高中数学选修2-2和2-1综合试卷及答案

合集下载

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

人教a版高中数学选修21全册同步练习及单元检测含答案

人教a版高中数学选修21全册同步练习及单元检测含答案

答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根

三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析

高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

高中数学选修2-1、2-2综合试题

高中数学选修2-1、2-2综合试题

④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。

1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

(必考题)高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(3)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。

高中数学人教A版选修2-2综合测试试卷

高中数学人教A版选修2-2综合测试试卷

高中数学人教A 版选修2-2综合测试试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12i D .1-12i 2.若f(x)=e x,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2e D .-2e3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32 D .334.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能 5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<37.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<08.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .4914410.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92 D .911.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 有一个能被5整除 D .a ,b 有一个不能被5整除12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x的不等式mx2-nx+p>0(m,n,p∈R)的解集为(-1,2),则复数m+p i所对应的点位于复平面内的第________象限.14.已知函数f(x)=3x2+2x,若⎠⎛1-1f(x)d x=2f(a)成立,则a=________.15.观察下列等式:(1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5,…照此规律,第n个等式可为________________.16.若函数f(x)=4xx2+1在区间(m,2m+1)上是单调递增函数,则实数m的取值范围是________.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC中,若sin A>sin B,则∠B 必为锐角.19.(12分)已知函数f(x)=ax3+bx2+cx在点x0处取得极小值-7,其导函数y=f′(x)的图象经过点(-1,0),(2,0),如图所示,试求x0,a,b,c的值.20.(12分)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.21.(12分)已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n ∈N*).(1)写出S1,S2,S3,S4,并猜想S n的表达式;(2)用数学归纳法证明你的猜想,并求出a n的表达式.22.(12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12iD .1-12i解析 1+2i(1-i )2=1+2i -2i =(1+2i )i -2i ·i =-1+12i . 答案 B2.若f(x)=e x,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2eD .-2e解析 ∵f(x)=e x ,∴f ′(x)=e x ,f ′(1)=e .∴lim Δx →0f (1-2Δx )-f (1)Δx =-2lim Δx →0f (1-2Δx )-f (1)-2Δx=-2f ′(1)=-2e .答案 D3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32D .33解析 观察前几项知,5=2+3,11=5+2×3,20=11+3×3, x =20+4×3=32,47=32+5×3. 答案 C4.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能答案 A5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )解析 f ′(x)=-3x 2+2ax -1,若f(x)在(-∞,+∞)上为单调函数只有f ′(x)≤0, ∴Δ=(2a)2-4(-3)(-1)≤0, 解得-3≤a ≤ 3. 答案 B6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3 D .1+12+13+14<3答案 B7.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<0解析 由f (-x )=-f (x )及g (-x )=g (x )知,f (x )为奇函数,g (x )为偶函数,由函数奇偶性的性质得f ′(x )>0,g ′(x )<0.答案 D 8.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪⎪21=13(23-13)=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪⎪ 21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪⎪21=e 2-e .∵e 2-e >4,ln 2<lne =1,2<73<3,∴S 3>S 1>S 2. 答案 B9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .49144解析 y ′=x 2+x ,y ′|x =1=2,∴切线方程为y -56=2(x -1),与坐标轴的交点分别为(0,-76),(712,0),故切线与坐标轴围成的三角形的面积S =12×76×712=49144.答案 D10.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92D .9解析 如图所示由⎩⎨⎧y =x 2-2x ,y =x ,得交点(0,0),(3,3).∴阴影部分的面积为 S =⎠⎛03(x -x 2+2x)d x =⎠⎛3(-x 2+3x)d x =(-13x 3+32x 2)⎪⎪⎪⎪ 30=-9+272=92.答案 C11.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除 答案 B12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),则复数m +p i 所对应的点位于复平面内的第________象限.解析 因为mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),所以⎩⎪⎨⎪⎧m <0,(-1)+2=n m,(-1)×2=p m ,解得m <0,p >0.故复数m +p i 所对应的点位于复平面内的第二象限.答案 第二14.已知函数f (x )=3x 2+2x ,若⎠⎛1-1f(x)d x =2f(a)成立,则a =________.解析 ∵⎠⎛1-1(3x 2+2x)d x =(x 3+x 2)⎪⎪⎪⎪1-1=2,∴2(3a 2+2a)=2.即3a 2+2a -1=0, 解得a =-1,或a =13. 答案 -1或13 15.观察下列等式: (1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律,第n 个等式可为________________.解析 观察上列等式可得第4个等式为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7,…,第n 个等式为(n +1)(n +2)(n +3)…(n +n)=2n ×1×3×5×…×(2n -1).答案 (n +1)(n +2)(n +3)…(n +n)=2n ×1×3×…×(2n -1)16.若函数f(x)=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析 f ′(x)=4(x 2+1)-4x·2x (x 2+1)2=4(1+x )(1-x )(x 2+1)2,令f ′(x)>0,得(1+x)(1-x)>0,解得-1<x<1.若在区间(m,2m +1)上是单调增函数,则有⎩⎨⎧ m>-1,2m +1<1,解得-1<m<0.但m =0时,也适合,故-1<m ≤0.答案 (-1,0]三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC 中,若sin A>sin B ,则∠B 必为锐角.证明 假设B 不是锐角,则0°<∠A<∠A +∠C =180°-∠B ≤90°,∴sin A<sin (180°-B),即sin A<sin B ,这与已知sin A>sin B 矛盾,故∠B 必为锐角.18.(12分)已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,∫10f(x)d x=-2.(1)求f(x)的表达式;(2)求f(x)在[-1,1]上的最大值与最小值.解 (1)设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.由f(-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0. ∴f(x)=ax 2+2-a.又∵⎠⎛01f(x)d x =⎠⎛01(ax 2+2-a)d x =⎣⎢⎡⎦⎥⎤13ax 3+(2-a )x ⎪⎪⎪10=13a +2-a =-2,∴a =6.从而c =-4.故f(x)=6x 2-4.(2)∵f(x)=6x 2-4,x ∈[-1,1],∴f(x)min =-4.f(x)max =f(-1)=f(1)=2.故f(x)在[-1,1]上的最大值为2,最小值为-4.19.(12分)已知函数f(x)=ax 3+bx 2+cx 在点x 0处取得极小值-7,其导函数y =f ′(x)的图象经过点(-1,0),(2,0),如图所示,试求x 0,a ,b ,c 的值.解 由y =f ′(x)的图象可知,在(-∞,-1)上f ′(x)<0,在(-1,2)上f ′(x)>0,在(2,+∞)上f ′(x)<0,故f(x)在(-∞,-1)上递减,在(-1,2)上递增,在(2,+∞)上递减.因此,f(x)在x =-1处取得极小值, 所以x 0=-1.∵f(x)=ax 3+bx 2+cx ,∴f ′(x)=3ax 2+2bx +c.故由f ′(-1)=0,f ′(2)=0,f(-1)=-7,得⎩⎪⎨⎪⎧ 3a -2b +c =0,12a +4b +c =0,-a +b -c =-7,解得a =-2,b =3,c =12.20.(12分)设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)∵f (x )=a (x -5)2+6ln x =ax 2-10ax +25a +6ln x ,∴f ′(x )=2ax -10a +6x =2a (x -5)+6x .令x =1,得f (1)=16a ,f ′(1)=-8a +6.故曲线在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1).又点(0,6)在切线上,得6-16a =8a -6,∴a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x ,(x >0),f ′(x )=x -5+6x =(x -2)(x -3)x. 令f ′(x )=0,得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )的增区间为(0,2),(3,+∞);当2<x <3时,f ′(x )<0,故f (x )的减区间为(2,3).由此可知,当x =2时,f (x )取得极大值f (2)=92+6ln2.当x =3时,f (x )取得极小值f (3)=2+6ln3.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n∈N *).(1)写出S 1,S 2,S 3,S 4,并猜想S n 的表达式;(2)用数学归纳法证明你的猜想,并求出a n 的表达式.解 (1)易求得S 1=1=22,S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1. (2)①当n =1时,S 1=2×11+1=1,猜想成立. ②假设n =k (k ∈N *)时,S k =2k k +1, 则当n =k +1时,S k +1=(k +1)2a k +1=(k +1)2(S k +1-S k ),∴S k +1=(k +1)2k 2+2k ·2k k +1=2(k +1)(k +1)+1, 这表明当n =k +1时,猜想也成立.根据①,②可知,对n ∈N *,S n =2n n +1,从而a n =S n n 2=2n (n +1). 22.(12分)已知函数f (x )=ln(1+x )-x +k 2x 2(k ≥0).(1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间.解 (1)当k =2时,f (x )=ln(1+x )-x +x 2,f ′(x )=11+x-1+2x . 由于f (1)=ln2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln2=32(x -1),即3x -2y +2ln2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞), 当k =0时,f ′(x )=-x 1+x, 所以在区间(-1,0)上f ′(x )>0;在区间(0,+∞)上f ′(x )<0, 故f (x )的单调增区间为(-1,0),单调减区间为(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-k k >0. 所以在区间(-1,0)和(1-k k ,+∞)上f ′(x )>0;在(0,1-k k )上f ′(x )<0,故f (x )的单调增区间为(-1,0)和(1-k k ,+∞),单调减区间为(0,1-k k ).当k =1时,f ′(x )=x 21+x>0,故f (x )的单调增区间为(-1,+∞). 当k >1时,由f ′(x )=x (kx +k -1)1+x =0,得x 1=0,x 2=1-k k ∈(-1,0),所以在区间(-1,1-k k )和(0,+∞)上f ′(x )>0;在区间(1-k k ,0)上f ′(x )<0,故f (x )的单调增区间为(-1,1-k k )和(0,+∞),单调减区间为(1-k k ,0).。

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。

高中数学选修2-1 2-2 2-3高二数学理科

高中数学选修2-1 2-2  2-3高二数学理科

高中数学选修2-1 2-2 2-3高二期终考试理倾向数学第Ⅰ卷 选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的. 1.在某项测量中,测量结果X 服从正态分布)0)(,1(2>σσN ,若X 在)2,0(内取值的概率为8.0,则X 在),0[+∞内取值的概率为A .9.0B .8.0C .3.0D .1.0 2.曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积为 A . 4- B .2- C .2 D .4 3.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则 345a a a ++等于A .189B .84C .72D .334.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,, 中恰有一个偶数”时正确的反设为A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 5.已知在一次试验中,()0.7P A =,那么在4次独立重复试验中,事件A 恰好在前两次发生的概率是A .0441.0B .2646.0C .1323.0D .0882.06.某单位为了制定节能减排的目标,先调查了用电量y (单位:度)与气温x (单位:c ︒)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程:a x y +-=2.当气温为c ︒20时,预测用电量约为 A.20 B. 16 C.10 D.57.从6,5,4,3,2,1这六个数字中,任取三个组成无重复数字的三位数,但当三个数字中有2 和3时,2必须排在3前面(不一定相邻),这样的三位数有 A.108个 B.102个 C.98个 D.96个8.在吸烟与患肺病这两个事件的统计计算中,下列说法正确的是A.若2χ的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D.以上三种说法都不正确.9.有6个座位连成一排,安排3个人就座,恰有两个空位相邻的不同坐法有A.36种B.60种C.72种D.80种10.一个袋子里装有编号为12,,3,2,1 的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是A .163 B . 41 C .167 D .4311.若函数x cx x x f +-=232)(有极值点,则实数c 的范围为A .),23[+∞B .),23(+∞C .U ]23,(--∞),23[+∞D .U )23,(--∞),23(+∞ 12.下列给出的命题中:①如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序数组z y x ,,使z y x ++=.②已知)1,1,1(),0,1,0(),0,0,1(),0,0,0(C B A O .则与向量AB 和OC 都垂直的单位向量只有)36,66,66(-=. ③已知向量,,可以构成空间向量的一个基底,则向量可以与向量+和向量-构成不共面的三个向量.④已知正四面体OABC ,N M ,分别是棱BC OA ,的中点,则MN 与OB 所成的角为4π. 是真命题的序号为A .①②④B .②③④C .①②③D .①④第Ⅱ卷 非选择题(共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中相应题的横线上. 13.函数52)(24--=x x x f 在]2,1[-上的最小值为_____________________.14.等差数列}{n a 的前n 项和为n S ,已知0,01514><S S ,则=n _____时此数列的前n 项和取得最小值.15.已知长方体1111D C B A ABCD -中,E AD AA AB ,2,11===为侧面1AB 的中心,F 为11D A 的中点,则=⋅1FC .16.在数列}{n a 中,2,121==a a 且)()1(12*+∈-+=-N n a a n n n ,则=50S . 三、解答题:本大题共6小题,共74分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知n x x )2(32+的展开式中,第5项的二项式系数与第3项的二项式系数之比是2:7. (Ⅰ)求展开式中含211x 项的系数; (Ⅱ)求展开式中系数最大的项.18.(本小题满分12分)为培养高中生综合实践能力和团队合作意识,某市教育部门主办了全市高中生综合实践知识与技能竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的团队按照抽签方式决定出场顺序.通过预赛,共选拔出甲、乙等六个优秀团队参加决赛. (Ⅰ)求决赛出场的顺序中,甲不在第一位、乙不在第六位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的团队数记为X ,求X 的分布列和数学期望.19.(本小题满分12分)观察下列等式11= 第一个式子 9432=++ 第二个式子 2576543=++++ 第三个式子 4910987654=++++++ 第四个式子照此规律下去(Ⅰ)写出第6个等式;(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.20.(本小题满分12分)在数列}{n a 中,c c a a a n n (,111+==+为常数,)*∈N n ,521,,a a a 构成公比不等 于1的等比数列.记 11+=n n n a a b ()*∈N n .(Ⅰ)求c 的值;(Ⅱ)设}{n b 的前n 项和为n R ,是否存在正整数k ,使得k k R 2≥成立?若存在,找出一个正整数k ;若不存在,请说明理由. 21.(本小题满分12分)如图,直四棱柱1111ABCD A B C D - 的底面ABCD 是平行四边形,45DAB ∠=, 12AA AB ==,AD =,点E 是 11C D 的中点,点F 在11B C 上且112B F FC =.(Ⅰ)证明:1AC ⊥平面EFC ;(Ⅱ)求锐二面角E FC A --平面角的余弦值.22.(本小题满分14分)已知函数)1()(2+-+=a ax x e x f x,其中a 是常数.(Ⅰ) 当1=a 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若)(x f 在定义域内是单调递增函数,求a 的取值范围;(Ⅲ)若关于x 的方程k e x f x+=)(在[0,)+∞上有两个不相等的实数根,求k 的取值范围.高二理科数学参考答案一.选择题: 每小题5分共60分 DD AACCA ADBDA,, 二.填空题:13. 6- 14. 7 15. 2116. 675 三:17解:17.(Ⅰ)解由题意知4272n n C C = ,整理得42(2)(3)n n =--,解得9n =… 2分ABCC 1ED 1A 1DFB 1∴ 通项公式为6279912r rr r xC T +-+⋅= ……………4分令211627=+r ,解得6=r . ∴展开式中含211x 项的系数为67226969=⋅-C . ……………6分 (Ⅱ)设第1+r 项的系数最大,则有⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅-+----rr r r rr r r C C C C 819991019992222 ……………8分 ⎪⎪⎩⎪⎪⎨⎧≥≤∴37310r r ,390=∴≤≤∈r r N r 且 . ……………10分∴展开式中系数最大的项为55639453762x x C T =⋅=. ……………12分18(本小题满分12分)解:(Ⅰ)设“甲不在第一位、乙不在第六位”为事件A , …………1分则1072)(66445566=+-=A A A A A P …………3分 所以甲不在第一位、乙不在第六位的概率为107. …………4分(Ⅱ)随机变量X 的可能取值为4,3,2,1,0 …………………5分 31)0(665522===A A A X P , 154)1(66442214===A A A C X P 51)2(6633222224===A A A A C X P ,152)3(6633222234===A A A A C X P 151)4(664422===A A A X P , (每个式子1分)…………………………10分随机变量X 的分布列为:因为 31541535215130=⨯+⨯+⨯+⨯+⨯=EX , 所以随机变量X 的数学期望为34. ……………………12分19.解:(Ⅰ)第6个等式21116876=++++ …………2分 (Ⅱ)猜测第n 个等式为2)12()23()2()1(-=-+++++n n n n n …………4分 证明:(1)当1=n 时显然成立; (2)假设),1(+∈≥=N k k k n 时也成立,即有2)12()23()2()1(-=-+++++k k k k k …………6分 那么当1+=k n 时左边)13()3()13()23()2()1(+++-+-++++=k k k k k k2222]1)1(2[)12(8144)13()3()12()12(133)12()23()2()1(-+=+=++-=+++-+-=+++-+-++++++=k k k k k k k k k k k k k k k k而右边2]1)1(2[-+=k这就是说1+=k n 时等式也成立. …………10分 根据(1)(2)知,等式对任何+∈N n 都成立. …………12分 20解:(Ⅰ)∵c a c a a n n ,1,1=+=+为常数,∴}{n a 是以1为首项,c 为公差的等差数列,∴c n a n )1(1-+=. ………………2分 ∴c a c a 41,152+=+=.又521,,a a a 成等比数列,∴c c 41)1(2+=+,解得0=c 或2=c .当0=c 时,n n a a =+1不合题意,舍去. ∴2=c . ……………4分 (Ⅱ)由(Ⅰ)知,12-=n a n . …………………………………5分∴)121121(21)12)(12(111+--=+-==+n n n n a a b n n n ……………6分∴⎥⎦⎤⎢⎣⎡+--++-+-=+++=)121121()5131()311(2121n n b b b R n n 12)1211(21+=+-=n nn . ……………………9分 假设存在正整数k ,使得kk R 2≥,即k k k212≥+ kk k 12112+=+ 随k 的增大而增大,)21,31[12∈+∴k k ,而22≥k所以不存在正整数k ,使得k k R 2≥成立. ………………………………12分 21(本小题满分12分)解:(Ⅰ)以A 为坐标原点,射线AB 为x 轴的正半轴,建立如图所示空间直角坐标系A xyz -.则依题意,可得以下各点的坐标分别 为1(0,0,0),(4,20)(4,2,2),(32,2),A C C E ,,, 10(,2)3F 4,3. ………………3分∴112(42,2)(,0),(1,0,2),33AC EF EC ==-=-,,,∴ 112(42,2)(,0)0.33AC EF ⋅==⋅-=,, 1(42,2)(1,0,2)0AC EC ⋅==⋅-=,∴1AC EF ⊥,1AC EC ⊥.又EFC EC EF 平面⊆, ∴ 1AC ⊥平面EFC . ………………6分(Ⅱ)设向量),,(z y x =是平面AFC 的法向量,则 ⊥⊥,,而)2,34,310(),0,2,4(==AF AC ∴ 0234310,024=++=+z y x y x , 令1=x 得)31,2,1(--=. ………………9分 又∵1AC 是平面EFC 的法向量,∴ 13869441691413244||||,cos 111-=++⋅++--=⋅>=<AC n AC .… 11分 所以锐二面角E FC A --平面角的余弦值为13869.………………12分 22.(本小题满分14分)解:(Ⅰ)由)1()(2+-+=a ax x e x f x可得]1)2([)(2+++='x a x e x f x . ……………………………2分 当1a =时,e f e f 5)1(,2)1(='=所以 曲线()y f x =在点(1,(1))f 处的切线方程为)1(52-=-x e e y 即035=--e y ex ……………………………4分1A(Ⅱ) 由(Ⅰ)知]1)2([)(2+++='x a x e x f x ,若)(x f 是单调递增函数,则0)(≥'x f 恒成立, ……………………5分即01)2(2≥+++x a x 恒成立,∴04)2(2≤-+=∆a ,04≤≤-a ,所以a 的取值范围为]0,4[-. ………………………7分 (Ⅲ)令)()()(2a ax x e e x f x g x x -+=-=,则关于x 的方程k x g =)(在[0,)+∞上有两个不相等的实数根.令0))2(()(2=++='x a x e x g x ,解得(2)x a =-+或0x =. ……………………………9分 当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,0)(≥'x g ,所以)(x g 是[0,)+∞上的增函数.所以 方程k x g =)(在[0,)+∞上不可能有两个不相等的实数根.…………10分当(2)0a -+>,即2a <-时,)(),(x g x g '随x 的变化情况如下表由上表可知函数)(x g 在[0,)+∞上的最小值为2))2((+=+-a e a g . …………12分 因为 函数)(x g 是(0,(2))a -+上的减函数,是((2),)a -++∞上的增函数, 且当+∞→x 时,+∞→)(x g所以要使方程k x g =)(即k e x f x+=)(在[0,)+∞上有两个不相等的实数根,k 的取值范围必须是],4(2a ea a -++. ……………14分。

高中数学选修2-1综合试卷

高中数学选修2-1综合试卷

高中数学选修2-1综合试卷数学选修2-1一、选择题1.椭圆的焦点坐标为(XXX.)。

2.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于(B)。

3.在正方体中,异面直线与所成角的大小为(45°),则顶点A的轨迹方程是(x+y+z=0)。

4.已知中,点O为正方体的中心,异面直线所成角为60°,则顶点A的轨迹方程是(x+y+z=0)。

5.已知在抛物线上,且P到焦点的距离为10,则焦点到准线的距离为(8)。

6.命题“的否定是()。

7.给出如下四个命题:1.若“p且q”为假命题,则p、q均为假命题;2.命题“若,则”的否命题为“若,则”;3.“,”的否定是“,”;4.在中,“”是“”的充要条件。

其中正确的命题的个数是(B)。

8.椭圆中,以点为中点的弦所在直线斜率为(0)。

9.若A点坐标为(-3,0),是椭圆的最大值为(4),的左焦点,点P是该椭圆上的动点,则(AP+PF=6)。

10.若点O和点F分别为椭圆的最大值为3的中心和左焦点,点P为椭圆上的任意一点,则(OP²=OF²+FP²)。

11.直线l:过双曲线的一个焦点且与其一条渐近线平行,则该双曲线的方程为(y=±(x²/2))。

12.四棱锥中,底面ABCD为直角梯形,且∠BAC=∠BCD=45°,平面ABCD且平面PCD所成角的正弦值为(1/3),则PB与平面的法向量为(-2,1,2)。

二、填空题13.抛物线的准线方程为(y=p)。

14.若方程的曲线是椭圆,则k的取值范围是(0<k<1)。

15.“”是“直线和直线平行”的充要条件。

16.给出下列命题:直线l的方向向量为(1,2,3),直线l的方向向量1,2,3,直线m的方向向量2,1,1,平面的法向量1,2,-1,则向量1,2,-1与平面垂直;平面经过三点(1,0,0),(0,1,0),(0,0,1),u=2,3,-1是平面的法向量,则真命题的是(命题1和命题3)。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。

(完整版)高中数学选修2-2综合测试题(附答案)

(完整版)高中数学选修2-2综合测试题(附答案)

高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。

已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

(压轴题)高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(4)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。

第一象限B。

第二象限C。

第三象限D。

第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。

10B。

5/3C。

-1D。

-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A。

①②③B。

①③C。

①D。

②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。

极大值5,极小值-27B。

极大值5,极小值-11C。

极大值5,无极小值D。

极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A。

(0,+∞)B。

(-∞,1)C。

(1,2)D。

(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。

高中数学选修2-1全册综合测试题含答案

高中数学选修2-1全册综合测试题含答案

选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

高中数学选修2-2综合测试题与答案.doc

高中数学选修2-2综合测试题与答案.doc

选修 2-2 综合测试题2一、选择题1.在数学归纳法证明“1 a a2an 1 a n 1(a,N ) ”时,验证当 n1时,等式的左1 n1 a边为( )A. 1B. 1aC. 1 aD. 1 a22.已知三次函数f ( x)1 x 3 (4 m 1)x 2(15m22m7) x 2 在 x ( ∞ , ∞ ) 上是增函数,则 m 的3取值范围为( )A. m 2 或 m4B. 4 m2C. 2 m 4 D.以上皆不正确3.设 f ( x)( axb)sin x(cxd )cos x ,若 f ( x) x cosx ,则 a , b , c , d 的值分别为( )A. 1,1,0, 0B. 1,0,1,0C. 0,1,0,1D. 1,0,0,14.已知抛物线 y ax2 bx c 通过点 P(11), ,且在点 Q(2, 1) 处的切线平行于直线 yx 3,则抛物线方程为( )A. y 3x211x 9B. y3x211x9C. y 3x211x 9D. y3x 2 11x92a n ,0≤ a n ≤1,26,则 a 2004 的值为(5.数列 a n满足 a n 11若 a 1)2a ≤ a n,7n,112A.6B. 5C.3D.177776.已知 a , b 是不相等的正数,x a b, ya b ,则 x , y 的关系是()2A. x yB. yxC. x2 yD.不确定7.复数 zm 2i( m R) 不可能在()1 2iA.第一象限B.第二象限C.第三象限D.第四象限8.定义A B,B C, C D, D A 的运算分别对应下图中的(1),(2),(3),(4),那么,图中(A),(B)可能是下列()的运算的结果A. B D,A DB.B D,A CC.B C,A DD.C D,A D- 1 -9.用反证法证明命题“a, b N ,如果 ab 可被5整除,那么 a , b 至少有1个能被5整除.”则假设的内容是()A. a , b 都能被5整除B. a , b 都不能被 5 整除C. a 不能被5整除D. a , b 有 1 个不能被 5 整除10.下列说法正确的是()A.函数C.函数y x 有极大值,但无极小值B.函数y x 既有极大值又有极小值D.函数y x 有极小值,但无极大值y x 无极值11.对于两个复数 1 3 i , 1 3 i,有下列四个结论:① 1 ;② 1 ;③ 1 ;2 2 2 2④33 1).其中正确的个数为(A. 1 B. 2 C. 3 D. 412.设f ( x)在[ a,b]上连续,则 f ( x)在[ a,b]上的平均值是()A. f ( a) B. b C.1D.f (b) f (x)dx b f ( x) dx 1 b f ( x)dx2 a 2 a b a a二、填空题13.若复数z log2( x23x 3) i log 2 ( x 3) 为实数,则x 的值为.14.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2006 年圆中有实心圆的个数为.15.函数f ( x) ax36ax 2b(a0) 在区间 [ 1,2] 上的最大值为,最小值为29 ,则 a , b 的值分3别为.16.由y2 4 x 与直线 y 2 x 4 所围成图形的面积为.三、解答题n n17.设n N且sin x cos x 1 ,求 sin x cos x 的值.(先观察 n 1,2,3,4 时的值,归纳猜测sin n x cos n x 的值.)18.设关于x的方程x2(tan i ) x (2 i)0 ,(1)若方程有实数根,求锐角和实数根;- 2 -(2)证明:对任意πkπ (k Z ) ,方程无纯虚数根.219.设t0 ,点 P(t,0) 是函数 f (x) x 3ax 与 g( x) bx 2 c 的图象的一个公共点,两函数的图象在点 P 处有相同的切线.(1)用t表示a,b,c;( 2)若函数y f (x) g ( x)在( 1,3)上单调递减,求 t 的取值范围.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若 a b c,且 a b c0 ,则 b 2 ac3 .a21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为k(k0) ,且知当利率为0.012 时,存款量为 1.44 亿;又贷款的利率为 4.8% 时,银行吸收的存款能全部放贷出去;若设存款的利率为x , x (0 ,0.048) ,则当 x 为多少时,银行可获得最大收益?22.已知函数 f ( x)x,数列 a n 满足 a1 f ( x) , a n 1f (a n ) .( x 0)1 x2(1)求a2,a3,a4;(2)猜想数列an的通项,并予以证明.参考答案一、选择题: CCDAC,BABBBD二、填空题: 13、4, 14 、61, 15 、 2,3 16、917、解:当n 1 时, sin x cosx 1 ;当 n 2 时,有 sin 2 x cos 2 x 1 ;当 n 3 时,有 sin 3 x cos 3 x (sin x cos x)(sin 2 x cos 2 x sin xcos x) ,而 sin x cos x 1 ,∴1 2sin x cos x 1 , sin xcos x 0 .∴ sin3 x cos 3 x1 .当 n 4 时,有 sin 4 x cos 4 x (sin 2 x cos2 x) 2 2sin 2 xcos 2 x 1 .由以上可以猜测,当n N时,可能有sin n x cos n x( 1) n成立.18、解:( 1)设实数根为a,则a2(tan i )a (2 i ) 0 ,即(a2a tan2) (a1)i 0 .R ,那么a 2 ,a , a 1,由于 a , tan a tan tan 2 0 .又 0 π,得πa 1 1 tan 1 2 .4- 3 -(2)若有纯虚数根i(R ) ,使 ( i) 2 (tan)(i ) i (2 ) i 0 ,即 ( 2 2) ( tan 1) i0 ,22 ,由, tan R ,那么,0 由于2 2 0 无实数解.tan 1 0故对任意πZ ) ,方程无纯虚数根kπ (k219、解:( 1)因为函数 f ( x) , g (x) 的图象都过点 (t,0) ,所以 f (t ) 0 ,即 t 3 at 0 .因为 t 0 ,所以 a t 2.g (t ) 0 ,即 bt 2 c 0 ,所以 c ab .又因为 f ( x) , g (x) 在点 (t,0) 处有相同的切线,所以 f (t )g (t ) ,而 f ( x) 3x 2 a , g (x)2bx ,所以 3t 2 a 2bt .将 a t 2代入上式得 b t .因此c ab t 3.故a t2, b t , c t 3.(2)y f (x)g (x) x3t 2 x tx 2t 3, y3x22tx t 2(3 x t )( x t ) .当 y(3x t )( x t) 0 时,函数 y f ( x) g (x) 单调递减.由 y 0 ,若 t 0 ,则tt ;x3若 t 0 ,则 t x t .3,t( 1,3) t ,( 13),由题意,函数 y f ( x) g (x) 在 ( 1,3) 上单调递减,则 3 t或t 3.所以 t ≤9 或 t ≥ 3 .又当 9 t 3时,函数y f (x) g( x)在( 1,3)上不是单调递减的.所以 t 的取值范围为∞, 9 3,∞.20、解:此命题是真命题.∵ a b c 0 , a b c ,∴ a0 , c 0 .b 2ac 2 2 2 2 2要证a3 成立,只需证bac 3a ,即证 b ac 3a ,也就是证 ( a c) ac 3a ,即证 ( a c)(2 a c) 0 .∵ a c 0 , 2a c ( a c)a b a 0 ,∴ (a c)(2 ac) 0 成立,故原不等式成立.21、解:由题意,存款量 f (x) kx2,又当利率为0.012 时,存款量为 1.44 亿,即x 0.012 时,;由2,得,那么 2 ,银行应支付的利息y 1.44 1 . 4 4 k ·(0.012) k 10000 f ( x)1 0 0 0x 0g (x) x·f (x) 10000x 3 ,- 4 -设银行可获收益为 y ,则 y480x 2 10000x 3,由于 y960x 30000x 2,则 y0 ,即 960x30000x20 ,得 x 0 或 x 0.032 .因为, x(0,0.032) 时, y0 ,此时,函数y480x 2 10000x 3递增;x (0.032 , 0.048) 时, y 0 ,此时,函数y480x 2 10000x 3递减;故当 x 0.032 时, y 有最大值,其值约为0.164亿.axx22、解:( 1)由 a 12, f (x) ,得 a 2f (a 1 )1a21 x1 2 x 2 1211xx21x a 3 f (a 2 )a 2 a 21 2 x21221x2x 21xa 3 1 3x2a 4 f (a 3 )a 21231x3x 21x13x 2 x14x2,.(2)猜想: a nxN ) ,(n1 nx2证明:( 1)当 n 1 时,结论显然成立;(2)假设当 nk 时,结论成立,即 a kx ;kx 21x那么,当 n k 1 时,由 a k 1f (a k )1 kx2x,1x 2 1 (k1)x2kx 21这就是说,当 nk1 时,结论成立;由( 1),( 2)可知, a nx 对于一切自然数 n( nN ) 都成立.1 nx 2- 5 -。

高中数学选修2-1综合测试试卷

高中数学选修2-1综合测试试卷

高中数学选修2-1综合测试试卷时限:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,x 30-x 20+1≤0 C .存在x 0∈R ,x 30-x 20+1>0D .对任意的x ∈R ,x 3-x 2+1>0 3.下列命题中是假命题的是( ) A .∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R,3x >0D .∃x 0∈R ,lg x 0=04.与双曲线y 25-x 2=1共焦点,且过点(1,2)的椭圆的标准方程为( ) A.x 28+y 22=1 B.x 210+y 24=1 C.y 28+x 22=1D.y 210+x 24=15.给出下列三个命题:①“全等三角形的面积相等”的否命题;②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y 或x ≠-y ,则|x |≠|y |”的逆否命题.其中真命题的个数是( ) A .0 B .1 C .2 D .36.如图,在正方体ABCD -A ′B ′C ′D ′中,M 是AB 的中点,则sin 〈DB ′→,CM →〉的值为( )A.12 B.21015C.23 D.11157.已知向量a=(-1,1,0),b=(1,0,2),且k a+b与a-2b互相垂直,则k=()A.-114 B.15C.35 D.1148.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.23 B.33C.23 D.639.已知双曲线x2a2-y2b2=1(a>0,b>0),两渐近线的夹角为60°,则双曲线的离心率为()A.233 B. 3C.2 D.233或210.已知椭圆x2a2+y2b2=1(a>b>0),双曲线x2a2-y2b2=1和抛物线y2=2px(p>0)的离心率分别为e1,e2,e3,则()A.e1e2>e3B.e1e2=e3C.e1e2<e3D.e1e2≥e3.11.长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,则二面角C1-AB-C的大小为( )A.π3B.2π3C.3π4D.π412.若点P 为共焦点的椭圆C 1和双曲线C 2的一个交点,F 1,F 2分别是它们的左、右焦点,设椭圆的离心率为e 1,双曲线的离心率为e 2,若PF 1→·PF 2→=0,则1e 21+1e 22=( ) A .1 B .2 C .3 D .4二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)13.若命题p :“∃x ∈R ,x 2+(a -1)x +1≤0”为假命题,则实数a 的取值范围是14.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为16.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点P 到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0},命题p:A∩B=∅,命题q:A⊆C.(1)若命题p为假命题,求实数a的取值范围;(2)若命题p∧q为假命题,求实数a的取值范围.18.(12分)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.求直线AB与平面EFGH夹角θ的正弦值.19.(12分)设数列{a n}的各项都不为零,求证:对任意n∈N*且n≥2,都有1a1a2+1a2a3+…+1a n-1a n=n-1a1a n成立的充要条件是{a n}为等差数列.20.(12分)在平面直角坐标系xOy中,已知抛物线C:y2=4x,F为其焦点,点E的坐标为(2,0),设M为抛物线C上异于顶点的动点,直线MF交抛物线C 于另一点N,连接ME,NE并延长分别交抛物线C于点P,Q.(1)当MN⊥x轴时,求直线PQ与x轴交点的坐标;(2)当直线MN,PQ的斜率存在且分别记为k1,k2时,求证:k1=2k2.21.(12分)如图①所示,已知在长方形ABCD中,AB=2AD=22,M为DC的中点,将△ADM沿AM折起,使得AD⊥BM,得如图②所示的几何体.(1)求证:平面ADM⊥平面ABCM;(2)是否存在满足BE →=tBD →(0<t <1)的点E ,使得二面角E -AM -D 的大小为π4?若存在,求出相应的实数t ;若不存在,请说明理由.22.(12分)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,C 1,C 2交于O ,A 两点(O 为坐标原点),且F 1F 2⊥OA .(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,点P 的坐标为(-1,-1),求△PMN 面积的最小值.参考答案一、1.B解析:由(2x-1)x=0可得x=12或x=0.因为“x=12或x=0”是“x=0”的必要不充分条件,所以“(2x-1)x=0”是“x=0”的必要不充分条件.2.C解析:先变换量词,再否定结论,即“∃x0∈R,x30-x20+1>0”.3.B解析:本题主要考查全称命题、特称命题以及命题真假的判断,因为sin x0+cos x0=2sin⎝⎛⎭⎪⎫x0+π4≤2,所以B错误,故选B.4.C解析:本题主要考查双曲线、椭圆的标准方程.由题知,焦点在y 轴上,排除A,B,将(1,2)代入C,D可得C正确,故选C.5.B解析:本题考查四种命题的关系及真假判断.对于①,否命题是“不全等的三角形的面积不相等”,它是假命题;对于②,逆命题是“若x=-1,则lg x2=0”,它是真命题;对于③,逆否命题是“若|x|=|y|,则x=y且x=-y”,它是假命题,故选B.6.B解析:建立如图所示的空间直角坐标系,设正方体的棱长为1,则D(0,0,0),B′(1,1,1),C(0,1,0),M⎝⎛⎭⎪⎫1,12,0,所以DB′→=(1,1,1),CM→=⎝⎛⎭⎪⎫1,-12,0,cos〈DB′→,CM→〉=DB′→·CM→|DB′→||CM→|=123×52=1515.所以sin〈DB′→,CM→〉=21015.7.D解析:k a+b=(-k+1,k,2),a-2b=(-3,1,-4),由(k a+b)·(a -2b)=3(k-1)+k-8=0,解得k=114.8.D解析:设正方体棱长为1.建立空间直角坐标系如图.易知平面ACD1的一个法向量为n=(1,1,1),BB1→=(0,0,1),∴cos〈n,BB1→〉=13=33.∴BB 1与平面ACD 1所成角的余弦值为63.9. D 解析:本题考查双曲线的简单几何性质的应用.根据题意,由于双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两渐近线的夹角为60°,则可知b a =3或b a =33,那么可知双曲线的离心率为e =1+⎝ ⎛⎭⎪⎫b a 2=2或233,故选D. 10. C 解析:依题意可知,e 1=a 2-b 2a ,e 2=a 2+b 2a ,e 3=1,∴e 1e 2=a 2-b 2a ·a 2+b 2a =1-b 4a 4<1.∴e 1e 2<e 3.11. D 解析:本题考查空间建系能力及二面角.以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4.又二面角C 1-AB -C 为锐角,故其大小为π-34π=π4,故选D.12. B 解析:设椭圆的方程为x 2a 21+y 2b 21=1(a 1>b 1>0),双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),它们的半焦距为c ,不妨设P 为它们在第一象限的交点,因为PF 1→·PF 2→=0,故|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2 ①.由椭圆和双曲线的定义知,⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,解得|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,代入①式,得(a 1+a 2)2+(a 1-a 2)2=4c 2,即a 21+a 22=2c 2,所以1e 21+1e 22=a 21c 2+a 22c 2=a 21+a 22c 2=2. 13. (-1,3).解析:本题主要考查特称命题的真假及参数取值范围的求解.由题意得綈p ∶∀x ∈R ,x 2+(a -1)x +1>0,即关于x 的一元二次不等式x 2+(a -1)x +1>0的解集为R ,由于命题p 是假命题,所以綈p 是真命题,所以Δ=(a -1)2-4<0,解得-1<a <3,所以实数a 的取值范围是(-1,3).14.解析:如图,以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体的棱长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2),所以DN →=(0,2,1),MA 1→=(2,-1,2),所以cos 〈DN →,MA 1→〉=DN →·MA 1→|DN →||MA 1→|=0,所以DN ⊥A 1M ,故异面直线A 1M 与DN 所成的角的大小为90°. 15.解析:由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.16.解析:由e =ca =23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2.设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝ ⎛⎭⎪⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.17. 解:∵y =x 2-2x +a =(x -1)2+a -1≥a -1,∴B ={y |y ≥a -1},A ={x |x 2-3x +2≤0}={x |1≤x ≤2},C ={x |x 2-ax -4≤0}.(1)由命题p 是假命题,可得A ∩B ≠∅,即得a -1≤2,∴a ≤3.(2)∵“p ∧q 为假命题”,则其反面为“p ∧q 为真命题”,∴p ,q 都为真命题,即A ∩B =∅且A ⊆C ,∴有⎩⎨⎧a -1>2,1-a -4≤0,4-2a -4≤0,解得a >3.∴实数a 的取值范围为a ≤3.18.解:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.方法1:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎨⎧z =0,-2x +2y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 方法2:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0).∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0,得⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 19. 证明:(充分性)若{a n }为等差数列,设其公差为d ,则1a 1a 2+1a 2a 3+…+1a n -1a n =1d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1-1a n =1d ⎝ ⎛⎭⎪⎫1a 1-1a n =a n -a 1da 1a n =n -1a 1a n. (必要性)若1a 1a 2+1a 2a 3+…+1a n -1a n =n -1a 1a n ,则1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=na 1a n +1, 两式相减得1a n a n +1=na 1a n +1-n -1a 1a n, 即a 1=na n -(n -1)a n +1 ①.于是有a 1=(n +1)a n +1-na n +2 ②,由①②得na n -2na n +1+na n +2=0,所以a n +1-a n =a n +2-a n +1(n ≥2). 又1a 1a 2+1a 2a 3=2a 1a 3,所以a 3-a 2=a 2-a 1,所以对任意n ∈N *,2a n +1=a n +2+a n ,故{a n }为等差数列.20.解:(1)抛物线C :y 2=4x 的焦点为F (1,0).当MN ⊥x 轴时,直线MN 的方程为x =1.将x =1代入抛物线方程y 2=4x ,得y =±2.不妨设M (1,2),N (1,-2),则直线ME 的方程为y =-2x +4,由⎩⎨⎧y =-2x +4,y 2=4x ,解得x =1或x =4,于是得P (4,-4). 同理得Q (4,4),所以直线PQ 的方程为x =4. 故直线PQ 与x 轴的交点坐标为(4,0).(2)证明:设直线MN 的方程为x =my +1,并设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由⎩⎨⎧x =my +1,y 2=4x ,得y 2-4my -4=0, 于是y 1y 2=-4 ①,从而x 1x 2=y 214·y 224=1 ②.设直线MP 的方程为x =ty +2,由⎩⎨⎧x =ty +2,y 2=4x ,得y 2-4ty -8=0.所以y 1y 3=-8 ③,x 1x 3=4 ④. 同理y 2y 4=-8 ⑤,x 2x 4=4 ⑥.由①②③④⑤⑥,得y 3=2y 2,x 3=4x 2,y 4=2y 1,x 4=4x 1. 从而k 2=y 4-y 3x 4-x 3=2y 1-2y 24x 1-4x 2=12·y 1-y 2x 1-x 2=12k 1,即k 1=2k 2. 21. 解:(1)证明:∵长方形ABCD 中,AB =2AD =22,M 为DC 的中点, ∴AM =BM =2,AM 2+BM 2=AB 2,∴BM ⊥AM . ∵AD ⊥BM ,AD ∩AM =A ,∴BM ⊥平面ADM . 又BM ⊂平面ABCM ,∴平面ADM ⊥平面ABCM .(2)设存在满足题意的点M ,使得二面角E -AM -D 的大小为π4.以M 为原点,MA 所在直线为x 轴,MB 所在直线为y 轴,过M 作平面ABCM 的垂线为z 轴,建立空间直角坐标系,如图,则A (2,0,0),B (0,2,0),D (1,0,1),M (0,0,0),MB →=(0,2,0),BD →=(1,-2,1),ME →=MB →+BE →=(t,2-2t ,t ).设平面AME 的法向量为m =(x ,y ,z ),则⎩⎨⎧MA →·m =0,ME →·m =0,即⎩⎨⎧2x =0,tx +(2-2t )y +tz =0, 取y =t ,得m =(0,t,2t -2).易知平面AMD 的一个法向量为n =(0,1,0), 又二面角E -AM -D 的大小为π4,∴cos π4=|m ·n ||m |·|n |=t t 2+4(t -1)2=22,解得t =23或t =2(舍),∴存在满足BE →=tBD →(0<t <1)的点E ,使得二面角E -AM -D 的大小为π4,相应的实数t 的值为23.22. 解:(1)设A (x 1,y 1)(x 1>0,y 1>0),有⎩⎨⎧y 21=4x 1,x 21=2py 1①.由题意知,F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2,∴F 1F 2→=⎝ ⎛⎭⎪⎫-1,p 2.∵F 1F 2⊥OA ,∴F 1F 2→·OA →=0,即-x 1+p 2y 1=0,即py 1=2x 1,将其代入①式得x 1=4,y 1=4,p =2,故抛物线C 2的方程为x 2=4y . (2)设直线MN 的方程为y =kx (k <0).联立⎩⎨⎧y =kx ,y 2=4x ,得M ⎝ ⎛⎭⎪⎫4k 2,4k ;联立⎩⎨⎧y =kx ,x 2=4y ,得N (4k,4k 2).从而|MN |=1+k 2⎪⎪⎪⎪⎪⎪4k 2-4k =1+k 2⎝ ⎛⎭⎪⎫4k 2-4k .又点P (-1,-1)到直线MN 的距离d =|k -1|1+k2, ∴S △PMN =12·|k -1|1+k 2·1+k 2⎝ ⎛⎭⎪⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝ ⎛⎭⎪⎫k +1k -2⎝ ⎛⎭⎪⎫k +1k +1,令t =k +1k (t ≤-2),∴S △PMN =2(t -2)(t +1), 易知当t =-2,即k =-1,即当过原点的直线方程为y =-x 时,△PMN 的面积取得最小值8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修2-2和2-1综合试卷一、填空题1.函数y =x 2co sx 的导数为 2.下列结论中正确的是( ) (A)导数为零的点一定是极值点(B)如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值 (C)如果在0x 附近的左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极小值 (D)如果在0x 附近的左侧0)('<x f ,右侧0)('>x f ,那么)(0x f 是极大值3.某个命题与正整数有关,若当)(*N k k n ∈=时该命题成立,那么可推得当=n 1+k 时该命题也成立,现已知当5=n 时该命题不成立,那么可推得( )(A )当6=n 时,该命题不成立 (B )当6=n 时,该命题成立 (C )当4=n 时,该命题成立 (D )当4=n 时,该命题不成立4.若复数2(2)(11)()a a a i a R --+--∈不是纯虚数,则a 的取值范围是5.设0<a <b ,且f (x )=xx ++11,则下列大小关系式成立的是( ).(A )f (a )< f (2b a +)<f (ab ) (B )f (2b a +)<f (b )< f (ab )(C )f (ab )< f (2b a +)<f (a ) (D )f (b )< f (2b a +)<f (ab )6.已知(2x -1)+i =y -(3-y )i ,其中x , y ∈R ,求x= , y= .7.曲线y =2x 3-3x 2共有____个极值.8.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“___________________________”这个类比命题的真假性是________9.观察下列式子 2222221311511171,1,1222332344+<++<+++< , … … ,则可归纳出________________________________10.命题03,2>+-∈∀x x R x 的否命题是 .11.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的 条件。

(填“充分不必要”“必要不充分”、“充要”或“既不充分也不必要” ) 12.若方程11422=-+-t ytx所表示的曲线为C ,给出下列四个命题:①若C 为椭圆,则1<t<4; ②若C 为双曲线,则t>4或t<1;③曲线C 不可能是圆; ④若C 表是椭圆,且长轴在x 轴上,则231<<t .其中真命题的序号为 (把所有正确命题的序号都填在横线上)13、若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于 14、已知点M 在平面ABC 内,并且对空间任一点O ,OM =x OA +21OB +31OC ,则x 的值为 三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分12分) 已知曲线 y = x 3+ x -2 在点 P 0 处的切线 1l 平行直线 4x -y -1=0,且点 P 0 在第三象限,⑴求P 0的坐标; ⑵若直线 1l l ⊥ , 且 l 也过切点P 0 ,求直线l 的方程.16. (本小题满分14分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M ,1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1;(2) 在任意DEF ∆中有余弦定理:DFE EF DF EFDFDE∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理, 写出斜三棱柱的三个侧面面积与其中 两个侧面所成的二面角之间的关系式, 并予以证明.17. (本小题满分14分)已知、a b R ∈,a b e >>(其中e 是自然对数的底数),求证:a bb a >.(提示:可考虑用分析法找思路)18.(15分)求与椭圆221144169xy+=有共同焦点,且过点()0,2的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率。

19.(16分) 已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,⊥=∠PA DAB ,90 底面A B C D ,且12P A A D D C ===,1AB =,M 是P B 的中点(Ⅰ)证明:面P A D ⊥面PC D ;(Ⅱ)求A C 与P B 所成的角的余弦值;(Ⅲ)求面A M C 与面B M C 所成二面角的余弦值20.(本小题满分17分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,D 在 AN 上,且对角线MN 过C 点,|AB|=3米,|AD|=2米.(Ⅰ)要使矩形AMPN 的面积大于32平方米,则AM 的长应在什么范围内? (Ⅱ)当AM 、AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.高中数学选修2-2和2-1综合试卷答案1、y ′=2x co sx -x 2s i nx 2、B 3、D 4、1a ≠-5、D 6.x =25, y =4; 7.两8.夹在两个平行平面间的平行线段相等;真命题. 9.22211121123(1)1n n n +++++<++ (n ∈N *)10 03,2≤+-∈∃x x R x 11充分不必要 12、(2)14、01378-14、6115.解:⑴由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又∵点P 0在第三象限,∴切点P 0的坐标为 (-1,-4).⑵∵直线1l l ⊥,1l 的斜率为4,∴直线l 的斜率为14-,∵l 过切点P 0,点P 0的坐标为 (-1,-4) ∴直线l 的方程为14(1)4y x +=-+即4170x y ++=.16.(1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ;(2) 解:在斜三棱柱111C B A ABC-中,有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=,其中α为平面B B CC 11与平面A A CC 11所组成的二面角. ∴⊥,1PMN CC 平面 上述的二面角为MNP∠,在PMN∆中,co s 2222⇒∠⋅-+=M N PMN PN MNPNPMMNPCC MN CC PN CCMN CC PN CCPM ∠⋅⋅⋅-+=cos )()(211111222222, 由于111111111,,BB PM S CCMN S CCPN S A ABBA ACCBBCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=.17.证明:∵0,0abb a >>∴要证: abb a > 只要证:ln ln a b b a > 只要证ln ln b a ba >.(∵ab e >>) 取函数ln ()x f x x=,∵21ln ()x f x x-'=∴当x e >时,()0f x '<,∴函数()f x 在(,)e +∞上是单调递减.∴当a b e >>时,有()()f b f a >即ln ln b a ba>.得证18()()()()222222222210514416910,254211421410xyy x a b o aba b yx+=-=>>--=椭圆的焦点是,-、0,5,焦点在y 轴上设双曲线的方程为又因为双曲线过点0,2,把这个点代入方程可得=4==所以双曲线的方程为双曲线的实轴长为,焦距为,离心率为2.516.解:证明:以A 为坐标原点A D 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知A D D C ⊥,且A P 与A D 是平面PAD 内的两条相交直线,由此得D C ⊥面PAD又D C 在面PC D 上,故面PAD ⊥面PC D(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC .510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故 (Ⅲ)解:在M C 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使14,00,.25A N M C A N M C x z λ⊥=-== 只需即解得0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角4||||.5552cos(,).3||||2arccos().3AN BN AN BN AN BN AN BN AN BN ===-∴==-⋅-故所求的二面角为 19.解:设AM 的长为x 米(x>3)∵||||||||AM DC AN DN = ∴32||-=x x AN∴32||||2-=⋅=x xAM AN S AMPN(Ⅰ)由S AMPN >32得32322>-x x,∵12430)12)(4(04816,32><<∴>-->+-∴>x x x x x x x 或,即即AM 长的取值范围是(3,4)),12(+∞⋃(Ⅱ)令2222)3()6(3)3(3)3(633--=---='-=x x x x xx x y x xy ,则∴当),6(0,6+∞>'>,即函数在y x 上单调递增,x<6,0<'y ,函数在(3,6)上单调递减 ∴当x=6时,322-=x xy 取得最小值即S AMPN 取得最小值24(平方米)此时|AM|=6米,|AN|=4米答:当AM 、AN 的长度分别是6米、4米时,矩形AMPN 的面积最小,最小面积是24平方米. 另解:以AM 、AN 分别为x 、y 轴建立直角坐标系,设1),2,3()3(),,0(),0,(=+>b y a x MN C a b N a M 的方程为直线,则由C 在直线MN 上得ab b a 312123-=⇔=+∴)31(162163232a bba ab S AMPN -=⋅=>⇔>=124048162><⇔>+-⇔a a x a 或∴AM 的长取值范围是(3,4)),12(+∞⋃。

相关文档
最新文档