第五章课后习题答案

合集下载

汽车理论第五章课后答案

汽车理论第五章课后答案

余志生汽车理论第五章课后习题答案5.1一轿车(每个)前轮胎的侧偏刚度为-50176N /rad 、外倾刚度为-7665N /rad 。

若轿车向左转弯,将使两前轮均产生正的外倾角,其大小为40。

设侧偏刚度与外倾刚度均不受左、右轮载荷转移的影响.试求由外倾角引起的前轮侧偏角。

答: 由题意:F Y =k α+k γγ=0故由外倾角引起的前轮侧偏角: α=- k γγ/k=-7665⨯4/-50176=0.61105.2 6450轻型客车在试验中发现过多转向和中性转向现象,工程师们在前悬架上加装前横向稳定杆以提高前悬架的侧倾角刚度,结果汽车的转向特性变为不足转向。

试分析其理论根据(要求有必要的公式和曲线)。

答: 稳定性系数:⎪⎪⎭⎫⎝⎛-=122k b k a L m K1k 、2k 变化,原来K ≤0,现在K>0,即变为不足转向。

5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何(要求有必要的公式和曲线)? 答: 汽车稳态响应有三种类型 :中性转向、不足转向、过多转向。

几个表征稳态转向的参数: 1.前后轮侧偏角绝对值之差(α1-α2); 2. 转向半径的比R/R 0;3.静态储备系数S.M.彼此之间的关系见参考书公式(5-13)(5-16)(5-17)。

5.4举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特性?答:方法:1.α1-α2 >0时为不足转向,α1-α2 =0时为中性转向,α1-α2 <0时为过多转向;2. R/R0>1时为不足转向,R/R0=1时为中性转向,R/R0<1时为过多转向;3 .S.M.>0时为不足转向,S.M.=0时为中性转向,S.M.<0时为过多转向。

汽车重心前后位置和内、外轮负荷转移使得汽车质心至前后轴距离a、b发生变化,K也发生变化。

5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样?答:否,因转弯时车轮受到的侧偏力,轮胎产生侧偏现象,行驶阻力不一样。

电力电子课后习题答案 5

电力电子课后习题答案 5

第五章 直流—直流交流电路1.简述图5-1a 所示的降压斩波电路工作原理.答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间t on ,由电源E 向L 、R 、M 供电,在此期间,u o =E 。

然后使V 关断一段时间t off ,此时电感L 通过二极管VD 向R 和M 供电,u o =0.一个周期内的平均电压U o =E t t t ⨯+offon on。

输出电压小于电源电压,起到降压的作用。

2.在图5-1a 所示的降压斩波电路中,已知E =200V ,R =10Ω,L 值极大,E M =30V ,T =50μs ,t on =20μs ,计算输出电压平均值U o ,输出电流平均值I o 。

解:由于L 值极大,故负载电流连续,于是输出电压平均值为U o =E T t on =5020020⨯=80(V)输出电流平均值为I o =R E U M o -=103080-=5(A)3.在图5-1a 所示的降压斩波电路中,E =100V , L =1mH,R =0。

5Ω,E M =10V ,采用脉宽调制控制方式,T =20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值I o ,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。

当t on =3μs 时,重新进行上述计算。

解:由题目已知条件可得:m =E E M =10010=0。

1τ=RL =5.0001.0=0.002 当t on =5μs 时,有ρ=τT =0。

01αρ=τont =0。

0025由于11--ραρe e =1101.00025.0--e e =0.249>m 所以输出电流连续。

此时输出平均电压为U o =E T t on =205100⨯=25(V) 输出平均电流为I o =R E U M o -=5.01025-=30(A) 输出电流的最大和最小值瞬时值分别为I max =R E m e e ⎪⎪⎭⎫ ⎝⎛-----ραρ11=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛-----e e =30.19(A )I min =R E m e e ⎪⎪⎭⎫ ⎝⎛---11ραρ=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛---e e =29。

第5章_经营决策分析习题

第5章_经营决策分析习题

第5章_经营决策分析习题第五章课后练习题整理(附答案)⼀、单选题1、在有关产品是否进⾏深加⼯决策中,深加⼯前的半产品成本属于()A.估算成本B.重置成本C.机会成本D.沉没成本2、在进⾏半产品是否进⼀步深加⼯决策时,应对半成品在加⼯后增加的收⼊和()进⾏分析研究。

A.进⼀步加⼯前的变动成本B.进⼀步加⼯追加的成本C.进⼀步加⼯前的全部成本D.加⼯前后的全部成本3、设⼀⽣产电⼦器件的企业为满⾜客户追加订货的需要,增加了⼀些成本开⽀,其中()是专属固定成本。

A.为及时完成该批产品的⽣产,⽽要购⼊⼀台新设备B.为及时完成该批追加订货,需要⽀付职⼯加班费C.⽣产该批产品机器设备增加的耗电量D.该⼚为⽣产该批产品以及以后的⽣产建造了⼀间新的⼚房4、某⼚需要零件甲,其外购单价为10元,若⾃⾏⽣产,单位变动成本为6元,且需要为此每年追加10000元的固定成本,通过计算可知,当该零件的年需要量为()时,外购、⾃制两种⽅案等效。

A.2500 B.3000 C.2000 D.18005、某公司⽣产⼀种化⼯产品甲,进⼀步加⼯可以⽣产⾼级化⼯产品⼄,甲、⼄两种产品在市场上的售价为50元每千克、120元每千克,但⼄产品的⽣产每年需要追加固定成本20000元,单位变动成本为10元,若每千克甲可加⼯0.6千克⼄,则以下选择中,该公司应( )。

A.进⼀步加⼯⽣产产品⼄B.当产品甲的年销售量超过1250千克,将甲加⼯为⼄C.将甲出售,不加⼯D.两种⽅案均可6、在固定成本不变的情况下,下列()应该采取采购的策略。

A.⾃制单位变动成本⼩于外购价格B.⾃制单位变动成本=外购价格C.⾃制单位变动成本⼤于外购成本D.⾃制单位产品成本⼤于外购成本7、在产销平衡的情况下,⼀个企业同时⽣产多种产品,其中⼀种单位边际贡献为正的产品最终变为亏损产品,其根本原因是()A.该产品存在严重积压B.该产品总成本太⾼C.该产品上分担的固定成本相对较⾼D.该产品的销量太⼩8、下列哪种成本为相关成本()A.可避免成本B.共同成本C.联合成本D.沉没成本9、下列哪种成本为⽆关成本()A.沉没成本B.专属成本C.可避免成本D.增量成本10、如果把不同产量作为不同⽅案来理解的话,边际成本实际上就是不同⽅案形成的()A.相关成本B.沉没成本C.差量成本D.付现成本11、设某企业⽣产某种半成品2000件,完成⼀定加⼯⼯序后,可以⽴即出售,也可以进⼀步深加⼯之后再出售,如果⽴即出售,每件售价15元,若深加⼯后出售,售价为24元,但要多付深加⼯成本9500元,则继续进⾏深加⼯的机会成本为()A.48000 B.30000 C.9500 D.1800012、如上题条件,⽴即出售的机会成本为()A.48000 B.30000 C.38500 D.1800013、有⼀批可修复废品,存在两种处置⽅案,⼀个是降价后直接出售,⼀个是修复后按正常价格出售,修复成本为3000元,降价后出售收⼊为7000元,修复后出售收⼊为11000元,那么差量损益为()A.3000 B.4000 C.8000 D.100014、在短期经营决策中,企业不接受特殊价格追加订货的原因是买⽅出价低于()A.正常价格B.单位产品成本C.单位变动成本D.单位固定成本⼆、多选题1、下列各项中,属于决策分析过程的特征的有()A.本质的主观能动性B.依据的客观性C.⽅案的可选择性D.时间上的未来性2、按照决策条件的肯定程度,可将决策划分为以下类型()A.战略决策B.确定型决策C.风险型决策D.不确定型决策3、下列各项中,属于⽣产经营决策中相关成本的是()A.增量成本B.机会成本C.专属成本D.沉没成本E.不可避免成本4、下列各项中,备选⽅案中不涉及相关收⼊的是()A.差别损益分析法B。

信息论基础第五章课后答案

信息论基础第五章课后答案

5.1设有信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321a a a a a a a X P X (1)求信源熵H(X)(2)编二进制香农码(3)计算其平均码长及编码效率解:(1)H(X)=-)(log )(21i ni i a p a p ∑=H(X)=-0.2log 20.2-0.19log 20.19-0.18log 20.18-0.17log 20.17-0.15log 20.15-0.log 20.1-0.01log 20.01H(X)=2.61(bit/sign)(2)ia i P(ai)jP(aj)ki码字a 001a 10.210.0030002a 20.1920.2030013a 30.1830.3930114a 40.1740.5731005a 50.1550.7431016a 60.160.89411107a 70.0170.9971111110(3)平均码长:-k =3*0.2+3*0.19+3*0.18+3*0.17+3*0.15+4*0.1+7*0.01=3.14(bit/sign)编码效率:η=R X H )(=-KX H )(=14.361.2=83.1%5.2对习题5.1的信源二进制费诺码,计算器编码效率。

⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛0.01 0.1 0.15 0.17 0.18 0.19 2.0 )(7654321a a a a a a a X P X 解:Xi)(i X P 编码码字ik 1X 0.2000022X 0.191001033X 0.18101134X 0.17101025X 0.151011036X 0.110111047X 0.01111114%2.9574.2609.2)()(74.2 01.0.041.0415.0317.0218.0319.032.02 )(/bit 609.2)(1.5=====⨯+⨯+⨯+⨯+⨯+⨯+⨯===∑KX H R X H X p k K sign X H ii i η已知由5.3、对信源⎭⎬⎫⎩⎨⎧=⎪⎪⎭⎫ ⎝⎛01.01.015.017.018.019.02.0)(7654321x x x x x x x X P X 编二进制和三进制赫夫曼码,计算各自的平均码长和编码效率。

概率论与数理统计(茆诗松)课后第五章习题参考答案

概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。

《基础会计学》第5-6章课后习题及参考答案

《基础会计学》第5-6章课后习题及参考答案

《基础会计学》第五章课后习题及参考答案第五章记账载体作业一:一,单项选择题1.日记账按分类用途属于()A序时账簿B备查账簿C分类账簿D联合账簿2.活页式账簿主要适用于()A特种日记账B总分类账簿C普通日记账D明细分类账簿3.特种日记账的账页格式有()A三栏式和多栏式B两栏式C三栏式D多栏式4.下列适用多栏式明细分类账簿的是()A应付账款B财务费用C实收资本D库存商品5.某会计人员根据记账凭证登账时,误将400元计为4000元,更正这种记账错误的方法是()A红字冲销法B补充登记法C划线更正法D以上三种任意一种都可以二,多项选择题1.账簿按其外表形式分类,可分为()A序时账簿B订本式账簿C活页式账簿D卡片式账簿2.会计账簿应具备的基本要素有()A封面B扉页C账页D封底3.下列会计凭证中,可以作为登记现金日记账的依据的是()A现金收款凭证B现金付款凭证C现金支票存根D银行存款付款凭证4.明细分类账可以根据()登记A记账凭证B原始凭证C科目汇总表D汇总原始凭证4.数量金额式明细账的账页格式适用于()A产成品明细账B生产成本明细账C材料明细账D应付账款明细账5.下列错误中,可以用红字冲销法更正的有()A结账后发现的一切登记错误B发现记账凭证中会计科目和金额都有错误,并且已经登记入账C发现记账凭证中所记会计科目有错,并已登记入账D在结账前发现记账凭证无误,但账簿记录中文字或数字过账错误。

三,判断题1.账簿是企业设置的全部账户的总称()2.序时账簿、分类账簿、备查账簿是按账簿的外表形式作的分类。

()3.备查账簿是和序时账簿以及分类账簿一样必须设置的。

()4.企业出纳人员除了负责货币资金收付业务,还要登记现金和银行存款日记账和总账。

()5.结账是在月终把某一月份发生的经济业务全部登记入账,计算和记录本期发生额和期末余额。

()四,名词解释账簿序时账簿分类账簿五,简答题1.设置会计账簿有哪些作用?2.简述划线更正法的适用范围和更正程。

第五章 课后习题及答案

第五章 课后习题及答案

第五章中学生的情绪管理一、理论测试题(一)单项选择题1.()是人各种感觉、思想和行为的一种综合的心理和生理状态,是对外界刺激所产生的心理反应,以及附带的生理反应,如喜、怒、哀、乐等。

A.情绪B.情感C.心情D.态度2.()是指人或动物面对现实的或想象中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态。

A.快乐B.愤怒C.恐惧D.悲哀3.小华即将上考场,感觉心跳加速,有点微微出汗,这属于情绪的()。

A.外部表现B.主观体验C.生理唤醒D.认知活动4.下列不属于基本情绪的是()。

A.快乐B.焦虑C.恐惧D.悲哀5.王悦接到高考录取通知书已经十多天了,仍心情愉悦,往常觉得平淡的事也能让她很高兴,这种情绪状态属于()。

A.激情B.心境C.应激6.“情急生智”所描述的一种情绪状态是()。

A.心境B.理智C.应激D.激情7.“忧者见之则忧,喜者见之则喜”,这是受一个人的()影响所致。

A.激情B.心境C.应激D.热情8.()是一种猛烈、迅疾和短暂的情绪,类似于平时说的激动。

A.快乐B.应激C.心境D.激情9.狂喜、恐惧的情绪状态属于()。

A.激情B.热情C.应激D.心境10.学生临考的怯场属于()。

A.应激B.心境C.激情D.热情11.车祸、地震、水灾等突如其来的灾难引起的情绪体验是()。

A.心境B.激情C.应激12.晓东在解决了困扰他许久的数学难题后出现的喜悦感属于()。

A.道德感B.理智感C.美感D.效能感13.求知欲属于()。

A.道德感B.理智感C.美感D.应激14.“先天下之忧而忧,后天下之乐而乐”是()。

A.道德感B.理智感C.美感D.热情15.当同学们获悉本班取得学校合唱比赛第一名的成绩时欣喜若狂。

他们的情绪状态属于()。

A.心境B.激情C.应激D.热情16.当人们遇到突然出现的事件或意外发生危险时,为了应付这类瞬息万变的紧急情境,就得果断地采取决定。

这种情况属于()。

A.激情B.应激C.快乐D.心境17.()用因素分析的方法,提出人类具有8~11种基本情绪,它们是兴趣、惊奇、痛苦、厌恶、愉快、愤怒、恐惧、悲伤、害羞、轻蔑、自罪感。

第五章课后练习题三及答案

第五章课后练习题三及答案

第五章课后练习题三资料:某公司12月发生的经济业务要求:根据12月发生的经济业务编制会计分录(1)12月1日,公司开出现金支票从开户银行提取现金5000元,以备零星开支用。

(2)12月2日,公司用银行存款100000元预付给友谊工厂订购丙材料。

(3)12月3日,公司接受A投资人的投资1000,000元,存入银行,已办完各种手续。

接受B投资者投入设备1台,该设备的账面原值为500万,已提折旧400万;公司接受投资时,经双方同意,该设备按150万的价值入账。

(4)12月3日,签发并承兑商业汇票购入丁材料,发票注明价款350000元,增值税进项税额59500元。

另外,公司用银行存款5500元支付丁材料的运杂费。

丁材料验收入库。

(5)12月3日,公司发行股票1000,000股,发行价1.5元,所得款项1500,000元,存入银行。

(6)12月4日,公司购入下列材料:甲材料6000千克单价30元价款计180000元乙材料3500千克单价20元价款计70000元用银行存款支付材料价款及增值税款(增值税税率17%)。

材料尚在运输途中。

(7)12月5日,公司用银行存款7200元预付明年的报章杂志订阅费。

(8)12月6日,公司的业务部张良出差归来报销差旅费1680元,余款补足现金(原借款1500元)。

(9)12月8日,公司从某商店购入一台需要安装的Q非生产用设备,其买价260000元,增值税税额44200元,包装运杂费等4800元,款项通过银行支付;设备投入安装。

(10)12月9日,公司用银行存款7600元支付本月购入的甲、乙材料的外地运杂费,按材料的重量比例分配。

材料验收入库。

(11)12月10日,公司开出现金支票从银行提取现金568000元,直接发放工资。

(12)12月12日,公司向某客户销售S产品一批,价款850000元,增值税销税率17%。

另外,公司用银行存款代客户垫付运杂费6500元。

全部款项收到一张已承兑商业汇票。

王孝玲《教育统计学》第五章课后练习题超详细解答步骤

王孝玲《教育统计学》第五章课后练习题超详细解答步骤

考试科 目 物理 化学 数学 总和
标准分数 甲生 -3 0.67 0.92 -1.41 乙生 2 -0.67 -0.08 1.25
在团体中的位置(在改分数之下的人数比例) 甲生 0.00135 0.74857 0.82121 乙生 0.97725 0.25143 0.46812
5
总平均
-0.47
0.416667
18(人)
226(人)
11 (人)
18(人)
6
13. 答: 首先,通过人数比例计算每个等级的所占面积;其次,寻找每个面积对应的中位数来代表等 级的数量化分数 教师甲(人 等级 优 良 中 差 极差 总和 数) 10 20 5 5 0 40 甲比率(人数比 例) 0.25 0.5 0.125 0.125 0 本组 1/2 至 Z=0 的 面积 0.375 0 0.3125 0.4375 中位数 1.15 0 -0.89 -1.53 -
7. 答: (1) 直接查表 (2) P(2.8)-P(0.5)= 0.49744 – 0.19146=0.30598 (3) 直接查绝对值 (4) P(-1.5)+P(1.8)=0.43319+0.46407=0.89726 (5) P(-1.8)-P(-0.5)= 0.46407-0.19146=0.27261 (6) P(-2.5)+P(0.8)=0.49379+0.28814=0.78193 8. 答: (1) 直接查绝对值 (2) 直接查表 (3) P(Z)=0.5-0.2=0.3 ~ 0.29955 Y=0.28034 (4) P(Z)=0.8/2=0.4 ~ 0.39973 Y=0.17585
本组 1/2 至 Z=0 的
中位数

操作系统第五章课后答案

操作系统第五章课后答案

第五章设备管理3. 什么是字节多路通道?什么是数组选择通道和数组多路通道?a.字节多路通道含有许多非分配型子通道分别连接在低、中速I/O设备上,子通道按时间片轮转方式共享主通道,按字节方式进行数据传送。

当第一个子通道控制其I/O设备完成一个字节的交换后,便立即腾出字节多路通道(主通道),让给第二个子通道使用;当第二个子通道也交换完一个字节后,又依样把主通道让给第三个子通道使用,以此类推。

转轮一周后,重又返回由第一个子通道去使用主通道。

b.数组选择通道只含有一个分配型子通道,一段时间内只能执行一道通道程序、控制一台设备按数组方式进行数据传送。

通道被某台设备占用后,便一直处于独占状态,直至设备数据传输完毕释放该通道,故而通道利用率较低,主要用于连接多台高速设备。

c. 数组多路通道是将数组选择通道传输速率高和字节多路通道能使各子通道分时并行操作的优点相结合而形成的一种新通道。

其含有多个非分配型子通道分别连接在高、中速I/O设备上,子通道按时间片轮转方式共享主通道,按数组方式进行数据传送,因而既具有很高的数据传输速率,又能获得令人满意的通道利用率。

4. 如何解决因通道不足而产生的瓶颈问题?解决因通道不足而产生的瓶颈问题的最有效方法是增加设备到主机间的通路而不是增加通道。

换言之,就是把一个设备连接到多个控制器上,而一个控制器又连接到多个通道上。

这种多通路方式不仅可以解决该瓶颈问题,而且能够提高系统的可靠性,也即不会因为个别通道或控制器的故障而使设备与存储器之间无法建立通路进行数据传输。

6. 试说明I/O控制发展的主要推动因素是什么?促使I/O控制不断发展的几个主要因素如下:a.尽量减少CPU对I/O控制的干预,把CPU从繁杂的I/O控制中解脱出来,以便更多地去完成数据处理任务。

b.缓和CPU的高速性和设备的低速性之间速度不匹配的矛盾,以提高CPU的利用率和系统的吞吐量。

c.提高CPU和I/O设备操作的并行程度,使CPU和I/O设备都处于忙碌状态,从而提高整个系统的资源利用率和系统吞吐量。

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。

导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。

当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。

也可以用静电能计算。

在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。

因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。

5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。

解:需要加三个镜像电荷代替 导体面上的感应电荷。

在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。

)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。

图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。

证明:使用镜像法分析。

第5章课后习题参考答案

第5章课后习题参考答案

第五章习题参考答案3.给定一个单位立方体,一个顶点在(0,0,0),相对的另一个顶点在(1,1,1),过这两个顶点连接一条直线,将单位立方体绕该直线旋转θ角,试导出变换矩阵。

解答:需进行以下复合变换:⑴绕Z轴旋转-45。

角,变换矩阵为:/220 0T1= 2/20 00 1 00 0 1⑵绕Y轴旋转2)角,变换矩阵为:/30 30T2= 0 1 0 030 300 0 0 1⑶绕X轴旋转θ角,变换矩阵为:1 0 0 0T3= 0 cosθs i nθ00 -sinθc o sθ00 0 0 1⑷绕Y轴旋转2)角,变换矩阵为:/30 30T4= 0 1 0 030 300 0 0 1⑸绕Z 轴旋转45。

角,变换矩阵为:/2/20 0 T5= 2/20 0 0 0 1 00 0 0 1 故最后的变换矩阵为: T=T1T2T3T4T5=1/32/3cos θ+ 1/3/3s i n1/3c o s θθ+- 1/3/3s i n 1/3c o s θθ-- 0 1/33sin 1/3cos θθ-- 1/32/3c o s θ+ 1/3/3s i n1/3c o s θθ+- 01/33sin 1/3cos θθ+- 1/3/3s i n1/3c o s θθ-- 1/32/3c o s θ+ 00 0 0 1 6.编程绘制第5题中三棱锥的正等轴测和正二测图。

同上类似,只是变换矩阵改为T 正等=0.70700.40800.70700.4080000.816001-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦和T 正二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000943.0000312.00354.00118.00935.07.编程绘制第5题中三棱锥的斜等测和斜二测投影图。

同上类似,变换矩阵改为:T 斜等=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000707.00707.00001T斜二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000354.00354.000018.编程绘制第5题中三棱锥的立体一点、二点和三点透视图。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

国际贸易实务第五章参考答案

国际贸易实务第五章参考答案

国际贸易实务第五章课后习题答案四、简答题1、基本运费的计收标准:重量法、体积法、从价法、按重量吨或尺码吨计收、按重量吨或尺码吨或从价运费计收、按重量吨或尺码吨中收费较高的作为标准再另行加收一定百分比从价运费、按货物件数计收、按议价计收、按起码运费计收。

附加费:超重附加费、超长附加费、转船附加费、燃油附加费、直航附加费、港口拥挤附加费、选卸货港附加费、货币贬值附加费、绕航附加费、港口拥挤费。

2、(1) 根据货物是否己装船,可分为己装船提单和备运提单 /收讫待运提单;(2) 根据提单有无不良批注,可分为清洁提单和不清洁提单;(3) 根据提单是否可以流通(转让),可分为记名提单、不记名提单和指示提单;(4)根据运输方式,可分为直运提单、转船提单和联运提单;(5)根据提单内容的繁简不同,可分为全式提单和略式提单或简式提单;(6)根据提单使用的有效性,可分为正本提单和副本提单;(7)按船舶营运方式分,可分为班轮提单和租船提单;(8)按运费支付方式,可分为运费预付提单和运费到付提单;(9)按签发人的不同,可分为船公司提单和货代提单;(10)其他种类的提单:起码提单、舱面提单、迟期提单、倒签提单和预借提单。

五、计算题1、W=40公斤=0.04运费吨 M=0.05运费吨因为M大于W,所以采用M计费单位运费=计费标准×基本运费×(1+各种附加费率)=200×0.05×(1+10%)=11(美元)CFR报价=50+11+3%×CFR报价CFR报价=61÷97%=62.89(美元)2、M=0.5×100=50(千克)=0.05(运费吨)47CM×30CM ×20CM=0.0282立方米运费=总货运量×基本运费率×(1+附加费率)=0.0282×100×367×(1+33%+5%+15%)=1583.46(美元)六、案例分析1、船公司的做法成立。

结构力学课后答案第五章习题答案

结构力学课后答案第五章习题答案

5-1 试回答:用单位荷载法计算结构位移时有何前提条件?单位荷载法是否可用于超静定结构的位移计算?aaaaa NCD NCE NBE NAD NBC NAC DE F F 0, F F F F F A B P P P PR R F F F =========-由对称性分析知道N NP 12()F F 1()2 6.832222()P P P cx P F a l F a F a EA EA EA EA EA ⨯⨯-⨯-⨯∆==⨯+⨯+=↓∑5-4 已知桁架各杆截面相同,横截面面积A =30cm 2,E =20.6×106N/cm 2,F P =98.1kN 。

试求C 点竖向位移yC Δ。

25544P P P P F F F ===NAD NAE NEC NEF 由节点法知:对A 节点 F F 对E 节点 F F115(122516(()4)4 11.46 ()N NP yc P P P F F l F F EA EA cm =∆==⨯⨯⨯+⨯⨯+⨯⨯=↓∑NAD NAE 由节点法知:对A 节点 F F5-5 已知桁架各杆的EA 相同,求AB 、BC 两杆之间的相对转角B Δθ。

杆的内力计算如图所示施加单位力在静定结构上。

其受力如图11(12N NP BF F l EA EAθ∆==-∑5-6 试用积分法计算图示结构的位移:(a )yB Δ;(b )yC Δ;(c )B θ;(d )xB Δ。

(a)211232113421yc 1004142B ()1()26()111 ()()()26111 =()30120p llp q q q x x q l q qM x q x x lM x x q q M x M x dx q x x dx EI EI l q l q l EI -=+-=+=-∴∆=⨯=++⎰⎰以点为原点,向左为正方向建立坐标。

显然,A Bq 2q 1lEI22q l 254q l PM l74l M2224113153251315127()()324244342243416yc ql q l l ql l ql l l l l l ql EI EI ∆=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=↓(c)22201()(sin )12(1cos )2()1111[(sin )12(1cos)]2(8-3)-1.42=()EI EIB M R R M R R Rd EIπϕϕϕϕθϕϕϕπ=⨯-⨯-==⨯⨯-⨯-=⎰逆时针l3l 4ABCql EI=常数OAB1kN/m2kNR =2m4mϕθqds qRd θ=20()sin()(1cos )M qRd R qR ϕϕθϕθϕ=⨯-=-⎰2240()sin 111()()(1cos )sin ()2xBM R M M ds qR R Rd qR EI EI EIπϕϕϕϕϕϕϕ=∆==-=←⎰⎰5-7 试用图乘法计算图示梁和刚架的位移:(a )yC Δ;(b )yD Δ;(c )xC Δ;(d )xE Δ;(e )D θ;(f )yE Δ。

机械制造装备设计课后习题答案 第三版 机械工业出版社

机械制造装备设计课后习题答案  第三版  机械工业出版社

第五章课后习题答案1机床夹具的作用是什么?有哪些要求?作用:1、保证加工精度2、提高生产率3、扩大机床的使用范围4、减轻工人的劳动程度,保证生产安全5、降低成本要求:1、保证加工精度2、夹具的总体方案应与生产纲领相适应3、安全、方便、减轻劳动强度4、排屑顺畅5、夹具应有良好的刚度、强度、结构工艺性1.机床夹具的组成部分有哪些?1、定位元件及定位装置用于确定工件正确位置的元件或装置2、夹紧元件及夹紧装置用于固定工件已获得的正确位置的元件或装置3、导向及对刀元件用于确定工件与刀具的相互位置的元件4、动力装置5、夹具体用于将各元件、装置连接在一块,并通过它将整个夹具安装在机床上6、其它元件及装置3.何为六点定位原理?何谓定位的正常情况和非正常情况?它们各包括哪些方面?六点定位原理:采用六个按一定规则布置的约束点,限制工件的六个自由度使工件实现完全定位。

正常情况:根据加工表面的位置尺寸要求,需要限制的自由度均已被限制,称定位的正常情况。

正常情况分为:a完全定位六个自由度全部被限制b不完全定位少于六个自由度被限制非正常情况:根据加工表面的位置尺寸要求,需要限制的自由度没有完全被限制,或某个自由度被两个或两个以上的约束重负限制,称为非正常情况非正常情况分为:a.欠定位需要限制的自由度没有完全被限制b.过定位某个自由度被两个或两个以上的约束重负限制4、确定夹具的定位方案时,要考虑哪些方面的要求?在多个表面参与定位时:限制自由度最多的定位面——第一定位基准面或主基准面限制自由度较多的定位面——第二定位基准面或导向基准限制一个自由度的定位面——第三定位基准面或定程基准5、何谓定位误差?定位误差是由哪些因素引起的?定位误差:指工序基准在加工方向上的最大位置变动量所引起的加工误差,它是加工误差的一部分产生定位误差的原因:1、基准不重合带来的定位误差2、间隙引起的定位误差3、与夹具有关的因素产生的定位误差6、夹紧和定位的区别?对夹紧装置的基本要求有哪些?定位是确定工件在机床上或夹具中占有正确位置的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.10 假设对指令Cache 的访问占全部访问的75%;而对数据Cache 的访问占全部访问的25%。

Cache 的命中时间为1 个时钟周期,失效开销为50 个时钟周期,在混合Cache 中一次load 或store 操作访问Cache 的命中时间都要增加一个时钟周期,32KB 的指令Cache 的失效率为0.39%,32KB 的数据Cache 的失效率为4.82%,64KB 的混合Cache 的失效率为1.35%。

又假设采用写直达策略,且有一个写缓冲器,并且忽略写缓冲器引起的等待。

试问指令Cache和数据Cache容量均为32KB 的分离Cache和容量为64KB 的混合Cache 相比,哪种Cache 的失效率更低?两种情况下平均访存时间各是多少?解:(1 )根据题意,约75%的访存为取指令。

因此,分离Cache的总体失效率为:(75%× 0.15%)+(25%× 3.77% )=1.055%;容量为128KB 的混合Cache 的失效率略低一些,只有0.95%。

(2)平均访存时间公式可以分为指令访问和数据访问两部分:平均访存时间=指令所占的百分比×(读命中时间+读失效率×失效开销)+数据所占的百分比×(数据命中时间+数据失效率×失效开销)所以,两种结构的平均访存时间分别为:分离Cache的平均访存时间=75%×(1+0.15%×50)+25%×(1+3.77%×50)=(75%×1.075)+(25%×2.885)=1.5275混合Cache的平均访存时间=75%×(1+0.95%×50)+25%×(1+1+0.95%×50)=(75%×1.475)+(25%×2.475)=1.725因此,尽管分离Cache 的实际失效率比混合Cache的高,但其平均访存时间反而较低。

分离Cache 提供了两个端口,消除了结构相关。

5.11 给定以下的假设,试计算直接映象Cache和两路组相联Cache 的平均访问时间以及CPU 的性能。

由计算结果能得出什么结论?(1)理想Cache情况下的CPI为2.0,时钟周期为2ns,平均每条指令访存1.2次;(2)两者Cache容量均为64KB ,块大小都是32 字节;(3)组相联Cache中的多路选择器使CPU 的时钟周期增加了10%;(4)这两种Cache 的失效开销都是80ns;(5)命中时间为1 个时钟周期;(6)64KB 直接映象Cache 的失效率为1.4%,64KB 两路组相联Cache 的失效率为1.0%。

解:平均访问时间=命中时间+失效率×失效开销平均访问时间1-路=2.0+1.4% *80=3.12ns 平均访问时间2-路=2.0*(1+10%)+1.0% *80=3.0ns 两路组相联的平均访问时间比较低CPU time=(CPU 执行+存储等待周期)* 时钟周期CPU time=IC (CPI 执行+总失效次数/指令总数*失效开销)*时钟周期=IC((CPI执行*时钟周期)+(每条指令的访存次数*失效率*失效开销*时钟周期))CPU time 1-way =IC(2.0*2+1.2*0.014*80)=5.344ICCPU time 2-way =IC(2.2*2+1.2*0.01*80)=5.36IC相对性能比:CPUtime 2way 5.36/5.344=1.003CPU time 1way直接映象cache 的访问速度比两路组相联cache 要快1.04 倍,而两路组相联Cache 的平均性能比直接映象cache 要高1.003 倍。

因此这里选择两路组相联。

5.12 假设一台计算机具有以下特性:(1)95%的访存在Cache 中命中;(2)块大小为两个字,且失效时整个块被调入;(3)CPU 发出访存请求的速率为10 9字/s;(4)25%的访存为写访问;(5)存储器的最大流量为109字/s(包括读和写);(6)主存每次只能读或写一个字;(7)在任何时候,Cache中有30%的块被修改过;(8)写失效时,Cache采用按写分配法。

现欲给该计算机增添一台外设,为此首先想知道主存的频带已用了多少。

试对于以下两种情况计算主存频带的平均使用比例。

(1)写直达Cache;(2)写回法Cache。

解:采用按写分配(1)写直达cache 访问命中,有两种情况:读命中,不访问主存;写命中,更新cache 和主存,访问主存一次。

访问失效,有两种情况:读失效,将主存中的块调入cache 中,访问主存两次;写失效,将要写的块调入cache,访问主存两次,再将修改的数据写入cache一次访存请求最后真正的平均访存次数=(71.3%*0)+(23.8%*1)+(3.8%*2)+(1.3%*3) =0.35已用带宽=0.35× 109/10 9=35.0%(2)写回法cache 访问命中,有两种情况:读命中,不访问主存;写命中,不访问主存。

采用写回法,只有当修改的cache 块被换出时,才写入主存;访问失效,有一个块将被换出,这也有两种情况:如果被替换的块没有修改过,将主存中的块调入cache 块中,访问主存两次;如果被替换的块修改过,则首先将修改的块写入主存,需要访问主存两次;然后将所以:一次访存请求最后真正的平均访存次数=66.5%*0+28.5%*0+3.5%*2+1.5%*4=0.13已用带宽=0.13× 10 9/10 9=13%5.12(1)写直达法:有5%的访存操作直接访问主存,其中75% 为读主存,写直达法无需替换,所以读操作引起的存储器流量为:5%×75%×2×109=0.075×109(字/s)有5%的访存操作直接访问主存,其中25% 为写主存,写直达法无需替换,所以写操作引起的存储器流量为:5%×25%×2×109=0.025×109(字/s)95%的访存操作直接访问cache,读命中无需访问主存,其中25% 写操作直接对应主存。

所以写操作引起的存储器流量为:95%×25%×109=0.2375×109 (字/s)主存频带的利用率为(0.075+0.025+0.2375)=0.3375(2)写回法:有5%的访存操作直接访问主存,其中75% 为读主存,写回法30%需替换,所以读操作引起的存储器流量为:5%×75%×(1+30%)× 2×109=0.0975×109(字/s)有5%的访存操作直接访问主存,其中25% 为写主存,写回法30%需替换,所以写操作引起的存储器流量为:5%×25%×(1+30%)× 2×109=0.0325×109(字/s)95% 的访存操作直接访问cache,读命中和写命中均无需访问主存。

主存频带的利用率为(0.0975+0.0325)=0.135.13 在伪相联中,假设在直接映象位置没有发现匹配,而在另一个位置才找到数据(伪命中)时,不对这两个位置的数据进行交换。

这时只需要1 个额外的周期。

假设失效开销为50 个时钟周期,2KB 直接映象Cache 的失效率为9.8%,2 路组相联的失效率为7.6% ;128KB 直接映象Cache的失效率为1.0%,2 路组相联的失效率为0.7%。

(1)推导出平均访存时间的公式。

(2)利用(1)中得到的公式,对于2KBCache 和128KBCache ,计算伪相联的平均访存时间。

解:不管作了何种改进,失效开销相同。

不管是否交换内容,在同一“伪相联”组中的两块都是用同一个索引得到的,因此失效率相同,即:失效率伪相联=失效率2 路。

伪相联cache的命中时间等于直接映象cache 的命中时间加上伪相联查找过程中的命中时间*该命中所需的额外开销。

命中时间伪相联=命中时间1 路+伪命中率伪相联×1交换或不交换内容,伪相联的命中率都是由于在第一次失效时,将地址取反,再在第二次查找带来的。

因此 伪命中率 伪相联 =命中率 2路-命中率 1路=( 1-失效率 2路)-( 1-失效率 1路) =失效率 1 路-失效率 2路。

交换内容需要增加伪相联的额外开销。

平均访存时间 伪相联=命中时间 1路+(失效率 1路-失效率 2路)× 1 +失效率 2路 ×失效开销 1路 将题设中的数据带入计算,得到:平均访存时间 2Kb =1+(0.098-0.076)*1+(0.076 *50 ) =4.822 平均访存时间 128Kb =1+(0.010-0.007)*1+(0.007 *50 ) =1.353 显然是 128KB 的伪相联 Cache 要快一些。

5.14 假设采用理想存储器系统时的基本CPI 是 1.5,主存延迟是 40 个时钟周期;传输速率为 4字节/时钟周期,且 Cache 中50%的块是修改过的。

每个块中有 32字节, 20%的指 令是数据传送指令。

并假设没有写缓存, 在 TLB 失效的情况下需要 20 时钟周期, TLB 不会 降低 Cache 命中率。

CPU 产生指令地址或 Cache 失效时产生的地址有 0.2%没有在 TLB 中找 到。

(1) 在理想 TLB 情况下,计算均采用写回法 16KB 直接映象统一 Cache 、 16KB 两路组 相联统一 Cache 和 32KB直接映象统一 Cache 机器的实际 CPI ;(2) 在实际 TLB 情况下,用(1)的结果,计算均采用写回法 16KB 直接映象统一 Cache 、 16KB 两路组相联统一 Cache 和 32KB 直接映象统一 Cache 机器的实际 CPI ; 其中假设 16KB 直接映象统一 Cache 、 16KB 两路组相联统一 Cache 和 32KB 直接映象 统一 Cache 的失效率分别为 2.9%、2.2%和 2.0%;25%的访存为写访问。

解: CPI=CPI 执行 +存储停顿周期数 /指令数存储停顿由下列原因引起:从主存中取指令load 和 store 指令访问数据由 TLB 引起存储停顿周期数 取指令停顿 数据访问停顿+ TLB 停顿=+指令数 指令数 指令数(1)对于理想 TLB ,TLB 失效开销为 0。

而对于统一 Cache , R 指令=R 数据P 指令=主存延迟+传输一个块需要使用的时间=40+32/4= 48(拍)若为读失效, P 数据=主存延迟+传输一个块需要使用的时间=40+32/4=48(拍) 若为写失效,且块是干净的,P 数据=主存延迟+传输一个块需要使用的时间=40+ 32/4=48(拍) 若为写失效,且块是脏的,P 数据=主存延迟+传输两个块需要使用的时间=40+ 64/4=56(拍)CPI=1.5+[RP+(RP*20%)+0 ] 指令访存全是读,而数据传输指令 Load 或 Store 指令, f 数据 *P 数据 =读百分比 * (f 数据 *P 数据 )+写百分比 * (f 数据 *P 干净数据 *其对应的百分比+ f 数据 *P 脏数据 *其对应的百分比) =20%*(75%×48+25%*(50%*48+50 %*(48+16)))=50(拍)停顿周期数 指令数 存储访问 指令数失效率 失效开销存储停顿周期数指令数R指令 P 指令 +(f 数据 R 数据 P 数据)TLB 停顿指令数代入上述公式计算出结果为:将 f 数据(数据访问指令频率) ,R t 和 P (t 分别是 TLB 的失效率和失效开销) ,R c 和 P w (分 别是 Cache 的失效率和写回的频率)代入公式得:TLB 停顿/指令数 ={[1+f 数据]*[R c (1+R w )]}R t P t其中, 1+f 数据:每条指令的访问内存次数; R c (1+R w ):每次内存访问需要的 由条件得: TLB 停顿 /指令数 ={[1+20%]*[R c (1+25%)]}0.2% × 202)TLB 停顿 ( 存储访问次数 指令数 (指令数TLB 访问存储访问次数) TLB 失效率 TLB 失效开销TLB 访问次数。

相关文档
最新文档