浅述小角X射线散射
小角X射线散射技术在材料研究中的应用
散、随机取向、大小 和 形 状 一 致,且 每 个 粒 子 内 部 具
有 均 匀 电 子 密 度 的 粒 子 组 成 体 系 ,其 散 射 强 度 为 :
I(h)= 4IeV2ρ20φ2(hR)
h
=
4πsinθ λ
式 中 h——— 散 射 矢 量 ;
Ie——— 一 个 电 子 的 散 射 强 度 ;
Keywords:small angle X-ray scattering;material study;microstructure characterization;application
小角 X 射线散射(SAXS)是指当 X 射线透过试 样时,在 靠 近 原 光 束 2°~5°的 小 角 度 范 围 内 发 生 的 散 射 现 象 。 早 在 1930 年 ,Krishnamurti就 观 察 到 炭 粉、炭黑和各种亚微观大小 的 微 粒 在 X 射 线 透 射 光 附近出现连续散射 现 象 。 [1] 此 后,1932 年,Mark 通 过观察纤维素 以 及 Hendricks和 Warren 观 察 胶 体 粉末证实了 X 射线在小角 区 域 的 散 射 现 象,并 由 此 引发了 人 们 对 小 角 X 射 线 散 射 的 关 注 和 兴 趣。 1938年后,Kratky,Guinier,Debye以及 Porod等 相 继建立和发展了 SAXS理论。到20世纪60年代末 和70年代初,Ruland 和 Perrer把 热 漫 散 射 用 于 高 聚物 。 [2] 近年来,小角 X 射 线 散 射 被 越 来 越 多 地 应
关键词:小角 X 射线散射;材料研究;亚微观结构表征;应用
中 图 分 类 号 :TG115.22 文 献 标 志 码 :A 文 章 编 号 :1001-4012(2011)12-0782-04
小角X射线散射和聚合物表征分析报告
① 准直系统,获得发散度很小的平行光束,分点准 直和线准直。准直系统的狭缝越细越好,准直系 统长度越长越好,这样可获得发散度很小的平行 光束。
② 试样架 ③ 真空室 ④ 接收系统
SAXS几何装置示意图
X 光源:(1)旋转阳极靶 (2)同步辐射
探测器:(1)照相法 (3)位敏探测器
(2)计数管法 (4)成像板法
二、 SAXS分析及其仪器结构
1. 纳米尺寸的微粒子 2. 纳米尺寸的微孔洞 3. 存在某种任意形式的电子云密度起伏 4. 在高聚物和生物体中,结晶区和非晶区交替排列形成的 长周期结构 5. 其物理实质在于散射体和周围介质的电子云密度的差异。
2.2 X射线在晶体中衍射的基本原理 射入晶体的X射线使晶体内原子的电子发生频率相等的强制 振动,因此每个原子可作为一个新的X射线源向四周发射波长 和入射线相同的次生X射线。他们波长相同,但强度非常弱。 但在晶体中存在按一定周期重复的大量原子,这些原子产生的 次生X射线会发生干涉现象。当次生X射线之间的光程差等于波 长的整数倍时光波才会相互叠加,从而被观察到。
(1)针孔准直系统
使用真空准直配和照相法记录X射线强度,可得全 方位的小角散射花样,适用于取向粒子,可避免准直误 差,不适用于定量测定
计数管接收散射X射线强度。第一二狭缝宽度固定。 第三狭缝宽度可调,可挡住前两个狭缝产生的寄生散射
较高的角度分辨率,扩展了粒度的研究范围。可获得小角度
的散射强度数据,使得外推的零角散射强度值精确,提高积分不 变量的计算精度。
1.2.理论基础:
20世纪初,伦琴发现了比可见光波长小的辐射。由于对该 射线性质一无所知,伦琴将其命名为X射线 (X-ray)。
到20世纪30年代,人们以固态纤维和胶态粉末为研究物 质发现了小角度X射线散射现象。
小角x射线散射技术在高分子表征中的应用
小角x射线散射技术在高分子表征中的应用小角x射线散射技术(small-angle X-ray scattering,简称SAXS)是一种非常有用的高分子表征技术,它可以提供高分辨率的结构信息和动力学信息。
在材料科学、生物医学和化学领域,SAXS已经被广泛应用于研究高分子材料的结构特性、相互作用和功能性。
SAXS技术可以用来研究高分子材料的分子结构。
高分子材料的结构与其性能密切相关,而传统的显微镜和X射线衍射技术对于纳米尺度的结构研究有限。
相比之下,SAXS技术具有更高的分辨率和灵敏度,可以提供更详细的分子结构信息。
通过测量散射光子的散射角度和强度,可以确定高分子材料的分子尺寸、形状和排列方式。
这些结构特性对于理解高分子材料的性质和功能至关重要。
SAXS技术还可以用来研究高分子材料的相互作用。
在高分子材料中,分子间的相互作用对于材料的性质和功能起着重要的调控作用。
SAXS技术可以通过测量散射光子的强度和角度随温度、压力或化学环境的变化来研究高分子材料的相互作用。
例如,可以通过SAXS 技术来研究高分子链的自组装行为、高分子与溶剂之间的相互作用以及高分子与其他分子之间的相互作用。
这些相互作用的研究有助于揭示高分子材料的结构演化机制和性质调控原理。
SAXS技术还可以用来研究高分子材料的功能性。
许多高分子材料具有特殊的功能性,如光学、电学、磁学和生物学功能等。
SAXS技术可以通过测量散射光子的强度和角度来研究高分子材料的功能性。
例如,可以利用SAXS技术来研究高分子材料的光学吸收、荧光发射和导电性能。
这些功能性研究有助于设计和优化高分子材料的性能,拓展其应用领域。
小角x射线散射技术在高分子表征中具有广泛的应用前景。
它可以提供高分辨率的结构信息和动力学信息,用于研究高分子材料的分子结构、相互作用和功能性。
通过SAXS技术的应用,我们可以更好地理解高分子材料的性质和功能,为高分子材料的设计和应用提供科学依据。
小角X射线散射
(2)同步辐射光源 20世纪60年代末出现。是速度接近光速的带 电粒子在作曲线运动时,沿切线方向发出电磁辐 射—同步光(同步辐射)。 电子同步加速器 (1947美国通用电器)。 同步辐射最初是作为电子同步加速器的有害 物而加以研究的,后来成为一种从红外到硬X-射 线范围内有着广泛应用的高性能光源。
计数管接收散射X射线强度。第一二狭缝宽度固定。 第三狭缝宽度可调,可挡住前两个狭缝产生的寄生散 射
Kratky U 准直系统
较高的角度分辨率,扩展了粒度的研究范围。可获得小角度 的散射强度数据,使得外推的零角散射强度值精确,提高积 分不变量的计算精度
锥形准直系统
多用于定量测定
Bruker SAXS仪(德国布鲁克)
产生小角X射线散射的体系
• • • • 纳米尺寸的微粒子 纳米尺寸的微孔洞 存在某种任意形式的电子云密度起伏 在高聚物和生物体中,结晶区和非晶区交 替排列形成的长周期结构(long distance)
• 其物理实质在于散射体和周围介质的 电子云密度的差异。
小角X射线散射的体系
• 单散系。由稀疏分散、随机取向的、大小和形状一 致的,具有均匀电子云密度的粒子组成。所谓的大 小和形状一致是根据不同的研究对象进行不同的近 似。随机取向是粒子处于各种取向的几率相同,总 散射强度是粒子各种取向平均的结果。稀疏分散是 粒子的尺寸比粒子间的距离小得多,可忽略粒子间 散射的相干散射,将散射强度看做多个粒子的散射 强度之和。均匀电子云密度指的是各个粒子的电子 云密度相同。 • 稀疏取向系。由相同形状和大小、均匀电子云密度, 但相同一致取向的粒子组成。
小角X射线散射
所谓结晶聚合物,实际都是部分结晶,其结晶度一般在50%以下。小角X射线散射研究发现,高结晶度的线性 聚乙烯、聚甲醛和聚氧化乙烯等聚合物的散射曲线尾部服从Porod定理,表明近似于理想两相结构。但是,大多 结晶度较低聚合物的散射曲线显示出尾部迅速降低,偏离Porod定理,表明晶相与非晶相之间存在过渡层。
技术在材料研究中的应用
在无机材料 中的应用
在高分子材 料中的应用
1.纳米颗粒
小角X射线散射技术被广泛用来测定纳米粉末的粒度分布,其粒度分析结果所反映的既非晶粒亦非团粒,而是 一次颗粒的尺寸。在测定中参与散射的颗粒数一般高达数亿个,因此,在统计上有充分的代表性。
通过对Guinier曲线低角区域线性部分的拟合,得到试样中氧化铝颗粒的旋转半径约为6nm,表明在无机纳米 杂化薄膜体系中,纳米颗粒未发生团聚现象。通过观察Porod曲线发现,随散射矢量h值的增大,曲线趋于水平直 线。根据小角X射线散射理论中的Porod定律可知,该复合薄膜中纳米颗粒与基体间的界面明确,说明薄膜中的PI 分子链与无机纳米颗粒间并未发生相互扩散、渗透以及缠结等现象。无机纳米颗粒与有机分子链主要是通过化学 键锚定在一起,此界面结构与经典的有机与无机相结合的化学键理论相一致。
2.离聚体
离聚体是指共聚物中含有少量离子的聚合物。由于高分子链存在着离子化的侧基,可形成离子聚合体,从而 使此类聚合物具有独特的结构和性能。小角X射线散射技术还可用于嵌段共聚物、胶体高分子溶液以及生物大分子 等研究领域,用来测量分子量、粒子旋转半径以及形变和取向等 。
总结
小角X射线散射技术是研究材料亚微观内部结构的重要方法,由于其独特的优点,可以用来进行金属和非金属 纳米粉末、胶体溶液、生物大分子以及各种材料中所形成的纳米级微孔、GP区和沉淀析出相尺寸分布的测定以及 非晶合金加热过程的晶化和相分离等研究。小角X射线散射技术在提高和改进材料性能方面起着重要作用,必将成 为材料研究中不可缺少的新方法,为材料研究带来崭新的一面 。
小角散射
一、什么是X射线小角散射一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。
利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。
二、X射线小角散射的用途用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体物质中的超细空穴)的大小、形状及分布。
对于高分子材料,可测量高分子粒子或空隙大小和形状、共混的高聚物相结构分析、长周期、支链度、分子链长度的分析及玻璃化转变温度的测量。
三、X射线小角散射的原理小角散射效益来自物质内部1~l00nm量级范围内电子密度的起伏,当一束极细的x射线穿过一超细粉末层时,经粉末颗粒内电子的散射,X射线在原光束附近的极小角域内分散开来,其散射强度分布与粉末粒度及分布密切相关。
20世纪初,伦琴发现了比可见光波长小的辐射。
由于对该射线性质一无所知,伦琴将其命名为X射线(X-ray)。
到20世纪30年代,人们以固态纤维和胶态粉末为研究物质发现了小角度X射线散射现象。
当X射线照射到试样上时,如果试样内部存在纳米尺度的电子密度不均匀区,则会在入射光束周围的小角度范围内(一般2=<6º)出现散射X射线,这种现象称为X射线小角散射或小角X 射线散射(Small Angle X-ray Scattering),简写为SAXS 。
其物理实质在于散射体和周围介质的电子云密度的差异。
SAXS已成为研究亚微米级固态或液态结构的有力工具。
横坐标是散射峰的位置,纵坐标是散射峰的强度,这一点与XRD是类似的。
纵坐标的绝对数值没有意义,只是表示相对的强度。
而对于横坐标,XRD的位置通常用角度ө或2ө标示,而SAXS的位置是用q 标示的,q一般叫做散射矢量或者散射因子,q与ө有简单的换算关系q = 4πsinө/λ。
在SAXS中由于ө的数值变化范围很小,所以用q标示更方便。
在XRD中,衍射峰对应的ө可以换算出对应的晶面间距,实际上就是样品中一定范围内的周期性长度。
煤纳米孔隙结构的小角x射线散射研究
煤纳米孔隙结构的小角x射线散射研究
煤是一种天然的多孔材料,其内部结构复杂,存在着许多不同大小和形状的孔隙。
这些孔隙的大小和形状特征对煤的化学和物理性质有重要影响,包括煤的吸附性能、反应活性等。
因此,研究煤孔隙的结构和性质对于煤的利用和改性具有重要的意义。
小角X射线散射是一种有效的研究多孔材料孔隙结构的方法。
这种方法利用X射线穿过材料时散射的角度和强度来确定孔隙的大小、分布和形状。
在小角X射线散射实验中,一束X射线垂直照射样品,样品中的孔隙结构会将X射线进行散射,并且散射的角度与孔隙的大小和形状有关。
通过测量散射X射线的角度和强度,可以确定孔隙结构的参数。
对于煤纳米孔隙结构的小角X射线散射研究,实验需要通过适当的样品制备和前处理来保证样品的均匀性和准确性。
通常的样品制备方法包括煤片、粉末、块等形式,并对样品进行处理,如高温处理、离子注入等,以便测量孔隙结构的变化。
研究煤纳米孔隙结构的小角X射线散射实验需要选择适当的X射线辐射源和检测器。
常用的X射线辐射源包括同步辐射、X射线管等,检测器有荧光屏、CCD相机等。
通过对散射的角度和强度进行处理,可以得到样品中孔隙的大小、分布和形状等参数,从而分析煤的孔隙结构和性质。
总之,研究煤纳米孔隙结构的小角X射线散射方法具有很大的应用价值,可以为煤的利用和改良提供重要的科学依据。
小角X射线散射
小角X射线散射方法的特点
制样简单
研究溶液中的微粒时特别方便
电子显微镜方法不能确定 颗粒内部密闭的微孔,如活性 炭中的小孔;而小角X 射线散 射能做到这一点
优势
当研究生物体的微结构时, SAXS可以对活体或动态过程 进行的研究
研究高聚物流态过程, 例如熔体到晶体的转变过程
某些高分子材料可以给出很强 的散射信号,但TEM得不到有效信息
1930 年 , Krishnamutri 首先观察到 炭粉、炭黑 和各种亚微 观大小微粒 的物质在入 射光束附近 出现连续的 散射。 1939 年 , Guinier 发表了计算旋转 半径的公式,即 Guinier 公式,确 立了小角X射线 散射理论。 20世纪60年代和 70年代初Ruland 和Perret首先把 热漫散射应用于 高聚物的研究, 提出了用热漫散 射表征有序和无 序态的可能性
溶液、生物大分子、催化剂中孔洞等。SAXS可以给出明确定义的几何参数,如 粒子的尺寸和形状等。 ●散射体中存在亚微观尺寸上的非均匀性,如悬浮液、乳液、胶状溶液、纤维、 合金、聚合物等。通过SAXS测定,可以得到微区尺寸和形状、非均匀长度、 体积分数和比表面积等统计参数。
SAXS的体系分类
(a)单散系;(b)稀疏取向系;(c)多分散系;(d)稠密颗粒系;(e)电子密度不均 匀颗粒系;(f)任意系;(g)长周期结构
小角X射线散射的原理及应用
材料工程
李青青
目录
小角X射线散射的概述 小角X射线散射研究对象 小角X射线散射方法的优点
Small Angle X-ray Scattering
小角X射线散射数据处理
小角X射线散射的应用
一、SAXS的概述
1、概念
当X射线照射到试样上时,如果试样内部存在纳米尺度
小角X射线散射
1: 2 : 3 : 4
由此表明:PI球状微区在空间中以简单立方晶格或 立方密堆砌规则地排列。
用空心箭头表注的峰是孤立 球粒子内的散射干涉。根据各散射 峰位由下式计算球粒的半径R:
hR 4 R / sin mix,i 5.765, 9.100, 12.320,
i =1, 2, 3,…
平均半径R=12.7nm。
三. 谱 图 分 析
散射矢量
h 4 sin
h或q(nm-1)
图3.1 实测SAXS谱图(PP)
长周期(L)如何计算? (1) Lorentz校正:h2I(h)对h作图
(2) 2Lsin
谱图分析例子1——嵌段共聚物
图3.2 苯乙烯(PS)和异戊二烯(PI)二嵌段共聚物的电镜照片
当PI的含量小于22wt%时,PI呈球状微区分布在PS基体中;当PI的含量 为22~39wt%时,PI呈圆柱状微区分散在PS基体;当PI和PB的含量为39~ 60wt%时,两者呈层状交替微区。球状、圆柱状和层状微区在空间中有规则 地排列,具有长程有序。
谱图分析例子2——取向与形变
图3.4 苯乙烯(含量为18.5wt%)与异戊二烯嵌段共聚物的散射曲线
(a)未拉伸状态时的曲线;(b)拉伸比为2.0时的曲线。
拉伸后一级散射峰移向小角一侧,但二级峰和三级峰位置保持不 变。由此表明:一级峰是粒子间散射引起的散射峰,长周期增大。二 级峰和三级峰是粒子内的一级和二级散射峰。
二. 基本原理
图2.1 计算结晶度的分峰图(XRD)
图2.2 半结晶聚合物的形态结构模型
聚丙烯的实测图
示意图
图2.3 半结晶聚合物的SAXS和XRD图
理想两相体系
准理想两相体系
A相分散在B相中,两相互不相溶,具有微观的相分离,无过渡层。
小角X射线散射简介
引起小角X射 线散射的几 种主要情况
.
7
SAXS的几种实现方式
小角X射线散射
同步辐射小角X射线散射仪
集成于多功能X射线衍射系统中
单独的小角X射线散射平台
实验室自组装
.
8
准直系统
小角X射线散射
传统的准直系统主要有:
四狭缝准直系统
针孔准直系统
Kratky 狭缝准直系统
无限长准直系统 等
但是为了使X射线的发散度减小,平行度增加, 通常令狭缝尽量的小,然而这样却使通量降低, 散射信息减弱,给小角X射线散射带来困难。
小角X射线散射技术简介 Small Angle X-ray Scattering
XX 凝聚态物理
.
1
小角X射线散射
主要内容
• X射线物理基础 • 小角X射线散射技术简介 • 应用举例
.
2
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍)
玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
.
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
.
16
分析软件
新型小角X射线散射技术简介
Nanofit •交互式图形界面 •非线性,最小平方分 析
.
17
金属纳米颗粒散射曲线
应用举例
.
18
金属纳米颗Leabharlann 散射曲线应用举例.
小角X射线散射
a. 研究溶液中的微粒;
b. 动态过程研究; c. 研究高分子材料;
百分数等参数,而TEM方法往往 很难得到这些参量的准确结果, 因为不是全部颗粒都可以由 TEM观察到,即使在一个视场范 围内也有未被显示出的颗粒存 在;
d. 电子显微镜方法不能确定颗粒 g. 小角X射线散射方法制样方便. 内部密闭的微孔,SAXS可以; e. 小角X射线散射可以得到样品 的统计平均信息; f. 小角X射线散射可以准确地确 定两相间比内表面和颗粒体积
第四章 小角X射线散射
课程主要内容
• 小角X射线散射基础理论 • 小角X射线散射研究的几种常见体系 • 小角X射线散射系统简介
X射线物理基础
光源
X射线管——固定靶→转靶(提高8倍) 玻璃X射线管
——灯丝在玻璃熔接时无法准确定位
陶瓷X射线管
——陶瓷可以精确机加工,灯丝位置可准 确定位。
同步辐射X射线
E 2
比表面
• Porod定理主要提示了散射强度随散射角度变化的渐 近行为。 • 它可用于判断散射体系的理想与否,以及计算不变量 Q和比表面SP等结构参数。
Fractal Systems
Characterization of Fractal System
ln[I(h)h-1]
Slope= -
小角X射线散射
当X射线照的试样上,如果试样内部存在纳米尺度的密度 不均匀区域(2-100nm)时,则会在入射X射线束周围 0~4°的小角度范围内出现散射X射线,这种现象称为小角 X射线散射(Small Angle X-ray Scattering,SAXS)。
引起小角X射 线散射的几种 主要情况
不同仪器可能探测的物质结构尺寸范围
小角X射线散射简介(课堂PPT)
9
准直系统
小角X射线散射
Gobel Mirror 线平行汇聚光镜
单色性 高强度 准直光束
抛物线型多层膜,利用不同层面材料的晶面间距值不同, 使所有层面的衍射线变为发散度为0.04°的单色平行光。
Lens 点平行汇聚光镜
电光源的发散光经过Lens的数万条异形光导毛细管后, 将:
a. 研究溶液中的微粒;
b. 动态过程研究;
c. 研究高分子材料;
d. 电子显微镜方法不能确定颗粒内部密闭的微孔,SAXS可以;
e. 小角X射线散射可以得到样品的统计平均信息;
f. 小角X射线散射可以准确地确定两相间比内表面和颗粒体积百分数等
参数,而TEM方法往往很难得到这些参量的准确结果,因为不是全部颗
衍射角度:4-170°
由晶格点阵产生的相干散射
样品
小角X射线散射(SAXS) 散射角: 0-4° 由电子密度变化引起的散射
5
小角X射线散射
小角 X射线散射(Small-Angle X-ray Scattering)是一种用 于纳米结构材料的可靠而且经济的无损分析方法。SAXS能 够给出1-100纳米范围内的颗粒尺度和尺度分布以及液体、 粉末和块材的形貌和取向分布等方面的信息。
•在样品颗粒不对称或 表现有择优取向的情 况下分析样品
•HI-STAR探测器是一 种真正意义上的具有 光子计数能力的无噪 实时二维探测器
15
Nanography
新型小角X射线散射技术简介
Nanography 可以得到样品 具有µm量级 SAXS分辨率 的实空间图像。
16
分析软件
新型小角X射线散射技术简介
小角x射线散射公式
小角x射线散射公式小角 X 射线散射(Small Angle X-ray Scattering,简称 SAXS)可是个相当有趣的话题呢!这其中涉及到的公式,那更是充满了奇妙的科学魅力。
咱们先来说说小角 X 射线散射到底是啥。
简单来讲,它就像是给物质内部结构拍了一张特殊的“照片”。
通过分析散射出来的 X 射线,我们就能了解物质内部的微观结构信息,比如孔隙大小、颗粒分布啥的。
那小角 X 射线散射公式到底长啥样呢?它通常可以表示为:I(q) =I₀ P(q) S(q) 。
这里的 q 是散射矢量,它跟入射 X 射线的波长、散射角度都有关系。
I₀呢,代表入射X 射线的强度。
就好比是灯光的亮度,灯光越亮,照亮的范围就越大。
P(q) 描述的是单个散射体的形状和大小相关的散射强度。
想象一下,不同形状和大小的物体,反射光线的情况是不是也不一样?这 P(q) 就是在说这个事儿。
S(q) 则是描述散射体之间相互关系的函数。
比如说一堆小球挤在一起,它们之间的距离、排列方式等等,都会影响散射的结果,S(q) 就是来处理这个的。
还记得我之前做过一个实验,那可真是让我对小角 X 射线散射公式有了更深刻的理解。
当时我们在研究一种新型的纳米材料,想要搞清楚它内部的孔隙结构。
为了得到准确的数据,我们在实验室里反复调试仪器,小心翼翼地控制着各种参数。
每次测量完数据,就开始对着小角 X 射线散射公式一顿琢磨。
有时候算出来的结果跟预期不太一样,就得重新检查数据,思考是不是哪个环节出了问题。
那感觉,就像是在解一道超级复杂的谜题,不过每一次有新的发现,都让人兴奋不已。
经过无数次的尝试和分析,终于利用这个公式成功地解析出了材料的孔隙结构。
那一刻,真的觉得所有的努力都值了!总之,小角 X 射线散射公式虽然看起来有点复杂,但只要我们深入去理解,多做实验,多分析数据,就能逐渐掌握它的奥秘,为我们探索物质的微观世界打开一扇神奇的大门。
所以呀,别被这公式吓到,勇敢地去探索,说不定你就能发现其中的无限乐趣和惊喜!。
浅述小角X射线散射
摘要:小角 X 射线散射是当前物理与化学学科前沿交叉领域—软凝聚态物质的一个强 有力研究工具。本报告重点论述了小角 X 射线散射在纳米溶胶研究中的应用,主要涉及纳 米粒子粒径及其分布的测定、纳米粒子比表面积计算及界面结构解析、纳米粒子聚集形态 表征等,同时对小角 X 射线散射的部分基础理论及常用研究方法进行了描述。 关键词 小角 X 射线散射 纳米溶胶 界面结构 聚集形态
式中 Ie 为单个电子的散射强度;Ni 为各级别的粒子数目;ni 为各级别单个粒子中的电 子数目; RGi 为各级别粒子的回转半径。首先以 lnI(h)对 h2 作图,在曲线大角区(h2 高值 区)近似直线部分作切线 A’,和纵坐标交于一点,记作 k1;然后将原曲线各点的强度值减 去这条切线相应点所对应的强度值, 得到另一条曲线 B, 再从新曲线的大角区部分作切线 B’, 交纵坐标于一点,记作 k2。这样连续分级做下去,直至最低角度处强度值基本不能再减为 止。根据切线斜率可以分别求出每级粒子的回转半径,然后根据切线的截距与各级粒子相 对分数之间的对应关系式,求出各级粒子的相对分数 Wi。这种分析方法的缺点是较粗糙, 但理论依据比较可靠,得到的结果在一些实际工作中也可以得到满足。 Debye 法则是一种常用于计算介孔材料平均孔径的方法,因为粒子体系与介孔体系可 视为 SAXS 中的互补体系,因此也可用来计算平均粒径[12]。 另外一些学者提出一些方法,不预先设定粒度分布的函数形式,而是通过散射强度的 直接转换,解出分布函数 P(r)。随着计算机技术的迅速发展,特别是相关软件(如 GNOM, GIFT 等)的成功开发, 对散射曲线直接分析求解分布函数 P(r)己被人们广泛采纳并应用于研 究工作中。Jeng 等[13]在研究 CdS 纳米粒子的工作中使用了 Schultz 方法分析散射曲线求解 P(r),Mori 等[14]利用 TEM 对金纳米粒子进行了初步的观测,通过 SAXS 原位研究了它们在 水溶胶中的尺寸分布,在多分散情况下,采用直接转换法求解分布函数 P(r),从而得到粒径 分布和平均粒径。
X射线小角散射
SEM、TEM与SAXS的比较
SEM、TEM的优势: I. 稳定性,操作性好,普 及度高; II. 可以直接观察颗粒的形 状和尺寸; III. 可以观察微小区域内的 介观结构; IV. 可以区别不同本质的颗 粒。
SAXS的优势: I. 研究溶液中的微粒; II. 进行活体或动态过程研究; III. 研究高分子材料; IV. 电子显微镜方法不能确定颗粒 内部密闭的微孔,SAXS可以; V. SAXS可以得到样品的统计平均 信息; VI. 小角X射线散射可以准确地确定 两相间比内表面和颗粒体积百 分数等参数,而TEM方法往往很 难得到这些参量的准确结果; VII. SAXS制样方便.
样品X轴Y轴控制台
纳米星有18位自动进样器,可以进行样品 的自动进样,实现多个样品的连续测量,样品 架具有 XY 自动平移功能,可进行样品的 SAXS 面扫描功能,4 位参考样品自动转换器,固体 样品架,液体样品架,液体样品装样装置,高 温样品台( 室温至300℃,系统由SAXS 设备用 计算机控制,温度控制和测量程序必须能同步 进行) 。
样品的制备
不同样品的制备方法
样品到探测器的距离对分辨率的影响
q:散射矢量,即倒易空间的扫描范围; (ps:晶体对X射线的衍射被称为倒易空间) Rmax:该系统在真实空间达到的最大分辨率。
探测器
Hi—Star二维实时探测器
• Hi-Star 是一款具有单光 子计数能力的,无噪实时 二维探测器,测量速度快, 数据可靠性大,探测灵敏 度高,对弱信号很敏感, 适合小角散射分析测量。 • 短时测量( 典型的从几 分钟到几小时) ,同时也 可测大范围的2θ 角。 • 可进行扫描SAXS 成像。
SAXS定量分析——回转半径
回转半径可作为表示散射体大小的 统计尺度,适用于任意形状散射体,是 SAXS 中的一个重要参数。回转半径与具 体形状几何体的特征长度之间的换算关 系可查有关文献。
小角X射线散射-个人观点
1:小角X射线散射(Small Angle X-Ray Scattering, SAXS)是研究纳米尺度微结构的重要手段。
根据SAXS理论,只要体系内存在电子密度不均匀(微结构,或散射体),就会在入射X光束附近的小角度范围内产生相干散射,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。
这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。
适用的样品可以是气体、液体、固体。
由于X射线具有穿透性,SAXS信号是样品表面和内部众多散射体的统计结果。
相对于其它纳米尺度分析表征手段,如SEM、TEM、AFM而言,SAXS具有结果有统计性、测试快速、无损分析、制样简单、适用范围广等优点。
对于各向同性体系分析起来没多大困难,但是需要进行各种校正,不校正结果会较差。
对于择优取向体系SAXS分析起来还是一个世界性难题。
两千零几年本.zhu有一篇文章就专门提到这个问题,说择优取向体系计算得到的结果非常不可靠,所以他干脆不分析,stribeck也提出同样的问题,他说:“在面对各向异性体系的时候我们就像科学家在1931年面对各向同性体系时一样。
”现在很多人在做SAXS都只是在做小角度的衍射分析,也就是低角度衍射峰位置的分析,而不是真正的散射分析。
可以这么说,散射普遍存在,衍射只在满足布拉格方程时才出现。
可以参考以下书籍孟昭富. 小角X射线散射理论及应用. 1995.O Glatter OK. Small angle x-ray scattering. 1982.小角X射线散射——理论、测试、计算及应用,朱育平,2008Small angle scattering of X-ray, A.Guinier G.Fournet,1955Methods of X-ray and Neutron Scattering in Polymer Sciencestructure analysis by small angle x-ray and neutron scattering,19872:个人观点,不确切一:1)广角X射线衍射(Wide Angle X-ray Diffraction,简称WAXD)测试范围(2θ):5~100O以上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Debye 法一般作为定性分析和验证。本报告主要介绍利用 Porod 理论模型解析溶胶界面结 构。根据 Porod 理论[16],当体系由具有明锐界面的两相构成时,其散射强度在无限长狭缝 准直系统情况下满足:
hHale Waihona Puke →∞lim [ h3 I(h)] = K
式中 K 称为 Porod 常数。也就是说当 h 趋向于∞时,h3I(h)趋向于一个常数,则表明粒子具 有明锐的相界面。因此,当 h 趋向于∞时,若 h3I(h)不趋向一常数,则表明粒子没有明锐的 界面,即表现为对 Porod 定理的偏离。正偏离的原因较复杂,如材料的热涨落或粒子内的 电子密度起伏等都会导致高角部分正斜率的出现[17]; 负偏离则一般源于颗粒相边界的模糊, 存在着一个弥散的过渡层,即两相间存在一定宽度的过渡区[18]。对 Porod 定理呈现正偏离 和负偏离都反映了纳米溶胶分散体系所特有的界面层的存在。利用 Porod 理论,不仅可以定 性分析纳米溶胶界面层结构, 而且正偏离或负偏离时过渡层的厚度 E,可以通过偏离区域(即 高 h 区域)曲线的校正因子 α 求得:
I(h)=I(0)exp(-h2RG3/3)
这就是著名的 Guinier 近似式,适用于很小角度和各种形状的散射体。其中 h 为散射因 子, I(0)为零角处的散射强度, RG 为散射体的回转半径。 将 Guinier 近似式取对数, 并以 lnI(h) 对 h2 作图,在低角部分得到一条直线,其斜率为-RG3/3,从而可求出粒子的回转半径。对 一定形状的粒子,其体积为 RG 的函数,所以可选用 RG 来代表粒子的尺寸。回转半径和粒 子的几何形状存在一定的对应关系,由此可以确定粒子的几何半径[1]。对于球形粒子,回 转半径与几何半径的对应关系为 RG= 3/5R。 对于多分散的纳米粒子体系,简单采用 Guinier 近似式容易造成较大的偏差,此时 Guinier 区域的 lnI(h)对 h2 图已不再是直线而是一条下凹的曲线。利用这种曲线解析粒子尺
4. SAXS 在纳米粒子聚集形态研究中的应用
4
在自然界中存在的各种过程,大部分为非有序、非平衡的不稳定过程,由于纳米粒子 具有较大的比表面积,比表面焓较高,小粒子能够自发地相互聚集形成大粒子。大多数这 种随机聚集过程为非平衡的非线性过程,为较好的解决这些非线性问题,人们从不同的角 度发展了多种学说,分形(Fractal)就是其中的一种,应用非线性科学中的分形理论,有助于 揭示胶体系统中的动力学机理,而 SAXS 正是研究分形结构的有力工具,具有精度高、测 量方便等优点,己在人们的研究工作中广泛采用[22,23]。 用 SAXS 研究体系的分形特征一般分为两大类:质量分形和表面分形。具有分形特征的 散射体系,其 SAXS 具有如下特征[17]:
1.引言
X 射线的发现要追溯到 1895 年, 伦琴在从事阴极射线的研究过程中发现了比可见光波 长小的辐射,由于对该射线性质一无所知,伦琴将其命名为 X 射线(X-ray)。到 20 世纪 30 年 代,人们以固态纤维和胶态粉末为研究物质发现了小角度 X 射线散射现象。当 X 射线照射 到试样上时,如果试样内部存在纳米尺度(1—100nm)的电子密度不均匀区,则会在入射光 束周围的小角度范围内(一般 2θ≤6° )出现散射 X 射线, 这种现象称为小角 X 射线散射(Small Angle X-ray scattering,简写为 SAXS)[1]。其物理实质在于散射体和周围介质电子云密度的差 异,所以它被人们广泛用于研究尺度在 1—100nm 左右的电子密度非均质体,这一特点使 SAXS 近年来成为研究胶体分散体系与有序分子组合体的有力工具[2,3]。 纳米材料广泛的应用前景促进了人们对纳米材料研究的关注,该领域研究的重点之一 是制备 l—100nm 尺度的纳米粒子。由于纳米粒子与分散介质之间存在电子密度差,而且该 尺度的纳米粒子处于正好在小角 X 射线散射范围之内, 使得 SAXS 成为研究纳米溶胶的有 效手段。对于纳米溶胶分散体系,它可以获取许多定性和定量的结构信息,例如,纳米粒 子粒径及其分布[4]、纳米粒子比表面积计算及界面结构[5]、纳米粒子聚集形态[6]等。 SAXS 是一种非破坏性的分析方法, 在实验过程中具有许多优点: 适用样品范围宽, 干、 湿态样品都适用;与透射电子显微镜(TEM)比较,几乎不需特殊样品制备,能表征 TEM 无 法测量的样品;对弱序、液晶性结构、取向和位置相关性有较灵敏的检测;可以直接测量 体相材料,有较好的粒子统计平均性[7]。 在 SAXS 测定中,实验上测量的散射强度除样品的散射强度外,还有空气、荧光、狭 缝边缘、分散介质和仪器电压波动等引起的寄生散射,这些寄生散射统称背景散射,对解 决某些结构问题来说正确的扣除背景散射是十分重要的。一般说来,SAXS 的准直系统可
式中 Ie 为单个电子的散射强度;Ni 为各级别的粒子数目;ni 为各级别单个粒子中的电 子数目; RGi 为各级别粒子的回转半径。首先以 lnI(h)对 h2 作图,在曲线大角区(h2 高值 区)近似直线部分作切线 A’,和纵坐标交于一点,记作 k1;然后将原曲线各点的强度值减 去这条切线相应点所对应的强度值, 得到另一条曲线 B, 再从新曲线的大角区部分作切线 B’, 交纵坐标于一点,记作 k2。这样连续分级做下去,直至最低角度处强度值基本不能再减为 止。根据切线斜率可以分别求出每级粒子的回转半径,然后根据切线的截距与各级粒子相 对分数之间的对应关系式,求出各级粒子的相对分数 Wi。这种分析方法的缺点是较粗糙, 但理论依据比较可靠,得到的结果在一些实际工作中也可以得到满足。 Debye 法则是一种常用于计算介孔材料平均孔径的方法,因为粒子体系与介孔体系可 视为 SAXS 中的互补体系,因此也可用来计算平均粒径[12]。 另外一些学者提出一些方法,不预先设定粒度分布的函数形式,而是通过散射强度的 直接转换,解出分布函数 P(r)。随着计算机技术的迅速发展,特别是相关软件(如 GNOM, GIFT 等)的成功开发, 对散射曲线直接分析求解分布函数 P(r)己被人们广泛采纳并应用于研 究工作中。Jeng 等[13]在研究 CdS 纳米粒子的工作中使用了 Schultz 方法分析散射曲线求解 P(r),Mori 等[14]利用 TEM 对金纳米粒子进行了初步的观测,通过 SAXS 原位研究了它们在 水溶胶中的尺寸分布,在多分散情况下,采用直接转换法求解分布函数 P(r),从而得到粒径 分布和平均粒径。
3. SAXS 在纳米粒子界面结构研究中的应用
纳米粒子由于粒径很小, 比表面积很大, 比表面焓很高, 因此在热力学上是不稳定的。 根据吸附和双电层理论,在一定条件下粒子能自发地、选择性地吸附某些物质,从而形成 相对稳定的溶剂化界面层,保护相互碰撞的粒子不发生聚沉[15]。纳米粒子的界面结构将对 纳米粒子的表面效应、量子尺寸效应及宏观量子隧道效应影响重大。 SAXS 测量纳米溶胶界面结构主要是利用 Porod 和 Debye 理论, SAXS 虽然不能分析界 面层的化学结构, 但利用 Porod 方法通过曲线偏离的斜率就可以比较精确地求出截面厚度,
h-1I(h)=I0h-α
其中 I0 为常量,I(h)为模糊散射强度,α 为介于 0—4 之间的值。将 SAXS 实验所得的散射 体系的数据,以 ln[h-1I(h)] 对 lnh 作图,所得曲线的斜率 α 称为衰减指数。如果所得图像存 在线性区域,则表明分形现象的存在,进而确定是表面分形还是质量分形,并求出其分形 维数。当 0 < α < 3 时,散射体为质量分形,具有质量分形的体系,在所选半径为 r 的球面 内质量分布 M(r)有:
2. SAXS 在纳米粒子粒径及其分布研究中的应用
在 SAXS 测定中,总散射强度 I 主要与两个因素密切相关[9]:
I(h) ∝S(h)∙P(h)
式中 S(h)为结构因子,与体系内相互作用有关;P(h)为形状因子,与散射体的形状和大小有 关;h 为散射因子,定义为 h=4πsinθ/λ 这里 2θ 为散射角, λ 为入射光的波长。当 X 射线透 过纳米粒子时,发生电子共振从而产生相干散射,因纳米粒子与周围介质(空气、溶液等) 存在一定的电子密度差,这样散射因子就与散射体的大小呈现一定的对应关系,即散射体 越小,对应的散射因子越大;反之,散射体越大,得到的散射曲线越趋近于小角部分。 引起散射的粒子体系主要有稀疏单分散系、稀疏取向系、多分散系、稠密粒子系和密 度不均匀粒子系等几种体系。其中稀疏粒子系是比较简单的体系,粒子随机取向,形状一 致,并且每个粒子内部具有均匀的电子密度,整个体系的散射强度为各个粒子本身散射强 度的简单加和,因此人们也往往以这种体系作为粒子研究的对象。对于稀疏粒子体,由于 粒子之间距离远远大于粒子本身,粒子间相互作用力非常微弱,因此可以忽略 S(h)对 I(h) 的贡献,通过 P(h)得到粒子的回转半径:
小角X射线散射技术在纳米溶胶中的应用
摘要:小角 X 射线散射是当前物理与化学学科前沿交叉领域—软凝聚态物质的一个强 有力研究工具。本报告重点论述了小角 X 射线散射在纳米溶胶研究中的应用,主要涉及纳 米粒子粒径及其分布的测定、纳米粒子比表面积计算及界面结构解析、纳米粒子聚集形态 表征等,同时对小角 X 射线散射的部分基础理论及常用研究方法进行了描述。 关键词 小角 X 射线散射 纳米溶胶 界面结构 聚集形态
A(r)=A0r2-Ds
其中 A0 为常量,Ds 为表面分形维数,r 为用于测量面积的球半径。Ds 的取值范围为 2—3。 当 3 < α < 4 时,此时 Ds=6 - α。当 Ds = 2 时,相应于光滑表面;当 Ds = 3 时,相应于充满 空间的盘旋形表面[23]。 Marliere [24]Knobich [25]Ehrburger-Dolle[26]等从不同角度分别研究了凝胶结构,他们的研 究均是是采用分形的原理计算质量分形维数,表征聚集体的结构,表明溶剂、催化剂以及 pH 值等对凝胶结构的影响。Tanaka 等[27]1891 研究了聚烯烃半导体(PAS)材料的表面分形结 构,结果表明:在 PAS 中掺入 Li 使 Ds 减小,说明 Li 原子的存在使得表面结构趋于光滑。 Zhang 等[28]利用 SAXS 研究 Fe2O3 纳米晶的微结构,指出随着退火温度的提高,Fe2O3 纳米