初三中考一轮复习(1)有理数 题型分类 含答案(全面 非常好)
广东省2024年九年级中考数学一轮复习:有理数 模拟练习(含解析)

2024年广东省九年级数学中考一轮复习:有理数模拟练习一、单选题1.(2023·广东广州·中考真题)计算:()A.B.C.D.2.(2023·广东深圳·中考真题)如果°C表示零上10度,则零下8度表示()A.B.C.D.3.(2023·广东·中考真题)负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作元,那么支出5元记作()A.元B.0元C.元D.元4.(2023·广东揭阳·一模)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果表示向东走,那么表示()A.向东走B.向西走C.向东走D.向西走5.一小袋味精的质量标准为“克”,那么下列四小袋味精质量符合要求的是()A.50.35克B.49.80克C.49.72克D.50.40克6.下列实数中,是有理数的是()A.B.C.D.7.(2023·广东广州·一模)如图,若点A,B,C所对应的数为a,b,c,则下列大小关系正确的是()A.B.C.D.8.的相反数为()A.5B.C.D.9.(2023·广东茂名·二模)与2相加结果为0的数是( )A.B.C.D.210.的倒数是( )A.B.2024C.D.11.据悉,截至2023年,我国累计建成并开通的5G基站总数超过290万个.数据“290万”用科学记数法表示为()A.B.C.D.二、填空题12.(2023·广东广州·中考真题)近年来,城市电动自行车安全充电需求不断攀升.截至2023年5月底,某市已建成安全充电端口逾280000个,将280000用科学记数法表示为.13.(2023·广东东莞·模拟预测)2022年政府工作报告中提出,实施新的组合式税费支持政策,预计2022年全年退税减税约2.5万亿元,将“万亿”用科学记数法表示为.14.(2023·广东揭阳·二模)任意写下一个三位数,百位数字乘个位数字的积作为下一个数的百位数字,百位数字乘十位数字的积作为下一个数的十位数字,十位数字乘个位数字的积作为下一个数的个位数字.在上面每次相乘的过程中,如果积大于9,则将积的个位数字与十位数字相加,若和仍大于9,则继续相加直到得出一位数.重复这个过程……例如,以832开始,运用以上的规则依次可以得到;766,669,999,999……如果,以123开始,运用以上的规则依次可以得到:,,……15.如图,数轴上的A、B两点所表示的数分别为a、b,则0.(填“>”“<”或“=”)16.婷算是中国古代的计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二表示的算式是.17.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+83=.18.“幻方”最早于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.三、解答题19.(2023·广西贺州·一模)计算:.20.计算21.(2023·广东江门·一模)计算:.22.计算:.23.在数轴上,点A、B分别表示数a、b,分别计算下列情况中点A、B之间的距离:(1)当a=2,b=5时,AB=______;(2)当a=0,b=5时,AB=_____;(3)当a=2,b=﹣5时,AB=______;(4)当a=﹣2,b=﹣5时,AB=______;(5)当a=2,b=m时,AB=______;(6)数轴上分别表示a和﹣2的两点A和B之间的距离为3,a=____;(7)点A、B分别表示数a、b,点A、B之间的距离为______;(8)|a﹣3|+|a﹣2|的最小值是______.参考答案:1.B【分析】本题考查相反数等知识,掌握相反数的概念是解题的关键.正数的相反数是负数,负数的相反数是正数,的相反数是.【详解】解:,故选:B.2.B【分析】根据“负数是与正数互为相反意义的量”即可得出答案.【详解】解:因为°C表示零上10度,所以零下8度表示“”.故选B【点睛】本题考查正负数的意义,属于基础题,解题的关键在于理解负数的意义.3.A【分析】根据相反数的意义可进行求解.【详解】解:由把收入5元记作元,可知支出5元记作元;故选A.【点睛】本题主要考查相反数的意义,熟练掌握相反数的意义是解题的关键.4.D【分析】正数与负数即意义相反的两个数,表示向东走,那么则表示向西走.【详解】表示向东走,那么表示向西走.故选:D【点睛】此题考查相反意义的量,解题关键是表示意义相反的量,表示向东走,那么表示反方向走,即向西走.5.B【分析】先根据一小袋味精的质量标准为“克”,可求出一小袋味精的质量的范围,再对照选项逐一判断即可.【详解】解:∵一小袋味精的质量标准为“克”,∴一小袋味精的质量的范围是49.75-50.25只有B选项符合,故选B.【点睛】本题考查了正负数的意义,正确理解正负数的意义是解题的关键.6.D【分析】根据无理数与有理数的即可判断.【详解】A. 是无理数,故错误;B. =2,是无理数,故错误;C. 是无理数,故错误;D. 是分数,为有理数,正确故选D.【点睛】此题主要考查有理数的定义,解题的关键是熟知无理数的定义.7.B【分析】从数轴得出,据此判断即可.【详解】解:由题意可知,,且,∴,故选项A不合题意;∴,故选项B合题意;∴,故选项C不合题意;∴,故选项D符合题意.故选:B.【点睛】本题考查了有理数的大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.8.B【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,逐一判断即可.本题主要考查了相反数的定义.解决问题的关键是熟练掌握只有符号不同的两个数是互为相反数.正数的相反数是负数,0的相反数是0,负数的相反数是正数.【详解】的相反数为.故选:B.9.C【分析】本题主要考查有理数的加法运算,根据有理数的加法运算求解即可.掌握有理数的加法运算法则是解题的关键.【详解】∵,∴与2相加结果为0的数是.故选:C.10.A【分析】题目主要考查倒数的定义,根据乘积为1的两个数互为倒数求解是解题关键.【详解】解:的倒数是,故选:A.11.A【分析】本题考查科学记数法.把一个数表示成与10的n次幂相乘的形式(,不为分数形式,n为整数).【详解】解:∵290万,∴,故选:A.12.【分析】用科学记数法表示较大的数时,一般形式为,其中,n为整数,据此判断即可.【详解】解:.故答案为:.【点睛】本题考查了用科学记数法表示较大的数,科学记数法的表示形式为,其中,确定与的值是解题的关键.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.13.【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将“万亿”用科学记数法表示为:.故答案为:.【点睛】此题考查了科学记数法,熟练掌握科学记数法的基本要求并正确确定a及n的值是解题的关键.14.326 963 999【分析】依次根据规律计算即可求解.【详解】解:以123开始,运用以上的规则依次可以得到:,,,则第一个数为326;,且,,,且,则第二个数为963;,且,,且,,且,则第三个数为999;故答案为:326;963;999;【点睛】本题考查了有理数的运算,这类题要认真按着规律从头计算.15.【分析】由数轴可确定,,再由有理数的加法法则即可确定和的符号.【详解】由数轴知:,,则,故答案为:.【点睛】本题考查了利用数轴比较大小,有理数的加法法则,确定a、b两数的大小关系,掌握加法法则是解题的关键.16.【分析】运用有理数的加减法法则,异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值即可得出.【详解】解:图中算式二表示的是,故答案为:.【点睛】本题考查有理数的加减,在做题时要注意,异号两数相加先判断符号,确定符号之后再进行运算.17.【分析】通过观察得到规律:左边是从1开始的连续自然数的立方和,右边是底数是从1开始的连续自然数的和,指数为2;根据此规律即可计算结果.【详解】由题意得:故答案为:.【点睛】本题是数字规律问题的探索,考查了有理数的运算及观察归纳能力.找到规律是问题的关键.18.【分析】先计算出行的和,得各行各列以及对角线上的三个数字之和均为,则,即可得.【详解】解:∵,∴,解得:,故答案为:.【点睛】本题考查了有理数的加减,解题的关键是理解题意和掌握有理数加减运算的法则.19.【分析】按照有理数的运算法则和运算顺序进行计算即可.【详解】解:原式.【点睛】本题考查了绝对值和含有乘方的有理数的混合运算.熟练掌握相关运算法则,是解题的关键.20.【分析】根据有理数的混合运算法则即可解答.【详解】解:;【点睛】本题考查了有理数的混合运算法则,熟记对应法则是解题的关键.21.3【分析】根据有理数的乘方,乘法,除法,绝对值,加减法分别计算即可.【详解】.【点睛】本题考查含乘方的混合运算,熟练掌握有理数的运算法则是解题的关键.22.-3【详解】解:=-3.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(1)3;(2)5;(3)7;(4)3;(5)∣m-2∣;(6)-5或1;(7)∣a-b∣;(8)1.【分析】(1)—(4)借助数轴,直接列出算式计算即可;(5)根据前面的计算得出规律即得结果;(6)借助数轴与前面解答的规律即可求出答案;(7)根据前面解答的规律即可得出结果;(8)根据绝对值的几何意义分情况解答即可.【详解】解:(1);(2);(3);(4);(5);(6)∵,,∴a=-5或1;(7);(8)|a﹣3|+|a﹣2|表示的几何意义:数轴上表示有理数a的点到3和到2的距离之和.所以当a>3时,数轴上表示有理数a的点到3和到2的距离之和大于1;当a<2时,数轴上表示有理数a的点到3和到2的距离之和大于1;当2≤a≤3时,数轴上表示有理数a的点到3和到2的距离之和等于1;综上,当2≤a≤3时,|a﹣3|+|a﹣2|的最小值是1.【点睛】本题考查了数轴与绝对值的意义,读懂题目信息,理解数轴上两点间的距离的表示、找出解题的规律是解答的关键.。
中考数学一轮复习专题01有理数含解析

专题01有理数【思维导图】【知识要点】知识点一有理数基础概念⏹有理数(概念理解)正数:大于0的数叫做正数.负数:正数前面加上符号“-”的数叫负数.有理数的分类(两种)(见思维导图)⏹数轴规定了原点、正方向、单位长度的直线叫做数轴.✓数轴的三要素:原点、正方向、单位长度(重点)任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的.✓数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. 【注意】1.数轴是一条直线,可向两段无限延伸.2.在数轴上原点,正方向,单位长度的选取需根据实际情况而定.⏹相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)⏹绝对值绝对值的概念:一班数轴上表示a的数与原点之间的距离叫做数a的绝对值.绝对值的意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.(互为相反数的两个数的绝对值相等.)⏹比较大小1)数轴上两个点表示的数,右边的总比左边的大.2)正数大于0,负数小于0,正数大于负数.3)两个负数比较,绝对值大的反而小.4)两个正数比较,绝对值大的反而大.常用方法:数轴比较法、差值比较法、商值比较法、绝对值比较法等.1.(2018·海南琼山中学中考模拟)下列各组数中,互为相反数的是 ( )A.|+2|与|-2| B.-|+2|与+(-2) C.-(-2)与+(+2) D.|-(-3) |与-|-3| 【详解】解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故选:D.2.(2019·四川中考真题)a -一定是A .正数B .负数C .0D .以上选项都不正确【详解】∵a 可正、可负、也可能是0∴选D.3.(2018·内蒙古中考模拟)如图,在数轴上表示互为相反数的两数的点是( )A .点A 和点CB .点B 和点C C .点A 和点BD .点B 和点D【详解】A 、B 、C 、D 所表示的数分别是2,1,-2,-3,因为2和-2互为相反数,故选A .4.(2013·江苏中考真题)如图,数轴上的点A 、B 分别对应实数a 、b,下列结论中正确的是( )A .a >bB .|a|>|b|C .﹣a <bD .a+b <0【详解】根据数轴,a <0,b >0,且|a|<|b|,A 、应为a <b,故本选项错误;B 、应为|a|<|b|,故本选项错误;C 、∵a <0,b >0,且|a|<|b|,∴a+b >0,∴﹣a <b 正确,故本选项正确;D 、应该是a+b >0,故本选项错误.故选C .5.(2019·甘肃中考真题)已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选:C .考察题型一 绝对值非负性应用1.(2016·山东中考真题)当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【详解】解:当1<a <2时,|a ﹣2|+|1﹣a|=2﹣a+a ﹣1=1.故选B .2.(2019·山东中考模拟)表示实数a ,b 的点在数轴上的位置如图所示,化简a b -( )A .2a -bB .bC .-bD .-2a +b【详解】根据数轴可以判断出0a b >>,则a b a b -=-a =,所以a b a b a b -=--=-所以选C.3.(2017·广西中考模拟)若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( )A .2或12B .2或-12C .-2或12D .-2或-12【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选:A4.(2018·浙江中考模拟)如果|a|≥0,那么( )A .a >0B .a <0C .a≠0D .a 为任意数【详解】a ,解:∵0∴a为任意数,故选:D.5.(2017·湖北中考模拟)若|x﹣2|+|y+2|=0,求x﹣y的相反数.【详解】∵|x﹣2|+|y+2|=0,∴x﹣2=0,y+2=0,解得x=2,y=﹣2,∴x﹣y=2﹣(﹣2)=4,∴x﹣y的相反数是﹣4.6.(2017·广东中考模拟)已知|a+3|+|b﹣5|=0,求:(1)a+b的值;(2)|a|+|b|的值.【详解】(1)由题意得,a+3=0,b﹣5=0,解得a=﹣3,b=5,所以,a+b=﹣3+5=2;(2)|a|+|b|=|﹣3|+|5|=3+5=8.考查题型二有理数比较大小1.(2018·山东中考模拟)如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数【解析】由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,则必是b<0、c<0、a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立,D被否定,于是应在两正一负的答案中寻找正确答案,若a,b 为正数,c 为负数时,则:|a|+|b|>|c|,∴a+b+c≠0,∴A 被否定,若a,c 为正数,b 为负数时,则:|a|+|c|>|b|,∴a+b+c≠0,∴B 被否定,只有C 符合题意.故选:C .2.(2019·北京中考模拟)实数a,b,c 在数轴上的对应点的位置如图所示,如果a+b =0,那么下列结论正确的是( )A .|a|>|c|B .a+c <0C .abc <0D .0a b 【详解】∵a+b=0,∴原点在a,b 的中间,如图,由图可得:|a|<|c|,a+c >0,abc <0,a b =-1, 故选C.12.(2019·山东滨州市滨城区东城中学中考模拟)有理数a,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④【解析】由图知,b <0<a,故①正确,因为b 点到原点的距离远,所以|b |>|a |,故②错误,因为b <0<a,所以ab <0,故③错误,由①知a-b>a+b,所以④正确.故选:B.4.(2018·湖北中考真题)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2【详解】根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选B.5.(2018·山东中考真题)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.知识点二有理数四则运算有理数的加法(重点)有理数的加法法则:(先确定符号,再算绝对值)1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数.有理数的加法运算律:加法交换律:两个数相加,交换加数的位置,和不变.+=+;即a b b a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即()()a b c a b c ++=++.⏹ 有理数的减法有理数的减法法则:减去一个数等于加上这个数的相反数.即()a b a b -=+-.注:两个变化:减号变成加号;减数变成它的相反数.⏹ 有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便;(4)运用有理数加法法则进行计算.注:运用加法运算律时,可按如下几点进行:(1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合;(3)互为相反数的两数相结合;(4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加.⏹ 有理数的乘法(重点)有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.倒数:乘积是1的两个有理数互为倒数.0没有倒数.(数()0a a ≠的倒数是1a )多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数.确定符号后,把各个因数的绝对值相乘.(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘.⏹ 有理数的乘法运算律乘法交换律:两个数相乘,交换因数的位置,积相等.即a b b a ⨯=⨯.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即()()a b c a b c ⨯⨯=⨯⨯.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 即()a b c a b a c ⨯+=⨯+⨯. ⏹ 有理数的除法有理数除法法则:(1)除以一个不为0的数,等于乘以这个数的倒数.即()10a b a b b÷=⨯≠. (2)两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除.0除以任何不为0的数,都得0.步骤:先确定商的符号,再算出商的绝对值.⏹ 有理数的乘除混合运算运算顺序:从左往右进行,将除法化成乘法后,进行约分计算.(注:带分数应首先化为假分数进行运算)⏹ 有理数的四则混合运算运算顺序:先乘除,后加减,有括号要先算括号里面的.注:除法一般先化为乘法,带分数化为假分数,合理使用运算律1.(2018·江苏中考模拟)计算:|–5+3|的结果是( )A .–8B .8C .–2D .2【解析】原式=|-2|=2,故选:D .2.(2019·浙江中考真题)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A.星期一B.星期二C.星期三D.星期四【详解】星期一温差:10﹣3=7℃;星期二温差:12﹣0=12℃;星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃;综上,周三的温差最大.故选C.3.(2018·四川中考模拟)如果a,b是有理数,那么下列各式中成立的是()A.如果a<0,b<0,那么a+b>0 B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0 D.如果a>0,b<0,且|a|>|b|,那么a+b>0【解析】解:A、∵同号两数相加取与加数相同的符号,∴a+b<0,故选项错误;B、如a=1,b=-2时,a+b=-1<0,故选项错误;C、如a=3,b=-2时,a+b=1>0,故选项错误;D、异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值,故选项正确.故选D.4.(2019·辽宁中考模拟)计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣1【详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.5.(2017·山东中考真题)计算-(-1)+|-1|,其结果为( )A.-2 B.2 C.0 D.-1【解析】试题分析:由题可得:原式=1+1=2,故选:B.6.(2018·辽宁中考模拟)两个非零有理数的和为零,则它们的商是()A.﹣1 B.0 C.1 D.﹣1或1【详解】∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是-1,故选A.7.(2019·内蒙古中考模拟)若−12的倒数与m+4互为相反数,则m的值是()A.1 B.−1C.2 D.−2【详解】−12的倒数与m+4互为相反数,得m+4=2,解得m=−2,故选:D.8.(2018·天津中考模拟)-6÷16的结果等于()A.1 B.﹣1 C.36 D.﹣36 【详解】解:原式=﹣6×6=﹣36故选:D.8.(2019·平阳县鳌江中学中考模拟)-2×(-5)的值是()A.-7 B.7 C.-10 D.10 【详解】﹣2×(﹣5)=+(2×5)=10.故选D.9.(2019·天津中考模拟)计算(–18)÷(–6)的结果等于 A .3 B .–3C .13D .−13【详解】(18)(6)-÷-=3考查题型三 与绝对值有关的分数化简1.(2018·福建中考模拟)若a≠0,b≠0,则代数式||||||a b aba b ab ++的取值共有( ) A .2个 B .3个C .4个D .5个【详解】由分析知:可分4种情况: ①a >0,b >0,此时ab >0,所以a b aba b ab++=1+1+1=3;②a >0,b <0,此时ab <0,所以a b aba b ab++=1﹣1﹣1=﹣1;③a <0,b <0,此时ab >0, 所以a b ab a b ab++=﹣1﹣1+1=﹣1; ④a <0,b >0,此时ab <0,所以a b aba b ab++=﹣1+1﹣1=﹣1;综合①②③④可知:代数式a b aba b ab++的值为3或﹣1,故选A .2.(2018·南宫市奋飞中学中考模拟)已知a,b,c 为非零的实数,则a ab ac bca ab ac bc+++的可能值的个数为( )A .4B .5C .6D .7【解析】解:①a 、b 、c 三个数都是正数时,a >0,ab >0,ac >0,bc >0,原式=1+1+1+1=4;②a 、b 、c 中有两个正数时,设为a >0,b >0,c <0,则ab >0,ac <0,bc <0,原式=1+1﹣1﹣1=0; 设为a >0,b <0,c >0,则ab <0,ac >0,bc <0,原式=1﹣1+1﹣1=0; 设为a <0,b >0,c >0,则ab <0,ac <0,bc >0,原式=﹣1﹣1﹣1+1=﹣2;③a 、b 、c 有一个正数时,设为a >0,b <0,c <0,则ab <0,ac <0,bc >0,原式=1﹣1﹣1+1=0; 设为a <0,b >0,c <0,则ab <0,ac >0,bc <0,原式=﹣1﹣1+1﹣1=﹣2; 设为a <0,b <0,c >0,则ab >0,ac <0,bc <0,原式=﹣1+1﹣1﹣1=﹣2;④a 、b 、c 三个数都是负数时,即a <0,b <0,c <0,则ab >0,ac >0,bc >0,原式=﹣1+1+1+1=2.综上所述:a ab ac bc a ab ac bc+++的可能值的个数为4. 故选A .3..(2019·四川初一期中)有理数a ,b .c 满足abc <0,a b c abc abcabc+++的值为( )A .1或﹣3B .﹣4C .0D .0或﹣4【详解】 解:∵abc <0,∴当有理数a,b,c 中有一个数小于0时,11110a b c abc a b c abc+++=-++-=,当有理数a,b,c 中三个数都小于0时,11114a b c abc abcabc+++=----=-,故选:D .考察题型四 有理数乘法运算律的应用 1.(2018·贵州中考真题)计算12+16+112+120+130+……+19900的值为( )A .1100B .99100C .199D .10099【解析】 原式=111111223344599100++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选:B.2.(2019·河北中考模拟)利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–1998【详解】原式=-999×(52+49-1)=-999×100=-99900.故选B3.(2016·河北中考真题)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.知识点三有理数的乘方 乘方(重点)一般地,n个相同的因数a相乘,即a×a×a⋯×a⏟n个,记作na,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在na中,a叫做底数,n叫做指数.n a读作a的n次方,也可以读作a的n次幂.当底数为分数时,要先用括号将底数括上,再在其右上角写指数,指数要写的小些. 乘方的规律:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.有理数乘方的运算方法:1.根据乘方的符号规律确定结果的符号.2.计算结果的绝对值.⏹有理数的混合运算运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先算括号里的,按小括号、中括号、大括号的顺序.⏹科学记数法把一个大于10的数记成10na⨯的形式,其中a是整数数位只有一位的数(即110a≤<),n是正整数,这样的记数方法叫科学记数法.(用科学记数法表示一个数时,10的指数比原数的整数位数少1.)把10na⨯还原成原数时,只需把a的小数点往前移动n位.⏹近似数和有效数字在实际问题中,由“四舍五入”得到的数或大约估计的数都是近似数.(近似数小数点后的末位数是0的,不能去掉0.)一个近似数从左边第一位非0的数字起,到末位数字止,所有的数字都是这个数的有效数字.一个近似数有几个有效数字,就称这个近似数保留几个有效数字.精确度:表示一个近似数与准确数的接近程度.一个近似数,四舍五入到哪一位,就称这个数精确到哪一位. 1.(2018·丹东第九中学中考模拟)下列算式中,运算结果为负数的是( )A.|-1| B.(-2)3 C.(-1)×(-2) D.(-3)2【解析】本题涉及乘法、绝对值、乘方等知识点.在计算时,需要针对每个知识点分别进行计算.详解:A.|−1|=1,错误;B.(-2)3=−8,正确;C.(−1)×(−2)=2,错误;D.(-3)2=9,错误;故选:B.2.(2018·四川成都外国语学校中考模拟)下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.3.(2018·河南中考模拟)若a=﹣4×4,b=﹣|﹣32×123|,c=﹣5+2(﹣22),则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>c>a D.c>a>b 【详解】因为a=﹣4×4=-16,b=﹣|﹣32×123|=-15,c=﹣5+2(﹣22)=-13.-13>-15>-16.所以c>b>a故选:B考查题型五有理数混合运算1.(2018·湖北中考模拟)计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017. 【详解】解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0; (2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15) =4×4×5 =80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1) =﹣1+18﹣3 =14.2.(2018·湖北中考模拟)计算: (1)﹣15+(﹣8)﹣(﹣11)﹣12 (2)1131(3)()()23142-⨯-⨯÷-(3)1111()()36693-÷-- (4)﹣23+[(﹣4)2﹣(1﹣32)×3] 【详解】()1原式()()1581112,=-+-++-3511,=-+24=-.(2)原式()71312.23142⎛⎫=-⨯-⨯⨯-=- ⎪⎝⎭(3)原式1326,36181818⎛⎫⎛⎫=-÷-- ⎪ ⎪⎝⎭⎝⎭153618⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭, 118365⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭, 1.10=(4)原式()816193,⎡⎤=-+--⨯⎣⎦()81683,⎡⎤=-+--⨯⎣⎦()81624,=-++840,=-+=32.3.(2018·海南琼山中学中考模拟)231131()()12()3346-÷-⨯- 【详解】 原式1131121292746⎛⎫=÷-⨯-⨯ ⎪⎝⎭()127929=⨯-- 37=-4.=-考查题型六 用科学记数法表示绝对值较大的数1.(2019·河南郑州实验外国语中学中考模拟)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×108 C .4.4×109 D .4.4×1010【详解】解:4 400 000 000=4.4×109, 故选C .2.(2018·河南中考真题)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×1011【解析】214.7亿,用科学记数法表示为2.147×1010, 故选:C .3.(2019·安徽中考模拟)据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯ B .83.610⨯ C .90.3610⨯ D .93.610⨯【解析】详解:将360000000用科学记数法表示为:3.6×108. 故选:B .4.(2018·广东中考真题)260000000用科学计数法表示为( ) A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯【详解】260000000的小数点向左移动8位得到2.6,所以260000000用科学记数法表示为82.610⨯, 故选B.5.(2019·山东中考模拟)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .10【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6, 故选B .考查题型七 根据精确度求近似值1.(2018·山东中考模拟)近似数3.02×106精确到( ) A .百分位 B .百位 C .千位 D .万位 【解析】近似数3.02×106精确到万位. 故选D .2.(2017·安徽中考模拟)用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )A .它精确到万位B .它精确到0.001C .它精确到万分位D .它精确到十位【解析】近似数4.005万精确到十位. 故选D .3.(2019·山东中考模拟)近似数1.23×103精确到( ) A .百分位 B .十分位 C .个位 D .十位【详解】∵1.23×103=1 230, ∴这个近似数精确到十位. 故选D .4.(2019·福建中考模拟)30269精确到百位的近似数是( ) A .303 B .30300C .330.230⨯D .43.0310⨯【详解】本题考查近似数的概念,按要求对30269取近似值,30269精确到百位的近似数应是303百,选项A 明显错误,B 选项精确到个位,C 选项不是科学记数法的模型,D 选项精确到百位,而且是规范的科学记数法. 故选:D.5.(2019·四川中考真题)用四舍五入法将130542精确到千位,正确的是( ) A .131000 B .60.13110⨯ C .51.3110⨯ D .413.110⨯【详解】解:130542精确到千位是1.31×105. 故选:C .6.(2019·河北中考模拟)近似数5.10精确到( ) A .个位 B .十分位 C .百分位 D .十位【详解】解:5.10精确到百分位. 故选:C .7.(2018·江苏中考模拟)今年无锡马拉松参赛选手91879人,这个数据精确到千位并用科学记数法表示为( )A.91×103 B.92×103 C.9.1×104 D.9.2×104【详解】91879≈9.2×104,故选:D.8.(2018·广西中考模拟)近似数精确到()A.十分位B.个位C.十位D.百位【解析】根据近似数的精确度:近似数5.0×102精确到十位.故选:C.21。
2020中考数学一轮复习基础达标训练题1:有理数(附答案)

2020中考数学一轮复习基础达标训练题1:有理数(附答案)1的相反数是( )A B C D 2.下列各组数中,互为相反数的是( )A .2与-3B .-3与-13C .2018与201.8D .-0.2和15 3.下列几组数中是互为相反数的是( )A .-17和0.7B .13和-0.333C .-(-6)和6D .-14和0.25 4.在数﹣2,﹣12,1,3中,大小在﹣1和0之间的数是( ) A .﹣2 B .﹣12 C .1 D .35.若|3m-5|+(n+3)2=0,则6m-(n+2)=( )A .6B .9C .0D .116.数轴上一点A 表示的有理数为2-,若将A 点向右平移3个单位长度后,A 点表示的有理数应为( )A .3B .1-C .1D .5-7.有理数m ,n 在数轴上的对应点的位置如图所示,则不正确...的结论是( )A .1m >-B .m n >-C .0mn <D .0m n +>8.若x 、y 为实数,且|2|0x +=,则2018()x y 的值为 A .2B .-2C .1D .-1 9.在12,0,1,-2,-112这五个有理数中,最小的有理数是( ) A .-112 B .0 C .1 D .-2 10.数轴上点A 表示-3,从A 出发,沿数轴向右移动4个单位到达点B,点B 表示的数是( )11.比较大小:5-__________0.12.支出100元记作﹣100元,收入300元记作_____元.13.不小于﹣3的负整数是______.14.若有理数a 、b 满足ab<0,则aa +||b b +ab ab=_____. 15.3-的相反数是________;0.5的倒数是________.16.如图,在纸面上有一数轴,点A 表示的数为1-,点B 表示的数为5,点C 表示的.若小米同学先将纸面以点B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是______.17.已知a 、b 互为相反数,c 、d 互为倒数,则(a+b )2016+(﹣cd )2017的值为_____. 18.若|m -2|=0,则|m +2|=________.19.如果a 、b 互为倒数,c 、d 互为相反数,且m=—1,则式子2()ab c d m -++=_______. 20.化简 3.14π-=_________________.(结果不取近似值,用式子表示)21.一辆货车从超市(O 点)出发,向东走2km 到达小李家(A 点),继续向东走4km 到达小张家(B 点),然后又回头向西走10km 到达小陈家(C 点),最后回到超市. (1)以超市为原点,向东方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示A 、B 、C 、O 的位置;(2)小陈家(C 点)距小李家(A 点)有多远?(3)若货车每千米耗油0. 5升,这趟路货车共耗油多少升?22.某公司仓库本周内货物进出的吨数记录如下(“+”表示进库,“-”表示出库);()1这一周,仓库内货物的总吨数是______了(填“增多”或“减少”);()2若周六结束时仓库内还有货物360吨,则周日开始时仓库内有货物多少吨?()3如果该仓库货物进出的装卸费都是每吨5元,那么这一周内共需付多少元的装卸费?23.如图,a 、b 、c 分别是数轴上A 、B 、C 所对应的实数,﹣|a ﹣.24.实数a 、b 所对应的点如图所示,化简|a |+|b |-|a -b |.25.如图数轴上A 、B 、C 三点对应的数分别是a 、b 、7,满足OA=3,BC=1,P 为数轴上一动点,点P 从A 出发,沿数轴正方向以每秒1.5个单位长度的速度匀速运动,点Q 从点C 出发在射线CA 上向点A 匀速运动,且P 、Q 两点同时出发.(1)求a 、b 的值(2)当P 运动到线段OB 的中点时,点Q 运动的位置恰好是线段AB 靠近点B 的三等分点,求点Q 的运动速度(3)当P 、Q 两点间的距离是6个单位长度时,求OP 的长.26.已知有理数 a 、b 、c 在数轴上所对应的点如图所示,试化简:|a -2b |-12 |b -2c |-|a +c |.27.在数轴上表示下列各数:()3+-,()4--,2--,12⎛⎫--⎪⎝⎭,0,2(1)--,并用“<”号把这些数连接起来. 28.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想±10%的含义是什么?参考答案1.A【解析】分析:根据只有符号不同的两个数互为相反数,可得答案.的相反数是,故选A.点睛:本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.D【解析】【分析】根据只有符号不同的两个数叫做互为相反数,对各选项分析判断后利用排除法求解.【详解】A.2与−3不是相反数,故本选项错误;B.−3与−13不是相反数,故本选项错误;C. 2018与201.8不是相反数,故本选项错误;D. -0.2和15是互为相反数,故本选项正确.故选D.【点睛】本题主要考查了相反数的定义,牢牢掌握相反数的定义是解答本题的关键.3.D【解析】【分析】根据互为相反数的意义,互为相反数的两个数的绝对值相等,或者,值相等负号不同的两个数也叫做互为相反数.据此解答.【详解】A、-17和0.7虽然符号相反,但这两个数绝对值不相等,不互为相反数;B、13和-0.333虽然符号相反,但这两个数绝对值不相等,不互为相反数;C、因为-(-6)=6,所以-(-6)和6这两个数相同,符号也相同,不互为相反数;D、-14和0.25,这两个数绝对值相同,符号相反,互为相反数;故选:D【点睛】考查相反数的定义,根据定义进行判断即可. 4.B【解析】如图,,由图可知,大小在﹣1和0之间的数是﹣12,故选B.5.D 【解析】根据非负数的性质和相反数的性质,可知3m-5=0,n+3=0,解得m=53,n=-3,因此代入可得6m-(n+2)=10-(-1)=11.故选D.6.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.7.A【解析】【分析】根据数轴与有理数的意义解答.【详解】由图可知:-2<m <-1<2<n <3.A .m <﹣1,故本选项错误,符合题意;B .|m |<|n |且m <0<n ,则m >﹣n ,故本选项正确,不符合题意;C .m <0<n ,则mn <0,故本选项正确,不符合题意;D .|m |<|n |且m <0<n ,∴0m n +>,故本选项正确,不符合题意.故选A .【点睛】本题考查了绝对值及数轴,解题的关键是得出n ,m 的取值范围.8.C【解析】【分析】根据非负数的性质列方程求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由非负数的性质可得:x+2=0,y-2=0,即x=-2,y=2, ∴2018x y ⎛⎫ ⎪⎝⎭=(-1)2018=1.故选C .【点睛】本题考查的是代数式,熟练掌握绝对值和平方根的非负性是解题的关键.9.D【解析】【分析】根据有理数大小比较的法则:①正数都大于0; ②负数都小于0; ③正数大于一切负数; ④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.10.C【解析】【分析】根据题意可知:点A沿数轴向右移动4个单位长度后表示的数为-3+4=1,即可得出答案.【详解】点A表示−3,从点A出发,沿数轴向右移动4个单位长度到达B点,则点B表示的数是−3+4=1;所以选C.【点睛】本题考查的是数轴,熟练掌握数轴的性质是解题的关键.11.<【解析】【分析】根据负数小于0 解答即可.【详解】∵负数小于0,∴-5<0.故答案为:<.【点睛】本题考查了有理数的大小比较,熟知正数大于0 ,0大于负数,正数大于负数,两个负数绝对值大的反而小是解题的关键.12.+300【解析】分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 详解: :“正”和“负”是相对的,∵支出100元记作-100元,∴收入300元记作+300元.点睛: 解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.13.﹣3、﹣2、﹣1.【解析】解:根据有理数比较大小的方法,可得不小于﹣3的负整数是﹣3、﹣2、﹣1.故答案为:﹣3、﹣2、﹣1.14.-1【解析】【分析】根据已知得出a、b异号,分为两种情况:①当a>0,b<0时,②当a<0,b>0时,去掉绝对值符号求出即可.【详解】∵ab<0,∴a、b异号,当a>0,b<0时,则aa+bb+abab=1-1-1=-1;当a<0,b>0时,则aa+bb+abab=−1+1-1=−1;故答案为:−1.【点睛】本题考查了绝对值的知识点,解题的关键是熟练的掌握绝对值的性质.15.3 2【解析】【分析】根据只有符号不同的两个数叫做互为相反数;乘积是1的两数互为倒数进行解答即可.【详解】﹣3的相反数是3;0.5的倒数是2,故答案为3;2.【点睛】本题考查了倒数和相反数,解题的关键是掌握倒数和相反数的概念.16.4-,106+【解析】以点B为中心折叠时,与点C重合的点是点F:∵BF=BC+=;∴OF=OB+BF=(5510以数2表示的点为中心折叠时, 与点C重合的点是点D和点E:∵CD=CG=2,+=;∴OD=OG+GD=(224-=∵BE=BD=BD-OD=(541+=;∴OE=OF+BE=(516故答案为10;4;6;17.﹣1【解析】【分析】由a、b互为相反数可得a+b=0,由c、d互为倒数可得cd=1,将a+b=0,cd=1代入所求式子求值即可.【详解】∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)2016+(﹣cd)2017=02016+(﹣1)2017=0﹣1=﹣1.故答案为﹣1.【点睛】(1)a与b互为相反数⇔a+b=0;(2)a 与b 互为倒数⇔ab =1. 18.4【解析】【分析】根据绝对值性质,由|m -2|=0可得出m -2=0,依此即可求得m=2,再代入|m +2|即可求出.【详解】解:∵|m -2|=0;∴m -2=0;∴m=2;把m=2代入|m +2|得|2+2|=|4|=4.故答案为:4.【点睛】本题考查了绝对值的意义;熟记0的绝对值等于0是解决问题的关键,难度较小.19.3【解析】【分析】由a 、b 互为倒数,c 、d 互为相反数,得ab=1,c+d=0,再代入式子可求结果.【详解】因为,a 、b 互为倒数,c 、d 互为相反数,所以,ab=1,c+d=0,所以,()2ab c d m -++=2×1-0+|-1|=3. 故答案为:3【点睛】本题考核知识点:倒数,相反数,绝对值.解题关键点:理解倒数,相反数,绝对值的意义.20. 3.14π-【解析】【分析】根据:如果a>0,那么|a|=a; 如果a<0,那么|a|=-a; 如果a=0,那么|a|=0.【详解】因为,3.14π-<0,所以,3.14?3.14ππ-=-故答案为: 3.14π-【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义.21.(1)见解析;(2)6km;(3)10L【解析】试题分析:(1)根据数轴与点的对应关系,可知超市在原点,小李家所在的位置表示的数是+2,小张家所在的位置表示的数是+6,小陈家所在的位置表示的数是-4;.(2)2-(-4)=6;.(3)先算这趟路一共有多少千米,再乘以货车每千米耗油的升数.试题解析:(1)如下图:点O 表示超市,点A 表示小李家,点B 表示小张家,点C 表示小陈家...(2)从图中可看出小陈家距小李家6千米..故小陈家距小李家6千米..(3)0.5×(|+2|+|+4|+|-10|+|+4|)=0.5×20=10(升)..故这趟路货车共耗油10升.点睛:数轴:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.22.减少【解析】分析:(1)由表格中的数据求出之和,即可作出判断;(2)根据(1)的结果与周六结束时仓库内货物的吨数,求出周日开始时仓库货物的吨数即可;(3)表格中数据绝对值之和,乘以5即可得到结果.详解:(1)根据题意得:11−12−16+35−23−20−15=46−86=−40,则这一周,仓库内货物的总吨数是减少了;故答案为:减少;(2)根据题意得:360+40=400(吨);(3)根据题意得:(11+12+16+35+23+20+15)×5=132×5=660(元).点睛:此题考查了正数与负数,弄清题中的数据是解本题的关键.23.2a﹣c【解析】【分析】=|a|=a+b,据此进行求解即可. 【详解】∵a<0,b<0,c>0,∴a-c<0.∴原式=|b|﹣|a﹣c|+(a+b)=﹣b+(a﹣c)+(a+b)=﹣b+a﹣c+a+b=2a﹣c.24.2b.【解析】【分析】先根据数轴判断出a>0,b>0,a-b>0,再利用绝对值的性质和二次根式的性质化简即可得.【详解】因为,0>b>,故a>0,b,a-b>0,所以原式=(a+(b)-(a-b)=a+b a+b=2b.【点睛】本题主要考查绝对值的性质与化简,解题的关键是根据数轴判断出各式的值的正负及绝对值的性质.25.(1)-3,6;(2)点Q的运动速度每秒1个单位长度;(3)OP的长为0.6或6.6.【解析】【分析】(1)由点C表示7,可得OC=7,由OA=3,BC=1,得A、B两点表示的数,可得a、b的值;(2)先计算P运动时间,根据点Q运动的位置恰好是线段AB靠近点B的三等分点,可知:BQ=AB,可得点Q的路程,根据时间可得结论;(3)设t秒时,PQ=6,分两种情况:①如图1,当Q在P的右侧时,②如图2,当Q在P 的左侧时;根据PQ=6分别列式可得t的值,再计算OP的长.【详解】(1)∵OA=3,∴点A表示的数为﹣3,即a=﹣3,∵C表示的数为7,∴OC=7,∵BC=1,∴OB=6,∴点B表示的数为6,即b=6;(2)当P为OB的中点时,AP=AO+OP=3+OB=3+3=6,t==4(s),由题意得:BQ=AB=×(3+6)=3,∴CQ=BQ+BC=1+3=4,∴V Q==1,答:点Q的运动速度每秒1个单位长度;(3)设t秒时,PQ=6,分两种情况:①如图1,当Q在P的右侧时,AP+PQ+CQ=3+7,1.5t+6+t=3+7,t=1.6,AP=1.5t=2.4,∴OP=3﹣2.4=0.6,②如图2,当Q在P的左侧时,AP+CQ=AC+PQ=10+6,1.5t+t=16,t=6.4,AP=1.5t=1.5×6.4=9.6,∴OP=9.6﹣3=6.6,综上所述,OP的长为0.6或6.6.【点睛】本题考查一元一次方程的应用以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.32 2b c --.【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:2b<b<a<0<c<2c,且∣a∣<∣c∣,所以a-2b>0,b-2c<0,a+c>0,所以|a-2b|-12|b-2c|-|a+c|=a-2b+12(b-2c)-(a+c)=a-2b+12b-c-a-c=322b c --.【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键. 27.详见解析.【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】()()2132|(1)042⎛⎫+---<--<<--<-- ⎪⎝⎭. 【点睛】本题考查的是数轴和有理数大小的比较的综合运用,熟练掌握方法是解题的关键.28.+10%表示比标准高10%,﹣10%表示比标准价低10%.【解析】【分析】“+”表示比标准高,“-”表示比标准低.【详解】+10%表示比标准高10%,﹣10%表示比标准价低10%.【点睛】本题考查了正数和负数的知识,“±”在实际问题中表示浮动,或高于或低于的意思.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。
中考数学一轮复习专题突破练习—有理数的运算(含解析)

中考数学一轮复习专题突破练习—有理数的运算(含解析)一、单选题1.(2022·陕西西安交大第二附属中学南校区九年级其他模拟)﹣23的倒数是()A.32B.23C.﹣32D.﹣23【答案】C【分析】根据:除0外的数都存在倒数,两个乘积是1的数互为倒数,0没有倒数;判断即可.【详解】解:﹣23的倒数是﹣32.故答案为:C.2.(2022·重庆字水中学九年级三模)下列各数中,相反数最大的是()A.-5 B.-2 C.-1 D.0【答案】A【分析】求得各选项的相反数,然后比较大小即可. 【详解】解:各选项的相反数分别为5,2,1,0∵5210>>>∴-5的相反数最大故答案为A .3.(2022·西安市铁一中学九年级其他模拟)据新浪财经2022年4月2日报到,第一龙头股贵州茅台一路走高,截至收盘涨近6%至2162元,收涨5.75%,市值激增至272000000元.数据272000000用科学记数法表示为( ) A .627210⨯B .82.7210⨯C .90.27210⨯D .927210⨯ 【答案】B 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8272000000 2.7210=⨯,故选:B.4.(2022·长春市解放大路学校九年级其他模拟)下列各数中,比2021-小的数为()A.2022-B.2020-C.0 D.2020【答案】A【分析】根据有理数的大小比较方法即可求解.【详解】∵2022-<2020-<2021-<0<2020故比2021--小的数为2022故选A.5.(2022·福建泉州市·泉州五中九年级其他模拟)据报道,2020年泉州GDP总量突破万亿大关,约为10159亿元,居全国第18位,其中数10159亿元用科学记数法表示为()A.12⨯元C.4⨯元D.51.0159100.1015910⨯元B.131.015910⨯元0.1015910【答案】A【分析】根据题意,运用科学记数法的表示方法可直接得出答案,要注意绝对值大于1的数字科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为正整数.【详解】解:10159亿用科学记数法表示为121.015910⨯,故选:A .6.(2022·山东省诸城市树一中学九年级三模)若x x +=0,那么实数x 一定是( )A .负数B .正数C .零D .非正数 【答案】D【分析】先整理,然后根据绝对值等于它的相反数进行解答.【详解】解:由x +|x |=0得,|x |=−x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:D .7.(2022·江苏南京·)下列四个实数中,是负数的是( )A .-(-1)B .(-1)2C .|-1|D .(-1)3【答案】D 【分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得. 【详解】解:A .-(-1)=1,是正数,不符合题意;B .(-1)2=1,是正数,不符合题意;C .|-1|=1,是正数,不符合题意;D .(-1)3=-1,是负数,符合题意;故选:D .8.(2022·河南师大附中九年级三模)1长度单位“埃”,等于一亿分之一厘米,那么一本杂志长为35厘米,等于( )埃.A .73.510⨯B .83.510⨯C .93.510⨯D .83.510-⨯ 【答案】C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:35cm=35×108埃=3.5×109埃.故选:C.9.(2019·宁夏)如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.17【答案】C【解析】试题分析:由图可知:第一个图案有三角形1个.第二图案有三角形1+3=4个.第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,第五个图案有三角形1+3+4+4+4=16,故选C.考点:规律型:图形的变化类.10.(2022·江苏苏州·)21÷(-7)的结果是()A.3 B.-3 C.13D.13【答案】B【分析】直接根据有理数的除法法则进行求解即可;【详解】21÷(-7)=-3,故选:B.二、填空题11.(2022·厦门市第九中学九年级二模)2022年厦门中考生大约39700人,这个数字可用科学记数法表示为__________【答案】3.97×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:39700=3.97×104.故答案为:3.97×104. 12.(2022·广东)已知a ,b 为有理数,如果规定一种新的运算“※”,规定:23a b b a =-※,例如:122231431=⨯-⨯=-=※,计算:()235=※※_________ .【答案】10 【分析】根据a ※b =2b -3a ,可以计算出所求式子的值. 【详解】解:∵a ※b =2b -3a ,∴(2※3)※5=(2×3-3×2)※5=(6-6)※5=0※5=2×5-3×0 =10-0=10,故答案为:10.13.(2022·贵州)某同学在银行存入1000元,记为1000+元,则支出500元,记为______元.【答案】500【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,若向银行存入1000元,记作“+1000元”,那么向银行支出500元,应记作“﹣500元”.故答案为:﹣500.14.(2022·浙江)已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=_____.【答案】-1【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.【详解】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.15.(2019·云南)如果x的相反数是2019,那么x的值是__________.【答案】2019-【解析】【分析】根据相反数的定义进行分析即可.【详解】解:∵2019-的相反数是2019,x的值是:2019-.故答案为2019-三、计算题16.(2020·河北九年级一模)小盛和丽丽在学完了有理数后做起了数学游戏(1)规定用四个不重复(绝对值小于10)的正整数通过加法运算后结果等于12,小盛:1+2+3+6=12:丽丽:1+2+4+5=12,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由:(2)规定用四个不重复(绝对值小于10)的整数通过加法运算后结果等于12;【答案】(1)见解析;(2)答案不唯一,-1-3+7+9=12.【分析】(1)由于1+2+3+4=10,要想和为12,在此基础上要加上2,据此进行思考即可;(2)根据有理数加减法法则按要求进行计算即可(答案不唯一).【详解】(1)没有其他算式了,四个小于10的不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加2,则任何两个数加1或者任意一个数加2,又因为数字不能重复,所以只能是3+1或4+1,3+2,或4+2;故符合条件的算式有1+2+4+5,1+2+3+6;只有两个;(2)答案不唯一,如:-1-3+7+9=12,写出一个即可.17.(2020·河北保定市·)计算下列各式的值.(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)﹣3.61×0.75+0.61×3+(﹣0.2)×75%.4【答案】(1)0;(2)-2.4【分析】(1)根据有理数的加减运算法则,先省略括号,再进行计算即可得解;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣90+90=0;(2)33.610.750.61(0.2)75%-⨯+⨯+-⨯4=﹣3.61×0.75+0.61×0.75+(﹣0.2)×0.75=0.75×(﹣3.61+0.61﹣0.2)=0.75×(﹣3.2)=﹣2.4.18.(2022·河南九年级一模)计算下列各题(1)3-----(2)|25|(15)(2)15351-+-+÷-()()2681224(3)23122--⨯--÷-3[(1)()6||]293(4)3331⨯--⨯+-⨯+⨯-2(1)213(1)5(13)7474;(4)-49【答案】(1)4;(2)-9;(3)34【分析】(1)原式先计算乘方及绝对值的代数意义计算即可求出值;(2)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式逆用乘法分配律计算即可求出值.【详解】解:(1)原式83154=--+=;(2)原式1535=-+-+⨯-()(24)26812=-+-1220910=-;9(3)原式2723=--⨯--⨯9[()6]8923=-++9943=;4(4)原式3311(25)13(2)=-⨯+-⨯+74410=-⨯-⨯71337=--1039=-;4919.(2018·石家庄市第四十一中学九年级二模)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【答案】-57.5【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.20.(2020·河北九年级其他模拟)利用运算律有时能进行简便计算.例198×12=(100-2)×12=1 200-24=1 176;例2-16×233+17×233=(-16+17)×233=233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×1-5⎛⎫⎪⎝⎭-999×1835.【答案】(1)-14 985;(2)99 900.【详解】(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985.(2)原式=999×413 118-18555⎡⎛⎫⎤+-⎪⎢⎥⎣⎝⎭⎦=999×100=99 900.21.(2019·浙江中考模拟)计算:–23+6÷3×23.圆圆同学的计算过程如下:原式=–6+6÷2=0÷2=0,请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】–203.【详解】圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+2×23=﹣8+43=﹣203.22.(2022·山东课时练习)求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【答案】(1)38;(2)0.15;(3)﹣a;(4)3b;(5)2﹣a;(6)a﹣b≥0时,a ﹣b;a﹣b<0时,b﹣a.【详解】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.23.(2022·全国课时练习)某沙漠可以粗略看成一个长方体,该沙漠的长度约是4800000m,沙层的深度大约是366cm,已知该沙漠中的体积约为33345km3立方千米.(1)请将沙漠中沙的体积用科学记数法表示出来(单位:m3);(2)该沙漠的宽度是多少米(精确到万位)?(3)如果一粒沙子体积大约是0.036mm3,那么,该沙漠中有多少粒沙子(用科学记数法表示)?【答案】(1)3.334 5×1013m3;(2)1.90×104m;(3)9.26×1023【详解】【分析】(1)首先把3 3345km3换算成33 345 000 000 000m3,再写成科学记数法.(2)沙漠的体积÷撒哈拉沙漠的长度÷沙层的深度=撒哈拉沙漠的宽度.(3)沙漠的体积÷一粒沙子体积=沙漠沙子的粒数.(1)33 345km3=33 345 000 000 000m3=3.334 5×1013m3;(2)3.334 5×1013m3÷4800000m÷366m≈1.90×104m.答:沙漠的宽度是1.90×104m.(3)3.334 5×1013m3=3.334 5×1022mm3,3.3345×1022mm3÷0.036mm3=9.26×1023(粒).答:沙漠中有9.26×1023粒沙子.。
中考一轮复习讲义 第1章 有理数(含答案)

中考数学一轮复习精品讲义第一章有理数知识网络结构图重点题型总结及应用题型一绝对值理解绝对值的意义及性质是难点,由于|a|表示的是表示数a的点到原点的距离,因此|a|≥0.可运用|a|的非负性进行求解或判断某些字母的取值.例1 如果a与3互为相反数,那么|a +2|等于( )A.5 B.1 C.-1 D.-5解析:a与3互为相反数,则a=-3,所以|a+2|=|-3+2|=|-1|=1.答案:B例2 若(a-1)2+|b+2|=0,则a+ b=.解析:由于(a-1)2≥0,|b+2|≥0,又(a-1)2与|b+2|互为相反数,因此(a-1)2=0且|b+2|=0,则a=1,b=-2,所以a +b=-1.答案:-1规律若几个非负数的和为0,则这几个数分别为0.题型二有理数的运算有理数的运算包括加减法、乘除法及乘方,是初中数学运算的基础.要熟记法则,灵活运算,进行混合运算时,还要注意运算顺序及运算律的应用.例3 (-1)2 011的相反数是( )A.1 B.-1 C.2 011 D.-2 011解析:由于指数2 011为奇数,所以(-1)2 011=-1,其相反数为1.答案:A例4 计算:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452;(2)⎡⎤⎛⎫⎡⎤--⨯⨯⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3.解:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452 2⎛⎫⎛⎫=-⨯⨯÷ ⎪ ⎪⎝⎭⎝⎭523(-8)-9-452 =4-9×49=4-4=0. (2)⎡⎤⎛⎫⎡⎤--⨯⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3 =⎡⎤⎛⎫--⨯ ⎪⎢⎥⎝⎭⎣⎦111(2-9)6 =⎛⎫⨯ ⎪⎝⎭51-(-7)6 =.⨯17(-7)=-66题型三 运用运算律简化运算过程运用加法的交换律、结合律,把某些具有相同属性的数(如正数、负数、分数中的分母具有倍数关系、相反数等)分别结合在一起相加,可以简化运算过程.例5 计算下列各题.(1)21-49.5+10.2-2-3.5+19; (2)⎛⎫⎛⎫---++-- ⎪ ⎪⎝⎭⎝⎭1137222323483; (3)2⎛⎫⎛⎫⎛⎫÷-++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭311113*********-42434(-0.2); (4)32323⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3351914321251943252. 分析:混合运算,应按法则进行,同时注意灵活运用运算律,简化运算过程.解:(1)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8;(2)原式⎛⎫⎛⎫=-++--=-+-+- ⎪ ⎪⎝⎭⎝⎭11372137122232232348324833;=-=311118324; (3)原式3⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭12457551241654341-5 ⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭14575524242412540434 =-+++113927056-330+125=-121=120404040; (4)原式=322⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦335194-22519435 =⎛⎫-⨯-⨯+=-⨯= ⎪⎝⎭2794319162700.8251943258点拨(1)正、负数分别结合相加;(2)分数中,同分母或分母有倍数关系的分数结合相加;(3)除法转化为乘法,正向应用乘法分配律;(4)逆向应用分配律a (b +c )=ab +ac ,即ab +ac =a (b +c ).题型四 利用特殊规律解有关分数的计算题根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.例6 计算下列各题. (1)--+-5231591736342; (2)⎛⎫⎛⎫--⨯-+⎪ ⎪⎝⎭⎝⎭3173155959595212777; (3)++++++++1111111112612203042567290(4)+++++++1111111…248165121 024 2 048. 分析:(1)带分数相加,可将带分数中整数部分与分数部分拆开分别相加.(2)本题若按常规计算方法比较麻烦,但若用运算律可简化运算.(3)由于==-==-==-⨯⨯⨯111111111111, , ,212262323123434==-⨯1111204545,==-⨯1111305656,==-⨯1111426767,==-⨯1111567878,==-⨯1111728989,==-⨯111190910910,所以将原算式变形裂项后,再进行计算. (4)算式中,后一个分数的分母是前一个分数分母的2倍,可在算式中加上最后一个分数12 048,再减去12 048,加上的12 048与前一个分数运算,所得的和再与前一个分数运算,依次向前进行,最终求得运算结果.解:(1)原式=-5---++--523191736342 ⎛⎫=+--+-==- ⎪⎝⎭523111(-5-9+17-3)0-11634244; (2)⎛⎫⎛⎫--⨯-+ ⎪ ⎪⎝⎭⎝⎭3173155959595212777 ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--⨯-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31731559+59+59+5212777 ⎛⎫⎛⎫=--⨯-+ ⎪ ⎪⎝⎭⎝⎭31731559+59-59+5212777 ⎡⎤⎛⎫⎛⎫=--⨯+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦317315(59-59+59)5212777 ()⎛⎫=--⨯ ⎪⎝⎭31759+15212 =⨯⨯⨯31760-60-60=36-30-35=-295212. (3)原式=++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯1111111111223344556677889910 ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111223344556⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111677889 =-=1911010(4)原式=++++=-+++++++16181412120481204812048110241...161814121 …204815121...161814121204811024110241-+++++=-++.=+-=-=1111 2 047122 2 048 2 048 2 048点拨利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性. 题型五 有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.例7 有8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?分析:本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.解析:1.2+(-0.8)+2.3+1.7+(-1.5)+(-2.7)+2+(-0.2)=1.2-0.8+2.3+1.7-1.5-2.7+2-0.2=(2.3+1.7+2)+(-0.8-2.7-1.5)+(1.2-0.2)=6-5+1=2.则15×8+2=122(千克).答案:这8箱橘子的总重量是122千克.例8 一货车为一家摩托车配件批发部送货,先向南走了8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?解:(1)能.如图1-6-1所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5-(-3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|-3.5|+|-7.5|+|3|=8+3.5+7.5+3=22(千米).题型六探索数字规律找数字规律的题目成为近几年中考的热点问题,这类题目灵活多变.解题时要认真观察、分析思考,找出规律,并运用规律解决问题.例9 某种细菌在繁殖过程中,每半小时分裂一次,由一个分裂成两个,2.5小时后,这种细菌可分裂为( )A.8个B.16个C.32个D. 64个解析:本题数字的规律是1→2→4→8…,每半小时细菌个数变为原来的2倍,所以经过2.5小时,细菌个数应变为原来的25倍,即32个.答案:C例10 观察图1-6-2,寻找规律,在“?”处应填上的数字是( )A.128 B.136C.162 D.188解析:观察图个数字特点可发现:8=4+2+2;14=8+4+2;26=14+8+4;….所以“?”=88+48+26=162.答案:C思想方法归纳本章中所体现的数学思想方法主要有:1.数形结合思想:在本章中,自始至终利用数轴来定义或描述有理数的概念和运算,数轴成为理解有理数及其运算的重要工具.这种把数与形(图形或数轴)结合起来进行研究的思想方法,是学习数学的重要思想方法.2.分类讨论思想:a与-a哪个大呢? a的绝对值等于什么?在本章中,我们都是通过分类讨论解决问题,分类讨论可以把一个复杂的问题分成若干个较简单的问题来处理,这是数学中处理问题的一种重要思想方法.不重复、不遗漏是对分类讨论提出的基本要求.例如,我们常把有理数分成正有理数、负有理数和零三类,如果遗漏了零,只考虑正有理数和负有理数两种情况,就会犯错误.3.转化思想:有理数的加法是通过符号法则转化为绝对值(小学所学的数)的加减法进行的;有理数的减法是通过转化为加法进行的;有理数的除法是通过转化为乘法,或者说有理数的乘除法是通过符号法则转化为绝对值的乘除法进行的.1.数形结合思想数轴是数形结合的重要工具,涉及含字母或绝对值符号的问题,借助数轴往往有利于问题的迅速解决.例1 |a|>|b|,a>0,b<O,把a、b、-a、-b按由小到大的顺序排列.分析:将a、b、-a、-b在数轴上对应点的位置找出来,就可以比较大小了.解:由a>0,b<0可知,a为正数,b为负数,a、b所对应的点分别在数轴上原点的右边和左边.由于|a|>|b|,从绝对值的几何意义可知,表示数a的点离原点的距离比表示数b的点离原点的距离远,而互为相反数的两个数绝对值相等,即|a|=|-a|,|b|=|-b|,于是a、b、-a、-b在数轴上的位置如图1-6-3所示.故由小到大的顺序排列为-a<b<-b<a.提示比较数的大小,可在数轴上把这些对应点表示出来,按从左到右的顺序确定后,就能写出这些数的大小关系.从本例看,我们还可以进一步得到-a<b<0<-b<a.例2 有理数a、b在数轴上对应点的位置如图l-6-4所示,则必有( )A.a+ b>0 B.a-b<o C.a b>0 D. ab<0解析:由数轴可知0<a<1,b<-l<0且|b|>|a|,因此有a+b<0 a-b>0,ab<0,ab<0.故选D.答案:D点拨本题要注意读懂图形(数轴),掌握数轴上点的性质,还要注意有理数的四则运算法则.2.分类讨论思想例3 比较2 a与-2 a的大小.分析:由于a可能为正数,也可能为负数和0,所以应分a>0,a<0,a=0三种情况讨论.解:当a>0时,2 a>-2 a;当a<0时,2 a<-2 a;当a=0时,2 a=-2 a.规律解此类题时用分类讨论的思想方法来完成.3.转化思想例4 计算:l3+23+33+43+…+993+1003的值.分析:直接求解,当然不行,必须探索规律,将运算进行转化.解:∵l3=1,13+23=9=32=(1+2)2,13+23+33=36=62=(1+2+3)2,13+23+33+43=100=(1+2+3+4)2,…,由此可知13+23+33+43+…+993+1003=(1+2+3+4+…+99+100)2=2⨯⎡⎤⎢⎥⎣⎦(1+100)1002=5 0502=25 502 500.点拨利用转化思想可将“复杂问题”转化为“简单问题”,把“陌生”问题转化为“熟悉”的知识解决.本题中把“立方”运算转化为“平方”运算,把“求和”运算转化为“乘方”的运算.4.用“赋值法”解题在做选择题和填空题时,问题的结论如果运用法则、定义等推导,有些题容易,而有些题很复杂,对于那些推导过程比较复杂的题目可采取“赋值法”,这样就能又快又准地得出结论.例5 m-n的相反数是( )A.-( m + n) B.m+ n C.m-n D.-( m-n)解析:可设m=2,n=1,则m-n=1.又-( m + n)=-3,m+ n=3,m-n=1,-( m-n)=-1.故选D.答案:D点拨赋值时取值要符合题意,但又不能特殊,本题中m,n不能取0,得出结论后再用其他值试一试,如:m=3,n=-2等.例6 如果a>0,b<0,|a|>| b|,那么a+ b0,a-b0.(填“>”或“<”)解析:由前提条件设a=3,b=-1,则a+b=2,a-b=4.答案:>>例7 若x y x y +-中的x ,y 都扩大到原来的5倍,则x y x y+-的值( ) A .缩小, B .不变 C . 扩大到原来的5倍 D .缩小到原来的15解析:取x =3,y =2,32532x y x y ++==--,5x =15,5 y =10,15+1015-10=5. 答案:B点拨 (1)“赋值法”只能在客观题(填空题、选择题)上并且用其他方法不易解出时使用,一般不提倡使用,但可以作为检验结论是否正确的方法。
中考数学一轮复习基础考点专题01有理数(含解析)

中考数学一轮复习基础考点专题01有理数(含解析)中考数学一轮复习基础考点专题01有理数(含解析)专题01 有理数[思维导图][知识要点]知识点一有理数基础概念正数:大于0的数叫做正数。
负数:正数前面加上符号“-”的数叫负数。
有理数的分类(两种)(见思维导图)数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度(重点)任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
是正数.[注意]数轴是一条直线,可向两段无限延伸。
在数轴上原点,正方向,单位长度的选取需根据实际情况而定。
相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)绝对值绝对值的概念:一班数轴上表示a的数与原点之间的距离叫做数a的绝对值。
绝对值的意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)比较大小1)数轴上两个点表示的数,右边的总比左边的大。
2)正数大于0,负数小于0,正数大于负数。
3)两个负数比较,绝对值大的反而小。
4)两个正数比较,绝对值大的反而大。
常用方法:数轴比较法、差值比较法、商值比较法、绝对值比较法等。
1.(·海南琼山中学中考模拟)下列各组数中,互为相反数的是( ) A.|+2|与|-2| B.-|+2|与+(-2) C.-(-2)与+(+2) D.|-(-3) |与-|-3| [详解]解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故选:D.2.(·四川中考真题)一定是A.正数 B.负数 C. D.以上选项都不正确[详解]∵a可正、可负、也可能是0∴选D.3.(·内蒙古中考模拟)如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D[详解]A、B、C、D所表示的数分别是2,1,-2,-3,因为2和-2互为相反数,故选A.4.(2013·江苏中考真题)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()[详解]根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选C.A.-3 B.-1 C.-1或-3 D.1或-3 [详解]∵ ,是2的相反数,∴ 或,,当时,;当时,;综上,的值为-1或-3,考察题型一绝对值非负性应用1.(·山东中考真题)当1A.-1 B.1 C.3 D.-3[详解]解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.2.(·山东中考模拟)表示实数a,b的点在数轴上的位置如图所示,化简的结果是( )A.2a-b B.b C.-b D.-2a+b[详解]根据数轴可以判断出,则,,所以所以选C.3.(·广西中考模拟)若,那么的值是()A.2或12 B.2或-12 C.-2或12 D.-2或-12[详解]由可得x=±7,由可得y=±5,则,故选:A4.(·浙江中考模拟)如果|a|≥0,那么()A.a>0 B.a<0 C.a≠0 D.a为任意数[详解]解:∵∴a为任意数,故选:D.5.(·湖北中考模拟)若|x﹣2|+|y+2|=0,求x﹣y的相反数.[详解]∵|x﹣2|+|y+2|=0,∴x﹣2=0,y+2=0,解得x=2,y=﹣2,∴x﹣y=2﹣(﹣2)=4,∴x﹣y的相反数是﹣4.6.(·广东中考模拟)已知|a+3|+|b﹣5|=0,求:(1)a+b的值;(2)|a|+|b|的值.[详解](1)由题意得,a+3=0,b﹣5=0,解得a=﹣3,b=5,所以,a+b=﹣3+5=2;(2)|a|+|b|=|﹣3|+|5|=3+5=8.考查题型二有理数比较大小1.(·山东中考模拟)如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数 B.c为正数,b为负数C.c为正数,a为负数 D.c为负数,a为负数[解析]由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,则必是b<0、c<0、a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立,D被否定,于是应在两正一负的答案中寻找正确答案,若a,b为正数,c为负数时,则:|a|+|b|>|c|,∴a+b+c≠0,∴A被否定,若a,c为正数,b为负数时,则:|a|+|c|>|b|,∴a+b+c≠0,∴B被否定,只有C符合题意.故选:C.2.(·北京中考模拟)实数a,b,c在数轴上的对应点的位置如图所示,如果a+b =0,那么下列结论正确的是()A.|a|>|c| B.a+c<0 C.abc<0 D.[详解]∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,=-1,故选C.12.(·山东滨州市滨城区东城中学中考模拟)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④[解析]由图知,b|a|,故②错误,因为ba+b,所以④正确.故选:B.4.(·湖北中考真题)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2[详解]根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选B.5.(·山东中考真题)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0[详解]从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.知识点二有理数四则运算有理数的加法(重点)有理数的加法法则:(先确定符号,再算绝对值)1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。
专题01 有理数(解析版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

益阳中考)四个实数﹣,,中,比.﹣.解:根据负数都小于零可得,﹣<.﹣2.倒数3.相反数(1)概念:只有符号不同的两个数叫做互为相反数。
(2)意义:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”结果为负,有偶数个“﹣”,结果为正。
(4)规律方法总结:求一个数相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
【热点题型精练】7.(2022•黄石中考)的绝对值是( )A.1﹣B.﹣1C.1+D.±(﹣1)解:1﹣的绝对值是﹣1;答案:B.8.(2022•无锡中考)﹣的倒数是( )A.﹣5B.C.﹣D.5解:﹣的倒数为﹣5.答案:A.9.(2022•宁波中考)﹣2022的相反数是( )A.﹣B.C.﹣2022D.2022解:﹣2022的相反数是2022,答案:D.10.(2022•黔东南州中考)下列说法中,正确的是( )A.2与﹣2互为倒数B.2与互为相反数C.0的相反数是0D.2的绝对值是﹣2解:A选项,2与﹣2互为相反数,故该选项不符合题意;B选项,2与互为倒数,故该选项不符合题意;C选项,0的相反数是0,故该选项符合题意;D选项,2的绝对值是2,故该选项不符合题意;答案:C.四、有理数比较大小及运算【高频考点精讲】1.有理数比较大小(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数。
两个负数比较大小,绝对值大的反而小。
(2)数轴比较:在数轴上,右边的点表示的数大于左边的点表示的数。
(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b。
2.有理数运算(1)运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。
有理数中考题汇总(参考答案与试题解析)1

第1章《从自然数到有理数》常考题集(01):1.2有理数参考答案与试题解析1、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%解答:解:根据正数和负数的定义可知,﹣6%表示减少6%.故选C.2、考点:正数和负数分析:正数都大于0,负数都小于0,比0小的数即为负数.解答:解:∵﹣1<0,∴只有D符合条件.3、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以,如果向东走80m记为“+80m”,那么向西走60m记为“﹣60m”.故选A4、考点:正数和负数分析:若火箭发射点火前5秒记为﹣5秒,则点火后为正;那么火箭发射点火后10秒应记为+10秒.解答; 解:若火箭发射点火前5秒记为﹣5秒,那么发射时间应为原点,所以点火后10应记作+10秒.故选D5、考点:正数和负数分析:根据正数和负数的定义可直接解答.解答; 解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选A.6、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答; 解:“正”和“负”相对,如果+3吨表示运入仓库的大米吨数,即正数表示运入仓库,负数应表示运出仓库,故运出5吨大米表示为﹣5吨.故选A.7、考点:正数和负数专题:应用题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵“正”和“负”相对,小方先向东走了8米,记作“+8米”,∴向西走了10米,记作﹣10米.∴+8+(﹣10)=﹣2.故选B.8、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.解答:解:因为正”和“负”相对,所以,如果收入200元记作+200元,那么支出150元记作﹣150元.故选B.9、考点:正数和负数专题:应用题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:水面为0,一只海豚先下潜40m,又上升23m故应为﹣40m+23m=﹣17m.故选B.10、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:在天气预报图中,零上5度用“5℃”表示,那么零下用负数表示,零下5度表示为“﹣5℃”.故选C.11、考点:正数和负数分析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.解答:解:负号表示与上升意义相反,即下降,则飞机上升了﹣80米,实际上是下降80米.故选D.12、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选C.13、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.岁与升不能比较.解答:解:增大2岁与减少2升不是互为相反意义的量.故选D.14、考点:正数和负数分析:一般情况下一对反义词具有相反意义,气温升高和气温降低具有相反意义.解答:解:因为气温升高和气温升高不具有相反意义,所以气温升高4℃与气温升高10℃不是一对具有相反意义的量.故选C.15、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵“正”和“负”相对,水位下降3m,记作﹣3m,∴水位上升4m,记作+4m.故选C.16、考点:正数和负数专题:应用题;图表型.分析:成绩记录中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,由于达标成绩为18秒,0和负数表示成绩为达标.则记录中的数不大于0则表示成绩达标.故应该有6人达标,从而求出达标率.解答:解:∵“正”和“负”相对,从表格中我们会发现,这8个人中有6人是达标的,∴这个小组女生的达标率是=75%.故选D.17、考点:正数和负数分析:根据负数的定义:小于0的是负数作答.解答:解:五个数﹣1,1.2,﹣2,0,﹣(﹣2),化简为﹣1,1.2,﹣2,0,+2.所以有2个负数.故选A.18、考点:正数和负数分析:区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号,如果a是小于0的数,那么﹣a就是正数.如果a大于0,那么﹣a就是负数.解答:解:如果a是小于0的数,那么﹣a就是正数;如果a大于0,那么﹣a就是负数;如果a是0,那么﹣a也是0.所以以上结论都不对.故选D.19、考点:正数和负数分析:具有相反意义的量必须满足两个条件:(1)它们必须是同一属性的量;(2)它们的意义相反.解答:解:A、节约汽油10公斤和浪费酒精10公斤,不是同一属性的量,故错误;B、向东和向西有相反意义,故错误;C、正确;D、身高180cm和身高90cm没有相反意义,故错误.故选C.20、考点:正数和负数分析:根据负数的定义可知,小于0的数都是负数;所以,﹣,﹣3.2,﹣1均为负数.故共有3个.解答:解:根据题意,在﹣,+,﹣3.2,0,4.5,﹣1中,只有﹣,﹣3.2,﹣1为负数,即负数共有3个,故选C.21、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,本题收入与支出具有相反意义.解答:解:收入20元与支出30元是一对具有相反意义的量.故选A.22、考点:正数和负数专题:应用题;分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.解答:解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选B.23、考点:有理数.分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.24、考点:有理数.专题:计算题.分析:首先找出这四个数中的负数,然后找出负数中的整数.解答:解:在:0、1、﹣2、﹣3.5这四个数中负数有﹣2和﹣3.5,但﹣3.5是小数而不是整数,所以只有﹣2是负整数.故选C.25、考点:有理数.分析:按照有理数的分类判断:有理数解答:解:负整数和负分数统称负有理数,A正确.整数分为正整数、负整数和0,B正确.正有理数与0,负有理数组成全体有理数,C错误.3.14是小数,也是分数,小数是分数的一种表达形式,D正确.故选C.26、考点:有理数.分析:按照有理数的分类判断:有理数,结合数轴上的点所表示的数加以分析说明.解答:解:有理数既没有最大的也没有最小的,所以A、C、D是错误的,正确的是B.故选B.27、考点:有理数分析:根据负有理数的定义作答.解答:解:负有理数有﹣8.25,﹣0.4,,﹣28,共四个.故选D28、考点:正数和负数专题:应用题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以,如果上升3米记作+3米,那么下降2米记作﹣2米.故为﹣2米.29、考点:正数和负数分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以,若商品的价格上涨5%,记为+5%,则价格下跌3%,记作﹣3%故填﹣3.30、考点:正数和负数专题:应用题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以,向南走2m记作﹣2m,则向北走3m记作+3m.。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-有理数(原卷版)

专题01有理数【专题目录】技巧1绝对值的八种常见应用技巧2有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数(1)ab=1⇔a,b互为倒数;(2)0没有倒数;(3)倒数等于它本身的数是1和-1.科学计数法把一个数写成a×10n(其中1≤|a|<10,n为整数)的形式【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便;(4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行:(1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合;(3)互为相反数的两数相结合;(4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1)几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值1.化简:(1)|-(+7)|;(2)-|-8|;【类型】二、已知一个数的绝对值求这个数2.若|a|=2,则a=________.3.若|x|=|y|,且x=-3,则y=________.【类型】三、绝对值在求字母的取值范围中的应用4.若|x|=-x ,则x 的取值范围是________.5.若|x -2|=2-x ,则x 的取值范围是________.【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-|-45|,0,用“>”连接正确的是()A .0>-(-1)>-|-45|>-23B .0>-(-1)>-23>-|-45|C .-(-1)>0>-23>-|-45|D .-(-1)>0>-|-45|>-23【类型】五、绝对值的非负性在求字母值中的运用7.若|a -12|+|b -13|+|c -14|=0,求a +b -c 的值.【类型】六、绝对值的非负性在求最值中的应用8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________;技巧2:有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误1.下列说法正确的是()A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、误认为|a|=a ,忽略对字母a 分情况讨论2.如果一个数的绝对值等于它本身,那么这个数一定是()A .负数B .负数或零C .正数或零D .正数【类型】三、对括号使用不当导致错误3.计算:2-15+14-【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:--56-【类型】六、除法没有分配律6.计算:-18-【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有()A .1个B .2个C .3个D .4个【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是()A .1-B .1C .2D .3【题型】三、求一个数的相反数例3、下列式子中,正确的是()A .|﹣5|=﹣5B .﹣|﹣5|=5C .﹣(﹣5)=﹣5D .﹣(﹣5)=5【题型】四、求一个数的绝对值例4、2020-的绝对值是()A .2020-B .2020C .12020-D .12020【题型】五、有理数的加减乘除混合运算例5、计算:(1)12(18)(7)15--+--(2)1(4)8(16)13⎛⎫-⨯--÷- ⎪⎝⎭(3)3511(24)4612⎛⎫-+⨯- ⎪⎝⎭(4)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦【题型】六、科学记数法例6、2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A .50.3610⨯B .53.610⨯C .43.610⨯D .43610⨯有理数(达标训练)一、单选题1.(2022·浙江金华·一模)2-的相反数是()A .2B .12C .2-D .12-2.(2022·辽宁抚顺·模拟预测)12-的绝对值等于()A .12-B .12C .2D .-23.(2022·上海普陀·二模)下列各数在数轴上所对应的点与原点的距离最远的是A .2B .1C . 1.5-D .3-4.(2022·重庆铜梁·一模)在下列四个选项中,比-1小的数是()A .1B .-2C .0D .25.(2022·河南·三模)下列各数中绝对值最大的数是()A .4-B .3-C .0D .π6.(2023·福建莆田·二模)中国工程院院士、世界杂交水稻之父袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,为中国粮食安全、农业科学发展和世界粮食供给作出杰出贡献.2021年,全国粮食再获丰收,全年粮食总产量达到13657亿斤,粮食产量连续7年稳定在1.3万亿斤以上.将13657用科学记数法表示应为()A .50.1365710⨯B .51.365710⨯C .313.65710⨯D .41.365710⨯二、填空题7.(2022·河南·郑州外国语中学模拟预测)计算:32-+=______.8.(2021·福建漳州·模拟预测)如图,数轴上A ,B 两点表示的两个数互为相反数(一格表示单位长度为1),则点C 表示的数是________.三、解答题9.计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.有理数(提升测评)一、单选题1.(2022·河北邯郸·三模)等号左右两边一定相等的一组是()A .()a b a b -+=-+B .3a a a a =++C .()222a b a b-+=--D .()a b a b --=--2.(2022·河北保定·二模)嘉琪在《趣味数学》中学习到远古时期的一种计数方法,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示,在从右向左依次排列的不同绳子上打结,满五进一,例如,图1中表示的数为31,可知图2中表示的数为()A .42B .46C .86D .3213.(2022·安徽·三模)下列各数中,化简结果最小的是()A .-5B .5-C .()15--D .()25-4.(2022·贵州贵阳·三模)如图,在不完整的数轴上,点A ,B 分别表示数a ,b ,且a 与b 互为相反数,若AB =8,则点A 表示的数为()A .-4B .0C .4D .85.(2022·河北唐山·三模)如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C对齐刻度5.4cm .则数轴上点B 所对应的数b 为()A .3B .1-C .2-D .3-6.(2022·陕西·西安工业大学附中三模)下列算式中,运算结果为负数的是()A .21-B .﹣1﹣(﹣5)C .﹣(﹣16)D .﹣2×0二、填空题7.(2022·浙江宁波·一模)定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.8.(2022·河北石家庄·二模)如图,在数轴原点O 的右侧,一质点P 从距原点10个单位的点A 处向原点方向跳动,第一次跳动到OA 的中点A 1处,则点A 1表示的数为_____;第二次从A 1点跳动到OA 1的中点A 2处,第三次从A 2点跳动到OA 2的中点A 3处,如此跳动下去,则第四次跳动后,该质点到原点O 的距离为_____.三、解答题9.(2022·河北保定·二模)已知数轴上有两个点A :-3,B :1.(1)求线段AB 的长;(2)若2m =,且m <0;在点B 右侧且到点B 距离为5的点表示的数为n .①求m 与n ;②计算2m +n +mn ;。
2023年九年级数学中考一轮基础复习--有理数(含解析)

2023年数学中考一轮基础复习--有理数一、单选题1.下列各数: 2-1(), --3() , 3-2() , -1-2⨯()() 其中负数有( )个 A .1 B .2 C .3 D .42.下列四个算式中运算结果为2022的是( )A .2021(1)+-B .2021(1)--C .2021(1)-⨯-D .2022(1)÷-3.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形; 乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB=2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是A .甲>乙>丙B .甲>丙>乙C .丙>甲>乙D .丙>乙>甲4.若|2|b +与2(3)a -互为相反数,求a b 的值为( ).A .8-B .8C .18-D .185.2019年7月盐城黄海湿地中遗成功,它的面积约为400000万平方米,将数据400000用科学记数法表示应为( ) A . 60.410⨯ B .9410⨯ C .44010⨯D .5410⨯6.在算式 123-- 中,“□”内填入下列运算符号中的一种,计算结果最大的是( ) A .+B .-C .×D .÷7.已知a =2 0162,b =2 015×2 017,则( )A .a =bB .a >bC .a <bD .a ≤b8.已知 23x <≤ ,则 3x -的值为( )A .25x -B .-1C .1D .52x -9.有理数a ,b 在数轴上对应的点的位置如图所示,则a bab+ 的值是( )A .负数B .正数C .0D .正数或10.据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是( ) A .337×108B .3.37×1010C .3.37×1011D .0.337×1011二、填空题11. 2019年国庆 7 天长假期间,河南、山西、湖北、西和陕西等 5 省份接待游客总数均超过 6000 万人次,这个数据用科学记数法表示为 人次.12.﹣2021的相反数是 .13.若 ()2230x y -++= ,则 x y = 14.绝对值不大于10的所有整数的和等于 .15.某学习小组在“设计自己的运算程序”这一综合与实践课题的研究中发现,任意写下一个三位数(三位数字相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差.重复这个过程,就能得到一个固定的数字,他们称它为“数字黑洞”.这个固定的数字是 .16.已知 2(3)60a b -++= ,则方程ax=b 的解为 .17.据统计,2018年国家公务员考试报名最终共有1 659 745人通过了招聘单位的资格审查,这个数据用科学记数法可表示为 (精确到万位)18.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 .三、计算题19.计算: 2012sin 45124sin 60(2020)122π-⎛⎫----++-- ⎪⎝⎭20.计算题(1)30×(124235-- ) (2)-14-(1-0.5)×13×[1-(-2)3] 21.计算:()()235248-----÷22.计算: 225323(2)23⎡⎤⎛⎫-⨯-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦四、解答题23.把下列各数填入相应的大括号里:(){}160-0.618-3.14,2602015--2---2,0.337⋅-+⎡⎤⎣⎦,,,,,,, 正分数集合{ …}; 整数集合{ …}; 非正数集合{ …}; 有理数集合{ …}24.若a ,b ,c 是ABC 的三边的长,化简|a ﹣b ﹣c|+|b ﹣c ﹣a|+|c+a ﹣b|.25.有理数a 的绝对值为5,有理数b 的绝对值为3,且a ,b 一正一负,求a ﹣b 的值.26.在数轴上表示下列各数:﹣3,4,﹣213,1.5,并按从小到大的顺序用“<”号把这些数连接起来.27.已知1-12 = 12 , 12 - 13 = 16 , 13 - 14 = 112 , 14 - 15 = 120………根据这些等式求值。
2023年中考数学《有理数》专题知识回顾及练习题(含答案解析)

2023年中考数学《有理数》专题知识回顾及练习题(含答案解析)考点一:有理数之正数和负数1. 正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2. 正数和负数的意义:表示具有相反意义的两个量。
3. 正负号的化简:同号为正,异号为负。
1.(2022 ) A .0B .21C .﹣(﹣5)D .﹣5【分析】先化简各式,然后再进行判断即可.【解答】解:A .0既不是正数也不是负数,故A 不符合题意;B .>0,故B 不符合题意;C .﹣(﹣5)=5>0,故C 不符合题意;D .﹣<0,故D 符合题意.故选:D .2.(2022•贵阳)下列各数为负数的是( ) A .﹣2B .0C .3D .5【分析】根据小于0的数是负数即可得出答案.【解答】解:A .﹣2<0,是负数,故本选项符合题意;B .0不是正数,也不是负数,故本选项不符合题意;C .3>0,是正数,故本选项不符合题意;D .>0,是正数,故本选项不符合题意;故选:A .3.(2022•益阳)四个实数﹣2,1,2,31中,比0小的数是( ) A .﹣2B .1C .2D .31 【分析】利用零大于一切负数来比较即可. 【解答】解:根据负数都小于零可得,﹣<0.故选:A .4.(2022•雅安)在﹣3,1,21,3中,比0小的数是( ) A .﹣3B .1C .21 D .3【分析】比0小的是负数. 【解答】解:∵﹣<0,故选A .5.(2022•襄阳)若气温上升2+2℃,则气温下降3℃记作( ) A .﹣2℃B .+2℃C .﹣3℃D .+3℃【分析】根据上升与下降表示的是一对意义相反的量进行表示即可. 【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .6.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( ) A .+20元B .﹣20元C .+30元D .﹣30元【分析】根据正数与负数时表示具有相反意义的量直接得出答案. 【解答】解:∵收入50元,记作“+50元”. 且收入跟支出意义互为相反. ∴支出20元,记作“﹣20元”.故选:B.7.(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做()A.﹣2km B.﹣1km C.1km D.+2km【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km记做“+2km”,那么向西走1km应记做﹣1km.故选:B.8.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.﹣10℃D.﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C.9.(2022•柳州)如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作.【分析】根据正负数的意义求解.【解答】解:由题意,水位上升为正,下降为负,∴水位下降2m记作﹣2m.故答案为:﹣2m.10.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.考点二:有理数之相反数1.相反数的定义:只有符号不同的两个数互为相反数。
2020中考数学一轮复习能力达标训练题1:有理数(附答案)

2020中考数学一轮复习能力达标训练题1:有理数(附答案)1.若|m+3|+(n ﹣2)2=0,则m ﹣n 的值为( )A .1B .﹣1C .5D .﹣52.下列说法正确的是( )①若m=n ,则|m|=|n|; ②若m=-n ,则|m|=|-n|;③若|-m|=|-n|,则m=-n ; ④若|-m|=|-n|,则m=n.A .①②B .③④C .①④D .②③3.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n4.在-32,▏-2▏,(-1)3,-(-2),-4这五个数中,负数的个数有( )A .1 个B .2个C .3个D .4个5.下列各对数中,互为相反数的是( ).A .+(-8)和(-8)B .-(-8)和+8C .-(-8)和+(+8)D .+8和+(-8)6.在-4,-6,0,7这四个数中最小的数是A .-4B .-6C .0D .77.下列各对数中,不是互为相反数的是( )A .()3--与3--B .23-与(-3)²C .100-与(-10)²D .3(2)-与32- 8.下面说法:①﹣a 一定是负数;②若|a |=|b |,则 a =b ;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.⑤绝对值等于它本身的数是正数;其中正确的个数有( )A .1 个B .2 个C .3 个D .4 个9 )A B .C .D .310.实数 a ,b 在数轴上的位置如图所示,则下列结论正确的是( )A .a+b >0B .a ﹣b >0C .a•b >0D .a b>011.绝对值大于1而不大于4的整数有_________ ,它们的和是_____________.12.若|-x|=4,则x=____;若|x-3|=0,则x=____;若|x-3|=1,则x=____.133|27|b -=0,(a ﹣b )b ﹣1=_______。
(完整版)中考复习第1讲有理数(含答案),推荐文档

考点综述:
有理数是初中数学的基础内容,中考试题中是必考内容之一,主要题型以填空、选择、 计算为主,主要考查有理数及其相关概念,如:相反数、绝对值、倒数,会用数轴比较大 小,有理数的混合运算,科学记数法的意义以及表示方法,近似数和有效数字的意义,还 有会按照题目要求取近似数。
典型例题:
1
18.(2007 湖南邵阳)观察下列等式
1 1 1 , 1 1 1 , 1 1 1 , 1 2 2 23 2 3 3 4 3 4
将以上三个等式两边分别相加得:
1 1 1 1 1 1 1 1 1 1 1 3 . 1 2 23 3 4 2 2 3 3 4 4 4
(单位:万元),正确的是( )
A:3.12×104 B:3.13×104 C:31.2×103 D:31.3×103
解:B
例 3:(2007 怀化)2008 年 8 月第 29 届奥运会将在北京开幕,5 个城市的国标标准时间
(单位:时)在数轴上表示如图所示,那么北京时间 2008 年 8 月 8 日 20 时应是(
少的数?是
.
15.(2008 扬州)2008 年 5 月 26 日下午,奥运圣火扬州站的传递在一路“中国加油”声中 胜利结束,全程 11.8 千米,11.8 千米用科学记数法表示是____________米。
16.(2008 泉州)计算: 1 20080 22
17.(2008 益阳)计算: 2 ( 3)0 (1) 2 (1) 2008 3
例 1:(2008 常州)-3 的相反数是_______,- 的绝对值是________,2-1=______.
2 11
解:3, ,
22
例 2:(2007 永州)2006 年 9 月在长沙市举行的“中国中部投资贸易博览会”中,永州市
有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( )A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( )A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=- B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃,∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24) 126424⨯--⨯-+⨯--⨯-=-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解.【详解】47249948⎛⎫⨯-⎪⎝⎭=12410048⎛⎫⨯-+⎪⎝⎭计算起来最简便,故选A.【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A.【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A选项不符合;625122÷=,故B选项不符合;75515÷=,故C选项不符合;85517÷=,故D符合,故选:D.【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误; 解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+. 【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用. 28.A【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A .【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A .【点睛】本题主要考查了乘方的运算,理解定义是解题的关键. 30.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.【详解】解:2440n n ++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n 的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B.【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a+b、cd的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D.【点睛】本题考查了有理数的分类,有理数乘方:求n个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b>,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论 【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=. 【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可; 【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D.【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7,故A不正确;B.2366932÷=⨯=,故B正确;C. 222a b ab+≠,故C不正确;D. 236a b ab⋅=,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111 221212121x yy xxy x yx y xyxyxyxyxy⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x和y互为倒数∴1xy=。
中考数学真题分类汇编(第一期)专题1 有理数试题(含解析)-人教版初中九年级全册数学试题

有理数一、选择题1.(2018•某某枣庄•3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2018•某某•3分)下面有理数比较大小,正确的是()A.0<-2B.-5<3C.-2<-3D.1<-4【答案】B【考点】有理数比较大小3. (2018•某某某某•4分)计算的结果是()A.0 B.1 C.﹣1 D.【考点】1A:有理数的减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4. (2018•某某某某•3分)实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
5. (2018•某某某某•3分)2018年5月21日,某某卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
6.(2018•某某•3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 45千米处,是黄河上最具气势的自然景观,其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学计数法表示为A.6.06⨯104立方米/时B. 3.136⨯106立方米/时C.3.636⨯106立方米/时D. 36.36⨯105立方米/时【答案】C【考点】科学计数法【解析】一秒为1010立方米,则一小时为1010×60×60=3636000立方米,3636000用科学计数法表示为3.636×106 .7. (2018•某某某某•3分)比1小2的数是()A.﹣1 B.﹣2 C.﹣3 D.1【分析】求比1小2的数就是求1与2的差.【解答】解:1﹣2=﹣1.故选:A.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.8. (2018•某某某某•3分)长度单位1纳米=10﹣9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A.25.1×10﹣6米 B.0.251×10﹣4米C.2.51×105米D.2.51×10﹣5米【分析】先将25 100用科学记数法表示为2.51×104,再和10﹣9相乘.【解答】解:2.51×104×10﹣9=2.51×10﹣5米.故选D.【点评】a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.9. (2018•某某枣庄•3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.10.(2018•某某某某•3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.11. (2018•某某滨州•3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.12. (2018•某某某某•3分)主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒土俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0.34×107B.34×105C.3.4×105D.3.4×106【考点】1I:科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:340万=3400000=3.4×106,故选:D.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.13. (2018•某某某某•3分)-2018的相反数是()A. 2018B. -2018C.D.13.【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:-2018的相反数是2018。
精品 中考数学一轮综合复习 第01课 实数(有理数与无理数)

同步练习: 1.已知实数 m,n 在数轴上的对应点的位置如图所示,则下列判断正确的是(
)
A.m>0
B.n<0
C.mn<0
D.m-n>0
3 2.在实数 5,, 2, 4中,无理数是( ) 7 3 A.5 B. C. 2 D. 4 7 3.2012 年世界水日主题是“水与粮食安全” .若每人每天浪费水 0.32 L,那么 100 万人每天浪费的水, 用科学记数法表示为( A.3.2×107 L 4.(-2) 的算术平方根是( A.2 5.“ B.±2
第 7 页 共 8 页
17.计算: (1) 172 82 (2) 13 2 12 2 (3) (
1 1 0.25 0.36) 400 2 3
(4) 9 400 3 1 3 (1) 3
(5)
3 2 (2) 2 2sin 60 .
18.已知 a 、 b 互为相反数, c 、 d 互为倒数, m 的绝对值是 2,求
(4) 2 2 ( 2) 2 |( 3) 2 ( 3) 3 | |4 9||7 2 |
1 3
28.比较大小: (1) 2 3 和 3 2 ;
(2) 5 1 和 1; 2
29.已知 x、y 满足 2 x 3 y 1 | x 2 y 2 | 0 ,求 2 x
|ab| 4m 3cd 的值. 2m 2 1
19.已知 y x 2 3 ,且 y 的算术平方根为 4,求 x 的值。
20.已知 x、y 满足 2 x 3 y 1 | x 2 y 2 | 0 ,求 2 x
4 y 的平方根. 5
第 8 页 共 8 页
)
4.若 x 的相反数是 3, y =5,则 x+y 的值为( A.-8
考向01 有理数-备战2023年中考数学一轮复习考点微专题(全国通用)

考向01 有理数【考点梳理】1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 . 4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数【题型探究】题型一:正数和负数1.(2022·江苏南通·中考真题)若气温零上2℃记作2+℃,则气温零下3℃记作( ) A .3-℃B .1-℃C .1+℃D .5+℃2.(2022·广西河池·中考真题)如果将“收入50元”记作“+50元”,那么“支出20元”记作( ) A .+20元B .﹣20元C .+30元D .﹣30元3.(2022·四川·巴中市教育科学研究所中考真题)下列各数是负数的是( ) A .2(1)-B .|3|-C .(5)--D题型二:有理数的初步认识4.(2022·陕西·模拟预测)下列实数中,是有理数的是( )A .32B .36C .72D .35.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个6.(2022·江苏·沭阳县马厂实验学校三模)下列实数中,是无理数的有( ) A .-4B .0.101001C .227D .cos45°题型三:相反数7.(2022·重庆市第三十七中学校二模)2022-的相反数为( ) A .12022-B .2022C .2022-D .120228.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .09.(2022·河南商丘·三模)如图是一个正方体的表面展开图,已知正方体的每一个面上都有一个实数,且相对面上的两个实数互为相反数,那么代数式()b a c +的值等于( )A .6-B .19C .1D .4题型四:数轴化简或者比较大小问题10.(2022·山东济南·模拟预测)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中一定成立的是( )A .2ab a <B .1313a b -<-C .0a b ->D .ab b >-11.(2022·北京市三帆中学模拟预测)若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,其中0a b +=,则正确的结论是( )A .1d >-B .0a c +<C .b d >D .c a >12.(2022·四川攀枝花·中考真题)实数a 、b 在数轴.上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<题型五:数轴中的动点问题13.(2021·河北·二模)如图,边长为单位1的等边三角形,从数轴上的原点沿着数轴无滑动地顺时针滚动,若等边三角形滚动1周到达点A ,则点A 表示的数是( )A .1B .4C .2D .314.(2021·四川广元·一模)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移3个单位长度得到点C .若CO BO =,则a 的值为( ) A .5-B .1-C .5-或1-D .3-15.(2021·广西百色·一模)正方形纸板ABCD 在数轴上的位置如图所示,点,A D 对应的数分别为1和0,若正方形纸板ABCD 绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是( )A .AB .BC .CD .D题型五:绝对值的化简问题16.(2022·内蒙古内蒙古·中考真题)实数a 在数轴上的对应位置如图所示,则21|1|a a ++-的化简结果是( )A .1B .2C .2aD .1﹣2a17.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .218.(2022·河北保定·一模)实数a ,b 在数轴上对应的位置如图所示,化简2||a b b +-的结果是( )A .2b a -B .2+a bC .a -D .a题型六:绝对值的非负性问题19.(2022·广东梅州·一模)若650a b ++-=,则2a b +=( )A .11B .1C .-1D .-1120.(2022·云南昆明·二模)已知实数x ,y ,z 满足2(5)12|13|0-+-+-=x y z ,则以x ,y ,z 的值为边长的三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断21.(2022·广东·潮州市湘桥区城南中英文学校一模)已知a ,b 满足(a +1)2﹣(b ﹣2)2b -+|c ﹣3|=0,则a +b +c 的值等于( ) A .2B .3C .4D .5题型七:有理数的综合问题22.(2022·河北·育华中学三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a 、c 的值 , ; ②求代数式222a c ac +-的值;(2)若将数轴折叠,使得点A 与点C 重合,求与点B 重合的点表示的数; (3)请在数轴上确定一点D ,使得AD =2BD ,则D 表示的数是 .23.(2022·河北唐山·二模)阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示x 和-2的两点之间的距离是 ; (2)数轴上表示a 和1的两点之间的距离为6,则a 表示的数为 ;(3)若x 表示一个有理数,则|x +2|+|x -4|有最小值吗?若有,请求出最小值;若没有,请说明理由.24.(2022·河北廊坊·二模)如图,在数轴上点A ,B 表示的数分别为-2,1,P 为A 点左侧上的一点,它表示的数为x .(1)用含x 的代数式表示2PB PA+的值. (2)若以PO ,PA ,AB 的长为边长能构成等腰三角形,请求出符合条件的x 的值.【必刷基础】一、单选题25.(2022·江苏淮安·中考真题)有理数2- 的相反数是( ) A .2B .12C .2-D .12-26.(2022·北京市第十九中学三模)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a <B .1b <C .0a b +>D .0b a -<27.(2022·河北·顺平县腰山镇第一初级中学一模)如图,现有A 、B 、C 三点,在数轴上分别表示﹣2、0、4,三点在数轴上同时开始运动,点A 向左运动,运动速度是2/s ,点B 、C 都是向右运动,运动速度分别是3/s 、4/s ,甲、乙两名同学提出不同的观点.甲:5AC ﹣6AB 的值不变;乙:5BC ﹣10AB 的值不变.则下列选项中,正确的是( )A .甲正确,乙错误B .乙正确,甲错误C .甲乙均正确D .甲乙均错误28.(2022·贵州贵阳·三模)如图,在数轴上,点A 、B 分别表示数a 、b ,且a +b =0,若AB =8,则点A 表示的数为( )A .﹣4B .0C .4D .829.(2022·江苏镇江·中考真题)如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+30.(2022·江苏·盐城市初级中学三模)若海平面以上2000米,记作+2000米,则海平面以下2022米,记作( ) A .﹣2022米B .2022米C .22米D .﹣22米31.(2022·福建省安溪第一中学九年级阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.32.(2017·河北·中考真题)在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .【必刷培优】一:选择题33.(2022·湖南郴州·中考真题)有理数2-,12-,0,32中,绝对值最大的数是( )A .2-B .12-C .0D .3234.(2022·贵州黔东南·中考真题)在解决数学实际问题时,常常用到数形结合思想,比如:1x +的几何意义是数轴上表示数x 的点与表示数1-的点的距离,2x -的几何意义是数轴上表示数x 的点与表示数2的点的距离.当12x x ++-取得最小值时,x 的取值范围是( )A .1x ≤-B .1x ≤-或2x ≥C .12x -≤≤D .2x ≥35.(2022·四川内江·中考真题)如图,数轴上的两点A 、B 对应的实数分别是a 、b ,则下列式子中成立的是( )A .1﹣2a >1﹣2bB .﹣a <﹣bC .a +b <0D .|a |﹣|b |>036.(2022·台湾·模拟预测)已知67.5210p -=⨯,下列关于p 值的叙述何者正确?( ) A .小于0B .介于0与1两数之间,两数中比较接近0C .介于0与1两数之间,两数中比较接近1D .大于137.(2022·台湾·模拟预测)如图数线上的A 、B 、C 、D 四点所表示的数分别为a 、b 、c 、d ,且O 为原点.根据图中各点的位置判断,下列何者的值最小?( )A .||aB .||bC .||cD .d二、填空题38.(2022·山东济南·模拟预测)已知420x y z -+++=,则x y z -+-=______.39.(2022·浙江金华·一模)如图所示,数轴上表示1,3的点分别为A ,B ,且2CA AB =(C 在A 的左侧),则点C 所表示的数是________.40.(2022·广东·佛山市南海外国语学校三模)已知222420x x y xy -++,则y x =______.41.(2022·江苏镇江·中考真题)《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的_________倍.42.(2022·湖北·鄂州市鄂城区教学研究室三模)已知实数a 、b 满足320a b -++=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x ,2x ,则1211+x x 的值为______. 43.(2021·甘肃·模拟预测)定义:数轴上给定两点A 、B 以及一条线段PQ ,当线段AB 的中点在线段PQ 上时(包含点P 、Q ),就称点A 与点B 关于线段PQ 径向对称,若A 、P 、Q 三点在数轴上的位置如图所示,点A 与点B 关于线段PQ 径向对称.则点B 表示的数x 的取值范围是____.44.(2022·广西贺州·中考真题)若实数m ,n 满足5240m n m n --++-=∣∣,则3m n +=__________.45.(2022·甘肃定西·模拟预测)若ABC 的三边长a ,b ,c 满足2222()0a b a b c -++-=,则ABC 是____________.三、解答题46.(2023·全国·九年级)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示数﹣2,已知点A 是数轴上的点,请参照图示,完成下列问题:(1)如果点A 表示数﹣3,将点A 向右移动7个单位长度,那么终点表示的数是______;(2)如果点A 表示数3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______; (3)如果点A 表示数a ,将点A 向左移动m (m >0)个单位长度,再向右移动n (n >0)个单位长度,那么终点表示数是多少(用含a 、m 、n 的式子表示)?47.(2020·河北·育华中学一模)如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c b ,是最大的负整数,且a c 、满足23(5)0a c ++-=.(1)a=________,b=________,c=________.(2)若将数轴折叠,使得点A 与点C 重合,则点B 与数________表示的点重合;(3)点、、A B C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________.(用含t 的代数式表示)(4)3BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值。
中考数学一轮复习考点1有理数试题

2021年中考数学一轮复习考点1:有理数制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
考点1:有理数的概念和分类相关知识:1.整数包括:正整数、0、负整数;分数包括:有限小数和无限环循小数。
2.有理数的概念:整数和分数统称有理数.相关试题:1.〔2021,1,3分〕以下各数是正整数的是A.-1 B.2 C.0.5 D. 2【答案】B2.〔2021,1,3分〕假如60m表示“向北走60m〞,那么“向南走40m〞可以表示为A. -20mB. -40mC. 20mD. 40m【答案】B3.〔2021,4,3分〕有四包真空小包装火腿,每包以HY克数〔450克〕为基数,超过的克数记作正数,缺乏的克数记作负数,以下数据是记录结果,其中表示实际克数最接近HY克数的是〔〕A.+2 B.-3 C.+3 D.+4【答案】A4.〔2021,1,3分〕假如“盈利10%〞记为+10%,那么“亏损6%〞记为〔A〕-16% 〔B〕-6% 〔C〕+6% 〔D〕+4%【答案】B5.〔2021,2,3分〕假如用+表示一只乒乓球质量超出HY质量0.02 克,那么一只乒乓球质量低于HY质量记作( ) .A. + B.- C. 0 克 D.+【答案】B6.〔2021,1,4分〕如以下分数中,能化为有限小数的是〔 〕.(A) 13; (B) 15; (C) 17; (D) 19.【答案】B 规律问题7. 〔2021,9,4分〕一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一局部,剩下局部如下图,那么被截去局部纸环的个数可能是〔 〕〔A 〕2021〔B 〕2021〔C 〕2021〔D 〕2021【答案】D8.〔2021HY ,12〕世运会、亚运会、奥运会分别于公元2021年、2021年、2021年举办。
假设这三项运动会均每四年举办一次,那么这三项运动会均不在以下哪一年举办?A .公元2070年B .公元2071年C .公元2072年D .公元2073年 【答案】B9.〔2021,12,4分〕观察图中正方形四个顶点所标的数字规律,可知数2021应标在〔 〕〔A 〕第502个正方形的左下角 〔B 〕第502个正方形的右下角 〔C 〕第503个正方形的左上角 〔D 〕第503个正方形的右下角 【答案】C10. (2021綦江,10,4分)如下表,从左到右在每个小格子中都填入一个整数..,使得其中任意三个相邻..格子中所填整数之和都相等,那么第2021个格子中的数为〔 〕… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫16A. 3B. 2C. 0D. -1【答案】:A11.〔2021,14,3分〕填在下面各正方形中的四个数之间都有一样的规律,根据这种规律,m的值是.【答案】15812. (2021,16,2分)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数完毕;②假设报出的数为3的倍数,那么报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.【答案】413. 〔202118,4〕观察上面的图形,它们是按一定规律排列的,按照此规律,第____个图形一共有120 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.如果用+0.02克表示一只乒乓球质量超出标准质量0.02 克,那么一只乒乓球质量低于标准质量0.02克记作( ) .
A.+0.02克 B.-0.02克 C. 0 克D.+0.04克
【答案】B
6.如下列分数中,能化为有限小数的是().
(A) 1
3;(B) 1
5
;(C) 1
7
;(D) 1
9
.
【答案】B
考点2:数轴
相关知识:
1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。
画数轴时,要注意上述规定的三要素缺一不可。
2.解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
3.数轴的作用:A.直观地比较有理数的大小; B.明确体现绝对值意义; C.建立点与实数的一一对应关系。
相关试题:
1.如图,在数轴上点A表示的数可能是()
A. 1.5
B.-1.5
C.-2.6
D. 2.6
2.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为
【答案】-5
考点3:相反数
相关知识:
1. 实数与它的相反数是一一对应(只有符号不同的两个数叫做互为相反数,零的相反数是零).
2. 从数轴上看,互为相反数的两个数所对应的点关于原点对称
3. 如果a与b互为相反数,则有a+b=0,a= —b,反之亦成立。
即:(1)实数a的相反数是a
-.(2)a和b互为相反数0
a b
⇔+=.相关试题:
1.下列各组数中,互为相反数的是()
A.2和-2 B.-2和1
2C.-2和-
1
2D.
1
2和2
【答案】A
2.-(-2)=()
A.-2
B. 2
C.±2
D.4 【答案】B
3. 8-的相反数是().
A. 8-
B.
1
8
- C.
1
8
D. 8
【答案】D
考点4:绝对值
相关知识:
1. 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
2. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
即:
(0)
0 (0)
(0)
a a
a a
a a<
>
⎧
⎪
==
⎨
⎪-
⎩
﹝另有两种写法﹞
3. 零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
4. 实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.
5.几个非负数的和等于零则每个非负数都等于零.
注意:│a│≥0,符号“││”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
相关试题:
1.-3的绝对值是()
A.3 B.-3 C.-1
3D.
1
3
【答案】A
2.如图,O是原点,A、B、C三点所表示的数分别为a、b、c。
根据图中各点的位置,下列各数的絶对值的比较何者正确?
A .|b|<|c|
B .|b|>|c| C.|a|<|b| D.|a|>|c|
【答案】A
3、有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.-3 C.+3 D.+4
【答案】A。