分层、分段随机抽样的区别
2.1.3分层抽样
课堂小结
1.分层抽样的定义以及分层抽样的步骤: ①分层 ②求比 ③定数 ④抽样 ⑤组样 2.简单随机抽样、系统抽样、分层抽样的区别和 联系.
【课后作业】
课本P61 探究题 留给大家课后思考
联 系
简单随机抽样 是基础,分层 抽样和系统抽 样转化为简单 随机抽样
适 用 范 围 总体中 个体数 目较少
分层 抽样
(2)每次 抽出个体后 不再将它放 将总体分为几层, 各层抽样时 回,即不放 每层按比例抽取 采用简单随 机抽样或系 回抽样 统抽样
将总体平均分成 在确定第一个 总体中 个体时采用简 个体数 几段,按等距的 单随机抽样 目较多 规则抽取样本 总体是 由差异 明显的 几部分 组成
关于分层抽样,有以下几点需要注意:
①在分层抽样中,要求每层的各个个体互不交叉, 即遵循不重复、不遗漏的原则; ②在分层抽样中,由于各层抽取的个体数与这一 层个体数的比等于样本容量与总体的个体数的比,所 以每一个个体被抽到的可能性都是相等的; ③分层抽样适用于总体由差异明显的几部分组成 的情况,每一部分称为层,在每一层中实行简单随机 抽样或者系统抽样; ④分层抽样中分多少层,要视具体情况而定.总的 原则是:层内样本的差异要小,而层与层之间的差异 尽可能地大,否则将失去分层的意义; ⑤在分层抽样中,由分层抽样确定每层的个体数, 由简单随机抽样或者系统抽样抽出每层的个体.
③某学校有160名教职工,其中教师120名,行政人员16名,
后勤人员24名.为了了解教职工对学校在校务公开方面的意见,
拟抽取一个容量为20的样本.
③分层抽样
简单随机抽样、系统抽样、分层抽样的比较
类别
简单 随机 抽样 系统 抽样
共同点 (1)抽样 过程中每 个个体被 抽到 的可 能性相等
分层抽样和随机抽样详解
例1:某地农田分布在山地、丘陵、平原、洼地不同的地形上,
要对这个地区的农作物产量进行调查,应当采用什么抽样方法? 解:由于不同类型的农田之间的产量有较大差异,应当采用分 层抽样的方法,对不同类型的农田按其占总数的比例来抽取样 本.
例2:某公司有1000名员工,其中:高层管理人员为50名,属于高 收入者;中层管理人员为150名,属于中等收入者;一般员工为800 名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽 取100名员工,应当怎样进行抽样?
2.2 分层抽样与系统抽样
1. 正确理解分层抽样、系统抽样的概念,掌握 分层抽样、系统抽样的一般步骤.
2. 掌握分层抽样、系统抽样的特点,并能根据 实际问题确定选用哪种抽样方法.
自学导引
分层抽样的概念
将总体按其__属_性__特_征___分成若干类型(有时称作层),然 后在每个类型中_随_机___抽取一定的样本,这种抽样方法 称为分层抽样,有时也称为类型抽样.
例4 某装订厂平均每小时大约装订图书362册,要求检验员每
小时抽取40册图书,检查其质量状况.请你设计一个调查方案.
解: 我们可以采用系统抽样,按照下面的步骤设计方案.
第一步 把这些图书分成40个组,由于 3的62 商是9,余数是2,所以每个组有 9册书,还剩2册书.这时,抽样距就是9. 40 第二步 先用简单随机抽样的方法从这些书中抽取2册书,不进行检验. 第三步 将剩下的书进行编号,编号分别为0,1,...,359. 第四步 从第一组(编号分别为0,1,…,8)的书中按照简单随机抽样的方法, 抽取1册书,比如说,其编号为k. 第五步 顺序地抽取编号分别为下面数字的书:k+9,k+18,k+27,…,k+39×9, 这样就抽取了容量为40的一个样本.
商品的抽样检验
商品学
2)二次抽检方法是同时抽取两个大小相同的样本,
先对第一个样本进行检验,再对第二个样本进行检验, 用两次检验结果综合在一起判断该批商品合格与否。
3)多次抽检方法,其原理与二次抽检方法相似,
每次抽取样本大小相同,但抽样检验次数多,合格判定 数与不合格判定数也多。
四、抽样检验方案
抽样检验方案是样本大小或大小系列与接收 或拒收商品批的判定规则——判定数组结合 在一起的抽样检验方法。
2)调整型抽样检验是指抽样检验方案不考虑商
品批的质量变化,也没有转移规则,而是以确定的商品 检验方案对商品批进行抽样检验。 此种方法对孤立批的商品质量检验较为适宜。
三、抽样检验方法
3.依据抽样检验的程序不同划分,分为一 次、二次、多次检验方法
1)一次抽检方法只需要抽样检验一次样本就可以
作出该批商品是否合格的判断。此法简单易操作,应用 广泛,但平均样本量较对应的多次抽样方案量大。
一次抽检方案是指由样本大小n和判定数组(Ac,Re)组 成的抽检方案,Ac为合格判定数,即判定批合格时,样本 中所含不合格品数(d,d≤Ac的最大值);Re为不合格判 定数,即判定批不合格时,样本中所含不合格品数的最小值。
二次抽检方案是指由第一样本大小n1,第二样本大小n2与 判定数组(Ac1,Ac2,Re1,Re2)组成的抽检方案。
2)系统抽样是将商品批各单位商品编号,再按一定
的程序抽样。
3)分层、分段随机抽样。对于商品批量巨大、
到货期不集中、堆放场所较多的商品,将商品均匀整齐 地堆码,对商品批量大且在同一场地整齐堆放的商品可 以采用分层抽样法,即在每层分别按单纯随机抽样抽取
1简单随机抽样、系统抽样、分层抽样含答案
1简单随机抽样、系统抽样、分层抽样含答案2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类?抽签法?简单随机抽样???随机数法3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.NN(2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;nn(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B- 1 -解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( ) A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )***-*****A.,B.,C.,D.,***-**********答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32 答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B. 7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( ) A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D 8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2700答案B 由于=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=7020(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ) - 2 -A.5个B.10个C.20个D.45个*****答案A解析由题意知每=10(个)球中抽取一个,现有50个红球,应抽取=5(个).*****11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.*****答案7,4,6解析应抽取的亩数分别为210×=7,120×=4,180×=6.***-*****016.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k×100=20.5k+3k+2k17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例2+3+5+1是一致的.所以,样本容量n=×16=88.2- 3 -。
分层抽样
成时,如何才能使样本能更充分地反映总体
的情况?
探究新知:一、分层抽样的定义
一般地,在抽样时,将总体分成互不交叉的层, 然后按照一定的比例,从各层独立地抽取一定数量 的个体,将各层取出的个体合在一起作为样本,这 种抽样方法是分层抽样。 应用分层抽样应遵循以下要求: (1)分层:将相似的个体归入一类,即为一层, 分层要求每层的各个个体互不交叉,即遵循不重复、 不遗漏的原则。 (2)分层抽样为保证每个个体等可能入样,需遵 循在各层中进行简单随机抽样或系统抽样,每层样本 数量与每层个体数量的比与样本容量与总体容量的比 相等或相近。
抽样
组样 结束
合作探究:
• 例1、我校高中生共有2700人,其中高一年 级900人,高二年级1200人,高三年级600 人,现采取分层抽样法抽取容量为135的样 本。请回答 • (1)计算高一、高二、高三各年级抽取的 人数 • (2)写出抽样过程
• 解: (1)样本容量:总体数目=135:2700=1:20 高一: 900 1 45 人
简单随机抽样、系统抽样、分层抽样的比较
类别
简单 随机 抽样 系统 抽样
共同点 (1)抽样 过程中每 个个体被 抽到的可 能性相等
(2)每次 抽出个体 后不再将 它放回, 即不放回 抽样
各自特点 从总体中逐 个抽取
联
系
适 用 范 围 总体中 个体较 少
分层 抽样
将总体平均分成 在起始部分 总体中 几部分,按预先 时采用简单 个体较 制定的规则在各 多 随机抽样 部分抽取 各层抽样 总体由 将总体分成几层, 时采用简 差异明 分层进行抽取 单随机抽 显的几 样或系统 部分组 抽样 成
复习回顾
简单随机抽样、系统抽样的特点是什么? 简单随机抽样: ①逐个不放回抽取; ②等可能入样;
分层抽样和随机抽样详解
例1:某地农田分布在山地、丘陵、平原、洼地不同的地形上, 要对这个地区的农作物产量进行调查,应当采用什么抽样方法? 解:由于不同类型的农田之间的产量有较大差异,应当采用分 层抽样的方法,对不同类型的农田按其占总数的比例来抽取样 本.
例2:某公司有1000名员工,其中:高层管理人员为50名,属于高 收入者;中层管理人员为150名,属于中等收入者;一般员工为800 名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽
2.2 分层抽样与系统抽样
1. 正确理解分层抽样、系统抽样的概念,掌握 分层抽样、系统抽样的一般步骤. 2. 掌握分层抽样、系统抽样的特点,并能根据
实际问题确定选用哪种抽样方法.
自学导引
分层抽样的概念
属性特征 分成若干类型(有时称作层),然 将总体按其_________ 随机 抽取一定的样本,这种抽样方法 后在每个类型中_____ 称为分层抽样,有时也称为类型抽样.
调查方案.
解:我们可以采用系统抽样,按照下面的步骤设计方案. 第一步 按生产时间将一天分为50个时间段,也就是说,每个时间段
大约生产
10000 = 200 件产品.这时,抽样距就是200. 50
第二步 将一天中生产的机器零件按生产时间进行顺序编号.比如,第 一个生产出的零件就是0号,第二个生产出的零件就是1号等.
第一步 把这些图书分成40个组,由于 362 的商是9,余数是2,所以每个组 有9册书,还剩2册书.这时,抽样距就是9.
40
第二步 先用简单随机抽样的方法从这些书中抽取2册书,不进行检验. 第三步 将剩下的书进行编号,编号分别为0,1,...,359. 第四步 从第一组(编号分别为0,1,…,8)的书中按照简单随机抽样的方法, 抽取1册书,比如说,其编号为k. 第五步 顺序地抽取编号分别为下面数字的书:k+9,k+18,k+27,…,k+39×9,
常见的随机抽样方法介绍
抽样方法介绍朱一军福建省产品质量检验研究院一、随机方法选择及随机数产生按照GB/T10111-2008《随机数的产生及其在产品质量抽样检验中的应用程序》的要求,并根据受检单位的产品堆放形式、基数(批量)大小,确定抽样方法通常包括简单随机抽样、分层随机抽样、系统抽样、整群抽样、全数抽样五种方法)。
随机数一般可使用随机数表、骰子或扑克牌中任选一种方式产生。
(一)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行1.定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(nWN),如果每次抽取式总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
2.简单随机抽样方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。
当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
(二)分层抽样(StratifiedRandomSampling)主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。
共同点:每个个体被抽到的概率都相等N/M。
定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratifiedsampling)。
(三)系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事。
这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
2.1.3分层抽样课件人教新课标
步骤3—定数:确定每一层应抽取的个体数目,并使每一层 应抽取的个体数目之和为样本容量 步骤4—抽样:按步骤3确定的数目在各层中随机抽取个体, 合在一起得到样本
当你每天醒来,口袋里便装着24小时的时 间,这是属于你自己最宝贵的财产.
(2)每次 抽出个体 后不再将 它放回, 即不放回 抽样
各自特点
联系
适用 范围
从总体中逐 个抽取
是系统抽样 总体中 和分层抽样 个体较 的基础 少
将总体平均分成 几部分,按预先 制定的规则在各 部分抽取
将总体分成几 层,分层进行 抽取
在起始部分 总体中 时采用简单 个体较 随机抽样 多
各层抽样时 采用简单随 机抽样或系 统抽样
160 则样本中的老年职工人数为 90 86 18.
430
3.某工厂生产A、B、C三种不同型号的产品,相应产品 数量比为2∶3∶5,现用分层抽样方法抽取一个容量为n 的样本,样本中A型号产品有16件,那么样本的容量 n=_8_0__.
解:由已知得: 2 n=∴1n6,=80.
10
答案:80
4.某农场在三种地上种玉米,其中平地210亩,河沟地 120亩,山坡地180亩,估计产量时要从中抽取17亩作为 样本,则平地、河沟地、山坡地应抽取的亩数分别是 __7_,4__,6___.
160人,中年职工人数是老年职工人数的2倍.为了解职
工身体状况,现采用分层抽样方法进行调查,在抽取的
样本中有青年职工32人,则该样本中的老年职工人数为27
(D)36
解:选B.由已知得中年职工人数和老年职工人数共为 430-160=270(人). 中年职工人数是老年职工人数的2倍,则 中年职工人数为180,老年职工人数为90, 样本的容量为 32 430 86,
常见的随机抽样方法介绍
常见的随机抽样方法介绍抽样方法介绍朱一军福建省产品质量检验研究院一、随机方法选择及随机数产生按照GB/T 10111-2008 《随机数的产生及其在产品质量抽样检验中的应用程序》的要求,并根据受检单位的产品堆放形式、基数(批量)大小,确定抽样方法(通常包括简单随机抽样、分层随机抽样、系统抽样、整群抽样、全数抽样五种方法)。
随机数一般可使用随机数表、骰子或扑克牌中任选一种方式产生。
(一)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行1. 定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≦N),如果每次抽取式总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
2. 简单随机抽样方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。
当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
(二)分层抽样(Stratified Random Sampling) 主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。
共同点:每个个体被抽到的概率都相等N/M。
定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratified sampling)。
(三)系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事。
这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
抽样方法——随机抽样、系统抽样、分层抽样
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
例2:一个总体中有100个个体,随机编号为 0,1,2,…,99,依编号顺序平均分成10个小组,组 号分别为1,2,3,…,10.现用系统抽样方法抽取一 个容量为10的样本,规定如果在第1组随机抽取 的号码为m,那么在第k组抽取的号码个位数字 与m+k的个位数字相同.若m=6,则在第7组中抽 取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
步 骤: 编号、选数、取号、抽取.
简单随机抽样
一般地,设一个总体的个体数为N,如果 通过逐个不放回抽取的方法从中抽取n个个体 作为样本,且每个体被抽到的概率相等,就 称这样的抽样方法为简单随机抽样。
简单随机抽样的特点:
它的总体个数有限的;
有限性 逐个性 不回性
它是逐个地进行抽取;
它是一种不放回抽样;
被抽取进行检查的80个灯泡的每个灯泡的 使用期限的集体,就叫做总体的一个样本。
实例一
为了了解高一(1)班50名 同学的视力情况,从中抽取10 名同学进行检查。
请问: (1)此例中总体、个体、样本、样本容 量分别是什么? (2)如何抽取呢?
开始
50名同学从1到50编号
80随机抽样(基础)-知识讲解_随机抽样_基础
随机抽样编稿:丁会敏审稿:【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一、简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本.2、简单随机抽样的特点:(1)被抽取样本的总体个数N是有限的;(2)简单随机样本数n小于等于样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是不放回抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.3、实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:①将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.注意:①选定开始数字,要保证所选数字的随机性;②确定读数方向获取样本号码时,读数方向可向左、向右、向上、向下,样本号码不能重复,否则舍去.要点诠释:1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.要点二、系统抽样1、系统抽样的概念:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.2、系统抽样的特征:(1)当总体容量N 较大时,采用系统抽样;(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样;(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.3、系统抽样的一般步骤:(1)采用随机的方法将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取N k n =,当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数'N 能被n 整除,这时取'N k n =,并将剩下的总体重新编号;(3)在第一段用简单随机抽样确定起始个体的编号()l l N l k ∈≤,;(4)按照一定的规则抽取样本,通常是将编号为2(1)l l k l k l n k +++- ,,,,的个体取出.要点诠释:1、从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2、系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.要点三、分层抽样1、分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)要点诠释:1、应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2、分层抽样是当总体有差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是,层内样本的差异要小,而层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.3、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.要点四、三种抽样方法的比较类别简单随机抽样系统抽样分层抽样共同点(1)抽样过程中每个个体被抽到的可能性相等(2)每次抽出个体后不再将它放回,即不放回抽样各自特点从总体中逐个抽取将总体均分成几部分按事先确定的规则在各部分抽取将总体分成n层,分层进行抽取相互联系在起始部分抽样时采用简单随机抽样各层抽样采用简单随机抽样或系统抽样适用范围总体中个体数较少总体中个体数较多总体由差异明显的几部分组成【典型例题】类型一:简单随机抽样例1.下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有l万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴四川参加抗震救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.【解析】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【总结升华】要判断所给的抽样方法是否是简单随机抽样.关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:(1)总体的个数有限;(2)逐个抽取;(3)是不放回的抽取;(4)每个个体被抽到的可能性必须是相同的.举一反三:【变式1】下面的抽样方法是简单随机抽样吗?为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检验.(3)一小孩从玩具箱中的20件玩具中随意拿出一件来玩.玩后放回再拿下一件,连续玩了5件.【解析】(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.例2.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.请用抽签法设计抽样方案.【解析】方案如下:第一步:将18名志愿者编号,号码是01,02, (18)第二步:将号码分别写在形状、大小相同的纸条上,揉成团,制成号签;第三步:将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步:从袋子中依次抽取6个号签,并记录上面的编号:第五步:所得号码对应的志愿者就是志愿小组的成员.【总结升华】一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当样本容量和总体容量较小时可用抽签法.举一反三:【变式1】一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.使用合适的方法确定这个学生所要回答的三门学科问题的序号(物理题的编号为01~15,化学题的编号为16~35,生物题的编号为36~47).【解析】第一步:将试题的编号01~47分别写在形状、大小相同的纸条上,将纸条揉成团制成号签,并将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅匀.第二步:从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号.这便是所要回答的三门学科问题的序号.例3.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【思路点拨】已知N=120,n=10,用随机数表法抽样时编号000,001,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】使用随机数表法步骤如下:第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读.依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.【总结升华】用随机数表法抽取样本,编号时要注意使号码的位数相同.如本题将个体编号的位数统一为3位,即在位数较少的数前添加“0”,方便读表.举一反三:【变式1】某校有学生1200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何进行?【解析】首先将该校学生都编上号码:0001,0002,0003,…,1200,如用随机数表法,则先在随机数表中选定一个数,如第5行第9列的数字6,从6开始向右连续读取数字,以4个数为一组,遇到右边线时向下错一行向左继续读取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3046,1943,6248,3469,0253,7887,3239,737l,2845,3445,9493,4977,2261,8442,…,所抽取的数字如果小于或等于1200,则对应此号的学生就是被抽取的个体;如果所抽取的数字大于1200,而小于或等于2400,则减去1200,剩余数字即是被抽取的学生号码;如果所抽取的数字大于2400,而小于或等于3600,则减去2400;依此类推.如果遇到相同的号码,则只留取第一次读取的数字,其余的舍去,这样被抽取的学生所对应的号码依次是:0438,0682,1022,0762,0709,0606,0644,0853,1183,0130,0646,0743.0248,1069,0253,0687,0839,0171,0445,1045,1093,0177,1061,0042,…,一直取足50人为止.【变式2】要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.【解析】解法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.解法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.【总结升华】(1)将钢琴编号从0开始,10架钢琴用0—9就可表示,这样总体中的所有个体可用一位数表示,便于使用随机数表.(2)用抽签法抽样关键是将号签搅匀.类型二:系统抽样例4.下列抽样中不是系统抽样的是().A.从号码为1~15的15个球中任选3个作为样本,先在1~5号球中用抽签法抽出i0号,再将号码为i0+5,i0+10的球也抽出B.工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5min抽取一件产品进行检验C.弄某项市场调查,规定在商店门口随机地抽一个人进行询问,直到调查到事先规定的调查人数为止D.某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【答案】C【解析】本题的判定依据是系统抽样方法的特征:系统抽样适用于个体数目较多但均衡的总体.判断一种抽样是不是系统抽样,首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的条件等可能入样,再看抽样过程中是否将总体分成了几个均衡的部分,是否在每个部分中进行简单随机抽样.本题C显然不是系统抽样,因为事先不知道总体,抽样方法也不能保证每个个体等可能入样,总体也没有分成均衡的几部分,故C不是系统抽样.【总结升华】系统抽样的特点:①适用于总体容量较大的情况;②剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;③是等可能抽样,每个个体被抽到的可能性都是n/N.举一反三:【变式1】下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶8∶8∶2,从中抽取200名学生做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【答案】C【解析】A中各区学生有区别,不好分成均衡的几部分,不适宜,B中抽取样本容量太小,不适宜.D 中总体个数较少,不适宜.故选C【总结升华】系统抽样适合总体容量较大且个体间差异较小的情况.例5.为了了解某大学一年级新生英语学习的情况,拟从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?【思路点拨】由题设条件可知总体的个数为503,样本容量为50,不能整除,可采用随机抽样的方法从总体中剔除3个个体,使剩下的个体数500能被样本容量50整除,然后再采用系统抽样方法进行抽样.【解析】第一步,将503名学生用随机方式编号为1,2,3, (503)第二步,用抽签法或随机数表法剔除3个个体,这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步,确定分段间隔k,将总体分为50个部分,每一部分包括10个个体,这时,第l部分的个体编号为1,2,...,10;第2部分的个体编号为11,12,...,20;依此类推,第50部分的个体编号为491,492, (500)第四步:在第1部分用简单随机抽样的方法确定起始的个体编号,例如5.第五步:依次在第2部分,第3部分,…,第50部分取出号码为15,25,…,495的个体,这样就得到一个容量为50的样本.【总结升华】总体中的每个个体都必须等可能的入样,为了实现“等距”入样且又等概率,应先剔除,再“分段”,后定起始位.采用系统抽样是为了减少工作量,提高其可操作性,减少人为误差.举一反三:【变式1】为了了解某年级学习情况,计划从该年级504名学生中抽取50名学生作为样本,问如何采用系统抽样的方法完成这一抽样?【解析】第一步:将504名学生随机编号为1,2,3,…,503,504;第二步:用抽签法或者随机数表法,剔除4个个体.这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步:由于样本容量与总体容量的比为50:500=1:10,我们可将总体平均分成50部分,其中每一部分包含10个个体,这样第一部分的个体编号为1,2,3,…,10;第二部分的个体编号为11,12,13,…,20;依次类推,第50部分的个体编号为491,492,493, (500)第四步:从1到10号进行简单随机抽样,抽取一个号码,比如是5;第五步,依次在第2部分,第3部分,…,第50部分,取出号码分别为15,25,35,…,495.这样就得到了一个样本容量为50的样本.【变式2】某校高中三年级有学生322名,为了了解学生的某种情况,按1∶8的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出抽样过程.【解析】因为322÷8=40余2,故先剔除2名学生,把剩下的320名学生编号为1,2,3,…,320.把总体分为40个部分,每一个部分都有8个个体,例如第一部分的个体编号为:1,2,3,…,8.然后在第一部分随机抽取一个号码,比如6号,那么从6号开始,每隔8个号码抽取1个,得到号码6,14,22,30,…,310,318,这样就得到一个容量为40的样本.类型三:分层抽样例6.在下列问题中,各采用什么抽样方法抽取样本?(1)从20台彩电中抽取4台进行质量检验;(2)科学会堂有32排座位,每排有40个座位(座号为1~40),一次报告会坐满了听众,会后为听取意见留下了座号为18的所有32名听众进行座谈;(3)光远中学有180名教职工,其中教师136名,管理人员20名,后勤服务人员24名,为征求某项意见,现从中抽取一个容量为15的样本.【答案】(1)简单随机抽样;(2)系统抽样;(3)分层抽样.【解析】(1)所述问题中总体中的个体数和样本容量均较少,故宜用简单随机抽样法;(2)所述问题具有总体中的个体数较多,且每个个体无明显差异的特点,所以适宜用系统抽样法;(3)所述问题的总体中的个体具有明显差异,即出现了3个层次,因此适宜用分层抽样法.【总结升华】总体容量较小宜用抽签法;总体容量较大,而样本容量较小宜用随机数表法;总体容量较大,样本容量也较大的宜用系统抽样法;总体是由差异明显的几个层次组成,宜用分层抽样法.举一反三:【变式1】一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?方法一:将160人从1到160编上号,然后将用白纸做成的有1~160号的160个号签放入箱内搅匀,最后从中抽取20个签,与签号相同的20个人被选出.方法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1~8号为第一组,9~16号为第二组,……,153~160号为第20组.从第一组中用抽签方式抽到一个为k号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),以此抽取20人.方法三:按20∶160=1∶8的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤服务人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是().A.方法一、方法二、方法三B.方法二、方法一、方法三C.方法一、方法三、方法二D.方法三、方法一、方法二【答案】C例7.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人,为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【思路点拨】总体由不到35岁、35岁至49岁与50岁及50岁以上的个体构成,个体的差异较大,适合用分层抽样法.【解析】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为10015005 ,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁及50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【总结升华】本小题主要考查分层抽样的概念和运算以及抽样过程.求解总体由差异明显的个体构成的问题时,适合用分层抽样法.分层后,各层的个体数较多时,可采用系统抽样或随机数表法抽取出各层中的个体,一定要注意按比例抽取.举一反三:【高清课堂:随机抽样400439例1】【变式1】某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生.【答案】40【变式2】某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】3720【变式3】某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为.相关人员数抽取人数公务员32x教师48y自由职业者644【解析】采用分层抽样,抽样比为2:3:4,由题可知x=2,y=3.则调查小组的总人数为2+3+4=9人,即为9人.。
随机抽样(整理)
C.系统抽样法,分层抽样法
D.简单随机抽档法,分层抽样法
6、某单位有工程师6人,技术员12人,技工18 人,要从这些人中抽取一个容量为n的样本;如果采 用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加1个,则在采用系统抽样时,需要
在总体中先剔除1个个体,求得样本容量为_6__.
练习:
(1).某县有30个乡,其中山区有6个,丘陵地区有12个, 平原地区有12个,要从中抽出5个乡进行调查,则应在
山区抽_个乡1 ,在丘陵地区抽_乡,2 在平原地区抽_ 个乡2 。
(2).高三某班有男生56人,女生42人,现在用分 层抽样的方法,选出28人参加一项活动,则男生 和女生的人数分别是:____1_6_和__1_2_____
4、从容量为N的总体中抽取容量为n的样本, 用系统抽样的一般步骤为: (1)将总体中的N个个体编号.有时可直接 利用个体自身所带的号码,如学号、准考证 号、门牌号等;
(2)将编号按间隔k分段(k∈N).
(3)在第一段用简单随机抽样确定起始个 体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将 起始编号L加上间隔k得到第2个个体编号L+K, 再加上K得到第3个个体编号L+2K,这样继续 下去,直到获取整个样本.
•
生活中的辛苦阻挠不了我对生活的热 爱。20.11.1720.11.17Tuesday, November 17, 2020
•
人生得意须尽欢,莫使金樽空对月。02:41:5602:41:5602:4111/17/2020 2:41:56 AM
•
做一枚螺丝钉,那里需要那里上。20. 11.1702 :41:560 2:41No v-2017 -No v-2 0
抽样方法的大类
抽样方法可分为两大类:1.随机抽样(Probability-Sampling),即在抽样时,母群体中每一个抽样单位被选为样本之机率相同。
随机抽样具有健全之统计理论基础,可用机率理论加以解释,是一种客观而科学的抽样方法,在市场调查中通常都用随机抽样。
2.非随时抽样(Non-Probabity-Sampling),在抽样时,抽样单位被选为样本之机率为不可知。
非机率抽样之种类,主要有四种:(1).便利抽样(Convenience Sampling)在样本之选择只考虑到接近样本或衡量便利。
如访问过路行人即为一例。
(2).配额抽样(Quota Sampling)a选择「控制特征」,作为将母体细分类之标准。
b将母体细分为几个子母体,按比较分配各子母体样本数大小。
c访查员有极大自由去选择子母体中之样本个体,只要完成配额调查,即告完成。
此一方法因调查偏好及方便,丧失精确度。
抽样配额分配表,此配额由访问员选定,不做任何修正。
(3).判断抽样(Judgement Sampling)在母体之构体极不相同且样本数很小之时,根据抽样设计者之判断来选择样本个体,设计者必须对母体有关特征具有相当了解。
在编制物价指数时,有关产品项目选择及样本地区之决定,即采用判断抽样。
(4).雪球抽样(Snowball Sampling)利用随机方法或社会调查选出原始受访者。
再根据原始受访者提供信息去取得其它受访者。
本法之目的乃母体很难寻找或十分稀少。
例如单亲家庭计抽样属之。
随机抽样之种类有:1.简单随机抽样(Simple random Sampling)母体中全部个体,完全委诸均匀机率分布抽取样本,使每一个体被抽出之机率均为己知且相等。
简单随机抽样为其它各种随机抽样方法之基础。
简单随机抽样法样本之取得,对母体编号后以利用随机数表依机率抽取。
假定由2000名调查对象,以随机数表随机抽取150名样本,其抽样步骤如下:(1)将2000名调查对象,由0001编至2000等2000个连续编号。
抽样方法
抽样单位 不是单个的个体,而是成群的个体。
个班,每班都是30名同学,总共3000名学生,现在 要抽取300名。先从100个班中抽取10个班,则这10 个班的全部学生就构成了样本。
举例:某大学共有100
四、整群抽样
3.优缺点: 1)优点:简便易行、节省费用。
例:研究某市 10 万户家庭生活状况,抽取1000 户。若
三.分层抽样
3.运用:
以所要分析和研究的主要变量或相关变量 作为分层的标准。
考虑两个问题: 1)分层的标准问题。 通常采用的原则有:
①
②
以保证各层内部同质性强、各层之间异质 性强、突出总体内在结构的变量作为分层 变量。
以那些已有明显层次区分的变量作为分层 变量。
③
三.分层抽样
3.运用: 考虑两个问题: 2)分层的比例问题。
适用范围:总体元素不多时.
一、简单随机抽样
3.常用方法:
2)随机数表法
利用随机数表抽样的具体步骤: ( 1 )先取得一份总体所有元素的名单(抽 抽取 取数
适用范围:总体元素很多时.
样框);
(2)将总体中所有元素一一按顺序编号; ( 3 )根据总体规模是几位数来确定从随机 量表中选几位数; ( 4 )以总体规模为标准,对随机数表中的 数码逐一进行衡量并决定取舍; ( 5 )根据总体规模的要求选择出足够的数 码个数; ( 6 )依据从随机数表中选出的数码,到抽 样框中找出它所对应的元素。
2)缺点:系统抽样有一个十分重要的前提
条件,就是总体中个体的排列,相对于研究的变
量来说,应是随机的,即不存在某种与研究变
量相关的规则分布。否则,系统抽样的结果将 会产生极大的偏差。
例:在一项有关二战士兵的经典研究中,研究人员从名册
高一数学《概率与统计》
考点1:抽样方法一.随机抽样随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:1.简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.简单随机抽样是最简单、最基本的抽样方法.⑴抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.⑵简单随机抽样必须具备下列特点:①简单随机抽样要求被抽取的样本的总体个数N 是有限的. ②简单随机样本数n 小于等于样本总体的个数N . ③简单随机样本是从总体中逐个抽取的. ④简单随机抽样是一种不放回的抽样.⑤简单随机抽样的每个个体被抽取的可能性均为nN.<教师备案>样本获取分为两种,一种是全面统计,一种是样本统计.全面统计的例子非常多,比如美国大选,每个州的选民都是通过投票选出每个州的负责人.也就是每个人都表达了自己的意见.再比如我们调查学生是海淀还是非海淀,我们也是给每个学生打了电话,访谈出结果,每个同学也都表达了自己的意见.再比如一些小事,像一群人中午的时候讨论去哪吃饭,每个人都可以说自己喜欢的地方.全面统计的好处在于无遗漏,数据准确无偏差,但是缺点也很明显,那就是非常的繁琐、麻烦.对于大数据的处理很无力,所以我们需要有样本统计. 样本统计的意义就是从一个大数据中抽取数据样本分析,通过对样本的分析来估计原数据的性质.于是首要的问题就是如何抽样.一个合理的抽样方法的基本要求是“平等”,也就是每个个体被抽取的可能性是相同的.比如我们发现,老师选出的学生代表很可能不能真正代表全体同学的意见,因为老师选取的一定是自己比较熟悉的学生,这类学生平时一定非常活跃.而对于一些比较内向,“存在感”比较低的同学来说,老师可能就不会关注,被选中的可能性就会降低.由此可以推知,人为的抽样一般是不靠谱的.再比如,现在很多的新闻都有网上的调查,有的媒体通过网上调查的数据来分析广大人民对新闻的反馈.这样的调查也是不靠谱的,因为网上调查反映出来的大多是经常上网的人的意见,而对于平时不上网的人就没有调查,所以这样的抽样也是不合理的.最常见的合理抽样方式是“抓阄”,这可以保证每个个体都能“等可能”的被选中.当然抓阄的方式有很多,比如很多时候我们不需要每个人都去抓一次,我们可以把每个人编一个号,然后由一个人来抽号就可以了.比如我们常见的彩票大致就是这个原理.不过需要注意的是彩票里面的等可能是对彩票是等可能的,对人不一样,因为一个人可以买很多彩票.6.1随机抽样知识点睛第6讲概率默统计类<教师备案>老师在讲完简单随机抽样后可以让学生做例1的【铺垫】⑴,本小题主要是让学生理解什么是总体,什么是个体,什么是样本容量,因为简单随机抽样比较简单,而且在后边要讲的系统抽样和分层抽样中都要用到,所以这里就不再详细讲解了.2.系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,由于抽样间隔相等,又被称为等距抽样.⑴抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.⑵系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等为nN.<教师备案>随着数量的增大,抓阄的方式效率会比较低.当然,随着现在计算机的发展,数据量很大的时候也是可以通过“选号”的方式进行随机抽样.课本上提到的系统抽样其实现在已经不怎么使用了.不过作为传统意义下的抽样方法,我们还是有必要介绍一下.系统抽样的核心是“选出代表”,每个代表会直接代表一个群体的意见.系统抽样的方式分为两种,一种是横向抽样,也就是我们教科书上的抽样方式,这种例子非常多,比如军训的时候,可能我们出现过“一到三”报数,这样就把我们分成了“一”“二”“三”三个组,然后就可以随机选一个数“一”,然后所有的“一”就被选中了.同样的道理,我们对1000人,选取一个100人的样本,那么我们就需要把总数分成100组,每组10个人,然后让第一组的人抓阄(为的是随机抽样),比如“4”抓到,那么每一组的“4”就被选中了.另一种系统抽样的方式是“纵向抽样”,它出现的原理是这样的:原始的系统抽样方法会造成直观上的不公平.比如我们1000人里面选100人去叙利亚旅游,大家肯定都不愿意去,第一组的人抓阄之后,由于第一组的4号被选中,那么每一组的4号就都被选中了,其他组的4号会认为被第一组的4号连累,因为他们是“被”选中的.虽然从可能性上说,这没有道理,不过直观上确实有点“躺枪”的意思.于是人们改变了方式,也就是纵向系统抽样.比如现在我们还是1000人里面选100人去叙利亚,我们把所有人分成10组,每组100人,然后每组自行推举一个代表上台抓阄,被选中的人所在的组,整组都被选中.这样我们每个组都有人去抓阄,也就实现了直观上的公平.但是在可能性的角度,横向和纵向抽样都是“等可能”的,没有本质区别.<教师备案>老师在讲完系统抽样后就可以让学生做例1的铺垫⑵,例1⑵以及尖子班拓展⑵,这几个题都是系统抽样,老师可以选择几个让学生做做,不一定都让学生做,老师自己选择.3.分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.<教师备案>简单随机抽样(抓阄)和系统抽样都是绝对意义上的公平,但是分层抽样就是相对意义上的公平,因为我们人为的干扰了抽样的过程.不过现实意义之下我们统计数据必须进行分层,否则统计数据会闹出笑话.常见的一个就是我家房子10平米,后来搬过来一个邻居,房子面积是100平米,那么我家的生活状况有没有改变.实际上没有,但是统计数字可能告诉你,你们的平均面积增加了.现实生活中,很多的统计需要分层,比如统计收入水平的时候需要分不同的城市,统计生育问题的时候要分城市和农村,统计化妆品消费水平的时候要分性别等等.所以分层抽样就是为了保证每个层面上的公平性,我们按照每个层次占到总体的多少来分配选取的比例.这里老师可以开发更多的统计实例,一定要讲出现实意义来.<教师备案>老师在讲完分层抽样后可以让学生做例1的铺垫⑶,例1⑶以及目标班专用⑷,让学生熟练掌握分层抽样,因为在以后考试和北京高考中,三个抽样重点考察分层抽样.老师在讲完三个抽样后一定要让学生明白什么情况下用什么抽样,这个时候就可以让学生做例1⑴,尖子班拓展⑴.【铺垫】⑴为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有()个①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的概率相等A.1B.2C.3D.4⑵从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.510152025,,,,B.313233343,,,,C.12345,,,,D.2461632,,,,⑶某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7【解析】⑴ B;④⑤正确,①②③错误⑵ B;⑶ C;20(1020)640103020+⨯=+++.【例1】三种抽样⑴现有以下两项调查:①某装订厂装订图书36000册,要求检验员从中抽取500册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法⑵用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是.⑶某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为235∶∶.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=.⑷(目标班专用)某校有500名学生,A型血的有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱有没有关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为人.【解析】⑴ D;①是系统抽样;②明显是分层抽样;⑵6;不妨设第1组抽出的号码为x,则第16组应抽出的号码是815126x⨯+=,∴6x=.⑶80;A种型号的产品占总体的比例是210,则样本容量1016802n=⨯=.⑷该学校O型血的人数为50012512550200---=,按照分层抽样的抽样比相等得:500:20200:x=,解得8x=,即O型血应抽取的人数为8人.经典精讲<教师备案>学习了抽样后,需要对收集的这些有代表性的样本数据进行研究,找出有用的信息,然后用这些样本来估计总体.这种估计一般分成两种,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征估计总体的数字特征.用来估计的图表和方法有很多种,本版块在初中的基础上来学习频率分布直方图、茎叶图和方差.考点2:频率分布直方图1.列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布表:对落入各小组的数据累计,算出各小组的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.2.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.3.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.<教师备案>这里主要介绍的就是样本分析方法,直方图就是很重要的一种.其实直方图的形成过程就是把数据按大小排序,然后分段截取数据.实际生活中最常见的方法就是“画正字”,比如我们收到了一组数据是学生的跳绳次数,我们就可以把次数分成若干组,然后一个一个数据看落在了哪个组里,利用“画正字”的方式看出每组里有几个数,最后画出直方图.直方图的主要作用是看出数据的分布变化趋势,很容易表示大量数据,缺点是原始数据不能在图上表示出来.通过例2的学习,让学生可以由给出的频率分布直方图算出各组数据的频率和频数,理解横纵坐标代表的意义.频率分布折线图和总体密度曲线不需要深究,在频率分布直方图的基础上,简单介绍即可.【例2】 频率分布直方图⑴某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,长度在[)3035,内的频率为______,有______根棉花纤维的长度小于20mm .经典精讲知识点睛6.2用样本估计总体y 510152025303540长度(mm)0.010.020.030.040.050.06频率组距⑵(目标班专用)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间, 将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图,设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )秒频率/组距1918171615141300.360.340.180.060.040.02A .0.9,35B .0.9,45C .0.1,35D .0.1,45【解析】 ⑴ 0.1,30;由频率分布直方图可得,长度在[)3035,内的频率为0.0250.1⨯=. 棉花纤维长度小于20mm 的频率为()0.010.010.0450.3++⨯=,则棉花纤维长度小于20mm 的频数为1000.330⨯=根.⑵ (目标班专用)A .考点3:茎叶图<教师备案>当样本数据较少时,可以用样本分析的另一个常用图表方法――茎叶图,这个图主要作用是两组数据的对比.一左一右很容易估计出两组数据的对比状况,而且茎叶图是把所有的数据都列出来,精确性上比直方图要好一点,但是对于数据特征的分析不如直方图直观.可以结合铺垫讲解知识点,并简单复习一下初中学过的中位数、平均数的概念.1.制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处按一定次序同行列出.<教师备案>“按一定次序”一般是按大小顺序,也可以按统计数据的顺序.2.平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.中位数:是指将统计总体当中的各个数据值按大小顺序排列起来,形成一个数列,处于数列中间位置的数据值就称为中位数.当数列的项数为奇数时,处于最中间位置的数据值即为中位数;当项数为偶数时,中位数则为处于中间位置的两个数据值的平均数.知识点睛8964553819261846172852乙甲54535251【铺垫】某班甲、乙两学生的高考备考成绩如下:甲:512554528549536556534541522538 乙:515558521543532559536548527531①用茎叶图表示两学生的成绩;②分别求两学生成绩的中位数和平均分. 【解析】 ①两学生成绩的茎叶图如图所示 ②将甲、乙两学生的成绩从小到大排列为: 甲:512522528534536538541549554556, 乙:515521527531532536543548558559. 从以上排列可知甲学生成绩的中位数为5365385372+=,乙学生成绩的中位数为5325365342+=.甲学生成绩的平均数为1222283436384149545650053710++++++++++=,乙学生成绩的平均数为1521273132364348585950053710++++++++++=.【例3】 茎叶图随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图,则下列关于甲,乙两班这10名同学身高的结论正确的是( ) A .甲班同学身高在175以上的人数较多 B .甲班同学身高的中位数较大C .甲班同学身高的平均值较小D .甲、乙班同学身高的平均值一样大 【解析】 C ;甲班同学身高175以上的有3人,乙班有4人,故而A 错误.甲班同学身高的中位数为169,乙班同学身高的中位数为171.5.故而B 错误. 容易计算得知,=170x 甲,=171.1x 乙,故C 对.考点4:统计数据的数字特征<教师备案>分析样本数据时,我们已经学过了众数、中位数和平均数这些概念,它们都可以用来表示统计数据的特征信息,各有利弊.平均数是统计数据一个非常好的特征,它可以利用所有的样本数据,而且比较好算.也正因为平均数利用了所有的数据,所以它容易受到一些极端数据的影响.比如歌唱比赛时,去掉一个最高分和一个最低分,然后再平均,就是为了避免出现个别评委的极端喜恶,尽量体现评分的准确和公正性.再比如公布一个地区的家庭平均收入时,平均数也掩盖了一些极端情况的存在,而这些是不容忽视的.怎么样能反映这些极端情况呢,也就是数据的离散程度呢,从运算方便等各方面考虑,引入了方差或标准差来进行衡量.统计数据的数字特征1.用样本平均数估计总体平均数;用样本标准差估计总体标准差:经典精讲知识点睛乙班甲班98822388900191716159865311822.数据的离散程度可以用极差、方差或标准差来描述:⑴极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度;⑵样本方差描述了一组数据围绕平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x ,,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=,样本标准差22212()()()n x x x x x x s n-+-++-=,简化公式:22222121()n s x x x nx n ⎡⎤=+++-⎣⎦.<教师备案>这部分其实没有真正的考察,现在最多也就是通过样本的特征直接套用在整体数据上.寒假班对方差只需要初步理解它存在的意义即可,对方差的直观理解放在春季同步班讲解.【例4】 方差甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表1s ,2s ,3s 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩乙的成绩 丙的成绩 环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数5555频数6446频数4664A .312s s s >>B .213s s s >>C .123s s s >>D .231s s s >>【解析】 B ;根据题中数据计算()()12117585951058.57684941068.52020x x =⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯=,,()317486961048.520x =⨯+⨯+⨯+⨯=,∴123x x x ==;()()()()22221178.5588.5598.55108.55 1.2520s ⎡⎤=-⨯+-⨯+-⨯+-⨯=⎣⎦, 同理得231.45 1.05s s ==, ∴213s s s >>.<教师备案>概率的定义是一个漫长的过程,最开始就是根据经验,对统计事实的认识.历史上对概率的理解可以分为三个阶段: 第一阶段:大量统计中发生的几率有 多大.比如很多数学家都玩过“扔硬币”这个游戏,而且还统计了结果,如图.大家发现,扔了很多很多次之后,结 果都差不多是正反面各占一半,所以大家认为硬币出正面的概率是50%.可能有人觉得这个做法很无聊,但是这只是概率的现象,是一个经典精讲6.3随机事件概率结果层面的东西,并不是概率的本质.不过现在计算机在估计概率的时候也是用这样的方法进行多次的实验,最终估计出一个结果.第二阶段:人们开始想一些复杂的问题.这里面著名的问题有两个,一个是赌徒分金问题(注:两个赌徒玩掷硬币,规定正面则甲加一分,反面则乙加一分,谁先得到16分谁就可以赢得一袋金币,现在进行到甲:乙=15:12,警察来了,说不让赌了,那么这些金币该怎么分.(【解析】按照15:1的比例分;假设警察没有来,则乙赢的概率为:11111222216⨯⨯⨯=,甲赢的概率为:111111111115222222222216+⨯+⨯⨯+⨯⨯⨯=,∴应该按照15:1的比例分金币),另一个问题是掷两个骰子,至少有一个6的概率(【解析】:1136).这些问题基本上是很难通过实验来得出结论,毕竟情景比较复杂,这就促使人们要从概率的理论角度入手解决.费马在概率的定义方面做出了杰出的贡献,因为他引入了“等可能”这个概念.就是我们需要先认同一些基本的“等可能”的条件,然后再由此出发考虑复杂情况.第三阶段:古典概型有弊端,因为古典概型的必然要求是要把一个事件分解成若干等可能的基本事件,不过有些问题中这件事是做不到的.比如打靶问题.所以才有了几何概型这个概念.之后随着函数论的发展,我们用函数基础定义概率的时候我们就有了新的概率理论.后续的离散型随机变量说的就是这个阶段的问题.建议老师在一开始教学的时候强化概率的直观解释.比如:掷硬币模型,再比如:猜黑白(俗称手心手背).其实这就是利用了概率均等的原理进行的.我们可以想一想,手心手背其实是很有效的一个等概率选取方式.另外,猜拳也是一个非常有效的等概率选取方式.这些概率其实挺难算的,不过我们可以让学生直观的理解概率的意义.同样的问题还有: 【趣题】1.甲乙两个人去公园,公园有10个景点,在这10个景点中两个人各自独立的选取5个,假定甲和乙同时出发,游览每一个景点的时间都是相同的,那么他们在最后一个景点相遇的概率是多少?【解析】下面有三种方法,老师在给学生讲本讲的时候可以讲法一,法二和法三供老师参考:法一:从概率意义的直观理解,考虑甲最后在的一个景点,乙最后在任何一个景点的可能性相同,恰好在甲所在的景点的概率为110.法二:甲最后一个景点为i 号景点的概率都为110,乙最后一个景点为i 号景点的概率也为110()12310i =,,,,故他们最后一个景点为同一个景点的概率为11110101010⨯⨯=.法三:他们参观景点的所有顺序有551010A A 种,每种参观景点的顺序出现的可能性相同,故在最后一个景点相遇的情况有1441099C A A ,故所求概率为1441099551010C A A 1A A 10=. 2.华约的自招考题:4个人传球,每个人都等概率的传给其他人,由甲开始第一次传球,设n 为传球次数,n 次传球后球在甲手里的概率记为n p ,问当n 趋向于无穷的时候,n p 趋向于多少?【解析】下面有两种方法,老师在给学生讲本题的时候可以讲法一,法二供老师参考:法一:从概率意义的直观理解,因为每个人都等可能的传给其他人,所以球在甲手里的概率为14,传n 次球后球在甲手里的概率依然为14.法二:记n A 表示事件“经过n 次传球后,球在甲手中”,12n =⋅⋅⋅,,则有()10P A =,()()()111n n n n n P A P A A P A A +++=+()()1113n n n P A A p +==-. 所以1n p +与n p 的关系式为()1113n n p p +=-,12n =⋅⋅⋅,,① 设11()3n n p p λλ++=-+,对比得14λ=-.于是①式可以变形为1111434n n p p +⎛⎫-=-- ⎪⎝⎭,从而14n p ⎧⎫-⎨⎬⎩⎭是公比为13-的等比数列,其首项为11144p -=-.故有1111443n n p -⎛⎫⎛⎫-=-⨯- ⎪ ⎪⎝⎭⎝⎭,111143n n p -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,12n =⋅⋅⋅,, ② 由②可得1111lim lim 1434n n n n p -→∞→∞⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 另外还可以介绍一些概率不能直观解释的例子:比如生日悖论:世界上任取50个人,他们至少有两个人生日在同一天的概率是多少?请见下图(转自维基百科)由此可见,当取到23个人的时候,概率已经超过了50%,选取50人的时候,概率应该在95%左右.还有一个例子:乒乓球体育比赛中规定:如果双方得分是10:10,那么一方至少要得12分才能获胜,也就是至少比对方多两分.那么这种“延球”制相对于没有延球制度,到底是对强者更有利,还是帮助弱者有更大的机会翻身呢?(【解析】延球制度对强者更有利;假设强者很强,则再比赛一局有可能强者胜也有可能弱者胜,但是再比赛两局或者比赛无穷多局,肯定是强者赢的概率更大),这些其实都是通过直观解释概率比较复杂的问题. 接下来我们可以定义事件:考点5:随机事件的概率一.事件1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.例子:判断以下现象是否为随机现象知识点睛。
几种抽样技术
几种抽样技术(取样方法)1.单纯随机抽样:完全随机,无限制;一般多利用乱数表或抽样球2.系统抽样:按一定的时间/数量间隔抽样3.分层抽样:先层别后再抽样4.曲折抽样:是希望减少系统抽样因周期性而发生偏差等缺点所采用的方法。
可视为随机抽样,但较复杂,具有规则性。
5.区域抽样:群体如一大箱物品,箱中有数十个小盒,每一小盒装有若干物品。
为抽样之方便,可自数十个小盒中随机抽取若干样本盒,然后就各样本盒进行全数检验。
这方法如社会调查时分为城镇或乡村取样,故称为区域抽样。
适用前提:区域内变异大,区域间变异小。
与分层抽样刚相反。
6.分段抽样:先采用区域抽样,在从样本单位中从随机抽样。
可有两段、多段之分。
7.反复抽样:在同一检验批内作一次以上的抽样来推定群体品质的抽样方法。
一般用在抽样检验中之双次、多次或逐次抽样抽样检验(sampling inspection)的类型抽样检验类型1 按品质数据类分:计量值抽检,计数值抽检分类项目计数抽样检验计量抽样检验品质表示方法用(良)与(不良)两种分别表示或者使用缺点数表示用特性值表示检验方法 1. 检验时不须要熟练2. 检验时所需时间短3. 检验设备简单,检验费用低4. 计算记录简单5. 计算简单,几乎不必计算 1. 一般在检验时须要熟练。
2. 检验时所需时间长3. 检验设备复杂,检验费用高4. 检验记录复杂5. 计算复杂抽样计划数应用条件每一个品种的产品需制订一个抽样计划。
抽样时需随机化。
每一个品质特性,需制订一个抽样计划。
特性值需属于常态分配抽样时间随机化判断能力与样本数要得到同等判断能力时,所需样本数多,且(1) 不易导致品质之改善。
(2) 不易发现检验器具之错误。
检验个数相同时,判断能力低。
要得到同等判断能力时,所需样本数少,又(1)可导致品质之改善(2)可发现检验器具之错误,检验个数相同时,判断能力高。
检验记录之利用检验记录利用程度低检验记录可利用程度高可作资料回馈,改进制程的参考。
《统计与计量分析》答案-190616(2)
8.我国1998年至2016年的季度通货膨胀率数据属于什么数据(时间序列,面板数据,还是截面数据)?
P值检验的有点在于,它提供了更过的信息,让人们可以选择一定的水平来评估结果是否具有统计上的显著性。
7.请说明内生变量与外生变量的区别。
内生变量是具有某种概率分布的随机变量,其数值是在所研究的经济系统的模型内决定的,其参数是联立方程模型估计的元素。内生变量是由模型系统决定的,同时也对模型系统产生影响。内生变量一般为经济变量。
分层抽样也叫分类抽样,就是先将总体的所有单位依照一种或几种特征分为若干个子总体,每一个子总体即为一类,然后从每一类中按简单随机抽样或系统随机抽样的办法抽取一个子样本,称为分类样本,它们的集合即为总体样本。
(4)整群抽样
整群抽样又称聚类抽样或集体抽样,是将总体按照某种标准划分为一些群体,每一个群体为一个抽样单位,再用随机的方法从这些群体中抽取若干群体,并将所抽出群体中的所有个体集合为总体的样本。
数据分布偏斜程度较大时应用。
3.请解释中心极限定理的含义。
中心极限定理是研究独立随机变量和的极限分布为正态分布的问题。它是概率论中最重要的一类定理,有广泛的实际应用背景。
中心极限定理是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。
(5)多阶段抽样
多阶段抽样又称多级抽样或分段抽样,就是把从总体中抽取样本的过程分成两个或多个阶段进行的抽样方法。
分层抽样和随机抽样
调查方案.
解:我们可以采用系统抽样,按照下面的步骤设计方案. 第一步 按生产时间将一天分为50个时间段,也就是说,每个时间段
大约生产
10000 = 200 件产品.这时,抽样距就是200. 50
第二步 将一天中生产的机器零件按生产时间进行顺序编号.比如,第 一个生产出的零件就是0号,第二个生产出的零件就是1号等.
例2:某公司有1000名员工,其中:高层管理人员为50名,属于高 收入者;中层管理人员为150名,属于中等收入者;一般员工为800 名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽
取100名员工,应当怎样进行抽样?
解:我们可以采用分层抽样的方法,按照收入水平分成三层:高收入者、中等
收入者、低收入者. 从题中数据可以看出,高收入者为50名,占所有员工的比
开始 分层 计算比 定层抽取容量 抽样 组样 结束
【训练1】 某高中共有900人,其中高一年级300人,高二年级200人,高三年 级400人,现采用分层抽样的方法抽取45人,那么高一、高二、高 三各年级抽取的人数分别为 ( ). A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20
实际问题确定选用哪种抽样方法.
自学导引
分层抽样的概念
属性特征 分成若干类型(有时称作层),然 将总体按其_________ 随机 抽取一定的样本,这种抽样方法 后在每个类型中_____ 称为分层抽样,有时也称为类型抽样.
例1:某地农田分布在山地、丘陵、平原、洼地不同的地形上, 要对这个地区的农作物产量进行调查,应当采用什么抽样方法? 解:由于不同类型的农田之间的产量有较大差异,应当采用分 层抽样的方法,对不同类型的农田按其占总数的比例来抽取样 本.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分层、分段随机的区别简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
分段抽样又称多级抽样或多阶段抽样,就是把从总体中抽取样本的过程分成两个或多个阶段进行的抽样方法。
它是在总体内个体单位数量较大,而彼此间的差异不太大时,先将总体各单位按一定标志分成若干群体,作为抽样的第1阶段单位,并依照随机原则,从中抽出若干群体作为第1阶段样本;然后将第1阶段样本又分成若干小群体,作为抽样的第2阶段单位,从中抽出若干群体作为第2阶段样本,依此类推,直到满足需要为止。
最末阶段抽出的样本单位的集合,就是最终形成的总体样本。
一般在抽取前阶段样本时采用分类抽样或等距抽样,抽取后阶段样本时用整群抽样或简单随机抽样。
多阶段抽样的意义在于缩小总体范围,提高抽样效率,降低抽样成本。
其最大优点就是可以达到以最小的人财物消耗和最短的时间获得最佳调查效果的目的,特别适用于调查范围大、单位多、情况复杂的调查对象。
此外,多阶段抽样由于在各阶段抽样时可根据具体情况灵活选用不同的抽样方法,所以能够综合各种抽样方法的优点,有利于提高样本质量。
多阶段抽样的不足之处是抽样误差较大。
由于每次抽样都必然产生误差,所以抽样阶段越多抽样误差就越大。
分层抽样,也叫类型抽样。
就是将总体单位按其属性特征分成若干类型或层,然后在类型或层中随机抽取样本单位。
特点是:由于通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本。
该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况。
群集抽样法即将母体按某种标准分为若干群集(cluster) ; 其次,以群集为抽样单位。
然后,由这些群集中用简单随机抽样法抽出若干群集为一组群集样本,这种抽样程序即称为群集随机抽样法。
其所抽出的样本称为群集样本。
系统抽样,也叫机械抽样或等距抽样。
是将总体各单位按一定标志或次序排列成为图形或一览表式(也就是通常所说的排队),然后按相等的距离或间隔抽取样本单位。
特点是:抽出的单位在总体中是均匀分布的,且抽取的样本可少于纯随机抽样。
等距抽样既可以用同调查项目相关的标志排队,也可以用同调查项目无关的标志排队。
等距抽样是实际工作中应用较多的方法,目前我国城乡居民收支等调查,都是采用这种方式。