2010年辽宁省高考数学试卷(理科)含答案

合集下载

2010年普通高等学校招生全国统一考试(辽宁卷.理)答案

2010年普通高等学校招生全国统一考试(辽宁卷.理)答案

2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(理科)参考答案一、选择题(1)D (2)A (3)B (4)D (5)C (6)B (7)B (8)C (9)D (10)D (11)C (12)A 二、填空题(13)-5 (14)(3,8) (15) (16)21217.解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++ 即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° ……6分 (Ⅱ)由(Ⅰ)得:)60sin(sin sin sin 0B B C B -+=+1sin 2sin(60)B BB =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。

……12分 18.解:(Ⅰ)甲、乙两只家兔分在不同组的概率为991981002002100199C P C ==……4分 (Ⅱ)(i )图Ⅰ注射药物A 后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。

……8分(ii )表3:22200(70653530)24.5610010010595K ⨯⨯-⨯=≈⨯⨯⨯由于K 2>10.828,所以有99.9%的把握认为“注射药物A 后的疱疹面积于注射药物B 后的疱疹面积有差异”。

19.证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图。

则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).……4分 (Ⅰ)111(1,1,),(,,0)222CM SN =-=--,因为110022CM SN ∙=-++=,所以CM ⊥SN ……6分(Ⅱ)1(,1,0)2NC =-,设a=(x ,y ,z )为平面CMN 的一个法向量,则10,2210.2x y z x x y ⎧-+=⎪⎪=⎨⎪-+=⎪⎩令,得a=(2,1,-2). ……9分因为1cos ,2a SN -== 所以SN 与片面CMN 所成角为45°。

2010年高考理科数学试题及答案(全国一卷)

2010年高考理科数学试题及答案(全国一卷)

第1/10页2010年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π= n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-A A =-=⋅⋅⋅ 一. 选择题(1)复数3223i i+-= (A ).i (B ).-i (C ).12—13i (D ).12+13i(2) 记cos (-80°)=k ,那么tan100°=(A )(B ). —(C.)(D ).第2/10页(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7 (C) 6(5)35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

2010年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

2010年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

2010年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学(必修+选修II)第I 卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i(2)记cos(80)k -︒=,那么tan100︒=C.(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) (B) 7 (C) 6(D)(5)35(1(1+-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种 (7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A3 B 3 C 23D 3 (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为(A)2 (B)2(C) (D)(10)已知函数()|lg |f x x =,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 4- (B)3- (C) 4-+ (D)3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)(C) (D) 第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)1x ≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 . (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,cot cot a b a A b B +=+且BF 2FD =,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分) 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)(本小题满分12分)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分) 已知数列{}n a 中,1111,n na a c a +==-.[来源:学*科*网] (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围.答案解析一、选择题(1)A=i.(2)B∵cos(-80°)=cos80°=k,∴sin80°==.∴tan100°=-tan80°=-=-.(3)B线性约束条件对应的平面区域如图所示,由z=x-2y得y=-,当直线y =-在y轴上的截距最小时,z取得最大值,由图知,当直线通过点A时,在y轴上的截距最小,由,解得A(1,-1).所以z max=1-2×(-1)=3.(4)A数列{a n}为等比数列,由a1a2a3=5得=5,由a7a8a9=10得=10,所以=50,即(a2a8)3=50,即=50,所以=5(a n>0).所以a4a5a6==5.(5)C(1+2)3(1-)5的展开式中x的项为(-)3+(2)2=2x,所以x的系数为2.(6)A分两类:①选A类选修课2门,B类选修课1门,有·=12(种);②选A类选修课1门,B类选修课2门,有·=3×6=18(种),所以不同的选法共有12+18=30(种).(7)D不妨设正方体的棱长为1,如图建立空间直角坐标系,则D(0,0,0),B(1,1,0),B1(1,1,1).平面ACD1的法向量为=(1,1,1),又=(0,0,1),∴cos〈,〉===.∴BB1与平面ACD1所成角的余弦值为=.(8)C∵log32=<ln2,要比较log32=与5-=,只需比较log23与=log22,只需比较3与2,∵2>22=4>3,∴log32>5-.∴c<a<b.(9) B在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2)2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.设P到x轴的距离为h,由S△F1PF2=|PF1|·|PF2|·sin60°=|F1F2|·h,解得h=(10)C函数f(x)=lg|x|的图象如图所示.由图知0<a<1,b>1.∵f(a)=|lga|=-lga=lg=f(b)=|lgb|=lgb,∴b=.∴a+2b=a+.令g(a)=a+(0<a<1),g(a)在(0,1)上为减函数,∴g(a)=a+>g(1)=1+2=3.(11)D如图,设∠APO=θ,·=||2·cos2θ=||2·(1-2sin2θ)=(|OP|2-1)(1-2·)=|OP|2+-3≥2-3,当且仅当|OP|2=,即|OP|=时,“=”成立.(12)B不妨取AB⊥CD,过CD作平面PCD,使AB⊥平面PCD,交AB于P.设点P到CD的距离为h,则有V四面体ABCD=×2××2×h=h.当直径通过AB与CD的中点时,h max=2=2.故V max=二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13){x|0≤x≤2}解析:∵-x≤1,∴≤x+1.原不等式等价于,解得0≤x≤2.(14)-解析:∵α为第三象限的角,∴π+2kπ<α<+2kπ,k∈Z.∴2π+4kπ<2α<3π+4kπ,k∈Z.又∵cos2α=-,∴2α为第二象限角.∴sin2α==.∴tan2α==-.∴tan(+2α)===-.(15)(1,)解析:y=x2-|x|+a=.当其图象如图所示时满足题意.由图知,解得1<a<.(16)解析:如图,设椭圆的标准方程为+=1(a>b>0)不妨设B为上顶点,F为右焦点,设D(x,y).由=2,得(c,-b)=2(x-c,y),即,解得,D(,-).由D在椭圆上得:=1,∴=,∴e==.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)解:由a+b=acotA+bcotB及正弦定理得sinA+sinB=cosA+cosB,sinA-cosA=cosB-sinB,从而sinAcos-cosAsin=cosBsin-sinBcos,sin(A-)=sin(-B).又0<A+B<π,故A-=-B,A+B=.所以C=.(18)解:(1)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B·C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B·C)=P(A)+P(B·C)=P(A)+P(B)·P(C)=0.25+0.5×0.3=0.40.(2)X~B(4,0.4),其分布列为P(X=0)=(1-0.4)4=0.129 6,P(X=1)=×0.4×(1-0.4)3=0.345 6,P(X=2)=×0.42×(1-0.4)2=0.345 6,P(X=3)=×0.43×(1-0.4)=0.153 6,P(X=4)=0.44=0.025 6.期望E(X)=4×0.4=1.6.(19)解法一:(1)连结BD,取DC的中点G,连结BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD. 又SD⊥平面ABCD,故BC⊥SD,所以BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足.因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE.DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB==,DE==,EB==,SE=SB-EB=,所以SE=2EB.(2)由SA==,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1,故△ADE为等腰三角形.取ED中点F,连结AF,则AF⊥DE,AF==.连结FG,则FG∥EC,FG⊥DE.所以∠AFG是二面角A—DE—C的平面角.连结AG,AG=,FG==,cos∠AFG==-.所以二面角A-DE-C的大小为120°.解法二:以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系Dxyz.设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2).(1) =(0,2,-2),=(-1,1,0).设平面SBC的法向量为n=(a,b,c),由n⊥,n⊥得n·=0,n·=0.故2b-2c=0,-a+b=0.令a=1,则b=1,c=1,n=(1,1,1).又设=λ(λ>0),则E(,,).=(,,),=(0,2,0).设平面CDE的法向量m=(x,y,z),由m⊥,m⊥,得m·=0,m·=0.故++=0,2y=0.令x=2,则m=(2,0,-λ).由平面DEC⊥平面SBC得m⊥n,m·n=0,2-λ=0,λ=2.故SE=2EB.(2)由(1)知E(,,),取DE中点F,则F(,,),=(,-,-),故·=0,由此得FA⊥DE.又=(-,,-),故·=0,由此得EC⊥DE,向量与的夹角等于二面角ADEC的平面角.于是cos〈,〉==-,所以二面角A-DE-C的大小为120°(20)解:(1)f′(x)=+lnx-1=lnx+,xf′(x)=xlnx+1,题设xf′(x)≤x2+ax+1等价于lnx-x≤a,令g(x)=lnx-x,则g′(x)=-1.当0<x<1时,g′(x)>0;当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,g(x)≤g(1)=-1.综上,a的取值范围是[-1,+∞).(2)由(1)知,g(x)≤g(1)=-1,即lnx-x+1≤0.当0<x<1时,f(x)=(x+1)lnx-x+1=xlnx+(lnx-x+1)≤0;当x≥1时,f(x)=lnx+(xlnx-x+1)=lnx+x(lnx+-1)=lnx-x(ln-+1)≥0.所以(x-1)f(x)≥0.(21)解:设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).(1)证明:将x=my-1代入y2=4x并整理得y2-4my+4=0,从而y1+y2=4m,y1y2=4. ①直线BD的方程为y-y2=·(x-x2),即y-y2=·(x-).令y=0,得x==1.所以点F(1,0)在直线BD上.(2)由①知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1.因为=(x1-1,y1),=(x2-1,y2),·=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=8-4m2,故8-4m2=,解得m=±.所以l的方程为3x+4y+3=0,3x-4y+3=0.又由①知y2-y1=±=±,故直线BD的斜率=±,因而直线BD的方程为3x+y-3=0,3x-y-3=0.因为KF为∠BKD的平分线,故可设圆心M(t,0)(-1<t<1),M(t,0)到l及BD的距离分别为,.由=得t=或t=9(舍去),故圆M的半径r==.所以圆M的方程为(x-)2+y2=.(22)解:(1)a n+1-2=--2=,==+2,即b n+1=4b n+2.b n+1+=4(b n+),又a1=1,故b1==-1.所以{b n+}是首项为-,公比为4的等比数列,b n+=(-)×4n-1,b n=--.(2)a1=1,a2=c-1,由a2>a1得c>2.用数学归纳法证明:当c>2时,a n<a n+1.(ⅰ)当n=1时,a2=c->a1,命题成立;(ⅱ)设当n=k时,a k<a k+1,则当n=k+1时,a k+2=c->c-=a k+1.故由(ⅰ)(ⅱ)知当c>2时,a n<a n+1.当c>2时,令α=,由a n+<a n+1+=c得a n<α;当2<c≤时,a n<α≤3.当c>时,α>3,且1≤a n<α,于是α-a n+1=(α-a n)≤(α-a n),α-a n+1≤(α-1).当n>时,α-a n+1<α-3,a n+1>3. 因此c>不符合要求.所以c的取值范围是(2,].。

2010年高考数学理科试题及答案(全国卷1)

2010年高考数学理科试题及答案(全国卷1)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n -=-=…一、选择题 (1)复数3223i i+-=( )(A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°=( )(A ).k(B ). —k(C.)(D ).—(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为( )(A ).4 (B )3 (C )2 (D )1 (4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )(A) 5(B) 7(C) 6(5) 35的展开式中x 的系数是( )(A) -4(B) -2(C) 2(D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

若要求两类课程中各至少一门,则不同的选法共有( )(A )30种 (B )35种 (C )42种 (D )48种(7)正方体1111ABC D A B C D -中,1B B 与平面1A C D 所成角的余弦值为( )(A )3(B )3(C )23(D )3(8)设123102,12,5a gb nc -===则( )(A )a b c << (B )b c a << (C )c a b << (D )c b a << (9)已知1F 、2F 为双曲线22:1C χγ-=的左、右焦点,点在P 在C 上,12F PF ∠=60°,则P 到χ轴的距离为( )(A )2(B )2(C (D(10)已知函数()|1|f g χχ=,若0a b <<,且()()f a f b =,则2a b +的取值范围是( )(A ))+∞ (B ))+∞ (C )(3,)+∞ (D )[3,)+∞ (11)已知圆O 的半径为1,P A 、P B 为该圆的两条切线,A 、B 为两切点,那么PA ·PB的最小值为( )(A ) (B ) (C ) (D )(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值( )()3A (3B (C (3D第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年辽宁高考理科数学试题含答案

2010年辽宁高考理科数学试题含答案
(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(ⅱ)完成下面 2×2 列 联表,并回答能否有 99.9%的把握认为“注射药物 A 后的疱疹面积与
注射药物 B 后的疱疹面积有差异”. 表 3:
(19)(本小题满分 12 分) 已知三棱锥 P-ABC 中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N 为 AB 上一点,AB=4AN,M,S
(A){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}
(2)设 a,b 为实数,若复数 1+2i 1 i ,则 a bi
(A) a 3 ,b 1 22
(B) a 3,b 1
(C) a 1 ,b 3 22
(D) a 1,b 3
23
(3)两个实习生每人加工一个零件.加工为一等品的概率分别为 和 ,两个零件是
x+
)+2
的图像向右平移
4
个单位后与原图像重合,则
的最小
3
3
值是
2
(A)
3
4
3
(B)
(C)
(D)3
3
2
(6)设{an}是有正数组成的等比数列, Sn 为其前 n 项和。已知 a2a4=1, S3 7 ,则 S5
15
(A)
2
31
33
(B)
(C)
4
4
17
(D)
2
(7)设抛物线 y2=8x 的焦点为 F,准线为 l,P 为抛物线上一点,PA⊥l,A 为垂足.如
二、填空题:本大题共 4 小题,每小题 5 分。
(13) (1 x x2 )(x 1 )6 的展开式中的常数项为_________. x

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)
【专题】11:计算题;12:应用题. 【分析】首先分析题目已知某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,即不发芽率为
0.1,故没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000,0.1).又没发芽的补种 2 个,故补 种的种子数记为 X=2ξ,根据二项分布的期望公式即可求出结果. 【解答】解:由题意可知播种了 1000 粒,没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000, 0.1). 而每粒需再补种 2 粒,补种的种子数记为 X 故 X=2ξ,则 EX=2Eξ=2×1000×0.1=200. 故选:B. 【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础 性题目. 7.(5 分)如果执行如图的框图,输入 N=5,则输出的数等于( )
A.q1,q3
B.q2,q3
C.q1,q4
D.q2,q4
【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系. 菁优网版权所有
【专题】5L:简易逻辑. 【分析】先判断命题 p1 是真命题,P2 是假命题,故 p1∨p2 为真命题,(﹣p2)为真命题,p1∧
【考点】CH:离散型随机变量的期望与方差;CN:二项分布与 n 次独立重复试验的模型. 菁优网版权所有
2,…,N)的点数 N1,那么由随机模拟方案可得积分
的近似值为 .
14.(5 分)正视图为一个三角形的几何体可以是 (写出三种) 15.(5 分)过点 A(4,1)的圆 C 与直线 x﹣y=1 相切于点 B(2,1),则圆 C 的方程为 . 16.(5 分)在△ABC 中,D 为边 BC 上一点,BD= DC,∠ADB=120°,AD=2,若△ADC 的面积为



第 4 页(共 14 页)

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。

2010年辽宁高考理科数学试题及答案

2010年辽宁高考理科数学试题及答案

理科综合能力测试(辽宁卷)一、选择题本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列有关细胞的叙述,正确的是(D)A.病毒是一类具有细胞结构的生物 B.海澡细胞具有细胞核且DNA分子呈环状C.人体所有细胞的细胞周期持续时间相同 D.内质网膜和高尔基体膜都具有流动性2.下列关于呼吸作用的叙述,正确的是(D)A.无氧呼吸的终产物是丙酮酸B.有氧呼吸产生的在线粒体基质中与氧结合生成水C.无氧呼吸不需要的参与,该过程最终有的积累D.质量相同时,脂肪比糖原有氧氧化释放的能量多3.若要在普通显微镜下观察到质壁分离、RNA和脂肪,下列四组材料中应选择的一组是(C)A.水稻胚乳和花生子叶 B.天竹葵叶和水稻胚乳C. 紫色洋葱和花生子叶D.天竺葵叶和紫色洋葱4.水中氧含量随水温的升高而下降,生活在寒温带湖泊中的某动物,其血液中的血红蛋白含量与其生活的水温有关。

右图中能正确表示一定温度范围内动物血液中血红蛋白含量随水温变化趋势的曲线是【A】A 甲 B。

乙 C.丙 D.丁5..将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测到静息电位。

给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。

适当降低溶液S中NA+浓度,测量该细胞的静息电位和动作电位,可观测到【D】A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低6.在白花豌豆品种栽培园中,偶然发现了一株开红花的豌豆植株,推测该红花表现型的出现是花色基因突变的结果。

为了确定推测是否正确,应检测和比较红花植株与百花植株中【B】A 白花基因的碱基组成B 花色基因的DNA序列C.细胞的DNA含量D.细胞的RNA含量7.下列各项表达中正确的是【C】A. Na2O2的电子式为NaNaB.106g的乙醇和丙醇混合液完全燃烧生成的CO2为112L(标准状态)C.在氮原子中,质子数为7而种子数不一定为7D.CL-的结构示意图为8.分子式为C3H6CL2 的同分异构体共有(不考虑例题异构)【B】A.3中B.4种C.5种D.6种9.下列各组的反应,属于统一反应类型的是【D】A.由溴丙烷睡解制丙醇:由丙烯和水反应制丙醇B.由甲苯硝化制对硝基甲苯:由甲苯氧化制苯甲酸C.由苯乙烷消去制环乙烯:由丙烯加溴制1,2-二溴丙烷D.由乙酸和乙醇制乙酸乙酯:由苯甲酸乙酯水解制苯甲酸和乙醇10.把500ml含有BaCl2和KCl的混合溶液分成5等分,取一份加入含a mol硫酸钠的溶液,恰好是钡离子完全沉淀:令取一份加入b mol硝酸银的溶液,恰好使卤离子完全沉淀,则该混合溶液中钾离子浓度为【D】A.0.1(b-2a)mol·L-1B.10(2a-b) mol·L-1C.10(b-a) mol·L-1D.10(b-2a) mol·L-111.已知:HCN(aq)与NaOH(aq)反应的△H等于【C】A.-67.7KJ·mol·L-1B.-43.5 KJ·mol·L-1C.+43.5 KJ·mol·L-1D.+67.7 KJ·mol·L-112.根据右图,可判断出下列离子方程式中错误的是(A)A.2Ag(s) + Cd2+(s) = 2Ag(s) + Cd(s)B. Co2+(aq)+ Cd(s) = Co(s)+ Cd2+(aq)C. 2Ag (aq) + Cd(s) = 2Ag(s) Cd2+(aq)D. 2Ag (aq) +Co(s)=2Ag(s)+Co2+(aq)13.下表中评价合理的是二.选择题:本体共8小题,每小题6分,在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。

2010年高考理科数学试题及答案(全国一卷)含答案

2010年高考理科数学试题及答案(全国一卷)含答案

第1/10页2010年普通高等学校招生全国统一考试理科数学(含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式)(()()P A BP A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π=n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-AA=-=⋅⋅⋅一. 选择题(1)复数3223ii+-=(A ).i (B ).-i (C ).12—13i (D ).12+13i (2) 记cos (-80°)=k ,那么tan100°=(A )(B ). —(C.)(D ).第2/10页(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7(C) 6(5)35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版)

2010年全国统一高考数学试卷(理科)(大纲版ⅰ)(含解析版)

2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i2.(5分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.14.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1+2)3(1﹣)5的展开式中x 的系数是()A.﹣4 B.﹣2 C.2 D.46.(5分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.8.(5分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是.14.(5 分)已知α为第三象限的角,,则=.15.(5分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.20.(12 分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.22.(12 分)已知数列{a n}中,a1=1,a n+1=c﹣.(I)设c=,b n=,求数列{b n}的通项公式;(II)求使不等式a n<a n+1<3 成立的c 的取值范围.2010 年全国统一高考数学试卷(理科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)复数=()A.i B.﹣i C.12﹣13i D.12+13i【考点】A5:复数的运算.【专题】11:计算题.【分析】复数的分子中利用﹣i2=1 代入3,然后化简即可.【解答】解:故选:A.【点评】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.2.(5 分)记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣【考点】GF:三角函数的恒等变换及化简求值;GG:同角三角函数间的基本关系;GO:运用诱导公式化简求值.【专题】11:计算题.【分析】法一:先求sin80°,然后化切为弦,求解即可.法二:先利用诱导公式化切为弦,求出求出结果.【解答】解:法一,所以tan100°=﹣tan80°= .:法二cos (﹣80°)=k ⇒cos (80°)=k ,=【点评】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.3.(5 分)若变量x,y 满足约束条件,则z=x﹣2y 的最大值为()A.4 B.3 C.2 D.1【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y 表示直线在y 轴上的截距,只需求出可行域直线在y 轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l 经过点A(1,﹣1)时,z 最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5 分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=8 8 ( ) A .B .7C .6D .【考点】87:等比数列的性质.【分析】由数列{a n }是等比数列,则有 a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10.【解答】解:a 1a 2a 3=5⇒a 23=5;a 7a 8a 9=10⇒a 3=10,a 52=a 2a 8, ∴ ,∴,故选:A .【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5 分)(1+2)3(1﹣ )5 的展开式中 x 的系数是() A .﹣4B .﹣2C .2D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】利用完全平方公式展开,利用二项展开式的通项公式求出 x 的系数. 【解答】解:(1+2)3(1﹣)5=(1+6+12x +8x)(1﹣)5 故(1+2)3(1﹣)5 的展开式中含 x 的项为 1×C 53()3+12x=﹣10x +12xC 50=2x , 所以 x 的系数为 2.故选:C .【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力6.(5 分)某校开设A 类选修课3 门,B 类选择课4 门,一位同学从中共选3 门,若要求两类课程中各至少选一门,则不同的选法共有()A.30 种B.35 种C.42 种D.48 种【考点】D1:分类加法计数原理.【专题】11:计算题.【分析】两类课程中各至少选一门,包含两种情况:A 类选修课选1 门,B 类选修课选2 门;A 类选修课选2 门,B 类选修课选1 门,写出组合数,根据分类计数原理得到结果.【解答】解:可分以下2 种情况:①A 类选修课选1 门,B 类选修课选2 门,有C31C42 种不同的选法;②A 类选修课选2 门,B 类选修课选1 门,有C32C41 种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故选:A.【点评】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73﹣C33﹣C43=30.7.(5分)正方体ABCD﹣A1B1C1D1 中,BB1 与平面ACD1 所成角的余弦值为()A.B.C.D.【考点】MI:直线与平面所成的角;MK:点、线、面间的距离计算.【专题】5G:空间角.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1 所成角,即为BB1 与平面ACD1 所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O 与平面ACD1 所成角就是BB1 与平面ACD1 所成角,即∠O1OD1,直角三角形OO1D1 中,cos∠O1OD1= ==,故选:D.【点评】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面ACD1 的距离是解决本题的关键所在,这也是转化思想的具体体现,属于中档题.8.(5 分)设a=log32,b=ln2,c= ,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【考点】4M:对数值大小的比较.【专题】11:计算题;35:转化思想.【分析】根据a 的真数与b 的真数相等可取倒数,使底数相同,找中间量1 与之比较大小,便值a、b、c 的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c= = ,而,所以c<a,综上c<a<b,故选:C.【点评】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.9.(5 分)已知F1、F2 为双曲线C:x2﹣y2=1 的左、右焦点,点P 在C 上,∠F1PF2=60°,则P 到x 轴的距离为()A.B.C.D.【考点】HR:余弦定理;KA:双曲线的定义;KC:双曲线的性质.【专题】11:计算题.【分析】设点P (x0 ,y0 )在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2=,由此可求出P 到x 轴的距离.【解答】解:不妨设点P(x0,y0)在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos ∠F1PF2= ,即cos60°= ,解得,所以,故P 到x 轴的距离为故选:B.【点评】本题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.10.(5 分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)【考点】34:函数的值域;3D:函数的单调性及单调区间;4H:对数的运算性质;7F:基本不等式及其应用.【专题】11:计算题;16:压轴题;35:转化思想.【分析】由题意f(a)=f(b),求出ab 的关系,然后利用“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,确定a+2b 的取值范围.【解答】解:因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b 的取值范围是(3,+∞).故选:C.【点评】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b= ,从而错选A,这也是命题者的用心良苦之处.11.(5 分)已知圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.【考点】9O:平面向量数量积的性质及其运算;JF:圆方程的综合应用.【专题】5C:向量与圆锥曲线.【分析】要求的最小值,我们可以根据已知中,圆O 的半径为1,PA、PB 为该圆的两条切线,A、B 为两切点,结合切线长定理,设出PA,PB 的长度和夹角,并将表示成一个关于x 的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2 ﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选:D.【点评】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法﹣﹣判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.12.(5 分)已知在半径为2 的球面上有A、B、C、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积;ND:球的性质.【专题】11:计算题;15:综合题;16:压轴题.【分析】四面体ABCD 的体积的最大值,AB 与CD 是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD 作平面PCD,使AB⊥平面PCD,交AB 于P,设点P 到CD 的距离为h,则有,当直径通过AB 与CD 的中点时,,故.故选:B.【点评】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)不等式的解集是[0,2] .【考点】7E:其他不等式的解法.【专题】11:计算题;16:压轴题;35:转化思想.【分析】法一是移项后平方,注意等价转化为不等式组,化简求交集即可;法二是化简为等价不等式组的形式,求不等式组的解集.【解答】解:法一:原不等式等价于解得0≤x≤2.法二:故答案为:[0,2]【点评】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.14.(5 分)已知α为第三象限的角,,则=.【考点】G3:象限角、轴线角;GG:同角三角函数间的基本关系;GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11:计算题.【分析】方法一:由α为第三象限的角,判断出2α可能的范围,再结合又<0 确定出2α在第二象限,利用同角三角函数关系求出其正弦,再由两角和的正切公式展开代入求值.方法二:判断2α可能的范围时用的条件组合方式是推出式,其它比同.【解答】解:方法一:因为α为第三象限的角,所以2α∈(2(2k+1)π,π+2 (2k+1)π)(k∈Z),又<0,所以,于是有,,所以=.方法二:α为第三象限的角,,⇒4kπ+2π<2α<4kπ+3π⇒2α在二象限,【点评】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.15.(5 分)直线y=1 与曲线y=x2﹣|x|+a 有四个交点,则a 的取值范围是(1,).【考点】3V:二次函数的性质与图象.【专题】13:作图题;16:压轴题;31:数形结合.【分析】在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a 的图象,观察求解.【解答】解:如图,在同一直角坐标系内画出直线y=1 与曲线y=x2﹣|x|+a,观图可知,a 的取值必须满足,解得.故答案为:(1,)【点评】本小题主要考查函数的图象与性质、不等式的解法,着重考查了数形结合的数学思想.16.(5 分)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且,则C 的离心率为.【考点】K4:椭圆的性质.【专题】16:压轴题;31:数形结合.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D 的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c 的方程,解方程求出的值.【解答】解:如图,,作DD1 ⊥y 轴于点D1 ,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.三、解答题(共6 小题,满分70 分)17.(10 分)已知△ABC 的内角A,B 及其对边a,b 满足a+b=acotA+bcotB,求内角C.【考点】GF:三角函数的恒等变换及化简求值;HP:正弦定理.【专题】11:计算题.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A -)=sin(B+),进而根据A,B 的范围,求得A﹣和B+的关系,进而求得A+B=,则C 的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=【点评】本题主要考查了正弦定理的应用.解题过程中关键是利用了正弦定理把边的问题转化为角的问题.18.(12 分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1 篇稿件被录用的概率;(II)求投到该杂志的4 篇稿件中,至少有2 篇被录用的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式;CA:n 次独立重复试验中恰好发生k 次的概率.【分析】(1)投到该杂志的1 篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4 篇稿件中,至少有2 篇被录用的对立事件是0 篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A 表示事件:稿件能通过两位初审专家的评审;B 表示事件:稿件恰能通过一位初审专家的评审;C 表示事件:稿件能通过复审专家的评审;D 表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4 篇稿件有1 篇或0 篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4 篇稿件中,至少有2 篇被录用的概率是0.5248.【点评】本题关键是要理解题意,实际上能否理解题意是一种能力,培养学生的数学思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度.19.(12 分)如图,四棱锥S﹣ABCD 中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC⊥平面SBC.(I)证明:SE=2EB;(II)求二面角A﹣DE﹣C 的大小.【考点】LY :平面与平面垂直;MJ :二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,作 BK ⊥EC ,K 为垂足,根据线面垂直的判定定理可知 DE ⊥平面 SBC ,然后分别求出 SE 与 EB 的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE 为等腰三角形,取 ED 中点 F ,连接 AF ,连接FG ,根据二面角平面角的定义可知∠A【解答】解:(Ⅰ)连接 BD ,取 DC 的中点 G ,连接 BG ,由此知DG=GC=BG=1,即△DBC 为直角三角形,故 BC ⊥BD .又 SD ⊥平面 ABCD ,故 BC ⊥SD ,所以,BC ⊥平面 BDS ,BC ⊥DE . 作 BK⊥EC ,K 为垂足,因平面 EDC ⊥平面 SBC , 故 BK⊥平面 EDC ,BK ⊥DE ,DE 与平面 SBC 内的两条相交直线 BK 、BC 都垂直, DE ⊥平面 SBC ,DE ⊥EC ,DE ⊥SB . SB=, DE=EB= 所以 SE=2EB(Ⅱ)由 SA=,AB=1,SE=2EB ,AB ⊥SA ,知AE= =1,又 AD=1.故△ADE 为等腰三角形.取ED 中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG 是二面角A﹣DE﹣C 的平面角.连接AG,AG= ,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C 的大小为120°.【点评】本题主要考查了与二面角有关的立体几何综合题,考查学生空间想象能力,逻辑思维能力,是中档题.20.(12分)已知函数f(x)=(x+1)lnx﹣x+1.(I)若xf′(x)≤x2+ax+1,求a 的取值范围;(II)证明:(x﹣1)f(x)≥0.【考点】63:导数的运算.【专题】11:计算题.【分析】(Ⅰ)先根据导数公式求出导函数f′(x),代入xf′(x)≤x2+ax+1,将a 分离出来,然后利用导数研究不等式另一侧的最值,从而求出参数 a 的取值范围;(Ⅱ)【解答】解:(Ⅰ),根xf′(x)=xlnx+1,题设xf′(x)≤x2+ax+1 等价于lnx﹣x≤a.令g(x)=lnx﹣x,则当0<x<1,g′(x)>0;当x≥1 时,g′(x)≤0,x=1 是g(x)的最大值点,g(x)≤g(1)=﹣1综上,a 的取值范围是[﹣1,+∞).(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1 即lnx﹣x+1≤0.当0<x<1 时,f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0;当x≥1 时,f(x)=lnx+(xlnx﹣x+1)= =≥0所以(x﹣1)f(x)≥0.【点评】本题主要考查了利用导数研究函数的最值,以及利用参数分离法求参数的取值范围,同时考查了运算求解的能力,属于中档题.21.(12 分)已知抛物线C:y2=4x 的焦点为F,过点K(﹣1,0)的直线l 与C 相交于A、B 两点,点A 关于x 轴的对称点为D.(I)证明:点F 在直线BD 上;(II)设,求△BDK 的内切圆M 的方程.【考点】9S:数量积表示两个向量的夹角;IP:恒过定点的直线;J1:圆的标准方程;K8:抛物线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K 的直线L 方程代入抛物线方程消去x,设L 与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2 和y1y2 的表达式,进而根据点A 求得点D 的坐标,进而表示出直线BD 和BF 的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2 原式得证.) (Ⅱ)首先表示出 结果为求得 m ,进而求得 y 2﹣y 1 的值,推知 BD 的斜率,则 B D方程可知,设M 为(a,0),M到 x=y﹣1和【解答】解:(Ⅰ)抛物线 C :y 2=4x ①的焦点为 F (1,0),设过点K (﹣1,0)的直线 L :x=my ﹣1, 代入①,整理得y 2﹣4my +4=0, 设 L 与 C 的交点 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=4m ,y 1y 2=4, 点 A 关于 X 轴的对称点 D 为(x 1,﹣y 1). BD 的斜率 k 1===,BF 的斜率 k 2=.要使点 F 在直线 BD 上需 k 1=k 2 需 4(x 2﹣1)=y 2(y 2﹣y 1),需 4x 2=y22, 上式成立,∴k 1=k 2, ∴点 F 在直线 BD 上. (Ⅱ =(x 1﹣1,y 1)(x 2﹣1,y 2)=(x 1﹣1)(x 2﹣1)+y 1y 2=(my 1﹣2)(my 2 ﹣2)+y 1y 2=4(m 2+1)﹣8m 2+4=8﹣4m 2=, ∴m 2=,m=±.y 2﹣y 1= =4 =,∴k 1=,BD :y=(x ﹣1).易知圆心 M 在 x 轴上,设为(a ,0),M 到 x= y ﹣1 和到 BD 的距离相等,即|a +1|×=|((a ﹣1)|×,∴4|a +1|=5|a ﹣1|,﹣1<a <1,解得 a=.∴半径 r=,∴△BDK 的内切圆 M 的方程为(x ﹣)2+y 2=.【点评】本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.22.(12 分)已知数列{a n }中,a 1=1,a n +1=c ﹣. (I ) 设 c=,b n =,求数列{b n }的通项公式;(II ) 求使不等式 a n <a n +1<3 成立的 c 的取值范围.【考点】8H :数列递推式;RG :数学归纳法.【专题】15:综合题;16:压轴题.【分析】(1)令c=代入到(2)先求出 n=1,2 时的 c 的范围,然后用数学归纳法分 3 步进行证明当 c >2 时 a n < a n +1 , 然 后 当 c > 2 时 , 令 α= , 根 据 由 可发现 c >时不能满足条件,进而可确定 c 的范围.【解答】解:(1),,即b n=4b n+2+1,a1=1,故所以{ }是首项为﹣,公比为4 的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1 得c>2.用数学归纳法证明:当c>2 时a n<a n+1.(i)当n=1 时,a2=c﹣>a1,命题成立;(ii)设当n=k 时,a k<a k+1,则当n=k+1 时,故由(i)(ii)知当c>2 时,a n<a n+1当c>2 时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3 且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c 的取值范围是(2,].【点评】本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.。

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2]D.{0,1,2}【考点】交集及其运算.【专题】计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【考点】复数代数形式的混合运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【考点】利用导数研究曲线上某点切线方程.【专题】常规题型;计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】复合命题的真假;指数函数与对数函数的关系.【专题】简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】计算题;应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】设计程序框图解决实际问题.【专题】操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}【考点】偶函数;其他不等式的解法.【专题】计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=()A. B.C.2 D.﹣2【考点】半角的三角函数;弦切互化.【专题】计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C. D.5πa2【考点】球内接多面体.【专题】计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB 的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【考点】双曲线的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】模拟方法估计概率;定积分在求面积中的应用;几何概型.【专题】计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】简单空间图形的三视图.【专题】阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2 .【考点】圆的标准方程;直线与圆的位置关系.【专题】压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【考点】余弦定理的应用.【专题】计算题;压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【专题】计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+...+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+ (2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】用向量证明垂直;直线与平面所成的角.【专题】计算题;作图题;证明题;转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【考点】简单随机抽样;独立性检验.【专题】计算题.【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【点评】本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】椭圆的简单性质;等差数列的性质;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】圆的切线的判定定理的证明;弦切角.【专题】证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】简单曲线的极坐标方程;轨迹方程;直线和圆的方程的应用;直线的参数方程;圆的参数方程.【专题】综合题;压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】绝对值不等式的解法;函数的图象;其他不等式的解法.【专题】计算题;作图题;压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或x≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年辽宁高考理科数学试题及答案

2010年辽宁高考理科数学试题及答案

高考数学模拟题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数)2)(1(++i mi 是纯虚数,则m =( )A .1=mB .1-=mC .2=mD .21-=m 2.已知命题:p “若b a =,则||||b a =”,则命题p 及其逆命题、否命题、逆否命题中,正确命题的个数是( )A .1个B .2个C .3个D .4个3.要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;② 从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为( )A .①简单随机抽样调查,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,② 分层抽样D .①② 都用分层抽样4.如图,一个几何体的三视图都是边长为1的正方形,那么这个几何体的体积为( ) A .32 B .31 C .32 D .15.关于函数函数=)(x f 1)sin 3(cos cos 2-+x x x ,以下结论正确的是( )A .)(x f 的最小正周期是π,在区间),(12512ππ-是增函数B .)(x f 的最小正周期是π2,最大值是2C .)(x f 的最小正周期是π,最大值是3D .)(x f 的最小正周期是π,在区间),(612ππ-是增函数6.某人欲购铅笔和圆珠笔共若干只,已知铅笔1元一只,圆珠笔2元一只.要求铅笔不超过2只,圆珠笔不超过2只,但铅笔和圆珠笔总数不少于2只,则支出最少和最多的钱数 分别是( )A .2元,6元B .2元,5元C .3元,6元D . 3元,5元7.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C .4D . 58.函数xxx y sin 2sin 3cos 42---=的最大值是( )A .37- B .3- C .37D . 1第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9—12题)9.已知集合}0|){(≥+-=m y x y x A ,,集合}1|){(22≤+=y x y x B ,.若φ=B A ,则实数m 的取值范围是____________. 10.关于函数⎩⎨⎧≤≤-≤<-=11cos 41)(x x x x x f ,, 的流程图如下,现输入区间][b a ,,则输出的区间是____________. 11.函数3)12(2--+=x a ax y 在区间[23-,2] 上的最大值是3,则实数a =____________.12.设平面上n 个圆周最多把平面分成)(n f 片(平面区域),则=)2(f ____________,=)(n f ____________.(1≥n ,n 是自然数) (二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)设曲线C 的参数方程为θθθ(,sin 41cos 4⎩⎨⎧+=+=y a x 是参数,0>a ),若曲线C 与直线0543=-+y x 只有一个交点,则实数a 的值是____________.14.(不等式选讲选做题)设函数2)(--=a x x f ,若不等式)(x f <1的解)4,2()0,2( -∈x ,则实数a =____________.15.(几何证明选讲选做题)如右图,已知PB 是⊙O 的 切线,A 是切点,D 是弧AC 上一点,若︒=∠70BAC , 则_______=∠ADC .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O 处后发现,在南偏西20、5海里外的洋面M 处有一条海盗船,它正以每小时20海里的速度向南偏东40的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出)40sin( +θ的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)NM17.(本小题满分12分)某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润,事件A 为“购买该商品的3位顾客中,至少有1位采用1期付款”. (Ⅰ)求事件A 的概率()P A ; (Ⅱ)求η的分布列及期望E η.18.(本小题满分13分)如图,已知直四棱柱ABCD-1111D C B A 的底面是边长为2、1A 1CA∠ADC=120的菱形,Q 是侧棱1DD (1DD >22)延长线上的一点,过点Q 、1A 、1C 作菱形截面Q 1A P 1C 交侧棱1BB 于点P .设截面Q 1A P 1C 的面积为1S ,四面体P C A B 111-的三侧面111C A B ∆、11PC B ∆、P A B 11∆面积的和为2S ,21S S S -=. (Ⅰ)证明:QP AC ⊥;(Ⅱ) 当S 取得最小值时,求cos ∠11QC A 的值.19.(本小题满分14分)在直角坐标平面内,定点 )0,1(-F 、)0,1('F ,动点M,满足条件22||||'=+MF MF .(Ⅰ)求动点M 的轨迹C 的方程;(Ⅱ)过点F 的直线交曲线C 交于A,B 两点,求以AB 为直径的圆的方程,并判定这个圆与直线2-=x 的位置关系.20.(本小题满分14分)已知数列}{n a 的前n 项和 ,3,2,1,4232=+⋅-=n a S n n n . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设n T 为数列}4{-n S 的前n 项和,求⋅n T21.(本小题满分14分)理科函数()326f x x x =-的定义域为[]2,t -,设()()2,f m f t n -==,)(x f '是)(x f 的导数.(Ⅰ)求证:n m ≥ ;(Ⅱ)确定t 的范围使函数()f x 在[]2,t -上是单调函数; (Ⅲ)求证:对于任意的2t >-,总存在()02,x t ∈-,满足()'02n mf x t -=+;并确定这样的0x 的个数.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2010年高考辽宁省数学试卷-理科(含详细答案)

2010年高考辽宁省数学试卷-理科(含详细答案)

2010年普通高等学校招生全国统一考试(辽宁卷)数学(理科)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u B ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。

【解析】因为A ∩B={3},所以3∈A ,又因为u B ∩A={9},所以9∈A ,所以选D 。

本题也可以用Venn 图的方法帮助理解。

(2)设a,b 为实数,若复数11+2ii a bi =++,则 (A )31,22a b == (B) 3,1a b ==(C) 13,22a b == (D) 1,3a b ==【答案】A【命题立意】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力。

【解析】由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A 。

(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512 (C)14 (D)16【答案】B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题 【解析】记两个零件中恰好有一个一等品的事件为A ,则 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于(A )1m n C - (B) 1m n A - (C) m n C (D) m n A【答案】D【命题立意】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力 【解析】第一次循环:k =1,p =1,p =n -m +1;第二次循环:k =2,p =(n -m +1)(n -m +2);第三次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3) ……第m 次循环:k =3,p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n此时结束循环,输出p =(n -m +1) (n -m +2) (n -m +3)…(n -1)n =mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考真题数学试卷(理科)(大纲版ⅱ)(含答案及解析)

2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.44.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.355.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3} 6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.310.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.811.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.2.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).3.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.4.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.5.(5分)不等式>0的解集为()A.{x|x<﹣2,或x>3}B.{x|x<﹣2,或1<x<3}C.{x|﹣2<x<1,或x>3}D.{x|﹣2<x<1,或1<x<3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】解,可转化成f(x)•g(x)>0,再利用根轴法进行求解.【解答】解:⇔⇔(x﹣3)(x+2)(x﹣1)>0利用数轴穿根法解得﹣2<x<1或x>3,故选:C.【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础题.6.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.7.(5分)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】1:常规题型.【分析】先将2提出来,再由左加右减的原则进行平移即可.【解答】解:y=sin(2x+)=sin2(x+),y=sin(2x﹣)=sin2(x﹣),所以将y=sin(2x+)的图象向右平移个长度单位得到y=sin(2x﹣)的图象,故选:B.【点评】本试题主要考查三角函数图象的平移.平移都是对单个的x来说的.8.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD9.(5分)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;16:压轴题.【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.【解答】解:设底面边长为a,则高h==,所以体积V=a2h=,设y=12a4﹣a6,则y′=48a3﹣3a5,当y取最值时,y′=48a3﹣3a5=0,解得a=0或a=4时,当a=4时,体积最大,此时h==2,故选:C.【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.10.(5分)若曲线y=在点(a,)处的切线与两个坐标围成的三角形的面积为18,则a=()A.64B.32C.16D.8【考点】6H:利用导数研究曲线上某点切线方程.【专题】31:数形结合.【分析】欲求参数a值,必须求出在点(a,)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=a处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式.从而问题解决.【解答】解:y′=﹣,∴k=﹣,切线方程是y﹣=﹣(x﹣a),令x=0,y=,令y=0,x=3a,∴三角形的面积是s=•3a•=18,解得a=64.故选:A.【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a是第二象限的角,tan(π+2α)=﹣,则tanα=.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】根据诱导公式tan(π+α)=tanα得到tan2α,然后利用公式tan(α+β)=求出tanα,因为α为第二象限的角,判断取值即可.【解答】解:由tan(π+2a)=﹣得tan2a=﹣,又tan2a==﹣,解得tana=﹣或tana=2,又a是第二象限的角,所以tana=﹣.故答案为:.【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程,考查考生的计算能力.14.(5分)若(x﹣)9的展开式中x3的系数是﹣84,则a=1.【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3得展开式中x3的系数,列出方程解得.【解答】解:展开式的通项为=(﹣a)r C9r x9﹣2r令9﹣2r=3得r=3∴展开式中x3的系数是C93(﹣a)3=﹣84a3=﹣84,∴a=1.故答案为1【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知数列{a n}的前n项和S n=(n2+n)•3n.(Ⅰ)求;(Ⅱ)证明:++…+>3n.【考点】6F:极限及其运算;R6:不等式的证明.【专题】11:计算题;14:证明题.【分析】(1)由题意知,由此可知答案.(2)由题意知,==,由此可知,当n≥1时,.【解答】解:(1),所以=;(2)当n=1时,;当n>1时,===所以,n≥1时,.【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K 为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH 为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.22.(12分)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【考点】6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题.【分析】(1)将函数f(x)的解析式代入f(x)≥整理成e x≥1+x,组成新函数g(x)=e x﹣x﹣1,然后根据其导函数判断单调性进而可求出函数g(x)的最小值g(0),进而g(x)≥g(0)可得证.(2)先确定函数f(x)的取值范围,然后对a分a<0和a≥0两种情况进行讨论.当a<0时根据x的范围可直接得到f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,然后对函数h(x)进行求导,根据导函数判断单调性并求出最值,求a的范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf (x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤;(ii)当a>时,由y=x﹣f(x)=x﹣1+e﹣x,y′=1﹣e﹣x,x>0时,函数y递增;x<0,函数y递减.可得x=0处函数y取得最小值0,即有x≥f(x).h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a ﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.。

2010年辽宁省高考数学试卷(理科)

2010年辽宁省高考数学试卷(理科)

2010年辽宁省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.36.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.168.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【分析】由韦恩图可知,集合A=(A∩B)∪(C U B∩A),直接写出结果即可.【解答】解:因为A∩B={3},所以3∈A,又因为C U B∩A={9},所以9∈A,选D.本题也可以用Venn图的方法帮助理解.故选:D.【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力.2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选:A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选:B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).4.(5分)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的p等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m【分析】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量p的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:第一次循环:k=1,p=1,p=n﹣m+1;第二次循环:k=2,p=(n﹣m+1)(n﹣m+2);第三次循环:k=3,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)…第m次循环:k=m,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n此时结束循环,输出p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n=A n m故选:D.【点评】要注意对第m次循环结果的归纳,这是本题的关键.5.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选:C.【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.6.(5分)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.【分析】先由等比中项的性质求得a3,再利用等比数列的通项求出公比q及首项a1,最后根据等比数列前n项和公式求得S5.【解答】解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选:B.【点评】本题考查等比中项的性质、等比数列的通项公式及前n项和公式.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.16【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选:B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选:C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,]D.[,π)【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y=上的导数为y′=﹣=﹣,∵e x+e﹣x≥2=2,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴π≤α<π.即α的取值范围是[π,π).故选:D.【点评】本题主要考查直线的斜率关系、导数的几何意义.属于基础题.11.(5分)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.【分析】初看本题,似乎无从下手,但从题目中寻求充要条件,再看选项会发现构造二次函数求最值.【解答】解:由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0═,y min=,那么对于任意的x∈R,都有≥=故选:C.【点评】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力.12.(5分)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,) D.(0,)【分析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围【解答】解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有2﹣<<2+,即,即有<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选:A.【点评】本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围二、填空题(共4小题,每小题5分,满分20分)13.(5分)的展开式中的常数项为﹣5.【分析】展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开式的通项公式求出第r+1项,令x的指数分别为0,﹣2即得.【解答】解:的展开式的通项为T r=C6r(﹣1)r x6﹣2r,+1当r=3时,T4=﹣C63=﹣20,的展开式有常数项1×(﹣20)=﹣20,当r=4时,T5=﹣C64=15,的展开式有常数项x2×15x﹣2=15,因此常数项为﹣20+15=﹣5故答案为﹣5【点评】本题考查等价转化的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.16.(5分)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.【分析】由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N,所以当n=5或6时f(n)有最小值.+又因为,,所以的最小值为【点评】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.【分析】(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin(60°+B)根据三角函数的性质,得出最大值.【解答】解:(Ⅰ)设则a=2RsinA,b=2RsinB,c=2RsinC∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c整理得a2=b2+c2+bc∵由余弦定理得a2=b2+c2﹣2bccosA故cosA=﹣,A=120°(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°﹣B)=cosB+sinB=sin(60°+B)故当B=30°时,sinB+sinC取得最大值1.【点评】本题主要考查了余弦函数的应用.其主要用来解决三角形中边、角问题,故应熟练掌握.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB 上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.【分析】由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小.【解答】证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(4分)(Ⅰ),因为,所以CM⊥SN(6分)(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则令x=2,得a=(2,1,﹣2).因为,所以SN与平面CMN所成角为45°.【点评】如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解20.(12分)设椭圆C:的左焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.【分析】(1)点斜式设出直线l的方程,代入椭圆,得到A、B的纵坐标,再由,求出离心率.(2)利用弦长公式和离心率的值,求出椭圆的长半轴、短半轴的值,从而写出标准方程.【解答】解:设A(x1,y1),B(x2,y2),由题意知y1>0,y2<0.(1)直线l的方程为,其中.联立得.解得,.因为,所以﹣y1=2y2.即﹣=2 ,解得离心率.(6分)(2)因为,∴•.由得,所以,解得a=3,.故椭圆C的方程为.(12分)【点评】本题考查椭圆的性质标和准方程,以及直线和圆锥曲线的位置关系,准确进行式子的变形和求值,是解题的难点,属于中档题.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a 的范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调递增;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调递减;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调递增,在单调递减.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调递减,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调递减,即.从而故a的取值范围为(﹣∞,﹣2].(12分)【点评】本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC 的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,【分析】进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。

2010年高考数学(理)试题(新课标)参考答案

2010年高考数学(理)试题(新课标)参考答案

1 2
3 。 2
(Ⅱ) C1 的普通方程为 x sin α − y cos α − sin α = 0。 A 点坐标为 sin
(
2
α − cos α sin α ) ,
故当 α 变化时,P 点轨迹的参数方程为:
1 2 sin α x = 2 (α为参数 ) 1 y = − sin α cos α 2
1 1 2 x− + y = 4 16 。 P 点轨迹的普通方程为
2
0 ,半径为 故 P 点轨迹是圆心为 ,
(24) 解:
1 4

1 的圆。 4
−2 x + 5,x < 2 f ( x) = 2 x − 3,x ≥ 2 则 函 数 (Ⅰ)由于
y = f ( x) 的图像如图所示。
3 3
3 ,0,0) 3
D(0, −
3 1 3 , 0), E ( , − , 0), P(0, 0,1) 3 2 6
设 n = ( x, y, x) 为平面 PEH 的法向量

n ⋅ HE = o, o, n ⋅ HP =
1 x− 3 y= 2 6 0 即 z=0
因此可以取 n = (1, 3, 0) , 由= PA (1, 0, −1) ,
(Ⅱ)由函数 y = f ( x) 与函数 y = ax 的图像可知,当且仅当
a≥
1 2 或 a < −2 时,函数
-5-
天骄文化培训学校
y = f ( x) 与函数 y = ax 的图像有交点。故不等式 f ( x) ≤ ax 的解集非空时,a 的取值范围

− 2) ( −∞,,
1 + ∞ 2 。

2010年高考理科数学试题及答案(全国一卷)

2010年高考理科数学试题及答案(全国一卷)

如果事件A 、B 互斥,那么 球的表面积公式)(()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )(()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343v R π= n 次独立重复试验中事件A 恰好发生K 次的概率 其中R 表示球的半径 ())((10,1,2,,C ηκηηρκρρκη-A A =-=⋅⋅⋅ 一. 选择题(1)复数3223i i+-= (A ).i (B ).-i (C ).12—13i (D ).12+13i(2) 记cos (-80°)=k ,那么tan100°=(A ).k (B ). — k(C.)(D ).(3)若变量x ,y 满足约束条件则z=x —2y 的最大值为(A ).4 (B )3 (C )2 (D )1(4) 已知各项均为正数比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(B) 7 (C) 6(5) 35的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门。

若要求两类课程中各至少一门,则不同的选法共有(A )30种 (B )35种 (C )42种 (D )48种(7)正方体1111ABCD A BC D -中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B (C )23 (D (8)设123102,12,5a g b n c -===则(A )a b c << (B )b c a << (C )c a b << (D )c b a <<(9)已知1F 、2F 为双曲线22:1C χγ-=的左、右焦点,点在P 在C 上,12F PF ∠=60°,则P 到χ轴的距离为(A )2 (B )2(C (D (10)已知函数()|1|f g χχ=,若0a b <<,且()()f a f b =,则2a b +的取值范围是(A ))+∞ (B ))+∞ (C )(3,)+∞ (D )[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA 〃PB 的最小值为(A ) (B ) (C ) (D )(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值()3A ()3B (C ()3D 二.填空题:(13x ≤1的解集是 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知A、B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}【考点】Venn图表达集合的关系及运算.【分析】由韦恩图可知,集合A=(A∩B)∪(C U B∩A),直接写出结果即可.【解答】解:因为A∩B={3},所以3∈A,又因为C U B∩A={9},所以9∈A,选D.本题也可以用Venn图的方法帮助理解.故选D.【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力.2.(5分)(2010•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【考点】复数相等的充要条件.【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)(2010•辽宁)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式;互斥事件的概率加法公式.【专题】计算题.【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.【解答】解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选B.【点评】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).4.(5分)(2010•辽宁)如果执行右面的程序框图,输入正整数n,m,满足n≥m,那么输出的P等于()A.C n m﹣1B.A n m﹣1C.C n m D.A n m【考点】程序框图.【分析】本题考查了循环结构的程序框图、排列公式,考查了学生的视图能力以及观察、推理的能力,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量P的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:第一次循环:k=1,p=1,p=n﹣m+1;第二次循环:k=2,p=(n﹣m+1)(n﹣m+2);第三次循环:k=3,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)…第m次循环:k=m,p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n此时结束循环,输出p=(n﹣m+1)(n﹣m+2)(n﹣m+3)(n﹣1)n=A n m故选D【点评】要注意对第m次循环结果的归纳,这是本题的关键.5.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;待定系数法.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.6.(5分)(2010•辽宁)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.【考点】等比数列的前n项和;等比数列的性质.【分析】先由等比中项的性质求得a3,再利用等比数列的通项求出公比q及首项a1,最后根据等比数列前n项和公式求得S5.【解答】解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选B.【点评】本题考查等比中项的性质、等比数列的通项公式及前n项和公式.7.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C. D.16【考点】抛物线的简单性质;抛物线的定义.【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF 的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.【考点】向量在几何中的应用.【专题】计算题.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质;两条直线垂直的判定.【专题】计算题;压轴题.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.C.D.【考点】导数的几何意义.【专题】计算题;压轴题.【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y′===,∵,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴≤α<π故选:D.【点评】本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.11.(5分)(2010•辽宁)已知a>0,则x0满足关于x的方程ax=b的充要条件是()A.B.C.D.【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】初看本题,似乎无从下手,但从题目是寻求充要条件,再看选项会发现构造二次函数求最值.【解答】解:由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0═,y min=,那么对于任意的x∈R,都有≥=故选C.【点评】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力.12.(5分)(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)【考点】棱锥的结构特征.【专题】计算题;压轴题.【分析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围【解答】解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有2﹣<<2+,即,即有<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选A.【点评】本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)的展开式中的常数项为﹣5.【考点】二项式定理.【分析】展开式的常数项为展开式的常数项与x﹣2的系数和;利用二项展开式的通项公式求出第r+1项,令x的指数分别为0,﹣2即得.【解答】解:的展开式的通项为T r+1=C6r(﹣1)r x6﹣2r,当r=3时,T4=﹣C63=﹣20,的展开式有常数项1×(﹣20)=﹣20,当r=4时,T5=﹣C64=15,的展开式有常数项x2×15x﹣2=15,因此常数项为﹣20+15=﹣5故答案为﹣5【点评】本题考查等价转化的能力;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.15.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【考点】简单空间图形的三视图;棱锥的结构特征.【专题】计算题;作图题;压轴题.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.16.(5分)(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.【考点】数列递推式;基本不等式在最值问题中的应用.【专题】计算题;压轴题.【分析】由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为【点评】本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;(Ⅱ)求sinB+sinC的最大值.【考点】余弦定理的应用.【分析】(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再与余弦定理联立方程,可求出cosA的值,进而求出A的值.(Ⅱ)根据(Ⅰ)中A的值,可知c=60°﹣B,化简得sin(60°+B)根据三角函数的性质,得出最大值.【解答】解:(Ⅰ)设则a=2RsinA,b=2RsinB,c=2RsinC∵2asinA=(2b+c)sinB+(2c+b)sinC方程两边同乘以2R∴2a2=(2b+c)b+(2c+b)c整理得a2=b2+c2+bc∵由余弦定理得a2=b2+c2﹣2bccosA故cosA=﹣,A=120°(Ⅱ)由(Ⅰ)得:sinB+sinC=sinB+sin(60°﹣B)=cosB+sinB=sin(60°+B)故当B=30°时,sinB+sinC取得最大值1.【点评】本题主要考查了余弦函数的应用.其主要用来解决三角形中边、角问题,故应熟练掌握.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数10 25 20 30 15(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a= b=注射药物B c= d=合计n=附:K2=.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a=70 b=30 100注射药物B c=35 d=65 100合计105 95 n=200由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)(2010•辽宁)已知三棱锥P﹣ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系.【专题】计算题;证明题.【分析】由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求SN与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出SN和方向向量与平面CMN的法向量的夹角,再由它们之间的关系,易求出SN与平面CMN所成角的大小.【解答】证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图.则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).(4分)(Ⅰ),因为,所以CM⊥SN(6分)(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则令x=2,得a=(2,1,﹣2).因为,所以SN与片面CMN所成角为45°.【点评】如果已知向量的坐标,求向量的夹角,我们可以分别求出两个向量的坐标,进一步求出两个向量的模及他们的数量积,然后代入公式cosθ=即可求解20.(12分)(2010•辽宁)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.【考点】椭圆的简单性质;直线的倾斜角;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(1)点斜式设出直线l的方程,代入椭圆,得到A、B的纵坐标,再由,求出离心率.(2)利用弦长公式和离心率的值,求出椭圆的长半轴、短半轴的值,从而写出标准方程.【解答】解:设A(x1,y1),B(x2,y2),由题意知y1>0,y2<0.(1)直线l的方程为,其中.联立得.解得,.因为,所以﹣y1=2y2.即﹣=2 ,解得离心率.(6分)(2)因为,∴•.由得,所以,解得a=3,.故椭圆C的方程为.(12分)【点评】本题考查椭圆的性质标和准方程,以及直线和圆锥曲线的位置关系,准确进行式子的变形和求值,是解题的难点,属于中档题.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g(x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调增加,在单调减少.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调减少,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调减少,即.从而故a的取值范围为(﹣∞,﹣2].(12分)【点评】本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【考点】圆內接多边形的性质与判定.【专题】计算题;证明题.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【考点】极坐标系;直线的参数方程;圆的参数方程.【专题】计算题;压轴题.【分析】(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【考点】基本不等式.【专题】证明题;压轴题.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。

相关文档
最新文档