弧长的公式、扇形面积公式及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】

一. 教学内容:

弧长及扇形的面积

圆锥的侧面积

二. 教学要求

1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

三. 重点及难点

重点:

1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:

1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

[知识要点]

知识点1、弧长公式

因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是

,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,

例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积

如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角

为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积

(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长

(3)弓形的面积

如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,

当弓形所含的弧是优弧时,如图2所示,

当弓形所含的弧是半圆时,如图3所示,

例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示)

分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以

所以

注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。

圆周长弧长圆面积扇形面积

(2)扇形与弓形的联系与区别

知识点4、圆锥的侧面积

圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积

说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积

圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,

若圆柱的底面半径为r,高为h,则圆柱的侧面

积,圆柱的全面

知识小结:

圆锥与圆柱的比较

【典型例题】

例1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()

A. B. C. D.

分析:阴影部分所在的两个扇形的圆心角为,

所以

故答案为:B.

例2. (2004·陕西)如图所示,点C在以AB为直径的半圆上,连接AC,BC,AB=10

厘米,tan∠BAC=,求阴影部分的面积。

分析:本题考查的知识点有:(1)直径所对圆周角为90°,(2)解直角三角形的知识(3)组合图形面积的计算。

解:因为AB为直径,所以∠ACB=90°,

在Rt△ABC中,AB=10,tan∠BAC=,而tan∠BAC=

设BC=3k,AC=4k,(k不为0,且为正数)

由勾股定理得

所以BC=6,AC=8,,而

所以

例3. (2003.福州)如图所示,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()

分析:连接OD,由正方形性质可知∠EOD=∠DOC=45°,在Rt△OED中,OD=

因为正方形的边长为1,所以OE=DE=1,所以,设两部分阴影的面积中的

一部分为M,另一部分为N,则,阴影部分面积可求,但这种方法较麻烦,用割补法解此题较为简单,设一部分空白面积为P,因为∠BOD=∠DOC,所以

所以M=P,所以

答案:。

例4. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

分析:将直角梯形ABCD绕BC旋转一周所得的几何体是由相同底面的圆柱和圆锥组成的,所得几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面积三者之和。

解:作DH⊥BC于H,所以DH=AB=2

CH=BC-BH=BC-AD=7-3=4

在△CDH中,

所以

例5. (2003.宁波)已知扇形的圆心角为120°,面积为300平方厘米(1)求扇形的弧长。

(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?

分析:(1)由扇形面积公式,可得扇形半径R,扇形的弧长可由弧长

公式求得。(2)由此扇形卷成的圆锥如图所示,这个圆锥的轴截面为等腰三角形ABC,(1)问中求得的弧长是这个圆锥的底面圆周长,而圆周长公式为C=2r,底面圆

半径r即CD的长可求,圆锥的高AD可在Rt△ADC中求得,所以可求。

解:(1)设扇形的半径为R,

相关文档
最新文档