0∆>或/2/2bc b a ∆<−时,P ηη<;当/20/2bc b a>∆>−时,P ηη>,则电流的范围为1212/2()()2/22L bc I T T I T T rb a rαα≡−+<<−−.(7)I P ~曲线是一条开口朝下的双曲线,并通过(0,0),),(max P I P ,)0,(max I 三个坐标点,如图所示.I η~曲线通过(0,0),),(P L ηI ,),(max ηI η,),(P P ηI ,)0,(max I 五个坐标点,其中P ηL I I I <<,如图所示.(8)从图看出,当I I η<时,P 和η均随着I 的减少而减少,当P I I >时,P 和η均随着I 的增加而减少.在P I I I η≤≤范围内,当P 增加时,η减少,而当P 减少时,η增加.因此,电流的最佳范围应为P I I I η≤≤.(9)2212()P I T T rI RI α=−−=,12()/R T T I r α=−−,P R r =,因为ηP I I >,1212()/()/P P R T T I r T T I r R ηηαα=−−<−−=.(10)根据电流的最佳范围P I I I η≤≤,可确定负载电阻R 的最佳范围应为ηP R R R ≤≤.11.太阳辐射的可见光波段承载了绝大部分的能量,地球上的能量从源头上说都来自太阳辐射.地球大气对可见光透明,到达地面的可见光一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡.作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射可近似为黑体辐射.根据斯忒蕃—玻尔兹曼定律,单位面积的黑体辐射功率J 与表面的热力学温度T 的四次方成正比,即4J =T σ,其中σ是一个常量.已知太阳的温度30 5.7810K T =⨯(K 是热力学温度单位),半径50 6.9610km R =⨯,地球到太阳的平均距离91.5010km d =⨯.假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为0.38β=.(1)如果地球表面对太阳辐射的平均反射率0.3α=,请问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少.(2)如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为0.85α'=,其余部分的反射率仍然是0.3α=.问冰雪覆盖面占总面积的多少以上时会导致冰雪覆盖面积不再减少.(1)根据斯忒蕃—玻尔兹曼定律,太阳辐射的总功率244S S P R T πσ=.太阳能均匀(各向同性)地向外传播.设地球半径为E r ,则地球接收太阳辐射的总功率为224S E PP r dππ=,即422()S S S E R P T r dσπ=①,地球表面反射可见光的总功率为S P α.设地球表面的温度为E T ,则地球的热辐射总功率为244E E E P r T πσ=②,考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为S E P P β+.当达到热平衡时,输入的能量与输出的能量相等有S E S E P P P P βα+=+③,从而可得1/41/221()()21S E SR T T dαβ−=−④,代入数值有287K E T =⑤. (2)地球表面维持稳定的冰雪覆盖的低温状态要求地球表面的平均温度低于水的冰点0273K T =.将0E T T =代入式④,可求得地表对太阳辐射的平均反射率为0.43α'=⑥,设冰雪覆盖的地表面积比例为x ,则0.850.3(1)x x α'=+−⑦,可由此解得23%x =⑧.12.南极冰架崩裂形成一座巨型冰山,随洋流漂近一个城市.有人设计了一个利用这座冰山来发电的方案,具体过程为:(a )先将环境中一定量的空气装入体积可变的容器,在保持压强不变的条件下通过与冰山接触使容器内空气温度降至冰山温度;(b )使容器脱离冰山,保持其体积不变,让容器中的冷空气从环境中吸收热量,使其温度升至环境温度;(c )在保持容器体积不变的情况下让空气从容器中喷出,带动发电装置发电.如此重复,直至整座冰山融化.已知环境温度293K =a T ,冰山的温度为冰的熔点I 273K =T ,可利用的冰山的质量111.010kg m =⨯.为了估算可能获得的电能,设计者做出的假设和利用的数据如下:(1)空气可视为理想气体.(2)冰的熔解热53.3410J /kg =⨯L ;冰融化成温度为I T 的水之后即不再利用. (3)压强为p 、体积为V 的空气的内能 2.5=U pV .(4)容器与环境之间的热传导良好,可以保证喷气过程中容器中空气温度不变. (5)喷气过程可分解为一连串小过程,每次喷出的气体的体积都是u ,且u 远小于容器的体积.在每个小过程中;喷管中的气体在内外压强差的作用下加速,从而获得一定动能E ∆,从喷嘴喷出.不考虑喷出气体在加速过程中体积的改变,并认为在喷气过程中容器内的气体压强仍是均匀的,外压强为大气压.(6)假设可能获得的电能是E ∆总和的45%. (7)当||1x <<时,()ln 1+≈x x .试根据设计者的假设,计算利用这座冰山可以获得的电能.以a p 表示环境中大气的压强,则初始时装入容器的空气的压强为a p ,温度为a T ,以a V 表示其体积.当容器与冰山接触,达到平衡时,容器中空气的温度为T I ,体积减小为V0,根据题意,空气经历的过程为等压过程,故有0I aa V V T T =(1)在这一过程中,容器中空气内能的增加量为()02.5a a U p V V ∆=−(2),大气对所考察空气做功为()0a a W p V V =−−(3),若以Q 表示此过程中冰山传给容器中空气的热量,根据热力学第一定律有=∆−Q U W (4),由以上四式得I 3.5a a a a T T Q p V T ⎛⎫−= ⎪⎝⎭(5),(5)式给出的Q 是负的,表示在这一过程中,实际上是容器中的空气把热量传给冰山.容器中空气的温度降至冰山温度后,又经一过等容升温过程,即保持体积V 0不变,温度从T I 升至环境温度a T ,并从周围环境吸热.若以p 1表示所考察空气的压强,则有1I aa p p T T =(6),设喷管的体积为u ;当喷管中的气体第一次被喷出时,容器中空气的压强由p 1降到p 2;根据题目给出的条件有()1020p V u p V −=(7),即021V up p V −=(8),喷出气体获得的动能()k11a E p p u ∆=−(9).当喷管中的空气第二次被喷出后,容器中空气压强由p 2降到p 3,根据题给出的条件可得032V u p p V −=(10),喷出气体获得的动能()k22a E p p u ∆=−(11),当喷管中的空气第N 次被喷出后,容器内空气的压强由p N 降到p N +1,根据题给出的条件可得010N NV up p V +−=(12),喷出气体获得的动能()kN N a E p p u ∆=−(13),如果经过N 次喷射后,容器中空气的压强降到周围大气的压强,即1N a p p +=(14),这时喷气过程终止.在整过喷气过程中,喷出气体的总动能k k1k2kN =∆+∆++∆E E E E …(15),利用(8)到(13)式,(15)式可化成21000k 10001N a V u V u V u E p u Np u V V V −⎡⎤⎛⎫⎛⎫⎛⎫−−−⎢⎥=+++− ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦…(16),(16)式等号右边第1项方括号内是N 项的等比级数,故有00k 1011Na V u VE p u Np u V u V ⎛⎫−− ⎪⎝⎭=−−−(17).又根据(8)(10)(12)(14)各式可得010Na V u p p V ⎛⎫−= ⎪⎝⎭(18),对(18)式等式两边取自然对数得01ln 1lna p u N V p ⎛⎫−= ⎪⎝⎭(19),因0<<u V ,可利用近似公式()ln 1+≈x x 把(19)进一步化简,即01ln aV p N u p =(20),进而由(17)(18)(20)三式得()1k 100ln a a a pE p p V p V p =−−(21),将(1)(6)代入(21)式可得I I I k 1ln a a a a a T T T E p V T T T ⎛⎫=−+ ⎪⎝⎭(22). 根据题意,这些动能可转化成的电能为I I I 0.451ln a a a a a T T T E p V T T T ⎛⎫=−+ ⎪⎝⎭(23),以上讨论表明,要获得电能E ,冰山必须吸收-Q 的热量.整座冰山化掉可吸收的总热量=t Q mL (24),因此可产生的总电量为=−t mL E E Q (25),将(5)和(23)带入(25)式得I I II 1ln 9701a a a t aT T T T T T E mL T T −+=−(26),代入数据后有141.510J t E =⨯(27).。

高中物理难题解析(运动学)

高中物理难题解析(运动学)

运动学基本概念 变速直线运动(P .21)***12.甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则( )。

[2 ](A)甲车先通过下一个路标 (B)乙车先通过下一个路标 (C)丙车先通过下一个路标 (D)三车同时到达下一个路标解答 由题知,三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v > 甲v > 丙v ,所以三车经过二路标过程中,乙车所需时间最短。

本题的正确选项为(B )。

(P .21)***14.质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_______,最小位移等于________,经过94周期的位移等于_________.[2 ] 解答 位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R ,最小位移等于0,又因为经过T 49周期的位移与经过T 41周期的位移相同,故经过T 49周期的位移的大小等于R 2。

本题的正确答案为“2R ;0;R 2”(P .22)***16.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的____________倍.(2000年,上海卷)[5]解答 飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动,设飞机在人头顶正上方时到地面的距离为Y ,发动机声音从头顶正上方传到地面的时间为t ,声音的速度为v 0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1可见:X =v t , ①Y =v 0t , ②=YXtan300 , ③ 图2-1由①式、②式和③式得:58.0330==v v , 本题的正确答案为“0.58”。

高中物理常见难题解析

高中物理常见难题解析

高中物理常见难题解析引言高中物理是理科学生必修的一门学科,也是理解自然界规律的重要途径之一。

然而,许多学生在学习物理时常常遇到各种各样的难题,感到困惑和无助。

本文将针对高中物理中常见的难题进行解析,帮助学生更好地理解和应对这些难题。

1. 力学1.1 牛顿定律牛顿定律是力学的基础,但是在实际应用中,学生经常会遇到以下难题:H3 如何正确判断物体所受的合力方向?学生在解题时常常会遇到如何正确判断物体所受的合力方向的问题。

一个有用的技巧是将物体拆解成各个部分,分别分析每个部分所受力的方向,然后将它们合成为物体所受的合力。

此外,还可以运用牛顿第二定律或通过绘制自由体图来帮助判断合力的方向。

H3 如何应用牛顿第二定律进行计算?牛顿第二定律是力学问题中常用的计算方法之一,但是学生在应用时经常会出现误解。

首先,需要正确理解牛顿第二定律的公式 F = ma,即力等于质量乘以加速度。

其次,需要根据具体的题目情况,确定要求解的量是力、质量还是加速度,并根据公式进行计算。

1.2 运动学运动学是研究物体运动规律的学科,学生在学习运动学时常常会遇到以下难题:H3 如何正确分析匀速和变速直线运动?在解题时,学生往往难以区分匀速和变速直线运动。

一个简单的方法是观察速度-时间图像,如果速度-时间图像是一个直线,那么就是匀速直线运动;如果速度-时间图像不是直线,那么就是变速直线运动。

此外,还可以计算位移和速度之间的比值,如果是固定的,那么就是匀速直线运动。

H3 如何分析自由落体运动?自由落体运动是高中物理中重要的内容,但是学生常常在分析自由落体运动时遇到困难。

一个常用的方法是将自由落体运动分解成垂直方向和水平方向两个分量进行分析。

在垂直方向上,只考虑重力的作用,应用加速度的公式进行计算;在水平方向上,速度恒定,不考虑加速度。

通过分别分析这两个方向上的运动,可以得到物体在自由落体运动中的各个参数。

2. 热学2.1 热力学基础热力学是研究热现象和能量传递规律的学科,学生在学习热学时常常会遇到以下难题:H3 如何正确应用热力学定律?学生在解题时往往难以正确应用热力学定律,例如热力学第一定律和第二定律。

高中物理难题集锦

高中物理难题集锦

物理难题:三维设计A1,小明通过实验验证力的平行四边形法则。

(2)仔细分析实验,小明怀疑实验中的橡皮筋被多次拉伸后弹性发生了变化,影响实验结果。

他用弹簧测力计先后两次将橡皮筋拉伸到相同长度,发现读数不相同,于是进一步探究了拉伸过程对橡皮筋弹性的影响。

实验装置如图2所示,将一张白纸固定在竖直放置的木板上,橡皮筋的上端固定于O点,下端N挂一重物。

用与白纸平行的水平力缓慢地移动N,在白纸上记录下N的轨迹。

重复上述过程,再次记录下N的轨迹。

两次实验记录的轨迹如图3所示。

过o点做一条直线与轨迹交于a、b两点,则实验中橡皮筋分别被拉到a和b时所受拉力、的大小关系为_____ 。

2, 飞机在水平地面上空的某一高度水平匀速飞行,每隔相等时间投放一个物体.如果以第一个物体a的落地点为坐标原点、飞机飞行方向为横坐标的正方向,在竖直平面内建立直角坐标系.如图所示是第5个物体e离开飞机时,抛出的5个物体(a、b、c、d、e)在空间位置的示意图,其中可能的是()A. B. C. D.3, 滑块以速率靠惯性沿固定斜面由底端向上运动,当它回到出发点时速率为,且,若滑块向上运动的位移中点为A,取斜面底端重力势能为零,则()A.上升时机械能减小,下降时机械增大B.上升时机械能减小,下降时机械能也减小C.上升过程中动能和势能相等的位置在A点上方D.上升过程中动能和势能相等的位置在A点下方4, 如图所示,长为L的木板水平放置,在木块的A端放置一个质量为m的小物体,现缓慢抬高A端,使木板以左端为轴在竖直面内转动,当木板转到与水平面成α角时小物体开始滑动,此时停止转动木板,小物体滑到木板底端时的速度为v,则在整个过程中()A.支持力对小物体做功为0B.摩擦力对小物体做功为mgLsinαC.摩擦力对小物体做功为-mgLsinαD.木板对小物体做功为5, 如图所示,AB杆以恒定角速度W绕A点在竖直平面内转动,并带动套在固定水平杆OC上的小环M运动,AO间距离为h。

高考物理难题解题攻略

高考物理难题解题攻略

高考物理难题解题攻略高考物理难题解题攻略1. 对于多体问题,要灵活选取研究对象,善于寻找相互联系。

选取研究对象和寻找相互联系是求解多体问题的两个关键。

选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。

2. 对于多过程问题,要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。

分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。

至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。

3. 对于含有隐含条件的问题,要注重审题,深究细琢,努力挖掘隐含条件。

注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键.通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。

4. 对于存在多种情况的问题,要认真分析制约条件,周密探讨多种情况。

解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。

高中物理考试答题技巧选择题的答题技巧解答选择题时,要注意以下几个问题:(1)注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。

(2)相信第一判断:只有当你发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。

特别是对中等程度及偏下的同学尤为重要。

切记:每年高考选择题错误率高的不是难题,而是开头三个简单题。

不要再最简单的地方,轻敌栽坑!实验题的做题技巧(1)实验题一般采用填空题或作图题的形式出现。

填空题:数值、单位、方向或正负号都应填全面;作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。

高中物理:10类难题解题模板,考试常见!

高中物理:10类难题解题模板,考试常见!

高中物理:10类难题解题模板,考试常见!题型1:直线运动问题直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.例题:题型4:抛体运动问题抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt; (2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解。

高中物理牛顿第二定律计算题专题训练含答案

高中物理牛顿第二定律计算题专题训练含答案

高中物理牛顿第二定律计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s.(1)求列车的加速度大小.(2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小.2、如图所示,质量为m的摆球A悬挂在车架上,求在上述各种情况下,摆线与竖直方向的夹角a和线中的张力T:(1)小车沿水平方向做匀速运动。

(2)小车沿水平方向做加速度为a的运动。

3、质量为2Kg的质点同时受到相互垂直的两个力F1、F2的作用,如图所示,其中F1=3N,F2=4N ,求质点的加速度大小和方向。

4、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500 kg空箱的悬索与竖直方向的夹角θ1=45°。

直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5 m/s2时,悬索与竖直方向的夹角θ2=14°。

如果空气阻力大小不变,且忽略悬索的质量,试求空气阻力f和水箱中水的质量M。

(sin14°=0.242;cos14°=0.970)5、如图所示,质量为M=4kg底座A上装有长杆,杆长为1.5m,杆上有质量为m=1kg的小环,当小环从底座底部以初速度竖直向上飞起时,恰好能冲到长杆顶端,然后重新落回,小环在上升和下降过程中,受到长杆的摩擦力大小不变,在此过程中底座始终保持静止。

(g=10m/s2)求:(1)小环上升过程中的加速度(2)小环受到的摩擦力大小(3)小环在下降过程中,底座对地面的压力。

6、一个质量为0.2 kg的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.(计算时)7、如图所示,轻绳的一端系在地上,另一端系着氢气球,氢气球重20 N,空气对它的浮力恒为30 N,由于受恒定水平风力作用,使系氢气球的轻绳和地面成53°角,(sin53°=0.8,cos53°=0.6,g=10m/s2)。

高中物理力学经典难题

高中物理力学经典难题

高中物理力学经典难题
篇一:高中物理力学经典的题库(含答案)
高中物理力学计算题汇总经典精解(50题)
1.如图1-73所示,质量M=10kg的木楔ABC静止置于
粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿
斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小
和方向.(重力加速度取g=10/m2s)

图1-73
2.某航空公司的一架客机,在正常航线上作水平飞行时,
由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:
(1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖
直拉力,才能使乘客不脱离座椅?(g取10m/s)
1。

高中物理物理解题方法:微元法压轴难题综合题附答案解析

高中物理物理解题方法:微元法压轴难题综合题附答案解析

高中物理物理解题方法:微元法压轴难题综合题附答案解析一、高中物理解题方法:微元法1.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )A 2glB glC 2gl D 12gl 【答案】C 【解析】 【分析】 【详解】铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为244l l l H =-= 链条下落过程,由机械能守恒定律,得:2142l mg mv ⋅= 解得:2gl v =2gl 与分析不相符,故A 项与题意不相符; gl B 项与题意不相符; 2gl与分析相符,故C 项与题意相符; D.12gl D 项与题意不相符.2.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为22FR B .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12Fv D .小球运动到轨道的末端时,拉力的功率为22Fv 【答案】B 【解析】 【详解】AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误;CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。

3.水柱以速度v 垂直射到墙面上,之后水速减为零,若水柱截面为S ,水的密度为ρ,则水对墙壁的冲力为( ) A .12ρSv B .ρSv C .12ρS v 2 D .ρSv 2【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:S m V vt ρρ==以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:0Ft mv =-即:2mvF Sv tρ=-=- 负号表示水受到的作用力的方向与水运动的方向相反;由牛顿第三定律可以知道,水对钢板的冲击力大小也为2S v ρ ,D 正确,ABC 错误。

高考物理复习资料高中物理综合题难题三高考物理压轴题

高考物理复习资料高中物理综合题难题三高考物理压轴题

高考物理复习资料高考物理压轴题汇编高中物理综合题难题汇编〔3〕1. 〔17分〕如下图,两根足够长光滑直金属导轨MN、PQ平行放置在倾角为θ绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R电阻。

一根质量为m匀称直金属杆ab放在两导轨上,并与导轨垂直。

整套装置处于匀强磁场中,磁场方向垂直于斜面对上。

导轨和金属杆电阻可忽视。

让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆到达最大速度v m,在这个过程中,电阻R上产生热量为Q。

导轨和金属杆接触良好,重力加速度为g。

求:〔1〕金属杆到达最大速度时安培力大小;〔2〕磁感应强度大小;〔3〕金属杆从静止开始至到达最大速度过程中杆下降高度。

2. 〔16分〕如下图,绝缘长方体B置于程度面上,两端固定一对平行带电极板,极板间形成匀强电场E。

长方体B上外表光滑,下外表与程度面动摩擦因数=0.05〔设最大静摩擦力与滑动摩擦力一样〕。

B与极板总质量=1.0kg。

带正电小滑块A质量=0.60kg,其受到电场力大小F=1.2N。

假设A所带电量不影响极板间电场分布。

t=0时刻,小滑块A 从B外表上a点以相对地面速度=1.6m/s向左运动,同时,B〔连同极板〕以相对地面速度=0.40m/s向右运动。

〔g取10m/s2〕问:〔1〕A和B刚开始运动时加速度大小分别为多少?〔2〕假设A最远能到达b点,a、b间隔L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做功为多少?3. 〔18分〕如下图,一个质量为木块,在平行于斜面对上推力作用下,沿着倾角为斜面匀速向上运动,木块与斜面间动摩擦因数为.〔〕〔1〕求拉力大小;〔2〕假设将平行于斜面对上推力改为程度推力作用在木块上,使木块能沿着斜面匀速运动,求程度推力大小。

4. 〔21分〕如下图,倾角为θ=30°光滑斜面固定在程度地面上,斜面底端固定一垂直斜面挡板。

质量为m=0.20kg物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A点,再将质量一样物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、a、b两物块可视为质点,在a以初速度v0从地面竖直上抛的同时,b以初速度
v0滑上倾角为的足够长的斜面。

已知b与斜面间的动摩擦因数为,重力加速度为g,求当a落地时,b离地面的高度。

2、质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A离地面的高度为0.8m,如图所示.若摩擦力均不计,从静止开始放手让它们运动.求:(g=10m/s2)
(1)物体A着地时的速度;
(2)物体A着地后物体B沿斜面上滑的最大距离.
3、如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与D在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:
(1)小球从A点做平抛运动的初速度v0的大小;
(2)在D点处管壁对小球的作用力N的大小及其方向;
(3)小球在圆管中运动时克服阻力做的功W f.
4、如图所示,质量为m的物体,放在一固定斜面上,物体与斜面间的动摩擦因
数μ=当斜面倾角为θ时物体恰能沿斜面匀速下滑,此时再对物体施加一个大小为F的水平向右的恒力,物体可沿斜面匀速向上滑行。

试求:
(1)斜面倾角θ;
(2)水平向右的恒力F的大小。

5、如图所示的竖直平面内,相距为d的不带电平行金属板M、N水平固定放置,与灯泡L、开关S组成回路并接地,上极板M与其上方空间的D点相距h,灯泡L的额定功率与电压分别为P L、U L。

带电量为q的小物体以水平向右的速度v0从D点连续发射,落在M板其电荷立即被吸收,M板吸收一定电量后闭合开关S,灯泡能维持正常发光。

设小物体视为质点,重力加速度为g,金属板面积足够大,M板吸收电量后在板面均匀分布,M、N板间形成匀强电场,忽略带电小物体间的相互作用。

(1)初始时带电小物体落在M板上的水平射程为多少?
(2)单位时间发射小物体的个数为多少?
(3)闭合开关S后,带电粒子Q以水平速度从匀强电场左侧某点进入电场,并保持速度穿过M、N板之间。

现若在M、N板间某区域加上方向垂直于纸面的匀强磁场,使Q在纸面内无论从电场左侧任何位置以某水平速度进入,都能到达N板上某定点O,求所加磁场区域为最小时的几何形状及位置。

答案参考
1、
【解析】
【解析】
3、【解析】
4、【解析】
5、。

相关文档
最新文档