六年级奥数题列方程解应用题

合集下载

(完整版)六年级奥数列方程解应用题

(完整版)六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是x -1我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:x+x+8+x+10=35×3,15解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa -,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题【难度】3星【题型】解答【解析】设用x张铁皮制盒身,y张铁皮制盒底.⎩⎨⎧=⨯=+yxyx43216150解得xy==⎧⎨⎩8664所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题【难度】3星【题型】解答【解析】设乙车运x箱,每箱装y个苹果,列表如下:(x+4)(y-3)-xy=3xy-(x-4)(y+5)=5化简为:4y-3x=15, ①5x-4y=15, ②①+②,得:2x=30,于是x=15.将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l和17.这4人中最大年龄与最小年龄的差是多少?⎧⎨⎩【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72. 有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩. 但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7.60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】 在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题 【难度】4星 【题型】解答【解析】 设汽车、摩托车、助力车、自行车的速度分别为a ,b ,c ,d ,设在12时骑自行车的与坐汽车的距离为x ,骑自行车的与开摩托车的之间的距离为y .有(①+③)×2一(②+④),得 310()x c d =+,即10()3x c d =+ 设骑自行车的在t 时遇见骑助力车的,则 (12)(),x t c d =-⨯+即10123t -=,所以1153t =. 所以骑自行车的在15时20分遇见骑助力车的. 【答案】15时20分家庭作业【作业1】 甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设x 年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x), 解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设这列火车的速度是x 米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声).【答案】27【作业6】小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

小学奥数题六年级数学应用题100道及答案解析

小学奥数题六年级数学应用题100道及答案解析

小学奥数题六年级数学应用题100道及答案解析1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)解析:先算出1 桶水能灌多少壶水,再乘以每壶水可冲的杯数。

2. 修一条路,第一天修了全长的1/3,第二天修了全长的1/4,第一天比第二天多修200 米,这条路全长多少米?答案:200÷(1/3 - 1/4)= 2400(米)解析:第一天比第二天多修的占全长的(1/3 - 1/4),已知多修的长度,用除法可求出全长。

3. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,女生有(465 - x)人。

4/5 x - 2/3×(465 - x) = 20,解得x = 225,女生有465 - 225 = 240(人)解析:通过设未知数,根据已知条件列出方程求解。

4. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:设原来共有x 块糖,45%x = 25%(x + 16),解得x = 20,奶糖有20×45% = 9(块)解析:奶糖的数量不变,以此建立等量关系。

5. 学校买来一批图书,放在两个书柜中,其中第一个书柜中的图书占这批图书的58%,如果从第一个书柜中取出32 本,放到第二个书柜中,这时两个书柜的图书各占这批图书的1/2,这批图书共有多少本?答案:32÷(58% - 1/2)= 400(本)解析:32 本书占这批图书的(58% - 1/2),用除法可求出总数。

6. 甲、乙两个工程队合修一段路,甲队的工作效率是乙队的3/5。

两队合修6 天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?答案:两队工作效率和:2/3÷6 = 1/9,乙队工作效率:1/9÷(1 + 3/5)= 5/72,(1 - 2/3)÷5/72 = 24/5 = 4.8(天)解析:先求出工作效率和,再根据两者工作效率的关系求出乙队工作效率,最后用剩余工作量除以乙队工作效率。

小学六年级奥数列方程解应用题

小学六年级奥数列方程解应用题

【导语】⽅程(equation)是指含有未知数的等式。

是表⽰两个数学式(如两个数、函数、量、运算)之间相等关系的⼀种等式,使等式成⽴的未知数的值称为解或根。

以下是⽆忧考整理的《⼩学六年级奥数列⽅程解应⽤题》相关资料,希望帮助到您。

1.⼩学六年级奥数列⽅程解应⽤题 1、⾷堂买进⾯粉175千克,⽐⽟⽶⾯的3倍还多25千克,⾷堂买进⽟⽶⾯多少千克? 2、师傅⽐徒弟多加⼯162个零件,已知师傅加⼯零件的个数是徒弟的4倍,师徒⼆⼈各加⼯多少个零件? 3、⽀钢笔⽐15⽀圆珠笔贵7.6元。

每⽀圆珠笔的价钱是2.8元,每⽀钢笔多少元? 4、⼀个三⾓形的⾯积是18平⽅厘⽶,它的底边长是12厘⽶,⾼是多少厘⽶? 5、选择适当的⽅法解答下⾯两题。

(1)学校科技组有18名⼥⽣,⽐男⽣⼈数的1/3少2⼈。

学校科技组有多少名男⽣? (2)学校科技组有36名⼥⽣,男⽣⼈数⽐⼥⽣⼈数的3倍还多6⼈。

学校科技组有多少名男⽣?2.⼩学六年级奥数列⽅程解应⽤题 1、某果园向市场运⼀批⽔果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,⼀共有多少辆车? 2、某班42个同学参加植树,男⽣平均每⼈种3棵,⼥⽣平均每⼈种2棵,已知男⽣⽐⼥⽣多种56棵,男、⼥⽣各有多少⼈? 3、学校买来科技书的册数是⽂艺书册数的1.4倍,如果再买12册⽂艺书,两种书的册数相等。

学校买来两种书各有多少册? 4、学校买6张办公桌和15把椅⼦共⽤去660元。

已知每张办公桌与3把椅⼦的价钱相等,求多少元? 5、东⽅⼩学五年级举⾏数学竞赛,共10个赛题每做对⼀题得8分,错⼀题倒扣5分,张华全部解答,但只得41分,他做对多少题? 6、松⿏妈妈采松⼦,晴天每天可采24个,⾬天每天可采16个,他⼀连⼏天⼀共采了168个松⼦,平均每天采21个,这⼏天中⼀共有多少是天晴天? 7、甲⼄两个仓库共有⼤⾖138吨,若从甲仓库运⾛30吨,从⼄仓库运⾛35吨,这时⼄仓库⽐甲仓库的⼀半还多4吨,求两个仓库原来各有⼤⾖多少吨? 8、甲、⼄、丙、丁四⼈共做零件270个,如果甲多做10个,⼄少做10个,丙做的个数乘以2,丁做的个数除以2,那么四⼈做的零件数恰好相等,丙实际做了多少个? 9、某仓库运出四批原料,第⼀批运出的占全部库存的⼀半,第⼆批运出的占余下的⼀半,以后每⼀批都运出前⼀批剩下的⼀半。

六年级奥数上册:第1讲 列方程解应用题

六年级奥数上册:第1讲 列方程解应用题

六年级奥数上册:第1讲列方程解应用题列方程解应用题是用字母来代替未知数,根据数量关系列出含有未知数的等式,也就是列方程,然后解出未知数的值。

列方程解应用题的优点在于可以使未知数直接参加运算。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题。

②依题意确定等量关系,设未知数x。

③根据等量关系列出方程。

④解方程。

⑤检验,写出答案。

【典型例题】例1:甲收集的邮票枚数是乙的4倍。

如果甲给乙9枚邮票,那么两人的邮票数就相等。

求甲、乙原来各有多少枚邮票?例2:小东买了1支铅笔和3本练习本,一共花了3.5元,练习本的价钱是铅笔价钱的2倍。

铅笔和练习本的单价各多少元?例3.:妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果;如果每天吃6个,则又少8个苹果,问:妈妈买回苹果多少个?计划吃多少天?例4:有两个正方形,第一个正方形的边长比第二个正方形的边长的2倍多1厘米,而它们的周长相差24厘米,求这两个正方形的面积。

例5:甲、乙、丙、丁四人共做零件270个。

如果甲多做10个,乙少做10个,丙做的个数乘2,丁做的个数除以2,那么四人做的零件数恰好相等。

问:丙实际做了多少个?(这是设间接未知数的例题)挑战题:某县农机厂金工车间有77个工人。

已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种零件3个。

但加工3个甲种零件,1个乙种零件和9个丙种零件才可以恰好配成一套。

问:应安排生产甲、乙、丙种零件各多少人,才能使生产的三种零件恰好配套?【拓展练习】1、妈妈带一些钱去买布,买2米布还剩下1.8元;如果买同样的布4米则差2.4元。

问:妈妈带了多少钱?2、第一车间工人人数是第二车间工人人数的3倍。

如果从第一车间调20名工人去第二车间,则两个车间人数相等。

求原来两个车间各有工人多少名?3、两个水池共储水40吨。

甲池注入4吨,乙池放出8吨,甲池水的吨数与乙池水的吨数相等,两个水池原来各储水多少吨?4、两堆煤,甲堆有4.5吨,乙堆有6吨。

六年级奥数试题及答案汇总:列方程解应用题

六年级奥数试题及答案汇总:列方程解应用题

六年级奥数试题及答案汇总:列方程解应用题1、甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件共花3.15元;如果购买甲4件、乙10件、丙1件共花4.20元,那么购买甲、乙、丙各1件需多少钱?答案与解析:考点:列方程解含有两个未知数的应用题.专题:列方程解应用题.分析:由题意可以列出算式:3甲+7乙+丙=3.15;4甲+10乙+丙=4.20;两式相减可以得出甲和乙的关系,第一个算式乘4,第二个算式乘3,后再相减就可以得出乙和丙之间的关系,然后把它们代入同一个算式中就可以得出甲+乙+丙的值.解答:解:由题意得:3甲+7乙+丙=3.15元------------(1)4甲+10乙+丙=4.2元------------(2)(2)-(1)得:甲+3乙=1.05元------(3)(2)×3-(1)×4得:4甲×3+10乙×3+丙×3-(3甲×4+7乙×4+丙×4)=4.2×3-3.15×412甲+30乙+3丙-12甲-28乙-4丙=12.6-12.62乙-丙=0;2乙=丙----(4)(4)代入(3)中得:甲+乙+2乙=甲+乙+丙=1.05元;答:购买甲、乙、丙各1件需要花1.05元.点评:解决这类问题的关键是把等式通过加减或代换变成只含有一个未知数的方程.2、甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?答案与解析:考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.。

六年级奥数列方程解应用题试题及答案(20211003231020)

六年级奥数列方程解应用题试题及答案(20211003231020)

六年级奥数列方程解应用题试题及答案
甲、乙、丙三种货物,假如购置甲3 件、乙 7 件、丙 1 件共花 3.15元;假如购置甲 4 件、乙 10 件、丙 1 件共花 4.20 元,那么购置甲、乙、丙各 1 件需多少钱?
考点:列方程解含有两个未知数的应用题.
专题:列方程解应用题.
剖析:由题意能够列出算式:
3甲+7 乙 +丙=3.15;
4甲+10 乙+丙=4.20;
两式相减能够得出甲和乙的关系,第一个算式乘4,第二个算式
乘 3,后再相减就能够得出乙和丙之间的关系,而后把它们代入同一
个算式中就能够得出甲 +乙+丙的值.
解答:解:由题意得:
3甲+7 乙 +丙=3.15 元------------ (1)
4甲+10 乙+丙=4.2 元------------ (2)
(2)-(1)得:
甲+3 乙=1.05 元------(3)
(2)×3-(1)×4 得:
4甲×3+10 乙×3+丙×3-(3 甲×4+7 乙×4+丙×4)=4.2 ×3-3.15 ×4
12甲+30 乙+3 丙-12 甲-28 乙-4 丙
2乙-丙=0;
2 乙=丙----(4)
(4)代入( 3)中得:
甲+乙+2 乙=甲+乙+丙=1.05 元;
答:购置甲、乙、丙各 1 件需要花 1.05 元.
评论:解决这种问题的重点是把等式经过加减或代换变为只含有一个未知数的方程.。

六年级奥数题及答案(二)

六年级奥数题及答案(二)

(一)小学六年级奥数试题及答案:列方程解应用题1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍.甲、乙原来各有存款多少元?考点:列方程解含有两个未知数的应用题.分析:根据“如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍”,可找出数量之间的相等关系式为:(甲原来的存款-110)×3=乙原来的存款+110,再根据“原来甲的存款是乙的4倍”,设原来乙的存款为x元,那么甲的存款就是4x元,据此列出方程并解方程即可.解答:解:设原来乙的存款为x元,那么甲的存款就是4x元,由题意得:(4x-110)×3=x+110,12x-330=x+110,12x-x=110+330,11x=440,x=40,甲的存款:4×40=160(元);答:甲原有存款160元,乙原有存款40元.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.(二)六年级奥数题及答案:组合图形的面积2.长方形ABCD的边上有两点E.F,线段AF、BF、CE、BE把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分的面积是多少平方米?考点:组合图形的面积.分析:所求的影阴部分,恰好是三角形ABF与三角形CBE的公共部分,而S1,S2,S3这三块是长方形中没有被三角形ABF与三角形CBE盖住的部分.因此,△ABF面积+△CBE 面积+(S1+S2+S3)=长方形面积+阴影部分面积.而△ABF的底是长方形的长,高是长方形的宽;△CBE的底是长方形的宽,高是长方形的长.因此,三角形ABF面积与三角形CBE面积,都是长方形面积的一半.解答:解:设长方形的面积为S,则S△CBE=S△ABF=(1/2)S,由图形可知,S+S阴影=S△CBE+S△ABF+15+46+36,S阴影=(1/2)S+(1/2)S+15+46+36-S=97(平方米),答:阴影部分的面积是97平方米.点评:本题考查长方形面积、三角形面积的计算.本题明白所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为15、46、36这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分是解决本题的关键,从而根据S+S阴影=S△CBE+S△ABF+15+46+36建立等量关系求解.(三)六年级奥数题及答案:四边形面积3.在平行四边形ABCD中,三角形AOD的面积为12平方厘米,三角形BOC的面积是平行四边形面积的1/5,求平行四边形的面积.考点:平行四边形的面积.分析:根据题意可知,三角形BOC和三角形AOD的高等于平行四边形ABCD的高,三角形的面积等于与它等底等高的平行四边形的面积的一半,所以可用1/2平行四边形的面积减去1/5平行四边形的面积等于三角形AOD的面积,列式解答即可得到答案.解答:解:设平行四边形ABCD的面积为x平方厘米,答:平行四边的面积是40平方厘米.点评:解答此题的关键是根据三角形BOC和三角形AOD的高等于平行四边形ABCD的高确定三角形BOC和三角形AOD的面积等于平行四边形ABCD的面积的一半,然后再列式计算即可.。

六年级奥数 第五讲 列方程解应用题

六年级奥数   第五讲 列方程解应用题

六年级奥数第五讲列方程解应用题六年级奥数-第五讲列方程解应用题六年级数学奥林匹克--第五讲:解方程的应用题第五讲列方程解应用题[知识要点]1、应用题也是常见的典型应用题。

列方程解应用题的主要特征是未知数和已知数同样都是运算对象,通过找出“未知”与“已知”之间的等量关系,列出方程,使问题得以解决。

列方程解应用题往往比算术方法易于思考。

2.用方程解决应用问题的一般步骤是:检查问题;设定未知;找出一系列相等数量的方程式;解方程;测试和回答。

【例题精讲】例1:三牌楼小学6(1)班有56人,6(2)班有30人。

有多少人可以从6(1)班转到6(2)班,使6(2)班的人数比6(1)班少10倍?[思路]可以设从从六(1)班调x人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人。

调动后六(1)班(56-x)人,六(2)班(30+x)人。

现在六(1)班人数=六(2)班人数×2+10。

模仿练习:有两条绳子。

这根长绳有20米,是短绳的三倍多。

如果长绳需要25米,短绳需要10米,那么长绳是短绳的四倍。

长绳和短绳有多少米?例2:用一根绳子测量井的深度,如果把绳子3折,井外多2米;如果把绳子4折,还差1米不到井口。

井深多少米?绳子长多少米?【思路点拨】如果井深可以设置为x m,绳索长度为3x+2×3或4x-1×4。

孩子们,你们能做到吗?模仿练习:用一根绳子测一口井的深度,绳子对折时,比井深长60厘米,绳子三折时,比井深短40厘米。

求绳子的长度和井深。

一六年级奥数――第五讲列方程解应用题例3:在除法公式中,除数、除数、商和余数之和为127。

如果商是3,余数是2,那么除数是什么?[思路]可以设除数是x。

被除数=除数×商+余数,你找到等量关系了吗?模仿练习:数字a和数字B,数字a除以数字B商3大于15,数字B除以数字a商5大于50 a和B的数字是什么?例4:3年前,张老师的年龄是小芳的5倍;5年后,张老师的年龄是小芳的3倍。

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题1.一个分数约分后为4,约分后为5/4.求原分数。

设原分数为a/b,约分后为4,则有a/b=4x/y,其中x、y互质。

又约分后为5/4,即(a-124)/(b-11)=5/4,解得a=620,b=279,原分数为620/279.2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和。

已知第一个数是3,第八个数是180,求第二个数。

设第二个数为a,则有a+3=a+(a+3)+3+。

+第八个数=180,即a=21.3.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米。

原长方形的面积是多少平方厘米?设长为14x,宽为5x,则原面积为70x²。

根据题意列方程,解得x=5,原长方形的面积为1750平方厘米。

4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多。

这个商品的成本是多少元?设商品成本为x元,根据题意列方程,解得x=31.5.粮店中的大米占粮食总量的73%,卖出600千克大米后,大米占粮食总量的75%。

这个粮店原来共有多少粮食千克?设原来共有y千克粮食,则有0.73y-600=0.75y,解得y=2400,原来共有2400千克粮食。

6.从家里骑摩托车到火车站赶乘火车。

如果每小时行30千米,早到15分钟;如果每小时行20千米,则迟到5分钟。

如果打算提前5分钟到,摩托车的速度应是多少千米每小时?设摩托车速度为v千米每小时,根据题意列方程,解得v=40.7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%。

若再加入300克20%的食盐水,则浓度变为25%。

原有40%的食盐水多少克?设原有40%的食盐水x克,则有0.4x+0.1(1000-x)=0.3×1000,解得x=400,原有40%的食盐水400克。

8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣。

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题

列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x . 由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数列方程解应用题

六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是-我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

六年级奥数列方程解应用题

六年级奥数列方程解应用题

六年级奥数列方程解应用题解析:这道题可以用代数方法解决。

设大和尚的人数为x,小和尚的人数为y,则有以下两个方程:3x + (y/3) = 100.(总人数)x + y = 100.(总馒头数)将第一个方程式中的y化简为3y,得到:9x + y = 300将两个方程式相减,消去y,得到:6x = 200解出x=33.33,但是x必须是整数,所以取x=33,代入第二个方程式,得到y=67.因此,一共有33个大和尚,67个小和尚。

我能行:1、某个班级有男生和女生,男生人数是女生人数的3倍,如果男生每人吃2个苹果,女生每人吃3个苹果,那么这个班级一共吃了多少个苹果?2、一家商店有苹果和梨两种水果,苹果每斤6元,梨每斤4元,如果这家商店卖出了100斤水果,收入500元,苹果和梨各卖出多少斤?3、三个数的和是15,其中两个数之和是9,第一个数比第二个数小2,求这三个数。

1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。

根据题意,可以列出方程组:鸡+兔=15,2鸡+4兔=48.解方程得到鸡有9只,兔子有6只。

2.硬币问题:有5分和2分的硬币各若干枚,共10枚,总面值为4角4分。

设5分硬币有x枚,2分硬币有y枚,则可以列出方程组:x+y=10,5x+2y=44.解方程得到5分硬币有6枚,2分硬币有4枚。

3.数学试卷问题:一份试卷有20道选择题,做对一题得5分,错一题扣1分,不做不扣分。

某学生得分为76分,求他做对了几道题。

设做对x道题,则错了20-x道题,可以列出方程:5x-(20-x)=76.解方程得到他做对了16道题。

4.火车问题:甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行38千米,乙车每小时行40千米,乙车出发2小时后,甲车才出发,求甲车几小时后与乙车相遇。

根据题意,可以列出方程:(38+40)t+2*40=470,解方程得到甲车行驶8小时后与乙车相遇。

1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。

六年级奥数题:列方程解应用题(A)

六年级奥数题:列方程解应用题(A)

列方程解应用题(1)一、填空题1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .6.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.二、解答题7.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?8.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.9.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案——————————————————————1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数列方程解应用题含答案

六年级奥数列方程解应用题含答案

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

六年级奥数题:列方程解应用题(含答案)

六年级奥数题:列方程解应用题(含答案)

列方程解应用题(1)年级 班 姓名 得分2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.问这批树苗有多少棵?有几个班?每班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案————————————————— 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级数学上册《列方程解应用题》奥数思维拓展习题

六年级数学上册《列方程解应用题》奥数思维拓展习题

六年级数学上册《列方程解应用题》奥数思维拓展习题1.为满足学生多样的兴趣爱好,学校还增设了花样跳绳社团和陶笛社团,这两个社团也受到了大家的追捧。

参加两个社团的总人数有120人,其中参加花样跳绳人数是参加陶笛社团人数的23,参加两个社团的人数分别是多少?(列方程解答)解:设参加陶笛社团的人数是x人,则花样跳绳的人数是23x人x+23x=12053x=120x=72花样跳绳:120-72-48(人)答:参加陶笛社团的人数是72人,参加花样跳绳的人数是48人。

2.李叔叔买了一套桌椅共花了640元,椅子的价格是书桌价格的35,书桌和椅子的价格分别是多少元?(用方程解)解:设书桌的价格是x元,则椅子的价格是35元。

x+35x-64085x=640 x=400椅子:640-400-240(元)答:书桌的价格是400元,椅子的价格是240元。

3.甲、乙两厂共有 2000人。

如果甲厂调出原有工人的14,乙厂调出 110人,则甲、乙两厂剩下的人数相等。

甲、乙两厂原有工人多少人?解:设甲厂原有工人x 人,则乙厂原有工人(2000-x)人。

(1-14)x=2000-x-110 34x=1890-x x=1080乙厂:2000-1080=920(人)答:甲厂原有工人1080人,乙厂原有工人920人。

4.西安市居民在环城公园举行民间艺术展,其中展出书法作品245件,比所有的展品的825多21件,这次共展出作品多少件?(列方程解)解:设这次共展出作品x 件。

825x+21=245 825x+21-21=245-21X=700 答:这次共展出作品 700件。

5.在培英小学开展的“我最喜欢的少儿节目”投票评选活动中,《动画乐翻天》获得的票数是总票数的14,《猪猪侠》获得的票数是总票数的15,《动画乐翻天》的票数比《猪猪侠》的票数多48票,总票数有多少张?(列方程解答) 解:总票数有x票。

1 4x -15x=48120x=48x=960答:总票数有 960 张。

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)一.选择题(共8小题)1.“学校图书馆有故事书420本,____。

科技书有多少本?”为了解决这个问题,小智补充了一条信息后,设科技书有x本,列出的方程是(1+)x=420。

小智补充的信息是()A.故事书比科技书少B.故事书比科技书多C.科技书比故事书多2.施工队修一座桥,原计划每天工作7小时,11天可以完成。

但因天气原因,按原计划工作6天后,每天只能工作5小时。

如果工作效率不变,求还需要多少天可以完成。

下面列式不正确的是()。

(如用方程解,设还需要x天可以完成。

)A.5x=11×7﹣6×7B.5×(6+x)=7×11C.[7×(11﹣6 )]÷5D.5x+6×7=11×73.水果店运进苹果150千克,比运进的梨的少24千克。

水果店运进梨多少千克。

解设运进梨x千克。

列出方程中,错误的是()A.x+24=150B.x﹣24=150C.x=150+24D.x﹣150=24 4.笑笑正在读一本故事书,第一周读了96页,还剩下这本书的没有读。

这本故事书一共有多少页?如果用方程解,设这本书共有x页,下面列式正确的是()A.x=96B.=96C.=965.某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x﹣8=31x+26B.30x﹣8=31x﹣26C.30x+8=31x+26D.30x+8=31x﹣266.学校图书馆里的科技书和故事书一共有160本,科技书的数量是故事书的。

如果设故事书的数量为x本,下列方程中符合题意的()A.x﹣x=160B.(1+)x=160C.x=160D.(1﹣)x=1607.李伟和赵强一起去旅游。

李伟共花3150元,李伟所花钱数比赵强多5%,如果赵强花的钱设为x元。

小学六年级奥数方程应用题【三篇】

小学六年级奥数方程应用题【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学六年级奥数⽅程应⽤题【三篇】》供您查阅。

【第⼀篇:商品进价】
习题:商店进了⼀批商品,按40%加价出售.在售出⼋成后,为了尽快销完,决定五折处理剩余商品,⽽且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的⼀半,那么这批商品的进价是多少元?(注:附加税算作成本)
答案与解析:
理解利润率的含义,是利润在成本上的百分⽐。

设进价x元,则预期利润率是40%
所以收⼊为(1+40%)x×0.8+0.5×(1+40%)x×0.2=1.26x
实际利润率为40%×0.5=20%
1.26x=(1+20%)(x+150)
得x=3000
所以这批商品的进价是3000元
【第⼆篇:两个班】
习题:甲⼄两班共90⼈,甲班⽐⼄班⼈数的2倍少30⼈,求两班各有多少⼈?
答案与解析:
第⼀种⽅法:设⼄班有Χ⼈,则甲班有(90-Χ)⼈。

找等量关系:甲班⼈数=⼄班⼈数×2-30⼈。

列⽅程:90-Χ=2Χ-30
解⽅程得Χ=40从⽽知90-Χ=50
第⼆种⽅法:设⼄班有Χ⼈,则甲班有(2Χ-30)⼈。

列⽅程(2Χ-30)+Χ=90
解⽅程得Χ=40从⽽得知2Χ-30=50
答:甲班有50⼈,⼄班有40⼈。

【第三篇:分⽯⼦】。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题训练
1.一个分数约分后将是
54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是9
4.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .
3,□,□,□,□,□,□180
3.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.
4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.
5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的3
1.这个粮店原来共有粮食 千克.
6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .
7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.
8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.
9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费元,那么,在运输过程中共损坏 套茶具.
10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.
、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的
12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的10
1,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的10
1,照此类推,第i 班取走树苗100i 棵又取走剩下树苗的10
1.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵有几个班每个班取走树苗多少棵
13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用
了31的时间走上坡路,然后用了31的时间走下坡路,最后用了3
1的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.
14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里 1. 335
268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335
268675674=⨯⨯. 2. 12
设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.
3. 630
设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程
14a 5a +182=(14a -13)(5a +13)
70a 2+182=70a 2+117a -169
解得a =3,所以原长方形的面积为14a 5a =70a 2=630(平方厘米)
4. 55
设成本是x 元.根据题意可列方程(x +5)11=(x +11)10,解得x =55(元).
5. 4200
设原来有粮食x 千克,根据现有大米可列方程,3
1)600(60073⨯-=-⨯x x 解得x =4200(千克).
6. 42
设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(60
20)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30[(55-15)(55-5)]=24(千米/小)
7. 200
浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.
设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x 40%+(300-x )10%=30030%,解得x =200(克).
8. 20
设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x . 由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3(2x )+4(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:
2(3x )+10(2x )+14x =40x =20(工时).
9. 7
设共损坏x 套茶具,依题意,得(1998-x )-18x =,解得x =7.
10. 600
设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(3
1400)100(31
解得x =250,两地相距(x +1)+x =2x +1=600(千米).
11. 设甲出发后x 分钟开始减速的,依题意,得 203060
1)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.
12. 设这批树苗有x 棵,则第一班取走树苗(100+)10
100-x 棵,第二班取走 树苗10
)1010100(200200-+--+x x 棵.依题意,得10
)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为9900
8100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.
13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60
153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).
14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千
米,骑马行x 千米,依题意,得12
45112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

相关文档
最新文档