燃煤锅炉热效率效率计算

合集下载

电站燃煤锅炉燃烧热效率计算方法

电站燃煤锅炉燃烧热效率计算方法

电站锅炉的热效率计算电站锅炉通过燃烧燃料产生蒸汽,把煤的化学能转化为高温蒸汽的储能多过程中的转化效率即为锅炉的热效率。

锅炉燃烧的热效率是燃烧优化的另一个主要目标。

锅炉热效率可以用锅炉有效利用的热量与进入炉内的燃料燃烧所产生的总热量的百分比[33]来表示,见式:1r100%Q Q η=⨯ (1-1) 式中η为锅炉热效率,1Q 为燃煤锅炉有效利用的热量,r Q 为炉内燃料燃烧产生的总热量。

1热效率计算方法锅炉热效率的计算常用的有两种方法:正平衡法,又称输入输出法;反平衡法,又称热损失法。

正平衡法,通过直接测量求得锅炉有效利用的热量和输入锅炉的总热量来求得热效率,如公式(2-3)所示。

反平衡法,通过测定锅炉的各项热损失q ∑来求得热效率,计算公式如下:1100%1srQ q Q η=-⨯=-∑ (1-2) 式中 s Q 为锅炉所有热损失之和, η为锅炉热效率,r Q 为输入锅炉燃料燃烧产生的总热量。

由于当前电站锅炉对燃煤量的测量一般采用皮带秤或测量给煤机转速等来进行粗糙的估计测量,对输入、输出热量的测量造成了较大误差。

因此,正平衡法的误差比较大;而反平衡法不会出现这样的误差。

我们设计算热效率所采用的r Q 的相对误差为δ,则按照正平衡法计算,误差计算如下:()()111r r r=-=11Q Q Q Q Q Q δδδ±⋅∆±±⋅正 (1-3)按照反平衡法计算,则误差计算为:()()r r r=11=11ss sQ Q Q Q QQ δδδ⎛⎫⎛⎫±⋅∆--- ⎪ ⎪ ⎪±±⋅⎝⎭⎝⎭反 (1-4) 比较式(1-3)和式(1-4)可以看出,正∆和反∆的绝对值的大小由1r QQ 和rs Q Q 的大小决定,1r QQ 是锅炉热效率,rs Q Q 是锅炉热损失,热损失约为10%,锅炉热效率约为90%,。

那么,采用正平衡法计算所得误差∆正大约是采用反平衡法计算所得误差∆反的9倍。

锅炉热效率计算

锅炉热效率计算

一、锅炉热效率计算10.1 正平衡效率计算10.1.1输入热量计算公式:Qr=Qnet,v,ar+Qwl+Qrx+Qzy式中: Qr__——输入热量;Qnet,v,ar ——燃料收到基低位发热量;Qwl ——加热燃料或外热量;Qrx——燃料物理热;Qzy——自用蒸汽带入热量。

在计算时,一般以燃料收到基低位发热量作为输入热量。

如有外来热量、自用蒸汽或燃料经过加热(例:重油)等,此时应加上另外几个热量。

10.1.2饱和蒸汽锅炉正平衡效率计算公式:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);B——燃料消耗量;Qr_——输入热量。

10.1.3过热蒸汽锅炉正平衡效率计算公式:a. 测量给水流量时:式中:η1——锅炉正平衡效率;Dgs——给水流量;hgq——过热蒸汽焓;hg——给水焓;γ——汽化潜热;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。

b. 测量过热蒸汽流量时:式中:η1——锅炉正平衡效率;Dsc——输出蒸汽量;Gq——蒸汽取样量;hgq——过热蒸汽焓;hgs——给水焓;Dzy——自用蒸汽量;hzy——自用蒸汽焓;hbq——饱和蒸汽焓;γ——汽化潜热;ω——蒸汽湿度;hbq——饱和蒸汽焓;Gs——锅水取样量(排污量);B——燃料消耗量;Qr——输入热量。

10.1.4 热水锅炉和热油载体锅炉正平衡效率计算公式式中:η1——锅炉正平衡效率;G——循环水(油)量;hcs——出水(油)焓;hjs——进水(油)焓;B——燃料消耗量;Qr——输入热量。

10.1.5电加热锅炉正平衡效率计算公式10.1.5.1电加热锅炉输-出饱和蒸汽时公式为:式中:η1——锅炉正平衡效率;Dgs——给水流量;hbq——饱和蒸汽焓;hgs——给水焓;γ——汽化潜热;ω——蒸汽湿度;Gs——锅水取样量(排污量);N——耗电量。

锅炉计算公式

锅炉计算公式

锅炉计算公式1、蒸汽锅炉:(1)燃料耗量计算:B——锅炉燃料耗量(kg/h或Nm3/h);D——锅炉每小时的产汽量(kg/h);Q L——燃料的低位发热值(千焦/公斤),一般取5500大卡/公斤;η——锅炉的热效率(%),一般取75%,亦可按表1选取:表1 锅炉热效率表i——锅炉在某绝对工作压力下的饱和蒸汽热焓值(千焦/公斤),绝对压力=表压+1公斤/厘米2。

具体取值见表2:表2 饱和蒸汽热焓表备注:1.0MP=10.0公斤/厘米 2i0——锅炉给水热焓值(千焦/公斤),一般来说,给水温度为20℃时,给水热焓i0=20大卡/公斤=83.74千焦/公斤。

常用公式可以简化成:B=0.156D(kg/h)(2)理论空气需要量的计算:①固体燃料:=6.055(m3/kg)②液体燃料:③气体燃料当Q≤3000kcal(12561kJ)/Nm3时当Q>3000kcal(12561kJ)/Nm3时④天然气:式中:V0——燃料燃烧所需理论空气量(Nm3/kg);Q——燃料应用基的低位发热值(kJ/kg);表3 全国主要能源折算标准表表4 常用可燃性物质低位发热量表①固体燃料=9.57(m3/kg)②液体燃料③气体燃料当Q≤3000kcal(12561kJ)/Nm3时当Q>3000kcal(12561kJ)/Nm3时对Q<8250kcal(34543kJ)/Nm3的天然气对Q>8250kcal(34543kJ)/Nm3的天然气式中:在计算时,如果发热量Q以kJ为单位计算,分母1000变成4187;Q以kcal为单位,分母则为1000。

V y——实际烟气量(Nm3/kg或Nm3/ Nm3);Q——燃料的低位发热值(kJ/kg或kJ/ Nm3);V0——理论空气需要量(Nm3/kg或Nm3/);α——过剩空气系数,α=α0+△α,α0为炉膛过剩空气系数,△α是烟气流程上各段受热面处的漏风系数,详见表5,表6。

表5 炉膛过剩空气系数α0(4)SO2排放量的计算=式中:G——二氧化硫的产生量,kg/h;B——燃煤量,kg/h;S——煤的含硫量,%;淮南煤1.0%,淮北煤0.5% D——可燃硫占全硫量的百分比,%,一般取80%左右;η——脱硫设施的二氧化硫去除率。

锅炉公式

锅炉公式

经验公式主要为以下几个公式:a 耗煤量(根据热平衡原理计算):P=G×(i1-i2)/ Q y L×ηP--- 锅炉燃料消耗量,kg/h;G--- 热水锅炉热水出水量,kg/h;i1--- 热水锅炉热水出水热焓,kJ/kg;i2---热水锅炉热水出水热焓,kJ/kg,;Q y L--- 燃煤低位发热量,kJ/kg,取35380kJ/kg;η --- 热水锅炉热效率。

锅炉热效率为70%。

b 烟气量理论空气量V0=K0 Q y L/4187V0--- 理论空气量,m3/kg;K0--- 与燃料有关的系数,取1.1Q y L--- 燃煤低位发热量,kJ/kg,取35380 kJ/kg;V0=9.31m3/kg烟气量V y=1.04×Q y L/4187+0.77+1.0161×(α-1)×V0V y--- 实际烟气量,m3/kg;Q y L--- 燃煤低位发热量,kJ/kg,取35380kJ/kg;V0---理论空气量,m3/kg,取值9.31 m3/kg;α--- 过剩空气系数,取值1.8;V y=1.04×Q y L/4187+0.77+1.0161×(α-1)×V0=26.36m3/kg烟气总量V yt=B总×V yV yt---烟气总量,m3/a;B总---总耗煤量,t/a;V y--- 实际烟气量,m3/kg,取26.36 m3/kg;c 烟尘烟尘初始产生量G d= P ×A×d fhG d--- 烟尘初始产生量,t/a;P ---耗煤量A ---灰份%d fh---烟气中烟尘占灰份的百分含量湿法除尘后,烟尘排放量G d排= G d×(1-η)G d排--- 湿法除尘后烟尘排放量,t/a;G d --- 烟尘初始产生量,t/a;η --- 除尘效率,取值95%;湿法除尘后,烟尘排放浓度C排=G d排/ V ytC排--- 湿法除尘后烟尘排放浓度,mg/m3G d排--- 湿法除尘后烟尘排放量,t/a;V yt --- 烟气总量,m3/a;d SO2G SO2=1.6×B总×SG SO2--- SO2产生量,t/a;B总--- 总耗煤量,t/a;S--- 燃煤含硫量,取值0.37%;SO2产生浓度Cso2= G SO2/ V ytCso2---SO2产生浓度,mg/m3;G SO2--- SO2产生量,t/a;V yt--- 烟气总量,m3/a;采取措施后,SO2排放量G SO2= G SO2×(1-η)G SO2排---湿法除尘后,SO2排放量;G SO2--- SO2产生量,t/a;η--- SO2脱除效率,取值45 %;湿法脱硫后,SO2排放浓度C SO2排= G SO2排/ V ytC SO2排--- 湿法除尘后SO2排放浓度,mg/m3;G SO2排--- 湿法除尘后SO2排放量,t/a;V yt --- 烟气总量,m3/a。

热损失法锅炉热效率η计算

热损失法锅炉热效率η计算

热损失法锅炉热效率η按下式计算η=[1-(Q2+Q3+Q4+Q5+Q6)/Qr]*100=100-(q2+q3+q4+q5+q6)式中:Q2——每千克燃料的排烟损失热量,kJ/kg;Q3——每千克燃料的可燃气体未完全燃烧损失热量,kJ/kg;Q4——每千克燃料的固体不完全燃烧损失热量,kJ/kg;Q5——每千克燃料的锅炉散热损失热量,kJ/kg;Q6——每千克燃料的灰渣物理显热损失热量,kJ/kg;Qr——每千克燃料低位发热量,kJ/kg;q2——排烟热损失,%q3——可燃气体未完全燃烧热损失,%q4——固体未完全燃烧热损失,%q5——锅炉散热热损失,%q6——灰渣物理显热损失,%1、排烟热损失排烟热损失是指末级热交换器后排出烟气带走的物理显热占输入热量的百分率。

q2=(Q2/ Qr)*100Q2= Q2gy+Q2H2O式中:Q2gy——干烟气带走的热量,kJ/kg;Q2H2O——烟气所含水蒸气的显热,kJ/kg;Q2gy=V gyCP. gy(θPy-tsf)Q2H2O=VH2OCP.H2O(θPy- tsf)式中:V gy ——每千克燃料燃烧生成的实际干烟气体积,m3/kg;VH2O ——每千克燃料燃烧产生的水蒸气及相应空气湿分带入的水蒸气体积, m3/kg; θPy——排烟温度,tsf ——送风温度,CP. gy ——干烟气从t0至θPy的平均定压比热,kJ/(kg•K);cP.H2O——水蒸汽比t0至θPy的平均定压比热,kJ/(kg•K);采用燃料的工业分析进行简化计算,可以按如下计算方法。

实际干烟气体积可以通过下式计算:V gy=(VO gy)C+(agy-1)(VO gk)C式中:(VO gy)C ——每千克燃料燃烧所需的理论干空气量,m3/kg;(VO gk)C ——每千克燃料燃烧产生的理论干烟气量,m3/kg;agy ——空气预热器出口的过剩空气系数。

理论干空气量及理论干烟气量用下式计算:(VO gk)C =K2* Qr/1000(VO gy)C = K1*(VO gk)CK1、K2可根据燃烧的种类及燃料无灰干燥基挥发份的数值在下表中选取。

锅炉能效测试技术简介

锅炉能效测试技术简介

3.有关锅炉热效率标准 3.有关锅炉热效率标准
JB/T 10094-2002 工业锅炉通用技术条件 GB 24500-2009 工业锅炉能效限定值及能效等级 GB/T 15317-2009 燃煤工业锅炉节能监测 GB/T 17954-2007 工业锅炉经济运行 以1t/h锅炉为例,对有关数据列表如下:
5. 部分仪器 烟气分析仪(德国)
量热仪
全自动工业分析仪
元素分析仪

谢谢!
q2 — 排烟热损失 q3 — 气体未完全燃烧热损失 q4 — 固体未完全燃烧热损失 q5 — 散热损失 q6 — 灰渣物理热损失 可见,热效率表示锅炉中燃料输入热量的利用程度。 2.影响锅炉热效率的因素分析 2.影响锅炉热效率的因素分析 由锅炉热效率分析可以知道,影响锅炉热效率的因素包括 :固体不完全燃烧损失、气体不完全燃烧热损失、排烟热 损失、散热损失、灰渣物理热损失等。锅炉热平衡示意图 如下:
γ—— 汽化潜热,kj/kg; ω—— 蒸汽湿度,%; Gs —— 测定蒸汽湿度时,锅水取样量, kg/h; B —— 燃料消耗量,kg/h; Qr—— 输入热量,kj/kg。
锅炉正平衡主要测量项目及方法
序号 1 2 3 4 项 目 方法与仪器 元素分析仪 工业分析仪 量热仪 磅秤,容积计量
燃料元素分析 工业分析 燃料的发热量 燃料消耗量
由统计分析发现,我国工业锅炉运行效率普遍较低。造成 这一结局的原因是多方面的,主要包括:设计、制造、安 装、运行管理、使用操作等。重点环节是设计、运行管理 与使用操作。 锅炉节能的关键是提高锅炉热效率, 锅炉节能的关键是提高锅炉热效率,以及有效能的充分利 用。 那么,锅炉热效率如何监测?以下做简单介绍。
反平衡测试主要项目

锅炉热效率的具体计算公式

锅炉热效率的具体计算公式

锅炉热效率的具体计算公式锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系;采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的;目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率;但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况;本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用;2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性1;人工神经网络的输入采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数;遗传算法是受生物进化学说和遗传学说启发而发展起来的基于适者生存思想的一种较通用的问题求解方法2,3,作为一种随机优化技术在解优化难题中显示了优于传统优化算法的性能;遗传算法目前在优化领域得到了广泛的应用,显示了其在优化方面的巨大能力3;遗传算法的一个显著优势是不需要目标函数明确的数学方程和导数表达式,同时又是一种全局寻优算法,不会象某些传统算法易于陷入局部最优解;遗传算法寻优的效率较高,搜索速度快;根据锅炉的反平衡计算公式,锅炉热效率η可由下式求得:η=100-q2+q3+q4+q5+q6% 1式中q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为其他热损失;根据遗传算法的要求,确定锅炉热效率η为遗传算法的目标函数,用式1计算;对该300MW锅炉,利用DCS与厂内MIS网的接口按每6s下载各运行参数,包括排烟氧量、排烟温度、锅炉负荷、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角等;锅炉飞灰含碳量可由飞灰含碳量监测仪在线监测或人工取样分析,燃用煤种由人工输入;这样锅炉的各项损失即可在线获得,并进而计算出各运行工况下的锅炉实时热效率;将排烟氧量和煤种特性等影响锅炉排烟热损失q2的参数按热效率计算,标准化为计算公式代入式1,而影响q4的各参数采用人工神经网络模型代入式1,其中炉渣含碳量对热效率影响由人工测试后输入;具体计算公式可参见锅炉热效率计算标准;由以上步骤建立了锅炉热效率和锅炉各运行参数及煤种的函数关系,即锅炉热效率作为因变量,而锅炉的各操作参数和煤质特性作为自变量,这样就可以利用遗传算法进行寻优计算,获得最佳的锅炉运行条件,实现锅炉热效率的最大化;火电厂锅炉运行中,为考虑到习惯运行方式和各种安全因素的影响,对各种可调因素的选择区域都有一定的范围限制,寻优范围必须控制在这些范围以内,这些限制构成了自变量的定义域;至此,完成了锅炉热效率最优化燃烧的结合神经网络的遗传算法优化过程,具体程序流程见图1;3 燃煤锅炉热效率的优化效果在电厂锅炉运行中,运行人员调节最为频繁的参数主要是各种配风方式,包括各二次风、燃尽风、由送引风机配合所确定的氧量等,其余影响锅炉燃烧的因素,如负荷和煤种,对于运行人员而言在某一工况下是不可调节因素,燃烧器的摆角出于汽温调节的需要,往往也不会对其调整以实现低的飞灰含碳量;作为示例,我们对影响燃烧的部分参数的寻优过程进行了模拟和验证;某个实际运行工况如表1所示,除煤种特性为事先取样分析人工输入外,其余参数均由集散控制系统DCS下载;考虑对锅炉的排烟氧量和各二次风门开度及燃尽风门开度进行寻优,其余参数维持该工况,利用软件寻优,遗传算法选择的参数种群规模为50,交换概率为0.8,突变概率为0.15,迭代次数500次,可调参数7个,计算获得优化后的各风门开度、氧量及锅炉效率和飞灰含碳量值,优化后的各值如表2所示;图2示出了不同迭代次数下的遗传算法计算得到的飞灰含碳量值和锅炉热效率,图中曲线1表示锅炉效率,曲线2表示省煤器后氧量,曲线3表示飞灰含碳量,可见遗传算法的收敛速度很快;对图2的寻优过程进行分析,发现飞灰含碳量曲线具有震荡,这是因为氧量同时影响到排烟热损失和飞灰含碳量,优化过程初期氧量较高,飞灰含碳量相应可以搜索到较低值,但由于排烟热损失比机械不完全燃烧损失数值更大,迫使优化过程向氧量较低的方向寻优,而氧量较低又导致飞灰含碳量有所增加,这种相互反作用的机理使飞灰含碳量曲线呈现震荡性,这种震荡性也是由遗传算法的寻优本质所决定的;图3对采用不同的遗传算法计算参数进行了比较,其中曲线1采用了交换概率为0.8,突变概率为0.15的计算参数;曲线2采用了交换概率为0.8,突变概率为0.3的计算参数;曲线3采用了交换概率为0.2,突变概率为0.1的计算参数;计算表明这几种参数下寻优过程均能成功收敛,但以曲线3为最佳,说明交换概率和突变概率的选取存在最佳值;增加迭代次数和种群规模,最终结果基本无变化,证明目前的迭代次数和种群规模已基本满足要求;由于遗传算法可以对多个自变量同时进行寻优,如果有需要,可以对任何需要的参数进行寻优,甚至对所有影响因素进行寻优,在软件编程上实现也很方便,这为遗传算法在锅炉优化运行中的应用提供了便利;对锅炉在中等负荷下的热效率优化过程也进行了试验,表3示出了某种中等负荷条件下锅炉实际运行工况;表4为中等负荷下遗传计算获得的优化结果;现场验证表明,按优化结果推荐的配风方式进行调节,工况调节后由DCS下载数据计算得到的锅炉效率与优化算法预测的锅炉效率基本相当;多个试验结果表明高负荷下的飞灰含碳量的预测和实测基本相当,而中等负荷下的飞灰含碳量预测略有偏低,这可能与神经网络建模时中等负荷下的样本数量偏少有一定关系;但由于本文研究的锅炉燃烧状况较好,燃料的灰分低而且挥发分和热值均较高,所以飞灰含碳量都较低,机械不完全燃烧损失也较小,对锅炉热效率的影响也较小;因此各工况下预报的锅炉热效率值与实测误差很小,一般在0.2%以内;针对现场实炉测试样本数据难以大量获得的问题,可采用DCS数据采集方法解决,获得稳定工况下的输入输出参数保存,利用这些样本来训练神经网络,这样既可获得大量的样本数据,而且样本数据可不断更新,从而使神经网络模型能代表锅炉的最新特性;对于燃用燃尽性能差和高灰分煤的锅炉,机械不完全燃烧损失占到锅炉效率损失的很大部分,由于排烟热损失的优化比较简单,而本文主要针对机械不完全燃烧损失进行优化,因此对于燃用劣质煤锅炉采取此优化方法具有更好的应用前景,能够确定锅炉最佳氧量和各风门开度;对锅炉热效率优化另一种方法也进行了研究,即将锅炉热效率与煤种特性、运行参数之间的关系直接采用人工神经网络建模,然后利用遗传算法优化,结果表明这种方法的效果远不如本文的方法;其原因经分析为,人工神经网络方法进行建模时存在一定的误差,由于热效率的绝对值较大对锅炉热效率直接建模,导致误差过大淹没了方案的可行性;4 结论本文在对大型燃煤电厂锅炉进行实炉多工况热态试验和采用人工神经网络进行锅炉飞灰含碳量特性建模的基础上,利用遗传算法对大型电厂锅炉提高热效率的优化运行方法进行了研究并经现场应用,表明采用人工神经网络和遗传算法进行锅炉燃烧优化是可行的;。

燃煤锅炉耗煤量

燃煤锅炉耗煤量

一、燃煤量计算1、按煤标准热值和锅炉热效率计算(估算)耗煤量=锅炉功率×3600/煤燃烧热/锅炉效率2、按热效率和煤汽比计算(估算)每个锅炉都有其出厂热效率(见说明),比方说20t/h锅炉经济效热效75%,那么按照标准煤的热量,理论煤汽比应该是1:6-1:7.5,这样就可以得出一个每小时理论经济煤量。

20×0.75=15t/h;15/6=2.5t/h燃煤3、按产生饱和蒸汽计算(准确)注:此公式只适用于生产饱和蒸汽的锅炉燃煤量的计算,不适用于生产过热蒸汽锅炉!二、供热锅炉燃煤量统计按供热面积计算耗煤量(1m2≈30kg)欠负荷时,可根据所带供热面积(热负荷)算出,每平米按50W计,再乘以时间,即算出负荷,实践经验,每平米一个采暖季需耗煤30kg以上。

三、发电锅炉燃煤量统计1.1度电燃煤量(≈0.38kg)根据经验统计,发1度电用煤量约为0.38kg。

2.1MW机组燃煤量(≈380kg/h)电厂如有一台1MW的发电机组,就可以估算, 假设它满负荷发电,一小时的发电量=1000KWx1h=1000kwh,也就是1000度电,现在火电发一度电的耗煤约380克左右, 所以1MW发电机组的燃煤量大概为1000X380克=380kg/h。

附加说明: 上述计算结果只是估算,热效率根据所选炉型、燃料类型、等多方面因素决定。

如果要很精确的数据,要做热平衡计算。

四、热水锅炉耗煤量计算热水锅炉耗煤量=锅炉功率*3600/煤热燃烧热/锅炉效率。

比如燃烧的是4500大卡/公斤的煤,那么,10吨的炉子每小时耗煤1.20-1.40T。

8吨的炉子每小时耗煤0.96-1.10T。

6吨的炉子每小时耗煤0.72-0.90T。

当然,不同的煤种燃烧热值相差很大,而且不同厂家生产的锅炉热效率也不同,所以这个计算还需要根据个人炉型使用情况而定。

郑锅集团长期致力于打造专业化的营销团队,培养出了一批具有专业素养的销售人员,根据用户的需求进行专业的购买指导和个性化资源整合,为用户量身定制最优化的配置方案。

工业燃煤导热油锅炉运行热效率计算

工业燃煤导热油锅炉运行热效率计算

工业燃煤导热油锅炉运行热效率计算工业燃煤导热油锅炉运行热效率热效率简单计算公式前言:工业锅炉中多为燃煤导热油锅炉,约占68% ,且 2 吨( 1.4Mw )以下的锅炉占燃煤锅炉总量的70% 左右,这些锅炉热效率普遍低下,造成严重的烟尘大气污染和煤炭浪费。

为了保护环境,实现可持续发展,应加强对燃煤锅炉运行的监测和环保治理力度。

提高锅炉运行热效率,降低污染物排放成为燃煤锅炉技改的重要课题。

作为关键的技术经济指标,运行热效率的测试与计算显得尤为重要,本文就此展开分析和研究。

一、锅炉运行热效率简单计算公式的推导1、锅炉燃料消耗量的计算锅炉运行时,燃料送入锅炉的热量与锅炉有效利用热量及各项热损失的和相等,即我们所说的热平衡:Qr=Q1+Q2+Q3+Q4+Q5+Q6 ( 1)Qr:燃料送入锅炉的热量(一般就是燃料应用基低位发热量,即Qr=Qydw ), kj/kgQ1:锅炉有效利用热量,kj/kgQ2 :排烟带走的热量,Q3 :气体不完全燃烧损失的热量,kj/kgQ4 :固体不完全燃烧损失的热量,kj/kgQ5 :锅炉向周围空气散失的热量,kj/kgQ6 :燃料中灰渣带走的热量,kj/kg将公式(1)两边分别除以Qr得:1=Q1/Qr+Q2/Qr+Q3/Qr+Q4/Qr+Q5/Qr+Q6/Qrq 仁Q1/Qr X 100%q 2=Q2/Qr X 100%q 3=Q3/Qr X 100%q 4=Q4/Qr X 100%q 5=Q5/Qr X 100%q 6=Q6/Qr X 100%q 1=100- (q 2+q 3+q 4+q 5+q 6) %(2)q1:锅炉有效利用热量占燃料带入锅炉热量的百分数,即热效率n , %q 2:排烟热损失,%q 3:气体不完全燃烧热损失,%q 4:固体不完全燃烧热损失,%q 5:锅炉散热损失,%q 6:其它热损失,%锅炉有效利用热量一方面: Q1=nXQr(3)另一方面: Q1=QGL/B(4)B:锅炉每小时燃料消耗量,kg/hQGL: 锅炉每小时有效吸收热量,kj/h蒸汽锅炉QGL=D(iq-igs) X 103+DPS(ips-igs) X 103热水锅炉QGL=G(i2-i1) X 103D:锅炉蒸发量,t/h iq: 蒸汽焓,kj/kg igs:锅炉给水焓,kj/kgDPS:锅炉排污水量,t/hips:锅炉排污水焓,即锅炉工作压力下的饱和水焓,kj/kgG:热水锅炉每小时加水量,t/hi2:热水锅炉出水焓,kj/kgi1:热水锅炉进水焓,kj/kg由公式(3)、(4)可得:B=QGL/ ( n • Qr) (5) 2、理论空气量的计算理论空气量的计算可以在已知燃料元素分析的基础上通过各可燃元素化学反应方程式得出。

燃煤工业锅炉热效率的计算问题

燃煤工业锅炉热效率的计算问题

燃煤工业锅炉热效率的计算问题采用正平行的方法,通过查阅项目实施前一年锅炉运行,记录,统计报表和测试报告,核实相关数据,按以下公式计算单台锅炉热效率。

蒸汽锅炉热效率)1()100(. arner g b a BQ rw h h D --=η热水锅炉热效率)2()(. arner g b a BQ h h D -=η式中:a η—锅炉热效率,单位为 %;D —蒸汽锅炉给水量/热水锅炉循环水量,单位为 千克/小时(kg/h );h b —饱和蒸汽焓,单位为 千焦耳/千克(kJ/kg ); h c —热水锅炉出水焓,单位为千焦耳/千克(kJ/kg ); h g —热汽锅炉给水焓或热水锅炉给水焓单位为千焦耳/千克(kJ/kg );B —燃煤消耗量,单位为千克/小时(kg/h );Q ner.ar —燃料收到基低位发热量,单位为千焦耳/千克(kJ/kg ); ω—蒸汽湿度,单位 %;γ—汽化潜热,单位为千焦耳/千克(kJ/kg )。

热水锅炉运行热效率的检测计算方法1.热水锅炉(采暖锅炉)运行的特殊性,决定了它的运行热效率不同于平行运行的蒸汽锅炉。

(1)如图1 热水温度、回水温度均速上升的情况的计算方法。

7050300T 2T 1图1(2)如图2 热水温度、回水温度上升呈不规则曲线时的计算方法。

705030T 2T 1图2首先现场需要记录的数据 A.出水、回水随时间的原始记录。

b.锅炉循环水的管径(内径)、流速、(流速需用仪器测量)。

c.计量锅炉在一个运行周期内的燃煤量。

d.取煤样化验煤的低位发热量。

2.热效率的计算方法如图1、如图所示,t n 表示锅炉停止燃烧,但循环水仍在循环时刻。

t m 表示循环水温度回到原始状态的温度的时刻。

T 0表示热水锅炉开始运行的时刻。

(1)如图1、热水、回水温度均速上升时的热效率计算[]arnet n m n a Q B Dt t t C T T .212)2(60)()(21⋅⨯⨯⨯⨯-++=水水水ρπυη式中:a η—热水锅炉运行热效率 %; 水υ—循环水流速,单位 米/秒(m/s);D —循环水管内直径,单位 米(m );水ρ—水的比重,单位为 公斤/立方米(kg/m 3); (2)矩形法(如图3) 将(ab )分成若干个相等的小区间每个区间的长为 △X=nab -y12图3n-1分点为x 0=a ,x 1,x 2……x n 所以对应的纵坐标为y 0,y 1,y 2……y n得到n 个矩形,分别取这若干个矩形面积的和体为面积M 0M n ba 的近似值,也就是定积分的值⎰badx x f )(的近似值,用以下公式求得:[]1210)(-++++-≈⎰n ba y y y y nab dx x f 或 []n bay y y nab dx x f +++-≈⎰21)( 上述两种方法求出的面积,都是为了计算出有效能 有效热能=面积×流速×管径面积×水ρ 最后就是求出热水锅炉的运行热效率输入燃料发热量管径截面积流速图形上的面积水ρη⨯⨯⨯=a。

燃煤锅炉热平衡测定方案

燃煤锅炉热平衡测定方案

燃煤锅炉热平衡测定方案一 实验目的通过测定燃煤锅炉热效率,初步掌握其方法,对锅炉运行工况有更深入的了解。

二 实验原理锅炉热效率可用热平衡实验方法测定,测定方法有正平衡和反平衡实验两种,实验必须在锅炉稳定工况下进行。

1 正平衡法正平衡按式(1-1)进行,锅炉热效率即有效利用热量占燃料带入锅炉热量的百分数:%10011⨯==rgl Q Q q η (1-1)有效利用热量1Q 按下式计算:BQ Q gl =1 kJ/kg (1-2)式中 gl Q ——锅炉每小时有效吸热量,kJ/h ;B —— 每小时燃料消耗量,kg/h 。

蒸汽锅炉每小时有效吸热量 gl Q 按下式计算:3310)(10)(⨯-+⨯-=gs ps ps gs q gl i i D i i D Q kJ/h (1-3)式中D——锅炉蒸发量,t/h ; q i —— 蒸汽焓,kJ/kg ; gs i —— 锅炉给水焓,kJ/kg ;psi —— 排污水焓,即锅炉压力下的饱和水焓,kJ/kg ; psD ——锅炉排污水量,t/h ;由于供热锅炉都是定期排污,为简化测试工作,在热平衡测试期间,可不进行排污。

当锅炉生产饱和蒸汽时,蒸汽干度一般都小于1,湿蒸汽的焓可按下式计算: 100rW i i g-''= kJ/kg (1-4)式中 i ''——干饱和蒸汽的焓,kJ/kg ; r ——蒸汽的汽化潜热,kJ/kg ;W ——蒸汽湿度,%。

供热锅炉生产的饱和蒸汽通常有1~5%的湿度。

热水锅炉每小时吸收热量gl Q 按下式计算: 31210)(⨯-=i i G Q glkJ/h (1-5)式中 G ——热水锅炉每小时加热水量,t/h ;1i 、2i ——热水锅炉进水和出水焓,kJ/kg 。

供热锅炉常采用正平衡法测定热效率,因为只要测定燃料消耗量、燃料应用基地位发热量、锅炉蒸发量、压力和温度即可算出热效率。

2 反平衡法正平衡法只能求得锅炉的热效率,不可能借以分析影响锅炉热效率的原因,因此需要测出锅炉的各项热损失,用(1-6)式计算锅炉的热效率,称反平衡法。

一段式煤气发生炉热效率

一段式煤气发生炉热效率

一段式煤气发生炉热效率
煤气发生炉的热效率是指输入燃料热值中被有效利用的比例。

煤气发生炉的热效率受到多种因素的影响,包括燃料的热值、燃烧温度、燃料与氧气的配比、炉内空气流动等。

煤气发生炉的热效率可以通过以下公式计算:
热效率 = (燃料输入热值 - 炉排废气热损失)/ 燃料输入热值
其中,燃料输入热值是指煤气发生炉中燃料的热值,可以通过燃料的化学分析来确定;炉排废气热损失是指由炉排废气中带走的热量,可以通过测量炉排废气温度和流量来计算。

为了提高煤气发生炉的热效率,可以采取以下措施:
1. 优化燃烧过程,确保燃料与氧气的配比合理,减少燃料的过剩量,提高燃烧效率。

2. 优化炉内气流分布,避免燃料局部过热或过冷,提高热交换效率。

3. 采用高效燃烧器和炉排设计,减少炉排废气热损失。

4. 进行热能回收,利用炉排废气中的余热进行加热或发电。

5. 定期进行炉内清洗和维护,确保炉内热交换面积清洁和完好,减少热阻,提高热传递效率。

通过以上措施的综合应用,可以有效提高煤气发生炉的热效率,降低能源消耗,减少环境污染。

锅炉热效率简易计算公式

锅炉热效率简易计算公式

锅炉热效率简易计算公式
锅炉热效率可以用以下简易计算公式来表示:
热效率 = (实际热效率 / 理论热效率) × 100%。

其中,实际热效率是指锅炉在实际工作中产生的热量与燃料的
热值之比,而理论热效率是指在完全燃烧情况下,燃料所释放的热
量与燃料的热值之比。

另外,理论热效率可以根据燃料的种类和化学成分来计算,一
般来说,对于燃煤锅炉,其理论热效率可以通过煤的热值来计算;
对于燃气锅炉,可以通过天然气或液化石油气的热值来计算。

需要注意的是,这是一个简易的计算公式,实际的热效率受到
诸多因素的影响,如锅炉的设计结构、操作方式、维护保养情况等。

因此,在实际应用中,可能需要考虑更多因素来准确计算锅炉的热
效率。

燃煤锅炉热效率的在线计算及节能分析

燃煤锅炉热效率的在线计算及节能分析
k g / k g
率n ” 指 反平衡热效率 , “ 热效率 n ” ’ 指正平衡 热效 率) 。计算信息将被保存 到数据库 中, 并 可 以将数 据 上传 , 便于 E t 后 考察 和评 价锅 炉 时进行 数据查 询 。

A 0 5-
李俊瑞 , 等: 燃煤锅 炉热效 率的在 线计算及节能分析
正、 反 平衡 两 种 方 法 互 为补 充 , 相互 校 核 , 两 种

散 热 损失
m e
散热损 失 率计算 公式 为 :
q 5 一 g g 5 5 . . e m
: 一

方 法计 算得 到 的热 效率 相对 误差 应小 于 5 %。 2 . 2 锅 炉 热损 失计 算 式中
第3 4卷
第1 2期
良好 的空气 与燃 料接 触混 合条 件 。 ⑥ 合 理分 配空 气量 ( 一 次风 和二 次 风 )
测量方法 [ J ] .微计 算机信 息 , 2 0 0 6 , 2 2 ( 4—1 ) : 1 5 5一
l 5 7 .
在 数据 记 录操作 界 面 输 入燃 料 特性 参 数 ( 图1 中C 表 示 收到基 中碳 的质 量 分 数 , 其他 同理 ) 和 锅 炉运行数据 ( 如环境温度 、 排烟温度、 排渣温度 、 烟 气组成 ) 等 。锅 炉 运 行 数 据 输 入 可 以 采 用 两 种 方
式: 一是 与锅 炉现 有 的数据监 测 采集 系统 连接 , 直接
( ( 8 ) )
m 、 m。 — — 锅炉 的 额定 蒸 发 量 、 实 际蒸 发 量 ,
t /h

排烟热损失
排烟热损失率计算公式为 :

锅炉热效率测定计算的简易快捷方法

锅炉热效率测定计算的简易快捷方法

锅炉热效率测定计算的简易快捷方法点击次数:6448 发布时间:2009-10-27锅炉热效率测定计算的简易快捷方法㈠采用简易方法测试锅炉热效率的可行性依据现有标准进行锅炉热工测试和计算热效率的结果也存在一定误差,并非完全精确。

我局湘质监特发[2009]99号文件附件3统计,市州特检机构按正规的热工测试方法进行测试需要采购配备大量仪器和设备,需要投入66.84万元。

恕我直言,目前地市级特种设备检验所经济实力不强的情况下,花费近七十万元购买锅炉热效率测试的设备仪表(还不含煤质、飞灰和炉渣可燃物含量的测量设备——测量这两项还要取样送到长沙等检测单位进行)是不现实的。

本人建议,只要配备6.5万元的先进分析仪和设备(还包含相应煤质分析、飞灰和炉渣可燃物含量的测量设备),采取简易而快捷的方法对燃煤锅炉的热效率进行检测,就可以尽快对燃煤锅炉进行热效率测试;不必花费大量资金、配备大量仪器和设备做为投入,使得燃煤锅炉能效测试工作滞后,影响高耗能锅炉节能监察工作的开展。

本人持有这种想法的根据如下:在对在用燃煤锅炉进行热效率测试时,只要在现场测量锅炉排烟温度ex,烟气中一氧化碳的含量CO,氧含量O,冷空气温度t l.a,测定换算得到炉膛的过量空气系数α,如果锅炉运行中有蒸汽喷入炉膛,则记录喷口尺寸和蒸汽压力;然后取回煤样、炉渣和飞灰样返回到检验机构检测出煤的收到基低位发热量Q net,,煤的灰分收到基质量百分数A ar,飞灰可燃物C f.a,炉渣可燃物含量(含碳量)C sl ar等,就可以根据燃用煤的化验分析数据,按照下面所述的方法计算燃煤锅炉的热效率(误差在1.5%左右)和耗煤量,推导锅炉的运行状况。

而燃油、燃气锅炉的热效率测试就更容易进行,只需要在现场进行测量锅炉排烟温度,烟气中一氧化碳的含量、氧含量,冷空气温度,测定换算得到炉膛的过量空气系数就行了,无须采样分析。

这是因为按照常规,燃气供应单位应该向也应向使用单位提供燃气的成分(如果燃料供应单位确实无法出具燃料的成分分析资料,只好取样送到具备燃料的成分分析设备的单位进行化验);而按相关规定,燃油锅炉用代表性0号柴油的组成质量成分是:W y 0%,A y 0.01%,C y 85.55%,H y 13.49%,O y 0.66%,N y 0.04%,S y 0.25%;低位发热量为42900kJ/kg。

DLT964-2005 锅炉热效率计算1.1

DLT964-2005 锅炉热效率计算1.1

数据检测:
100.0000
DL/T964-2005循环流化床锅炉效率计算
V1.1 by:linan 使用说明: ①在本页面(“计算页面”)灰色单元格内输入相应数据,即可在“输出表格”内得到锅炉效率及相关参数计算结果。 ②在本表“F33”单元格内,请输入右侧“H33”单元格计算得到的数据,以迭代计算脱硫效率。 ③为避免操作失误而破坏本计算表格,本表格已进行“编辑保护”,撤销保护可在EXCEL“审阅”——>“撤销工作表保护”中进行 (无密码)。 ④相关术语及计算公式请参考,DL/T964-2005;如需帮助,可发邮件至linan273@与本人沟通。 1 计算数据输入 序号 类别 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 环 境 条 件 烟 气 灰 渣 及 石 灰 石 料 燃 项 燃料碳含量 燃料氢含量 燃料硫含量 燃料氮含量 燃料氧含量 燃料水分 燃料灰分 元素分析类型 收到基水份 空干基水分 收到基灰份 燃煤收到基低位发热量 燃煤类型 入炉煤量,迭代计算值 大渣质量百分率 飞灰质量百分率 沉降灰质量百分率 循环灰质量百分率 大渣的含碳量百分率 飞灰的含碳量百分率 沉降灰的含碳量百分率 循环灰的含碳量百分率 排渣温度 沉降灰温度 循环灰温度 石灰石全水百分率 石灰石收到基碳酸钙含量百分率 脱硫石灰石中碳酸钙分解百分率 给石灰石量,实际测值 实测排烟温度 实测排烟氧量 锅炉排烟中SO2气体实测浓度
B
t0 dk D
e
kPa
℃ kg/kg
13.80 0.011
t/h t/h kj/kg kV

锅炉热效率的简易计算

锅炉热效率的简易计算

锅炉热效率的简易计算与分析对锅炉而言,影响煤耗的因素主要有三类:煤质、运行工况和锅炉自身热效率。

查找煤耗偏高的原因,需要对各影响因素进行定量测定分析。

测定锅炉热效率,通常采用反平衡试验法。

本文对此方法进行了介绍,并简化了计算过程,可用于日常锅炉效率监控。

1 反平衡法关键参数的确定众所周知,反平衡法热效率计算公式为:η = 100-(q2+q3+q4+q5+q6)计算的关键是各项热损失参数的确定。

1.1 排烟热损失q2排烟热损失q2是由于锅炉排烟带走了一部分热量造成的热损失,其大小与烟气量、排烟与基准温度、烟气中水蒸汽的显热有关。

我厂燃煤介于无烟煤和贫煤之间,计算q2可采用如下简化公式:q2 =(3.55αpy+0.44)×(tpy-t0)/100式中,αpy——排烟处过量空气系数,我厂锅炉可取为1.45tpy——排烟温度,℃t0 ——基准温度,℃1.2 化学不完全燃烧热损失q3化学不完全燃烧热损失q3是由于烟气中含有可燃气体CO造成的热损失,主要受燃料性质、过量空气系数、炉内温度和空气动力状况等影响,可采用下列经验公式计算:q3 =0.032αpy CO×100%式中,CO——排烟的干烟气中一氧化碳的容积含量百分率,%我厂锅炉q3可估算为0.5%。

1.3 机械未完全燃烧热损失q4机械未完全燃烧热损失q4主要是由锅炉烟气带走的飞灰和炉底放出的炉渣中含有未参加燃烧的碳所造成的,取决于燃料性质和运行人员的操作水平,简化计算公式为:Q4 =337.27×Aar×Cfh/[ Qnet.ar×(100-Cfh)]式中,Aar——入炉煤收到基灰分含量百分,%Cfh——飞灰可燃物含量,%Qnet.ar——入炉煤收到基低位发热量,kJ/kg1.4 散热损失q5散热损失q5是锅炉范围内炉墙、管道向四周环境散失的热量占总输入热量的百分率,计算公式为:Q5 =5.82×De0.62/D式中,De——锅炉的额定负荷,t/hD ——锅炉的实际负荷,t/h1.5 灰渣物理热损失q6灰渣物理热损失q6包括灰渣带走的热损失和冷却热损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

燃煤锅炉热效率效率计算————————————————————————————————作者:————————————————————————————————日期:燃煤锅炉的热效率热效率计算根据《关于发展热电联产的规定》(计基础〔2000〕1268号)文件,热效率=(供热量+供电量×3600千焦/千瓦时)/(燃料总消耗量×燃料单位低位热值)×100%,供热量就是热力产品(热水、蒸汽)根据供热流量、压力、温度的参数进行焓值计算后得出的焦耳热值当量年度产量,加上年发电量换算成焦耳热值当量(kWh乘以3600),二者的和就是热电厂年产品总量(电+热)。

分母是热电厂的燃料消耗,如果是燃煤电厂,就用所耗煤种的低位热值(可以查到)*年耗煤吨量;如果是燃气电厂,就用天然气的热值*年耗气量。

电厂出口的总产品热值比上输入的各种一次能源消耗热值,就是热效率。

如何求解热效率当前,能源日逐紧张。

如何节能,如何提高能源的利用效率已是摆在人们面前的一个突出而现实的问题。

热效率的计算也成为中考热点问题。

如何求解热效率,下面通过一些典例进行分析归纳。

一、燃具的效率例1、小明学习了热学的有关知识后,他想估算一下自己家煤炉的效率是多少。

于是小明仔细记录了他家每天烧水、煮饭、炒菜需要的时间,并把它折算成了烧水的时间,相当于每天将30Kg20℃的水烧开。

小明家实际平均每天需要烧4块蜂窝煤,按每块蜂窝煤含煤0.5Kg算,他家每天实际用煤2Kg.普通煤的热值为3×107J/Kg,则他家煤炉的效率是多少?[分析与解]:煤炉烧水,化学能转化为内能,水吸收的热量是有用能量,完全燃烧煤所放出的热量是总的能量。

煤炉的效率可用η=Q有用/Q总×100%=cmΔt/m'q×100%计算。

Q有用=cmΔt=4.2×103×30×(100-20)J=1.008×107JQ总=mq=2×3×107J=6×107Jη=Q有用/Q总×100%=1.008×107J/6×107J=16.8%二热机的效率例2、小兵同学想知道一辆小汽车的实际效率是多少。

他从驾驶员那了解到:该汽车行驶100Km的耗油量约7Kg。

从书上查得汽油的热值q=4.6×107J/Kg。

他又测出在平直公路上,用644N的水平拉力可使汽车匀速前进。

若空气阻力不计,试求该小汽车的效率是多少?[分析与解]:小汽车行驶,化学能转化为内能后又转化为机械能,对汽车做功是有用的能量,完全燃烧汽油放出的能量是总能量。

小汽车的效率可用η=Q 有用/Q总×100%=FS/mq×100%计算。

Q有用=FS=644×105J=6.44×107JQ总=mq=7×4.6×107J=3.22×108Jη=Q有用/Q总×100%=6.44×107J/3.22×108J=20%三、电热器的效率例3、某品牌电热水壶的铭牌上标着如下表所示的数据:当电热水壶装满水后,在额定电压下工作,水温从20℃加热到100℃用了16min。

则该电热水壶的热效率是多少?[分析与解]:电热水壶烧水,电能转化为内能,烧水时水吸收的热量是有用的能量,消耗的电能为总的能量。

电热水壶的效率可用η=Q有用/Q总×100%=cmΔt/Pt×100%计算。

Q有用=cmΔt=cρvΔt=4.2×103×103×4×10-3×80J=1.344×106JQ总=Pt=1500×16×60J=1.44×106Jη=Q有用/Q总×100%=1.344×106J/1.44×106J=93.3%四、太阳能热水器的效率例4、某同学自制了一台家用太阳能热水器。

他从太阳能手册中查到:在地球表面,晴天时垂直于阳光表面接受到的辐射热为1.26×103J/m2.s。

如果晒水箱内的水大约有40Kg,晒水箱接受阳光垂直照射的面积始终约为1.5m2,测得要使水温上升30℃需89min,则这台太阳能热水器的效率是多少?[分析与解]:太阳能热水器加热水时,太阳能转化为内能,水吸收的热量是有用能量,接收的太阳能为总的能量。

若太阳辐射热为a,阳光照射热水器的面积为s,照射时间为t,则太阳能热水器的效率可用η=Q有用/Q总×100%=cm△t/ast×100%计算。

Q有用=cmΔt=4.2×103×40×30J=5.04×106JQ总=ast=1.26×103×1.5×89×60J=1.009×107Jη=Q有用/Q总×100%=5.04×106J/1.009×107J=50%五、火力发电厂的效率例5、垃圾处理成为城市建设及可持续发展的一个重要问题。

现在人们已经可以变废为宝了,利用垃圾中的可燃物质燃烧发电。

某垃圾焚烧电厂,年处理垃圾2.16×105t。

研究表明,生活垃圾的平均热值为6.27×106J/Kg.如果利用垃圾作为燃料建立发电厂,每燃烧1t生活垃圾,可以发电240kw.h,那么,生活垃圾燃烧发电的效率是多少?[分析与解]:垃圾焚烧发电,把化学能转化为内能后又转化为电能,所发的电能为有用能量,垃圾焚烧所放出的能量为总能量。

此电厂的发电效率可用η=Q有用/Q总×100%=W/mq×100%计算。

Q有用=W=240kw.h=240×3.6×106J=8.64×108JQ总=mq=1000×6.27×106J=6.27×109Jη=Q有用/Q总×100%=8.64×108J/6.27×109J=13.8%基于遗传算法的燃煤锅炉热效率优化摘要:在对锅炉飞灰含碳量进行人工神经网络建模的基础上,确定了各种运行参数和煤种对锅炉飞灰含碳量的影响关系。

由于锅炉煤种的多变性,针对某个煤种进行实炉调整所获得的最佳工况往往与目前燃用煤种所需的最佳工况偏离。

文中结合遗传算法和人工神经网络技术,对某台300MW四角切圆燃煤电厂锅炉热效率的优化进行了研究,为大型电厂锅炉通过燃烧调整提高锅炉效率提供有效手段。

1 引言锅炉的热效率受到多种热损失的影响,但比较而言,以机械不完全燃烧损失q4受锅炉燃烧状况影响最为复杂,飞灰含碳量受锅炉煤种和运行参数影响很大,相互关系很难以常规的计算公式表达,因此采用了人工神经网络对锅炉的飞灰含碳量特性进行了建模,并利用实炉测试试验数据对模型进行了校验,结果表明,人工神经网络能很好反映大型电厂锅炉各运行参数与飞灰含碳量特性之间的关系。

采用锅炉负荷、省煤器出口氧量、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、煤种特性,各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角作为神经网络的输入矢量,飞灰含碳量作为神经网络的输出,利用3层BP网络建模是比较合适的。

目前锅炉运行往往根据试验调试人员针对锅炉的常用煤种进行燃烧调整,以获得最佳的各种锅炉运行参数供运行人员参考,从而实现锅炉的最大热效率。

但这种方法会带来如下问题:①由于锅炉燃煤的多变性,针对某一煤种进行调整试验获得的最佳操作工况可能与目前燃用煤种的所需的最佳工况偏离;②由于调试试验进行的工况有限,试验获得的最佳工况可能并非全局最优值,即可能存在比试验最佳值更好的运行工况。

本文在对某300MW四角切圆燃烧锅炉进行实炉工况测试并利用人工神经网络技术实现飞灰含碳量与煤种和运行参数关系的建模工作基础上,结合遗传算法这一全局寻优技术,对锅炉热效率最优化运行技术进行了研究,并在现场得到应用。

2 遗传算法和神经网络结合的锅炉热效率寻优算法利用一个21个输入节点,1个输出节点,24个隐节点的BP网络来模拟锅炉飞灰含碳量与锅炉运行参数和燃用煤种之间的关系,获得了良好的效果,并证明了采用人工神经网络对锅炉这种黑箱对象建模的有效性[1]。

人工神经网络的输入采用锅炉负荷、省煤器出口氧量、作者:周昊朱洪波曾庭华廖宏楷岑可法各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角和煤种特性,除煤种特性这一不可调节因素外,基本上包括了运行人员可以通过DCS进行调整的所有影响锅炉燃烧的所有参数。

遗传算法是受生物进化学说和遗传学说启发而发展起来的基于适者生存思想的一种较通用的问题求解方法[2,3],作为一种随机优化技术在解优化难题中显示了优于传统优化算法的性能。

遗传算法目前在优化领域得到了广泛的应用,显示了其在优化方面的巨大能力[3]。

遗传算法的一个显著优势是不需要目标函数明确的数学方程和导数表达式,同时又是一种全局寻优算法,不会象某些传统算法易于陷入局部最优解。

遗传算法寻优的效率较高,搜索速度快。

根据锅炉的反平衡计算公式,锅炉热效率η可由下式求得:η=100-(q2+q3+q4+q5+q6)(%) (1)式中q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为其他热损失。

根据遗传算法的要求,确定锅炉热效率η为遗传算法的目标函数,用式(1)计算。

对该300MW 锅炉,利用DCS与厂内MIS网的接口按每6s下载各运行参数,包括排烟氧量、排烟温度、锅炉负荷、各二次风挡板开度、燃尽风挡板开度、燃料风挡板开度、各磨煤机给煤量、炉膛与风箱差压、一次风总风压、燃烧器摆角等。

锅炉飞灰含碳量可由飞灰含碳量监测仪在线监测或人工取样分析,燃用煤种由人工输入。

这样锅炉的各项损失即可在线获得,并进而计算出各运行工况下的锅炉实时热效率。

将排烟氧量和煤种特性等影响锅炉排烟热损失q2的参数按热效率计算,标准化为计算公式代入式(1),而影响q4的各参数采用人工神经网络模型代入式(1),其中炉渣含碳量对热效率影响由人工测试后输入。

具体计算公式可参见锅炉热效率计算标准。

由以上步骤建立了锅炉热效率和锅炉各运行参数及煤种的函数关系,即锅炉热效率作为因变量,而锅炉的各操作参数和煤质特性作为自变量,这样就可以利用遗传算法进行寻优计算,获得最佳的锅炉运行条件,实现锅炉热效率的最大化。

火电厂锅炉运行中,为考虑到习惯运行方式和各种安全因素的影响,对各种可调因素的选择区域都有一定的范围限制,寻优范围必须控制在这些范围以内,这些限制构成了自变量的定义域。

相关文档
最新文档