弧长的公式、扇形面积公式及其应用

合集下载

扇形面积公式和弧长公式

扇形面积公式和弧长公式

扇形面积公式和弧长公式扇形是圆周上两条半径之间的一段弧与半径所围成的区域。

计算扇形的面积和弧长是在几何学和物理学中常见的计算问题。

本文将介绍扇形面积公式和弧长公式,并提供计算示例。

扇形面积公式扇形的面积可以使用以下公式进行计算:$A = \\frac{1}{2}r^2\\theta$其中,A表示扇形的面积,r表示扇形的半径,$\\theta$表示扇形对应的圆心角(以弧度为单位)。

要计算扇形的面积,首先需要确定扇形的半径和圆心角。

将这些值代入公式,即可得出扇形的面积。

以下是一个计算扇形面积的示例:假设扇形的半径为5cm,圆心角为45°(将角度转换为弧度)。

代入公式可得:$A = \\frac{1}{2} \\cdot 5^2 \\cdot \\frac{45}{180} \\pi = \\frac{25}{4} \\pi\\approx 19.63 cm^2$因此,扇形的面积约为19.63平方厘米。

弧长公式扇形的弧长可以使用以下公式进行计算:$L = r\\theta$其中,L表示扇形的弧长,r表示扇形的半径,$\\theta$表示扇形对应的圆心角(以弧度为单位)。

要计算扇形的弧长,同样需要知道扇形的半径和圆心角。

将这些值代入公式,即可得出扇形的弧长。

以下是一个计算扇形弧长的示例:假设扇形的半径为8cm,圆心角为60°(将角度转换为弧度)。

代入公式可得:$L = 8 \\cdot \\frac{60}{180} \\pi = \\frac{4}{3} \\pi \\approx 4.19 cm$因此,扇形的弧长约为4.19厘米。

总结扇形的面积和弧长可以通过相应的公式进行计算。

在计算前,需要确定扇形的半径和圆心角,并将角度转换为弧度。

扇形是几何学和物理学中常见的形状,计算其面积和弧长有助于解决相关问题。

在实际应用中,扇形的面积和弧长公式可以用于计算圆盘的扇形部分面积和弧长,可以用于设计扇形的织物、纸板或金属板的尺寸,也可以用于计算扇形的力学特性和运动学问题。

24.4.1弧长和扇形面积公式应用

24.4.1弧长和扇形面积公式应用
人教课标九上· §24.4.1
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 1 2 s r 或s lr 360 2
练一练
从 练习 中 悟 方 法
nR l 180
1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角 是81°,求这段圆弧的半径R(精确到0.1m).
交弧 AB 于点C.
A
O
D B
C
例题讲解
∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3.
在Rt△OAD中,OA=0.6,利用勾股定理可得,
A
1 OD OA 2
O D C
AD 0.3 3
在Rt△AOD中, ∴∠OAD=30° ∴ ∠AOD=60 °,∠AOB=120°
B
S S扇形OAB S
有水部分的面积
1 0.12 0.6 3 0.3 0.22 m 2 . 2
120 1 2 OAB 360 0.6 2 AB OD
变式:如图、水平放置的圆柱形排水管道的 截面半径是0面积 = S扇+ S △
A D E 0
B
C
规律提升
0
0

S弓形=S扇形-S三角形 S弓形=S扇形+S三角形
弓形的面积是扇形的面积与三角形 面积的和或差
练一练
2.如图,正三角形ABC的边长为a,分别以A、B、 C 为
a 圆心,以 为半径的圆相切于点D、E、F,求图中阴 2
影部分的面积.
A F
E
解:连接AD,则
AD BC
垂足为D
2
B
D
C
根据勾股定理,得

弧长与扇形面积公式

弧长与扇形面积公式

弧长与扇形面积公式一、弧长公式1.弧长的定义弧长是指一个圆弧所对应的圆心角所对应的圆的一部分的长度。

在圆形轨迹上,圆心角的度数与弧长成一定的比例关系。

2.弧长公式的推导首先,我们知道,在一个完整的圆中,圆心角为360度或2π弧度。

因此,一个占满整个圆周四分之一的圆弧所对应的圆心角为90度或π/2弧度。

假设一个圆的半径为r,其中一个圆弧所对应的圆心角为θ度或θ弧度,由此可得圆弧的长度为圆周的四分之一长度:长度=θ/360×2πr或长度=θ/2π×2πr通过简化上述公式,我们可以得到弧长的常用公式:长度=θ×πr/180或长度=θ×r其中,θ以度数表示时,圆弧长度使用第一个公式。

θ以弧度表示时,圆弧长度使用第二个公式。

这是弧长与圆心角的常用关系公式。

3.弧长公式的应用弧长公式是在解决圆弧上的问题时常用到的。

例如,在射击运动中,构成射击靶心边界的圆可能会被划分成不同的区域,每个区域都具有不同的分值。

当子弹击中圆的其中一点时,子弹沿弧线的走过弧长可以换算成对应的分数。

另一个应用实例是在机械制造过程中。

当需要切割或加工一个圆弧时,工人可以使用弧长公式确定刀具运动的距离。

这样,他们就能够更准确地进行切割和加工。

1.扇形面积的定义扇形是圆周上两个半径所夹的圆弧以及这两个半径所对应的圆心角组成的图形。

扇形面积是指由圆心、半径、圆弧组成的图形所围成的面积。

2.扇形面积公式的推导事实上,一个扇形可以想象成是一个半径为r的圆被一个圆心角为θ度或θ弧度的扇形切割下来而得到的。

那么,这个扇形的面积就可以看作是底边长为r,高为r的一个三角形(底边就是圆弧的长度)与这个扇形之间的差值。

通过计算底边长为r,高为r的三角形的面积,我们可以得到扇形的面积。

三角形的面积= 1/2 × r × r × sin(θ) = (r^2 × sin(θ))/2所以,扇形的面积= (r^2 × θ × sin(θ))/2其中,θ以度数表示时,扇形面积使用第一个公式。

弧长的公式扇形面积公式及其应用精修订

弧长的公式扇形面积公式及其应用精修订

弧长的公式扇形面积公式及其应用集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积?二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

?三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

?[知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

?知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

?知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示)分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以,所以圆周长弧长圆面积扇形面积公式(2)扇形与弓形的联系与区别图示面积?知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

扇形的弧长和面积公式高中

扇形的弧长和面积公式高中

扇形的弧长和面积公式高中
扇形所对应的弧长公式为:L=n2πR/360。

扇形面积计算公式:S=nπR/360或S=LR/2。

扇形面积公式描述了扇形面积和圆心角(顶角)、半径、所对弧长的关系。

推导过程:由定理“等半径的两个扇形的面积之比等于它们的弧长之比”,将圆看作扇形,利用弧长公式和圆的面积公式即可。

简介:组成部分:
1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。

2、以圆心为中心点的角叫做“圆心角”。

3、有一种统计图就是“扇形统计图。


曲线的弧长也称曲线的长度,是曲线的特征之一。

不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。

最早研究的曲线弧长是圆弧的长度,所以狭义上,特指圆弧的长度。

半径为R的圆中,n°的圆心角所对圆弧的弧长为n πR/180°。

弧长和扇形面积的计算

弧长和扇形面积的计算

弧长计算公式:弧 长 = 圆心角 / 360° × 圆的周长
圆心角单位:弧长 计算中的圆心角单 位必须是弧度制, 而不是度数
圆周率取值:弧长 计算中一般采用圆 周率π的近似值, 如3.14或3.14159
弧长与半径关系: 弧长随着圆心角和 半径的增大而增大 ,与半径成正比关 系
扇形是圆的一部分,由两条半径和一条弧围成 扇形面积的计算公式为:S = (θ/360) × π × r^2,其中θ为扇形的圆心角,r为半径 当θ=90°时,扇形面积=1/4×π×r^2 扇形面积也可以通过底边长度和高的关系计算得出
弧长和扇形面积在几何图形中的应用:通过具体实例说明弧长和扇形面积在几何 图形中的重要性和应用价值
弧长和扇形面积在解决实际问题中的应用:通过具体案例说明弧长和扇形面积在 实际问题中的应用方法和技巧
弧长和扇形面积与其他几何量的关系:说明弧长和扇形面积与其他几何量之间的 联系和相互影响
弧长和扇形面积在几 何学中有着密切的联 系,它们是描述二维 图形的重要参数。
题目:一个扇形的圆心角为120°,弧长为2π,则扇形的半径为 _______. 题目:已知扇形的圆心角为120°,弧长为2π,则扇形的面积是 _______. 题目:已知扇形的圆心角为150°,半径为3,则扇形的弧长为 _______. 题目:已知扇形的圆心角为135°,弧长为3,则扇形的面积是 _______.
考虑扇形所在的圆的整体:在计算扇形面积时,需要考虑扇形所在的整个圆的情况, 以确保计算结果的准确性。
弧长和扇形面积的计算公式 弧长和扇形面积的关系:弧长越大,扇形面积越大 弧长和扇形面积的几何意义 弧长和扇形面积在几何图形中的应用
弧长和扇形面积的关系:弧长和扇形面积的计算公式及其推导过程

弧长及扇形面积计算公式

弧长及扇形面积计算公式

弧长及扇形面积计算公式弧长计算公式:弧长是圆的一部分的弧所占据的长度。

弧长的计算公式如下:1.当弧是圆的整个周长的一部分时:弧长=圆的周长×(弧所占的角度÷360°)2.当弧的角度已知时:弧长=(圆的周长×弧的角度)÷360°3.当弧的度数已知时:弧长=(2π×弧的度数)÷360°注意:在计算弧长时,角度的度数要用度制,不要用弧度制。

扇形面积计算公式:扇形是由圆心和弧所围成的部分,计算扇形的面积需要知道扇形的半径和对应的弧度。

1.当扇形的角度已知时:扇形面积=(π×半径²×扇形的角度)÷360°2.当扇形的弧度已知时:扇形面积=(半径²×扇形的弧度)÷2注意:在计算扇形面积时,角度的度数要用度制,不要用弧度制。

示例问题:1. 如果一个圆的半径为10 cm,计算它的弧长和扇形面积,其中扇形的角度为60°。

解:对于弧长,使用公式弧长=(圆的周长×弧所占的角度)÷360°,得到弧长= (2π × 10 cm × 60°) ÷ 360° = 20π cm ≈ 62.83 cm 对于扇形面积,使用公式扇形面积=(π×半径²×扇形的角度)÷360°,得到扇形面积= (π × 10 cm² × 60°) ÷ 360° ≈ 5.24π cm² ≈ 16.42 cm²所以,该圆的弧长为约62.83 cm,扇形面积为约16.42 cm²。

2. 如果一个扇形的半径为8 m,计算它的弧长和扇形面积,其中扇形的弧度为2.5 rad。

扇形关于弧度面积和弧长公式

扇形关于弧度面积和弧长公式

扇形关于弧度面积和弧长公式
一、扇形的弧长公式。

1. 定义。

- 在圆中,圆心角所对的弧长与半径和圆心角的大小有关。

2. 公式推导(以弧度制为基础)
- 设圆的半径为r,圆心角为α(弧度制)。

- 整个圆的周长C = 2π r,整个圆的圆心角是2π弧度。

- 那么对于圆心角为α弧度的扇形,弧长l与整个圆周长的比例等于圆心角α与2π的比例。

- 即(l)/(2π r)=(α)/(2π),所以弧长l = rα。

二、扇形的面积公式。

1. 方法一:与弧长的关系推导。

- 由弧长公式l = rα。

- 我们可以把扇形看作是一个三角形的变形(把弧长l看作底,半径r看作高)。

- 根据三角形面积公式S=(1)/(2)×底×高,对于扇形,其面积S=(1)/(2)lr,又因为l = rα,所以S=(1)/(2)r× rα=(1)/(2)r^2α。

2. 方法二:与圆面积的比例关系推导。

- 圆的面积S_圆=π r^2,其圆心角为2π弧度。

- 设扇形圆心角为α弧度,扇形面积S与圆面积S_圆的比例等于扇形圆心角α与2π的比例。

- 即(S)/(π r^2)=(α)/(2π),所以S=(1)/(2)r^2α。

九年级上册数学弧长和扇形面积

九年级上册数学弧长和扇形面积

九年级上册数学弧长和扇形面积一、弧长公式。

1. 公式推导。

- 在圆中,圆心角n^∘所对的弧长l与圆周长C = 2π r(r为圆的半径)存在比例关系。

- 因为整个圆的圆心角是360^∘,所以圆心角为n^∘所对的弧长l=(n)/(360)×2π r=(nπ r)/(180)。

2. 应用示例。

- 例:已知圆的半径r = 5cm,圆心角n = 60^∘,求弧长l。

- 解:根据弧长公式l=(nπ r)/(180),将r = 5cm,n = 60^∘代入公式,得到l=(60×π×5)/(180)=(5π)/(3)cm。

二、扇形面积公式。

1. 公式推导。

- 方法一:与弧长公式推导类似,因为扇形面积S与圆面积S=π r^2也存在比例关系,对于圆心角为n^∘的扇形,其面积S=(n)/(360)×π r^2。

- 方法二:由S=(1)/(2)lr(l为弧长,r为半径),把l = (nπ r)/(180)代入可得S=(1)/(2)×(nπ r)/(180)× r=frac{nπ r^2}{360}。

2. 应用示例。

- 例:已知扇形的半径r = 4cm,圆心角n = 90^∘,求扇形面积。

- 解:- 方法一:根据S=(n)/(360)×π r^2,将r = 4cm,n = 90^∘代入,得到S=(90)/(360)×π×4^2=4π cm^2。

- 方法二:先求弧长l=(nπ r)/(180)=(90×π×4)/(180)=2π cm,再根据S=(1)/(2)lr,l = 2π cm,r = 4cm,得到S=(1)/(2)×2π×4 = 4π cm^2。

三、弓形面积。

1. 弓形的定义。

- 弓形是由弦及其所对的弧组成的图形。

2. 弓形面积的计算。

- 当弓形所含的弧是劣弧时,弓形面积S_弓=S_扇-S_(S_扇为扇形面积,S_为三角形面积)。

圆的弧长与扇形面积计算知识点总结

圆的弧长与扇形面积计算知识点总结

圆的弧长与扇形面积计算知识点总结在几何学中,圆是一个非常重要且常见的图形。

计算圆的弧长和扇形面积是解决与圆相关问题的基础。

本文将对圆的弧长和扇形面积的计算方法进行总结。

一、圆的弧长计算圆的弧长是圆的一部分所对应的弧长,可以通过圆的半径或直径来计算。

假设半径为r、弧度为θ的圆弧的弧长为L,弧长可以通过下面的公式来计算:L = θ * r其中,θ表示角度,它可以用弧度(radian)或度(degree)来表示。

如果θ用弧度表示,则上式中的弧长单位为弧长单位为r;如果θ用度表示,则上式中的弧长单位为π。

例如,如果半径为3的圆弧对应的角度为π/3弧度,则该圆弧的弧长为:L = (π/3) * 3 = π二、扇形面积的计算扇形是由圆心和圆上两个切点连线所围成的区域。

计算扇形的面积需要知道圆的半径以及对应的圆心角。

假设半径为r、对应的圆心角为θ的扇形的面积为S,面积可以通过下面的公式来计算:S = (θ/360) * π * r^2其中,θ表示度数。

公式中的θ/360表示圆心角度数与360度的比值,可以用来表示扇形所占的比例。

面积的单位为平方单位,如平方厘米、平方米等。

例如,如果半径为4的扇形的圆心角为90度,则该扇形的面积为:S = (90/360) * π * 4^2 = (1/4) * π * 16 = 4π三、计算实例下面通过几个实例来演示圆的弧长和扇形面积的计算方法。

实例一:已知半径为5的圆上的圆心角为60度,求圆弧的弧长和扇形的面积。

弧长的计算:L = (60/360) * 2π * 5 = (1/6) * 2π * 5 = 5π/6扇形面积的计算:S = (60/360) * π * 5^2 = (1/6) * π * 25 = 25π/6实例二:已知半径为8的圆上的圆心角为120度,求圆弧的弧长和扇形的面积。

弧长的计算:L = (120/360) * 2π * 8 = (1/3) * 2π * 8 = 16π/3扇形面积的计算:S = (120/360) * π * 8^2 = (1/3) * π * 64 = 64π/3实例三:已知半径为10的圆上的圆心角为270度,求圆弧的弧长和扇形的面积。

弧长公式扇形面积综合应用

弧长公式扇形面积综合应用
弧长公式扇形面积综合应用
先源一中 孙洪财
一、复习 ( 1 ) L 弧长 nπR = 180
2
nπR ( 2) S 扇形面积 = 3601 S 扇形面积 Fra bibliotek L • R 2
she
• :如图,连接AD.则AD⊥BC,根据射影 定理有:AC2=CD•CB=CD(CD+BD)=4 ,即AC=2;同理可求得AB=2 3;因此 ∠ABD=30°,∠ACD=60°; ∴∠AMD=60°,∠AND=120°.∴扇形 MAD中,弓形AD的面积=S扇形MADS△MAD= 60×π×(3)2360- 334= π2- 334 ;同理可求得扇形AND中,S弓形AD= π334;因此S阴影= π2-( π2- 334+ π3- 34) = 3- π3(平方单位).
• 所以,O点经过的路线总长S=1 /2 π+1/ 3 π+1 /2 π=4 /3 π. • 故答案为4 /3 π.
• 点O经过的路线可以分为三段,当弧AB切直线l于 点B时,有OB⊥直线l,此时O点绕不动点B转过 了90°; • 第二段:OB⊥直线l到OA⊥直线l,O点绕动点转 动,而这一过程中弧AB始终是切于直线l的,所以 O与转动点P的连线始终⊥直线l,所以O点在水平 运动,此时O点经过的路线长=BA’=AB的弧长 • 第三段:OA⊥直线l到O点落在直线l上,O点绕不 动点A转过了90°

弧长地公式、扇形面积公式及其应用

弧长地公式、扇形面积公式及其应用

【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

[知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示)分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以,所以圆周长弧长圆面积扇形面积公式(2)扇形与弓形的联系与区别图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

弧长及扇形面积计算公式

弧长及扇形面积计算公式

弧长及扇形面积计算公式弧长和扇形面积是与圆相关的重要概念之一、在数学和几何学中,弧长是圆的一部分,扇形面积是由圆心和弧所围成的。

1.弧长:在圆的外周上,如果我们将一个角度的度数分为360等份,每一等份就是一个角度的1/360。

如果我们从圆心引出一条线段,使其与圆周相交于两个点,并且这两个点与圆心之间的角度正好为1度(或1/360),那么这两个点之间的弧长就是圆周的1/360。

同样地,如果我们将这个角度分为n等份,那么每一等份所对应的弧长就是圆周的1/360(或2πr)乘以n。

我们可以使用以下公式计算弧长:弧长=弧度×半径s=rθ其中,s是弧长,r是半径,θ是弧度。

例如,如果半径为10的圆上的弧度为2π/3,我们可以计算出弧长为:s=10×(2π/3)≈20.942.扇形面积:扇形面积是由圆心和弧所围成的部分的面积。

要计算扇形面积,我们可以使用以下公式:扇形面积=1/2×弧长×半径A=1/2×s×r其中,A是扇形的面积,s是弧长,r是半径。

例如,如果半径为5的圆上的弧长为4.5,我们可以计算出扇形的面积为:A=1/2×4.5×5=11.25对于给定的圆的半径和弧度,我们可以使用以上公式来计算弧长和扇形面积。

这些公式在各种实际应用中都有重要的作用。

例如,在建筑和设计中,我们可能需要计算扇形的面积来确定房间的大小。

在物理学中,我们可能需要计算物体围绕圆周运动的路径长度。

在工程学中,我们可能需要计算扇形的面积来确定液体或气体的容积。

总结起来,弧长和扇形面积是与圆相关的重要概念。

通过使用弧长和扇形面积的计算公式,我们可以在几何学和数学中解决各种问题,并在实际应用中应用这些概念。

弧长公式扇形面积公式及其应用

弧长公式扇形面积公式及其应用

弧长公式扇形面积公式及其应用弧长公式和扇形面积公式是圆的重要性质和公式,它们在几何学和物理学中有广泛的应用。

本文将从弧长公式和扇形面积公式的定义开始,介绍它们的推导过程,并且详细讨论它们的应用。

1.弧长公式弧长是圆周上任意两点之间的路径长度。

当圆的半径为r,弧长为s 时,根据圆的定义,可以推导出弧长公式:s=rθ其中,θ表示圆心角的大小,单位为弧度。

这个公式表明,弧长与半径成正比,与圆心角的大小成正比。

弧长公式在几何学中有着广泛的应用。

例如,在给定半径的圆上,如果我们知道一些圆心角的大小,就可以通过弧长公式计算出弧长。

同样地,如果我们知道了弧长和半径,就可以通过弧长公式计算出对应的圆心角的大小。

2.扇形面积公式扇形是由圆心、圆弧和两条半径所夹的区域。

当圆的半径为r,圆心角为θ时,可以推导出扇形面积公式:A=1/2r²θ这个公式表明,扇形的面积与半径的平方成正比,与圆心角的大小成正比。

扇形面积公式的应用也非常广泛。

例如,在给定半径和圆心角的情况下,可以通过扇形面积公式计算出扇形的面积。

同样地,如果我们已知扇形的面积和半径,就可以通过扇形面积公式计算出对应的圆心角。

3.应用举例弧长公式和扇形面积公式在日常生活和科学研究中有着很多应用。

下面举几个简单的例子来说明它们的应用。

例1:计算圆的弧长和扇形面积假设一个圆的半径为5cm,圆心角为60°,我们可以使用弧长公式计算出弧长为s = 5 * π/3 ≈ 5.24cm。

同时,使用扇形面积公式可以计算出扇形的面积为A = 1/2 * 5² * π/3 ≈ 8.72cm²。

例2:计算火车行驶的弧长假设一辆火车在铁轨上行驶的半径为100m的弯道上,行驶的角度为30°。

我们可以使用弧长公式计算出火车行驶的弧长为s=100*π/6≈52.36m。

例3:计算水泵的扇形喷射范围假设一台水泵在水平地面上喷射水流,喷射范围为半径为10m,角度为45°的扇形区域。

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积知识小结:圆锥与圆柱的比较名称圆锥圆柱图形图形的形成过程由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。

由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。

图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法【典型例题】例 1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()A. B. C. D.例2. (2003.福州)如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()例3. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

弧形、扇形公式解说和运用

弧形、扇形公式解说和运用

弧形、扇形公式解说和运用知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示)分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以,所以圆周长弧长圆面积扇形面积公式(2)扇形与弓形的联系与区别图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。

2、了解圆锥的侧面积公式,并会应用公式解决问题。

三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。

2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。

难点:1、弧长公式、扇形面积公式的推导。

2、圆锥的侧面积、全面积的计算。

[知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。

当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是()(结果用表示)分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠AOC=2∠ABC=90°,所以△OAC是直角三角形,所以,所以注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。

圆周长弧长圆面积扇形面积公式(2)扇形与弓形的联系与区别图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积知识小结:圆锥与圆柱的比较【典型例题】例1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()A. B. C. D.分析:阴影部分所在的两个扇形的圆心角为,所以故答案为:B.例2. (2004·陕西)如图所示,点C在以AB为直径的半圆上,连接AC,BC,AB=10厘米,tan∠BAC=,求阴影部分的面积。

分析:本题考查的知识点有:(1)直径所对圆周角为90°,(2)解直角三角形的知识(3)组合图形面积的计算。

解:因为AB为直径,所以∠ACB=90°,在Rt△ABC中,AB=10,tan∠BAC=,而tan∠BAC=设BC=3k,AC=4k,(k不为0,且为正数)由勾股定理得所以BC=6,AC=8,,而所以例3. (2003.福州)如图所示,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()分析:连接OD,由正方形性质可知∠EOD=∠DOC=45°,在Rt△OED中,OD=,因为正方形的边长为1,所以OE=DE=1,所以,设两部分阴影的面积中的一部分为M,另一部分为N,则,阴影部分面积可求,但这种方法较麻烦,用割补法解此题较为简单,设一部分空白面积为P,因为∠BOD=∠DOC,所以所以M=P,所以答案:。

例4. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

分析:将直角梯形ABCD绕BC旋转一周所得的几何体是由相同底面的圆柱和圆锥组成的,所得几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面积三者之和。

解:作DH⊥BC于H,所以DH=AB=2CH=BC-BH=BC-AD=7-3=4在△CDH中,所以例5. (2003.宁波)已知扇形的圆心角为120°,面积为300平方厘米(1)求扇形的弧长。

(2)若把此扇形卷成一个圆锥,则这个圆锥的轴截面面积是多少?分析:(1)由扇形面积公式,可得扇形半径R,扇形的弧长可由弧长公式求得。

(2)由此扇形卷成的圆锥如图所示,这个圆锥的轴截面为等腰三角形ABC,(1)问中求得的弧长是这个圆锥的底面圆周长,而圆周长公式为C=2r,底面圆半径r即CD的长可求,圆锥的高AD可在Rt△ADC中求得,所以可求。

解:(1)设扇形的半径为R,由,得,解得R=30.所以扇形的弧长(厘米)。

(2)如图所示,在等腰三角形ABC中,AB=AC=R=30,BC=2r,底面圆周长C=2r,因为底面圆周长即为扇形的弧长,所以在Rt△ADC中,高AD=所以轴截面面积(平方厘米)。

【模拟试题】(答题时间:40分钟)一、选择题1. 若一个扇形的圆心角是45°,面积为2л,则这个扇形的半径是()A. 4B. 2C. 47лD. 2л2. 扇形的圆心角是60°,则扇形的面积是所在图面积的()A. B. C. D.3. 扇形的面积等于其半径的平方,则扇形的圆心角是()A. 90°B.C.D.180°4. 两同心圆的圆心是O,大圆的半径是以OA,OB分别交小圆于点M,N.已知大圆半径是小圆半径的3倍,则扇形OAB的面积是扇形OMN的面积的()A. 2倍B. 3倍C. 6倍D. 9倍5. 半圆O的直径为6cm,∠BAC=30°,则阴影部分的面积是()A. B.C. D.6 用一个半径长为6cm 的半圆围成一个圆锥的侧面,则此圆锥的底面半径为()A. 2cmB. 3cmC. 4cmD. 6cm7. 圆锥的全面积和侧面积之比是3 :2,这个圆锥的轴截面的顶角是()A. 30°B. 60°C. 90°D. 120°8. 已知两个母线相等的圆锥的侧面展开图恰好能拼成一个圆,且它们的侧面积之比为1∶2,则它们的高之比为()A. 2:1B. 3:2C. 2:D. 5:9. 如图,在△ABC中,∠C =Rt∠,AC > BC,若以AC为底面圆半径,BC为高的圆锥的侧面积为S1,以BC为底面圆半径,AC为高的圆锥的侧面积为S2,则()A. S1=S2B. S1 > S2C. S1 < S2D. S1、S2的大小关系不确定二、填空题1. 扇形的弧长是12лcm,其圆心角是90°,则扇形的半径是cm ,扇形的面积是cm2.2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是.3. 已知扇形面积是12cm2,半径为8cm,则扇形周长为.4 在△ABC中,AB=3,AC=4,∠A=90°,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕AB旋转一周得到另一个圆锥,其全面积为S2,则S1:S2=。

5. 一个圆柱形容器的底面直径为2cm,要用一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器,这个扇形的半径至少要有cm。

6. 如图,扇形AOB的圆心角为60°,半径为6cm,C,D分别是的三等分点,则阴影部分的面积是。

7. 如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为。

三、计算题1. 如图,在Rt△ABC中,AC=BC ,以A为圆心画弧,交AB于点D,交AC延长线于点F,交BC于点E,若图中两个阴影部分的面积相等,求AC与AF的长度之比(л取3)。

2. 一个等边圆柱(轴截面是正方形的圆柱)的侧面积是S1,另一个圆锥的侧面积是S2,如果圆锥和圆柱等底等高,求.3. 圆锥的底面半径是R,母线长是3R,M是底面圆周上一点,从点M拉一根绳子绕圆锥一圈,再回到M点,求这根绳子的最短长度.【试题答案】一、选择题1. A2. B3. C4. D5. B6. B7. B8. C9. B二、填空题1、24 1442、40°3、19cm4、3:45、36、27、2-4三、计算题1、连接AE,则,所以2、3、连接展开图的两个端点MM',即是最短长度。

利用等量关系得出∠MAM′=120°,∠AMD=30°,AD=,。

相关文档
最新文档