平抛运动的初速度

合集下载

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.图为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为2.5厘米,如果取重力加速度g=10米/秒2,那么:(1)照片的闪光频率为________Hz。

(2)小球做平抛运动的初速度的大小为_______m/s。

【答案】(1)10 ;(2)0.75【解析】(1)根据,则,则照片的闪光频率为f=1/T=10Hz;(2)小球做平抛运动的初速度的大小为:【考点】研究平抛物体的运动试验。

2.如图所示,质量为0.5 kg的小球在距离车底面高20 m处以一定的初速度向左平抛,落在以7.5 m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg,设小球在落到车底前瞬时速度是25 m/s,g取10 m/s2,则当小球与小车相对静止时,小车的速度是()A.m/s B.5m/sC.4 m/s D.m/s【答案】B【解析】据题意,小球从20m高出向走抛出做平抛运动,落到车上时数值分速度为:,即,此时水平分速度为:,当小球和车相对静止时,据动量守恒定律有:,则小车的速度为:,故选项B正确。

【考点】本题考查动量守恒定律和平抛运动的应用。

3.在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A 点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如右图所示.由此可见()A.电场力为2mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【答案】D【解析】小球在水平方向不受力,所以沿水平方向做匀速直线运动,小球从A到B的运动时间是从B到C的运动时间的2倍,C错;在竖直方向,小球在AB受到的重力是小球在BC所受合力的一半,所以电场力,AB错;小球从A到B与从B到C的速度变化量的大小相等,D正确。

【考点】平抛运动电场力4.质量为m=3kg的物体在离地面高度为h=20m处,正以水平速度v=20m/s运动时,突然炸裂成两块,其中一块质量为m1=1kg.仍沿原运动方向以v1=40m/s的速度飞行,炸裂后的另一块的速度大小为______m/s.两块落到水平地面上的距离为______m(小计空气阻力,g取10m/s2).【答案】10 60【解析】物体爆炸前后,由动量守恒定律可知:,代入数据可得:,方向不变.由可知两块物体的下落时间,所以两块物体落地点间的距离为..【考点】考查动量守恒定律和平抛运动规律的应用.5.分如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v抛出一个小球,测得小球经时间t落到斜坡另一点Q,斜坡的倾角为θ,已知该星球的半径为R,引力常量为G。

平抛运动 一轮复习讲义

平抛运动 一轮复习讲义

平抛物体的运动要点提示:一、平抛运动特点分析:受力特点:只受重力mg ;初速度特点:水平方向初速度0V运动规律:1、水平方向:匀速直线运动;2、竖直方向:自由落体运动;注意以下物理量:瞬时速度、水平分速度、竖直分速度、水平位移、竖直位移、合位移、水平速度与竖直推论 1 速度偏向角的函数值规律:平抛运动任意时刻的速度偏向角的三种函数值分别为:vv y =ϕs in vv v v x 0cos ==ϕ 2/tan x y v v x y ==ϕ 推论2 速度偏向角与位移偏向角的关系:平抛运动速度偏向角的正切函数ϕtan ,等于位移偏向角θ的正切的2倍,即θϕtan 2tan =推论3 速度方向反向延长线规律:平抛运动任意时刻的瞬时速度方向的三、平抛运动扩展:类似平抛运动:带电粒子垂直射入匀强电场,作类似平抛运动。

斜抛运动:初速度方向与水平方向有一定夹角,注意此部分内容也要引起重视,具体分析有例题。

例1、(基本问题分析)如图所示,由A 点以水平速度V 0抛出小球,落在倾角为θ的斜面上的B 点时,速度方向与斜面垂直,不计空气阻力,则此时速度大小V B = 飞行时间t=例2、如图所示,小球自A 点以某一初速做平抛运动,飞行一段时间后垂直打在斜面上的B 点,已知A 、B 两点水平距离为8米,θ=300,求A 、B 间的高度差。

例3、(2012上海)如图,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速为v 0的平抛运动,恰落在b 点。

若小球初速变为v ,其落点位于c ,则( ) A v 0<v <2v 0 (B )v =2v 0 (C )2v 0<v <3v 0 (D )v >3v 0例4、(平抛性质与斜面的结合,较难)在倾角为θ的斜面上以初速度v 0水平抛出一物体,经多长时间物AABAB体离斜面最远?离斜面的最大距离是多少?例5、物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tg α随时间t 变化的图像是图1中的:( )例6.安徽省两地10届高三第一次联考水平抛出的小球,t 秒末的速度方向与水平方向的夹角为θ1,t +t 0秒末速度方向与水平方向的夹角为θ2,忽略空气阻力,则小球初速度的大小为( D ) A .gt 0(cos θ1-cos θ2) B .210cos cos θθ-gtC .gt 0(tan θ1-tan θ2)D .120tan tan θθ-gt例7、两同高度斜面,倾角分别为α、β小球1、2分别由斜面顶端以相同水平速度V 0抛出(如图),假设两球能落在斜面上,求两球的飞行时间之比。

人教版高中物理必修二 5.2平抛运动

人教版高中物理必修二 5.2平抛运动
(2)位移关系
tan2tan定任通意过时该刻段的时速间度内的水反平向位延移长的线中一点
结论总结
a、运动时间t 2 h g
即运动时间由高度h惟一决定
b、水平射程为 x v 0
2h g
即由v0、h共同决定
c、合速度 v v02 2gh d、速度的变化量 △v=g△t,△t时间内速度改变量相等,
△v方向是竖直向下的.
v0 O
x
α P (x,y)
vx α
y
vy
v
合速度:v vx2vy2 v02(g)t2 速度的偏向角: tan vy gt
vx v0
二、平抛运动规律
2)位移
水平方向:x v 0 t 竖直方向:y 1 gt 2
2
O v0 θ
x
P (x,y)
y
合位移: s x2y2 (v0t)2(1 2g2t)2
v0
vx
30°
vy v
2.跳台滑雪是一种极为壮观的运动.如图所示,运动员从 倾角为30°的山坡顶端的跳台上A点,以v0= 5 3 沿水平方 向飞出,恰好落到山坡底端的水平面上的B点.不计空气 阻力,取g=10 m/s2,求: (1)运动员在空中飞行的时间; (2)AB之间的距离. (3)运动员何时离开斜面的距离最大?
10.小球从空中以某一初速度水平抛出,落地前1s时刻, 速度方向与水平方向夹300角,落地时速度方向与水平方 向夹600角,g=10m/s2,求小球在空中运动时间及抛出的 初速度。
一、平 抛 运 动 定义:水平抛出的物体只在重力作用下的运动 条件:(1)初速度v0水平(2)只受重力作用 运动性质:平抛运动是匀变速曲线运动 研究方法:采用运动的合成和分解 水平方向:匀速直线运动 竖直方向:自由落体运动 运动规律 (1)速度关系

人教版物理必修二:平抛运动计算题类型总结(含答案)

人教版物理必修二:平抛运动计算题类型总结(含答案)

人教版物理必修二 5.2平抛运动计算题类型总结【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度v0;(2)平抛运动的时间;(3)平抛时的高度.2.从离地高80 m处水平抛出一个物体,3 s末物体的速度大小为50 m/s,取g=10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?4.如图所示,从高为h的斜面顶端A点以速度v0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;(2)小球落到B点时的速度大小.【类型2】斜抛运动的规律应用5.从某高处以6 m/s的初速度、以30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求:(1)石子在空中运动的时间;(2)石子的水平射程;(3)抛出点离地面的高度.(忽略空气阻力,g取10 m/s2)【类型3】平抛运动规律的综合应用6.将某一物体以一定的初速度水平抛出,在某1 s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1 s内下落的高度是多少?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,结果保留两位有效数字)7.如图所示,水平台面AB距地面的高度h=0.8 m.有一滑块从A点以初速度v0在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度v B水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0 m.已知AB=2.2 m.不计空气阻力,g取10 m/s2.求:(1)滑块从B点飞出时的速度大小;(2)滑块在A点的初速度v0的大小.8.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【类型4】平抛运动结合斜面综合应用10.如图为湖边一倾角为θ=37°的大坝的横截面示意图,水面与大坝的交点为O.一人(身高忽略不计)站在A点处以速度v0沿水平方向扔小石子,已知AO=50 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则:(1)若要求小石子能直接落到水面上,v0最小是多少?(2)若小石子不能直接落到水面上,落到斜面时速度方向与水平面夹角的正切值是多少?11.女子跳台滑雪等6个新项目已加入2014年冬奥会.如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡底的B点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t.(2)A、B间的距离s.12.如图所示,设一位运动员由A点沿水平方向跃出,到B点着陆,测得AB间距离L=75 m,山坡倾角α=37°(取sin 37°=0.6,cos 37°=0.8),试计算:(不计空气阻力,g取10 m/s2)(1)运动员在空气中飞行的时间t;(2)他起跳时的速度;(3)落地前瞬间速度的大小.13.如图所示,以9.8 m/s的水平速度v0抛出的物体,飞行一段时间后与斜面呈60°撞在倾角θ=30°的斜面上,求:(1)物体做平抛运动所用的时间;(2)物体撞在斜面时的合速度大小;(3)物体的水平位移、竖直位移和合位移;(4)物体的合位移方向.【类型5】平抛运动双边临界位移问题15.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图所示,试计算说明:(1)此球能否过网?(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)【类型6】平抛运动两物体相遇问题21.如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑,当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角为θ=30°.不计空气阻力,g取10 m/s2.求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.22.如图所示,可视为质点的滑块B放在水平面上,在其正上方离水平面高h=0.8 m处有一可视为质点的小球A,某时刻小球A以v1=5 m/s的初速度开始向右做平抛运动,同时滑块B以v2=3 m/s 的初速度开始向右做匀加速直线运动,小球A恰好能击中滑块B,求B运动的加速度a的大小.(g =10 m/s2)【类型7】类平抛运动24.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平射入时的初速度v0;(3)物块离开Q点时速度的大小v.人教版物理必修二 5.2平抛运动计算题类型总结(参考答案)【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度v0;(2)平抛运动的时间;(3)平抛时的高度.【答案】(1)5m/s(2)1.5 s(3)11.25 m【解析】(1)假定轨迹上A、B两点是落地前1 s内的始、终点,画好轨迹图,如图所示.对A点:tan 30°=①对B点:tan 60°=②t′=t+1 s.③由①②③解得t=s,v0=5m/s.④(2)运动总时间t′=t+1 s=1.5 s.(3)高度h=gt′2=11.25 m.2.从离地高80 m处水平抛出一个物体,3 s末物体的速度大小为50 m/s,取g=10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.【答案】(1)40 m/s(2)4 s(3)160 m【解析】(1)由平抛运动的规律知v=3 s末v=50 m/s,v y=gt=30 m/s解得v0=v x=40 m/s(2)物体在空中运动的时间t′==s=4 s(3)物体落地时的水平位移x=v0t′=40×4 m=160 m.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?【答案】(1)600 m (2)在空中排列成一条竖直线 (3)间距相等均为50 m【解析】(1)根据得,t==s=12 s.则水平距离x=v0t=50×12 m=600 m.(2)这些炸弹在空中排列成一条竖直线.因为从飞机上落下的每一颗炸弹都具有和飞机一样的水平速度,它们在落地前总位于飞机的正下方.(3)因为飞机在水平方向做匀速直线运动,在相等时间内通过的水平位移相等,所以炸弹落地点是等间距的,Δx=vΔt=50×1 m=50 m.4.如图所示,从高为h的斜面顶端A点以速度v0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;(2)小球落到B点时的速度大小.【答案】(1)(2)【解析】(1)解决平抛运动的方法是通常把平抛运动分解到水平方向和竖直方向去研究,水平方向做匀速直线运动,竖直方向做自由落体运动,两个方向上运动的时间相同.设小球飞行时间为t,根据平抛运动的规律,可得竖直方向上有解得:(2)设小球落到B点时的竖直速度为v y,则竖直方向上根据平行四边形定则得:小球落到B点时的速度大小为.【类型2】斜抛运动的规律应用5.从某高处以6 m/s的初速度、以30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求:(1)石子在空中运动的时间;(2)石子的水平射程;(3)抛出点离地面的高度.(忽略空气阻力,g取10 m/s2)【答案】(1)1.2 s(2)6.2 m(3)3.6 m【解析】(1)如图所示:石子落地时的速度方向和水平线的夹角为60°,则=tan 60°=即:v y=v x=v0cos 30°=×6×m/s=9 m/s取竖直向上为正方向,落地时竖直方向的速度向下,则-v y=v0sin 30°-gt,得t=1.2 s(2)石子在水平方向上做匀速直线运动:x=v0cos 30°·t=6××1.2 m 6.2 m(3)由竖直方向位移公式:h=v0sin 30°t-gt2=(6××1.2-×10×1.22) m=-3.6 m,负号表示落地点比抛出点低.【类型3】平抛运动规律的综合应用6.将某一物体以一定的初速度水平抛出,在某1 s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1 s内下落的高度是多少?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,结果保留两位有效数字)【答案】17m/s18m【解析】解法一:如图甲所示小球经过A点时v A与水平方向的夹角为37°,经过B点时v B与水平方向的夹角为53°.设从初始位置到A点经历时间t,则到B点共经历t+1 s.v yA=gt=v0tan 37°,v yB=g(t+1 s)=v0tan 53°.由以上两式解得初速度v0≈17 m/s,且t=s在这1 s内下落的高度Δh=yB-yA=g(t+1)2-gt2=×10×2m-×10×2m≈18 m.解法二:如图乙所示,由几何关系可得Δv=gΔt=v0tan 53°-v0tan 37°,解得v0=≈17 m/s根据推导公式有Δh==≈18 m.7.如图所示,水平台面AB距地面的高度h=0.8 m.有一滑块从A点以初速度v0在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度v B水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0 m.已知AB=2.2 m.不计空气阻力,g取10m/s2.求:(1)滑块从B点飞出时的速度大小;(2)滑块在A点的初速度v0的大小.【答案】(1)5 m/s(2)6 m/s【解析】(1)平抛运动:,s=v B t,解得:v B=5 m/s.(2)由牛顿第二定律:μ m g=m a,运动学公式v B2﹣v02=﹣2a sAB,解得:v0=6m/s.8.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【答案】(1)小球飞出的速度为;(2)小球落在C点时的竖直分速度大小为,合速度的大小为,速度与水平方向的正切值为2tanθ.【解析】(1)根据h=得,t=,则小球飞出的初速度.(2)小球落在C点时的竖直分速度.根据平行四边形定则知,合速度大小.设速度方向与水平方向的夹角为α,【类型4】平抛运动结合斜面综合应用10.如图为湖边一倾角为θ=37°的大坝的横截面示意图,水面与大坝的交点为O.一人(身高忽略不计)站在A点处以速度v0沿水平方向扔小石子,已知AO=50 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则:(1)若要求小石子能直接落到水面上,v0最小是多少?(2)若小石子不能直接落到水面上,落到斜面时速度方向与水平面夹角的正切值是多少?【答案】(1)16.33m/s(2)1.5【解析】(1)若小石子恰能落到O点,v0最小,有AO cosθ=v0t,AO sinθ=gt2,解得v0≈16.33m/s.(2)斜面与水平方向夹角θ=37°,若小石子落到斜面上时,设速度方向与水平面的夹角为α,则tanθ==,tanα=,所以tanα=2tanθ=1.5.11.女子跳台滑雪等6个新项目已加入2014年冬奥会.如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡底的B点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t.(2)A、B间的距离s.【答案】(1)3 s(2)75 m【解析】(1)运动员由A点到B点做平抛运动,则水平方向的位移x=v0t竖直方向的位移y=gt2又=tan 37°,联立以上三式得t==3 s(2)由题意知sin 37°==得A、B间的距离s==75 m.12.如图所示,设一位运动员由A点沿水平方向跃出,到B点着陆,测得AB间距离L=75 m,山坡倾角α=37°(取sin 37°=0.6,cos 37°=0.8),试计算:(不计空气阻力,g取10 m/s2)(1)运动员在空气中飞行的时间t;(2)他起跳时的速度;(3)落地前瞬间速度的大小.【答案】(1)运动员在空气中飞行的时间t为3 s;(2)他起跳时的速度为30 m/s;(3)落地前瞬间速度的大小为.【解析】(1)根据L sin 37=gt2得,t=3 s(2)起跳的速度(3)落地时竖直分速度v y=gt=30 m/s,则落地的速度13.如图所示,以9.8 m/s的水平速度v0抛出的物体,飞行一段时间后与斜面呈60°撞在倾角θ=30°的斜面上,求:(1)物体做平抛运动所用的时间;(2)物体撞在斜面时的合速度大小;(3)物体的水平位移、竖直位移和合位移;(4)物体的合位移方向.【答案】(1)物体做平抛运动所用的时间为(2)物体撞在斜面时的合速度大小为11.3 m/s;(3)物体的水平位移为5.7 m、竖直位移为1.6 m和合位移为5.9 m;(4)物体的合位移与水平方向的夹角为.【解析】(1)小球与斜面呈60°撞在倾角θ=30°的斜面上,根据几何关系知,小球的速度与水平方向的夹角为30°,.(2)根据平行四边形定则知,小球撞在斜面上的合速度大小(3)水平位移.竖直位移.合位移.(4)设合位移与水平方向的夹角为α,因为速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,=.【类型5】平抛运动双边临界位移问题15.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图所示,试计算说明:(1)此球能否过网?(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)【答案】(1)能过网(2)落在对方界外【解析】(1)当排球在竖直方向下落Δh=(3.04-2.24) m=0.8 m时,所用时间为t1,满足Δh=gt,x=v0t1.解以上两式得x=10 m>9 m,故此球能过网.(2)当排球落地时h=gt,x′=v0t2.将h=3.04 m代入得x′≈19.5 m>18 m,故排球落在对方界外.16.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s(2)5m/s【解析】(1)设小球恰好落到空地的右侧边缘时的水平初速度为v01,则小球的水平位移:L+x=v01t1小球的竖直位移:H=gt解以上两式得v01=(L+x)=13 m/s设小球恰好越过围墙的边缘时的水平初速度为v02,则此过程中小球的水平位移:L=v02t2小球的竖直位移:H-h=gt解以上两式得:v02=5 m/s小球抛出时的速度大小为5 m/s≤v0≤13 m/s(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在空地上时,落地速度最小.竖直方向:v=2gH又有:v min=解得:v min=5m/s【类型6】平抛运动两物体相遇问题21.如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑,当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角为θ=30°.不计空气阻力,g取10 m/s2.求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.【答案】(1)1s(2)【解析】(1)设小球p从斜面上下滑的加速度为a,根据牛顿第二定律a==g sinθ①下滑所需时间为t1,根据运动学公式得l=②由①②得t1=③代入数据得t1=1s(2)小球q运动为平抛运动,水平方向做匀速直线运动,设抛出速度为v0.则x=l cos30°=v0t2④依题意得:t2=t1⑤由③④⑤得22.如图所示,可视为质点的滑块B放在水平面上,在其正上方离水平面高h=0.8 m处有一可视为质点的小球A,某时刻小球A以v1=5 m/s的初速度开始向右做平抛运动,同时滑块B以v2=3 m/s 的初速度开始向右做匀加速直线运动,小球A恰好能击中滑块B,求B运动的加速度a的大小.(g =10 m/s2)【答案】10 m/s2【解析】设经时间t,小球A击中滑块B,则对小球A由平抛运动的规律得:h=gt2小球A在水平方向上的位移为x,则:x=v1t滑块B在时间t内的位移也为x,则:x=v2t+at2联立以上各式解得:a=10 m/s2【类型7】类平抛运动24.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平射入时的初速度v0;(3)物块离开Q点时速度的大小v.【答案】(1)(2)b(3)【解析】(1)沿斜面向下的方向有mg sinθ=ma,l=at2联立解得t=.(2)沿水平方向有b=v0tv0==b.(3)物块离开Q点时的速度大小v=。

平抛运动的相关公式总结

平抛运动的相关公式总结

平抛运动的相关公式总结平抛运动是指一个物体在水平方向上以一定的初速度被抛出后,在垂直于水平方向的竖直方向上运动的过程。

这种运动在物理学中经常被讨论和研究。

本文将对平抛运动中的相关公式进行总结。

1. 位移公式:在平抛运动中,物体在水平方向上的位移和时间成正比。

物体在竖直方向上的位移则受重力的影响。

水平方向上的位移公式为:x = v0 * t其中,x表示水平方向上的位移,v0表示物体的初速度,t表示运动的时间。

竖直方向上的位移公式为:y = v0y * t - 1/2 * g * t^2其中,y表示竖直方向上的位移,v0y表示物体在竖直方向上的初速度,g表示重力加速度。

2. 初速度分解:物体在平抛运动中的初速度可以分解为水平方向上的初速度和竖直方向上的初速度。

水平方向上的初速度为:v0x = v0 * cosθ其中,v0x表示水平方向上的初速度,v0表示物体的初速度,θ表示运动的角度(相对于水平方向的夹角)。

竖直方向上的初速度为:v0y = v0 * sinθ其中,v0y表示竖直方向上的初速度,v0表示物体的初速度,θ表示运动的角度。

3. 时间相关公式:物体在平抛运动中的飞行时间和最大高度可以通过初速度和重力加速度来计算。

飞行时间为:t = 2 * v0y / g其中,t表示飞行时间,v0y表示物体在竖直方向上的初速度,g表示重力加速度。

最大高度为:H = v0y^2 / (2 * g)其中,H表示最大高度,v0y表示物体在竖直方向上的初速度,g表示重力加速度。

4. 水平飞行距离:平抛运动中物体的水平飞行距离可以由初速度和飞行时间计算。

水平飞行距离为:R = v0 * cosθ * t其中,R表示水平飞行距离,v0表示物体的初速度,θ表示运动的角度,t表示飞行时间。

通过以上公式,我们可以计算平抛运动中的各种运动参数,包括位移、初速度分解、飞行时间、最大高度和水平飞行距离等。

这些公式为我们研究和解决平抛运动问题提供了便捷和准确的手段。

平抛运动的六个重要结论

平抛运动的六个重要结论

第4点平抛运动的六个重要结论1.运动时间:t=2hg,即平抛物体在空中的飞行时间仅取决于下落的高度,与初速度v0无关.2.水平射程:x=v0t=v02hg,即落地的水平距离只与初速度v0和下落高度h有关,与其他因素无关.3.落地速度:v=v20+2gh,即落地速度也只与初速度v0和下落高度h有关.4.速度变化量:Δv=gΔt,即Δv的方向与g的方向相同,总是竖直向下.5.平抛运动的速度偏角θ与位移偏角α的关系:tanθ=2tanα.6.从抛出点开始,平抛物体任意时刻的瞬时速度方向的反向延长线必过水平位移的中点(如图1所示).图1对点例题将某一物体以一定的初速度水平抛出,在某1s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1s内下落的高度是多少?(g=10m/s2,sin37°=0.6,cos37°=0.8)解题指导解法一:如图所示,小球经过A点时v A与水平方向的夹角为37°,经过B点时v B与水平方向的夹角为53°.设从初始位置到A点经历t s,则到B点共经历(t+1) s.v yA=gt=v0tan37°,v yB=g(t+1)=v0tan53°.由以上两式解得初速度v0≈17.1m/s,且t=9 7s在这1s 内下落的高度:Δh =y B -y A =12g (t +1)2-12gt 2=12×10×⎝⎛⎭⎫97+12m -12×10×⎝⎛⎭⎫972m ≈17.9m解法二:如图,由几何关系可得Δv =g Δt =v 0tan53°-v 0tan37°,解得v 0=g Δt tan53°-tan37°≈17.1m/s 据推导公式有Δh =v 2yB -v 2yA 2g =(v 0tan53°)2-(v 0tan37°)22g=17.9m答案 17.1m/s 17.9m将一小球以v 0=10m /s 的速度水平抛出,抛出点距地面高度为H =20 m ,g 取10 m/s 2,问:(1)小球在空中的飞行时间是多少?(2)小球落地点距抛出点的水平距离是多少?(3)落地时小球的速度大小是多少? 答案 (1)2s (2)20m (3)105m/s解析 (1)由H =12gt 2得t =2H g =2×2010s =2s (2)由x =v 0t 得x =10×2m =20m(3)经过2s ,小球的竖直速度为v y =gt =20m/s所以落地时小球的速度大小为v =v 20+v 2y =102+202m/s =105m/s。

实验5 探究平抛运动的特点

实验5 探究平抛运动的特点
板上时,钢球侧面会在白纸上挤压出一个痕迹点。移动挡板,重新释放钢球,如
此重复,白纸上将留下一系列痕迹点。
(3)为了得到平抛物体的运动轨迹,同学们还提出了以下三种方案,其中可行的

。(多选)
A.从细管水平喷出稳定的细水柱,拍摄照片,即可得到平抛运动轨迹
B.用频闪照相在同一底片上记录平抛小球在不同时刻的位置,
据中间时刻的瞬时速度等于这段时间的平均速度可知,小球运动到 A 点时,其速度
的竖直分量 vy=
答案:
(.+.)×-
×.
m/s≈2.0 m/s。
[例3] [数据处理] (2021·全国乙卷,22)某同学利用图a所示装置研究平抛运
动的规律。实验时该同学使用频闪仪和照相机对做平抛运动的小球进行拍摄,

利用追踪法逐点描出小球运动的轨迹,建立坐标系,测量出 x、y,再利用公式可得初速
度 v0=x



三、实验器材
斜槽、竖直固定在铁架台上的木板 、铅笔、白纸、图钉、小球、刻度尺、
重垂线。
四、实验步骤
1.按实验原理图甲安装实验装置,使斜槽末端水平。
2.以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y轴和水平
系后,轨迹上各点的坐标具有y=ax2的关系,且同一轨迹上a是一个特定的值。
(2)实验方法。
方法一:代入法
用刻度尺测量几个点的x、y坐标,分别代入y=ax2中求出常数a,看计算得到的a
值在误差范围内是否为一常数。
方法二:图像法
建立y-x 2 坐标系,根据所测量的各个点的x、y坐标值分别计算出对应y值的
2.坐标原点不够精确。
3.轨迹上的描点不准确等。
七、注意事项

专题02 平抛运动的描述——解析版

专题02  平抛运动的描述——解析版

专题2 平抛运动的描述(教师版)一、目标要求二、知识点解析1.平抛运动的定义将物体以一定的速度抛出,如果物体只受重力的作用,这时的运动叫做抛体运动;做抛体运动的物体只受到重力作用,既加速度g不变,因此抛体运动一定是是匀变速运动.抛体运动开始时的速度叫做初速度.如果初速度是沿水平方向的,这个运动叫做平抛运动.平抛运动是匀变速曲线运动.平抛运动的特征:①具有水平方向的初速度②只受重力作用2.平抛运动的基本规律(1)水平方向:匀速直线运动.(2)竖直方向:自由落体运动,加速度为g.3.平抛运动的运动规律v的方向相同;竖直方向为y轴,正方向向下;物以抛出点为原点取水平方向为x轴,正方向与初速度(,),下面将就质点任意时刻的速度、位移进行讨论.体在任意时刻t位置坐标为P x yy(1)速度公式:水平方向和竖直方向速度:0x y v v v gt =⎧⎪⎨=⎪⎩因此物体的实际速度为:0y x v v gtv v tan α⎧===⎪⎪⎨⎪==⎪⎩(2)位移公式水平方向和竖直方向位移:0212x v t y gt =⎧⎪⎨=⎪⎩因此实际位移为:02S y gt x v tan θ⎧⎪==⎪⎨⎪==⎪⎩注意:显然,位移和速度的夹角关系为:12tan tan θα=,即v 的反向延长线交于OA 的中点O ’.这一结论在运算中经常用到.(3)轨迹公式 由0x v t =和212y gt =可得2202g y x v =,所以平抛运动的轨迹是一条抛物线. 4.平抛运动的几个重要结论(1)运动时间:t =(2)落地的水平位移:x x v t v ==,即水平方向的位移只与初速度0v 和下落高度h 有关.(3)落地时速度:v =0v 和下落高度h 有关平抛运动 (4)两个重要推论:表示速度矢量v 与水平方向的夹角,故 表示位移矢量与水平方向的夹角,故 ①平抛运动中,某一时刻速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍. ②根据示意图,我们可知,平抛运动中,某一时刻速度的反向延长线与x 轴的交点为水平位移的中点. 5.求解平抛运动飞行时间的四种方法(1)已知物体在空中运动的高度,根据212h gt =,得到t = (2)已知水平射程x 和初速度0v ,也可以求出物体在空中运动的时间0x t v =(3)已知物体在空中某时刻的速度方向与竖直方向的夹角θ与初速度0v 的大小,根据0v gttan θ=可以求得时间.(4)已知平抛运动的位移方向与初速度方向的夹角α及初速度0v 的大小,根据200122gtgt v t v tan α==可求出时间.6.类平抛运动有时物体的运动与平抛运动很相似,也是在某个方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动.对这种运动像平抛又不是平抛,通常称为平抛运动,处理方法与平抛运动一样,只是a 不同而已.如图所示倾角为θ.一物块沿上方顶点P 水平射入,而从右下方顶点Q 离开.xα0tan y xv gt v v α==θ21tan tan 222x x y gt gt x v t v θα====7.斜面上的平抛运动解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,若已知斜面倾角,则相当于间接告诉合速度或者合位移的方 向.这个类问题主要就是将平抛运动规律与几何知识综合起来.①当物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角.一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解.例如:两个相对的斜面,倾角分别为037和053,在顶点把两个小球以相同初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,是求解A 、B 两个小球落到斜面上的时间之比是多少.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,== b :由于物体的位移与水平方向的夹角即为斜面的倾角可知:tan y x θ=,()201tan 2gt v t θ=,0tan v t g θ2=,所以:tan 379tan 5316A B t t ︒==︒ ②当物体的起点在斜面外,落点在斜面上 解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,是垂直打到斜面上,所以水平方向的速度和竖直方向的速度有以下关系:0tan yv v θ=根据这个公式再加上水平方向和竖直方向的位移关系就可以方便的求解.例如:在倾角为37°的斜面底端的正上方H 处平抛一个小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,==,由图可知, 2012tan 37H gt v t-︒=. b :由速度关系得:0tan 37v gt ︒=,解之得:0v = 8.斜抛运动的基本概念(1)定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动. (2)斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g .(3)斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下 抛运动的合运动. (4)斜抛运动的方程如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则速度:x yv v v v gt cos sin θθ=⎧⎪⎨=-⎪⎩位移:212x v t y v t gt cos sin θθ=⎧⎪⎨=-⎪⎩轨迹方程:可得:xt v cos θ=,代入y 可得2222gx y x v tan cos θθ=-可以看出:y =0时 (1)x =0是抛出点位置.(2)22v x gsin θ=是水平方向的最大射程.(3)飞行时间:2v t gsin θ=三、考查方向题型1:平抛运动的基本规律典例一:(多选)关于平抛运动,下列说法中正确的是( ) A .落地时间仅由抛出点高度决定B .抛出点高度一定时,落地时间与初速度大小有关C .初速度一定的情况下,水平飞出的距离与抛出点高度无关D .抛出点高度一定时,水平飞出距离与初速度大小成正比 【答案】AD【解析】AB .平抛运动在竖直方向上做自由落体运动,由 h =212gt 得 t则知平抛运动的时间由抛出点高度决定,与初速度无关,故A 正确,B 错误;CD .平抛运动的水平距离 x =v 0t=v 抛出点高度一定时,水平飞出距离与初速度的大小成正比,故C 错误,D 正确.题型2:平抛运动的计算典例二:(2020江苏·多选)如图所示,小球A 、B 分别从2l 和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l 。

高三物理08_平抛运动_知识点解析、解题方法、考点突破、例题分析、达标测试

高三物理08_平抛运动_知识点解析、解题方法、考点突破、例题分析、达标测试

【本讲主要内容】平抛运动平抛运动及类平抛运动的特征及解法【知识掌握】 【知识点精析】1、平抛定义:水平方向抛出的物体只在重力作用下的运动。

广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

2、平抛特点:(1)初速度:水平。

(2)运动性质:加速度为g 的匀变速曲线运动。

(3)运动轨迹:抛物线,轨迹方程:22x v g y =,抛物线顶点为抛出点。

问题:人站在平台上平抛一小球,球离开手的速度为v 1,落地时速度为v 2,不计空气阻力,下图中能表示出速度矢量的演变过程的是xCAy解释:平抛运动中,任意两个时刻(或两个位置)间的速度变化量t g v ∆=∆,方向恒为竖直向下,正确答案是C 。

3、研究方法:复杂曲线运动可分解为两个互相垂直方向上的直线运动,一般以初速度或合外力的方向为坐标轴进行分解。

平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动这两个分运动。

练习:战争和自然灾害造成了大量难民。

一架飞机正在执行一次国际救援行动,空投救援物资。

设飞机做水平匀速直线飞行,从某时刻起,每隔一秒钟投下一只货箱,这样接连投下了4只相同的货箱,每只货箱在离开飞机后的4s 内,由于降落伞还没有打开,可以假设空气阻力不计,则从第一只货箱离开飞机后的4s 内,关于几只货箱在空中的位置关系的下列说法中正确的是A . 在空中总是排成抛物线,落地点是等间距的B . 在空中总是排成抛物线,落地点是不等间距的C . 在空中总是排成直线,位于飞机的正下方,落地点是等间距的D . 在空中总是排成直线,位于飞机的后方,落地点是等间距的E . 在空中总排成直线,位于飞机正下方,相邻货箱间在竖直方向上的距离保持不变 解释:平抛运动的水平分运动是匀速的,且不受竖直方向的运动的影响,所以应选C 。

4、解题思路:两个方向上分别计算最后再合成。

注意合运动、分运动间的同时性。

5、平抛运动的规律:如图,质点从O 处以v 0平抛,经时间t 后到达P 点。

平抛运动实验报告

平抛运动实验报告

平抛运动实验报告班级姓名学号一、实验目的:1、描绘物体平抛运动的轨迹并判断是不是抛物线2、学会根据平抛运动轨迹图求出平抛的初速度二、实验原理:1、平抛物体的运动可以看做是两个分运动的合运动:一是水平方向的匀速直线运动,另一个是竖直方向的自由落体运动. 让小球做平抛运动,利用描迹法描出小球的运动轨迹,即小球做平抛运动的曲线,建立坐标系,判断轨迹是不是抛物线。

2、测出曲线上某一点的坐标x和y,依据重力加速度g的数值,利用公式y=1/2gt2求出小球的飞行时间t,再利用公式x=v0t求出小球的水平分速度,即为小球做平抛运动的初速度v0.三、实验器材斜槽、小球、木板、重垂线(铅垂线)、坐标纸、图钉、刻度尺、铅笔(或卡孔)四、参考实验步骤1、安装调整弧槽,使其末端保持水平。

固定斜槽,可用平衡法调整斜槽,即将小球轻放在斜槽平直部分的末端处,能使小球在平直轨道上的任意位置静止,就表明斜槽平直部分的末端处已水平.2、调整木板:用悬挂在槽口上的重锤线把木板调到竖直方向,并使木板平面与小球下落的竖直面平行,然后把重锤线方向记录到钉在木板的坐标纸上,固定木板,使在重复实验的过程中,木板与斜槽的相对位置保持不变.(注意:小球在运动中不能与坐标纸接触)3、确定坐标原点O:把小球放在槽口处,用铅笔记下球在槽口时球心在板上的水平投影点O,O点即为坐标原点.4、描绘运动轨迹:在木板的平面上用手按住卡片,使卡片上有孔的一面保持水平,调整卡片位置,要使从槽上滚下的小球正好穿过卡片的孔,而不擦碰孔的边缘,然后用铅笔在卡片缺口上点个黑点,这就在白纸上记下了小球穿过孔时球心所对应的位置,取下坐标纸用平滑的曲线把这些点连接起来便得到小球做平抛运动的轨迹.5、判断轨迹是不是抛物线6、计算初速度:以O点为原点画出竖直向下的y轴和水平向右的x轴,并在曲线上选取ABCDEF六个不同的点,用刻度尺测出它们的坐标x和y,用公式x=v0t和y=1/2gt2计算出小球的初速度v0,最后求出v0的平均值.●实验中的注意事项1.安装斜槽时,应检查斜槽末端的水平槽部分是否水平,检查方法是小球平衡法.2.固定坐标纸时应用重锤检查坐标纸上的竖直线是否竖直,坐标原点位置是否正确.3.要注意保持小球每次都是从同一止高度由静止开始滚下.4.计算初速度时,应选距抛出点远些的点为宜.以便于测量,减小误差.2●实验结论平抛实验中小球作平抛运动轨迹是,其平抛初速度为。

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)(含答案)

平抛运动的性质与基本规律(公式)一、基础知识 (一)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2、性质:加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线.3、基本规律:以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则:(1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t . (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0. (4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt2v 0.(二)平抛运动基本规律的理解 1、飞行时间:由t = 2hg知,时间取决于下落高度h ,与初速度v 0无关. 2、水平射程:x =v 0t =v 0 2hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3、落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2gh v 0,所以落地速度也只与初速度v 0和下落高度h 有关. 4、速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以 做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图所示. 5、两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.二、练习1、关于平抛运动,下列说法不正确的是( )A .平抛运动是一种在恒力作用下的曲线运动B .平抛运动的速度方向与恒力方向的夹角保持不变C .平抛运动的速度大小是时刻变化的D .平抛运动的速度方向与加速度方向的夹角一定越来越小 答案 B解析 平抛运动物体只受重力作用,故A 正确;平抛运动是曲线运动,速度时刻变化,由v =v 20+(gt )2知合速度v 在增大,故C 正确;对平抛物体的速度方向与加速度方向的夹角,有tan θ=v 0v y =v 0gt ,因t 一直增大,所以tan θ变小,θ变小.故D 正确,B 错误.本题应选B.2、对平抛运动,下列说法正确的是( )A .平抛运动是加速度大小、方向不变的曲线运动B .做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .落地时间和落地时的速度只与抛出点的高度有关 答案 AC解析 平抛运动的物体只受重力作用,其加速度为重力加速度,故A 项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy =gt 2,水平方向位移不变,故B 项错误.平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t =2hg,落地速度为v =v 2x +v 2y =v 20+2gh ,所以C 项正确,D 项错误.3、质点从同一高度水平抛出,不计空气阻力,下列说法正确的是 ( )A .质量越大,水平位移越大B .初速度越大,落地时竖直方向速度越大C .初速度越大,空中运动时间越长D .初速度越大,落地速度越大 答案 D解析 物体做平抛运动时,h =12gt 2,x =v 0t ,则t =2hg,所以x =v 0 2hg,故A 、C 错误.由v y =gt =2gh ,故B 错误. 由v =v 20+v 2y =v 20+2gh ,则v 0越大,落地速度越大,故D 正确. 4、关于做平抛运动的物体,说法正确的是( )A .速度始终不变B .加速度始终不变C .受力始终与运动方向垂直D .受力始终与运动方向平行 答案 B解析 物体做平抛运动的条件是物体只受重力作用,且初速度沿水平方向,故物体的加速度始终不变,大小为g ,B 正确;物体的平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,其合运动是曲线运动,速度的大小和方向时刻变化,A 错误;运动过程中,物体所受的力与运动方向既不垂直也不平行,C 、D 错误. 5、某人用细线系一个小球在竖直面内做圆周运动,不计空气阻力,若在小球运动到最高点时刻,细线突然断了,则小球随后将做( )A .自由落体运动B .竖直下抛运动C .竖直上抛运动D .平抛运动答案 D6、(2012·课标全国·15)如图,x 轴在水平地面内,y 轴沿竖直方向. 图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动 轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( ) A .a 的飞行时间比b 的长 B .b 和c 的飞行时间相同C .a 的水平初速度比b 的小D .b 的水平初速度比c 的大 答案 BD解析 根据平抛运动的规律h =12gt 2,得t =2hg,因此平抛运动的时间只由高度决定,因为h b =h c >h a ,所以b 与c 的飞行时间相同,大于a 的飞行时间,因此选项A 错误,选项B 正确;又因为x a >x b ,而t a <t b ,所以a 的水平初速度比b 的大,选项C 错误;做平抛运动的物体在水平方向上做匀速直线运动,b 的水平位移大于c ,而t b =t c ,所以v b >v c ,即b 的水平初速度比c的大,选项D正确7、如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后开始瞄准并投掷炸弹,若炸弹恰好击中目标P,则(假设投弹后,飞机仍以原速度水平匀速飞行且不计空气阻力) ()A.此时飞机正在P点正上方B.此时飞机是否处在P点正上方取决于飞机飞行速度的大小C.飞行员听到爆炸声时,飞机正处在P点正上方D.飞行员听到爆炸声时,飞机正处在P点偏西一些的位置答案AD8、为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表所示.以下探究方案符合控制变量法的是() 序号抛出点的高度(m)水平初速度(m/s)水平射程(m)10.20 2.00.4020.20 3.00.6030.45 2.00.6040.45 4.0 1.2050.80 2.00.8060.80 6.0 2.40A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据答案 B解析本题采用控制变量法分析,选B.9、将一小球从高处水平抛出,最初2 s内小球动能E k随时间t变化的图象如图21所示,不计空气阻力,取g=10 m/s2.根据图象信息,不能确定的物理量是()A.小球的质量薄B.小球的初速度C.最初2 s内重力对小球做功的平均功率D .小球抛出时的高度 答案 D解析 小球水平抛出,最初2 s 内下落的高度为h =12gt 2=20 m .由题图知在0时刻(开始抛时)的动能为5 J ,即12m v 20=5 J .2 s 内由动能定理得:mgh =E k2-E k0=(30-5) J =25 J ,求得m =18 kg ,进而求出v 0.因为P =W t =mght ,可求出P ;只有D 项不能求解,故选D.10、如图所示,P 是水平地面上的一点,A 、B 、C 、D 在一条竖直线上, 且AB =BC =CD .从A 、B 、C 三点分别水平抛出一个物体,这三个物 体都落在水平地面上的P 点.则三个物体抛出时速度大小之比v A ∶v B ∶v C 为( )A.2∶3∶ 6 B .1∶2∶ 3 C .1∶2∶3D .1∶1∶1答案 A解析 由题意及题图可知DP =v A t A =v B t B =v C t C ,所以v ∝1t ;又由h =12gt 2,得t ∝h ,因此有v ∝1h,由此得v A ∶v B ∶v C =2∶3∶ 6. 11、将一只苹果(可看成质点)水平抛出,苹果在空中依次飞过三个完全相同的窗户1、2、3,图中曲线为苹果在空中运行的轨迹.若不计空气阻力的影响,则( )A .苹果通过第1个窗户的竖直方向上的平均速度最大B .苹果通过第1个窗户克服重力做功的平均功率最小C .苹果通过第3个窗户所用的时间最短D .苹果通过第3个窗户重力所做的功最多 答案 BC解析 苹果在空中做平抛运动,在竖直方向经过相同的位移,用时越来越少,重力做功相同,由v =h t 及P =mgh t 知A 、D 错,B 、C 对12、(2011·广东·17)如图所示,在网球的网前截击练习中,若练习者在 球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球 刚好落在底线上.已知底线到网的距离为L ,重力加速度为g ,将 球的运动视作平抛运动,下列叙述正确的是( )A .球被击出时的速度v 等于L g2H B .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关 答案 AB解析 由平抛运动规律知,H =12gt 2得,t =2Hg,B 正确.球在水平方向做匀速直线运动,由s =v t 得,v =st=L2H g=L g2H,A 正确.击球点到落地点的位移大于L ,且与球的质量无关,C 、D 错误.13、在水平路面上做匀速直线运动的小车上有一固定的竖直杆,其上的三个水平支架上有三个完全相同的小球A 、B 、C ,它们离地面的高度分别为3h 、2h 和h ,当小车遇到障碍物P 时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图所示.则下列说法正确的是( )A .三个小球落地时间差与车速有关B .三个小球落地点的间隔距离L 1=L 2C .三个小球落地点的间隔距离L 1<L 2D .三个小球落地点的间隔距离L 1>L 2 答案 C解析 车停下后,A 、B 、C 均以初速度v 0做平抛运动,且运动时间t 1= 2hg,t 2= 2×2hg=2t 1,t 3= 2×3hg=3t 1 水平方向上有:L 1=v 0t 3-v 0t 2=(3-2)v 0t 1L2=v0t2-v0t1=(2-1)v0t1可知L1<L2,选项C正确.14、(2012·江苏·6)如图所示,相距l的两小球A、B位于同一高度h(l、h均为定值).将A向B水平抛出的同时,B自由下落.A、B与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则()A.A、B在第一次落地前能否相碰,取决于A的初速度B.A、B在第一次落地前若不碰,此后就不会相碰C.A、B不可能运动到最高处相碰D.A、B一定能相碰答案AD解析由题意知A做平抛运动,即水平方向做匀速直线运动,竖直方向为自由落体运动;B为自由落体运动,A、B竖直方向的运动相同,二者与地面碰撞前运动时间t1相同,且t1=2hg,若第一次落地前相碰,只要满足A运动时间t=l v<t1,即v>lt1,所以选项A正确;因为A、B在竖直方向的运动同步,始终处于同一高度,且A与地面相碰后水平速度不变,所以A一定会经过B所在的竖直线与B相碰.碰撞位置由A的初速度决定,故选项B、C错误,选项D正确.。

平抛运动

平抛运动

三.平抛运动极其规律1. 平抛运动:物体以一定的初速度水平抛出,物体只在重力作用下所做的运动,叫平抛运动。

物体做平抛运动的条件有两个:(1)初速度水平;(2)只受重力。

2. 平抛运动的规律(1)平抛运动在水平方向上不受外力作用,在竖直方向上只受重力作用。

因此,可把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。

(2)设平抛运动的初速度为0v ,以抛出点为坐标原点、以0v 方向为x 轴正方向,竖直向下为y 轴正方向,建立坐标系如图1所示。

①速度:水平方向分速度:0v v x =, 竖直方向分速度:gt v y = 合速度大小:20)(gt v v v v y x +=+=。

合速度方向与与x 轴正方向夹角θ满足0tan v gt v v xy ==θ②位移:水平方向分位移:t v x 0=, 竖直方向分位移:221gt h y ==, 合位移大小22y x s +=。

注意:合位移方向与x 轴正方向间的夹角α满足:002221tan v gtt v gt x y ===α。

可见,合位移与合速度方向不一致。

另外,从竖直分位移中可解出ght 2=,带入t v x 0=得ghv x 20=。

所以平抛运动的时间只与下落高度h 有关,而水平位移(即射程)和下落的高度、抛出时的初速度都有关系。

(3)运动轨迹:平抛运动的物体在某时刻的位置坐标为(t v 0,221gt ),即t v x 0=,221gt y =。

消去时间t 可得平抛运动的轨迹方程为2202x v g y =。

由于g 、0v 都为定值,所以平抛运动的轨迹是抛物线。

o图13.平抛运动的性质做平抛运动的物体,初速度方向和重力方向垂直,因此它的 运动轨迹是一条曲线。

由于物体所受重力是一个恒力,所以平抛运动的加速度等于当地的重力加速度,为一定值。

由t g v ∆=∆知, 在任意相等的时间间隔t ∆内,速度变化量都相等且竖直向下,有t g v v y ∆=∆=∆,所以平抛运动是匀变速曲线运动。

平抛运动

平抛运动

高频考点例析
【方法技巧】 (1)与斜面有关的平抛运 动,注意挖掘速度或位移方向条件,要么 分解速度,要么分解位移,一定能使问题 得到解决. (2)对平抛运动的分解不是唯一的,可借 用斜抛运动的分解方法研究平抛,即要灵 活合理地运用运动的合成与分解解决曲线 运动.
高频考点例析
变式训练
2.如图4-2-11所示,以 9.8 m/s的水平初速度v0抛出的物 体,飞行一段时间后,垂直地撞 在倾角θ=30°的斜面上,可知 物体完成这段飞行的时间是 ( )
2
基础知识梳理
vy gt 方向 tanθ= = v0 v0 2 2 合位移:s= x +y , y gt 方向 tanα=x= 2v0 .
课堂互动讲练
一、对平抛运动规律的进一步理解 1.水平射程和飞行时间 2h (1)飞行时间:t= ,只与 h、g g 有关,与 v0 无关. 2h (2)水平射程:s=v0t=v0 ,由 v0、 g h、g 共同决定.
高频考点例析
解析:(1)由题意知,小球落到斜面上沿斜面下滑, 并未弹起,说明此时小球的速度方向与斜面平行,如图所 示,所以vy=v0tan53°,又vy2=2gh,代入数据得 vy=4 m/s,v0=3 m/s. (2)设小球离开平台到达斜面顶端所需时间为t1,由 vy=gt1得t1=0.4 s,则s=v0t1=3×0.4 m=1.2 m.
高频考点例析
图4-2-14 (3)如图 4-2-14 所示,设发球 高度为 h3 时, 飞行时间为 t3, 同理得 1 2 h3= gt3 ⑦ 2 s3=v3t3⑧ 且 3s3=2L⑨
高频考点例析
设球从恰好越过球网到最高点的 【易误警示】 时间为 t,水平距离为 s,有 分析平抛运动中的 1 2 h3-h= gt ⑩ 临界问题,关键是 2 结合平抛运动的特 s=v3t⑪ 点和规律寻找临界 由几何关系知,x3+s=L⑫ 情景、挖掘临界条 4 件.审题时对题目 联立⑦~⑫式,解得 h3= h. 3 中的“恰好”、 “刚好”等字眼要 2h1 L g 4 格外注意. 【答案】 (1)v1 (2) (3) h

平抛运动的时间

平抛运动的时间

平抛运动的时间物理学中有一类常见的运动叫做平抛运动,它描述了物体在水平方向上的运动轨迹。

平抛运动是指物体在无外力作用下,从一定的起点以一定的初速度沿着水平方向抛出,然后自由落体下落的过程。

在这篇文章中,我们将探讨平抛运动中的时间问题。

平抛运动的时间取决于物体的初速度、抛出角度和重力加速度。

首先,我们来看解决平抛运动时间问题的基本公式,即平抛运动的时间公式:t = 2 * v * sinθ / g其中,t是平抛运动的时间,v是物体的初速度,θ是抛出角度,g 是重力加速度。

从这个公式可以看出,平抛运动的时间与初速度、抛出角度和重力加速度有关。

物体的初速度越大,抛出角度越小,平抛运动的时间就会增加。

而重力加速度越大,平抛运动的时间则会减少。

接下来,我们来解释这个公式的推导过程。

在平抛运动中,物体在水平方向上的速度是恒定的,记作v₀。

而在垂直方向上,物体受到重力的作用,其速度会发生变化。

在物体抛出时,它的垂直初速度是0,然后在自由落体的过程中,其垂直速度逐渐增加。

根据运动学知识,物体在自由落体过程中的垂直位移可以表示为:y = v₀t - 1/2gt²其中,y是垂直位移,t是时间,g是重力加速度。

当物体落到同一高度时,即y=0时,可以解得平抛运动的时间t:0 = v₀t - 1/2gt²化简得到:t = 2v₀ / g在平抛运动中,物体的水平速度v₀可以表示为:v₀ = v * cosθ其中,v是物体的初速度,θ是抛出角度。

代入上面的公式中,可以得到平抛运动的时间公式:t = 2 * v * sinθ / g以上就是平抛运动的时间公式的推导过程。

在实际问题中,我们可以利用这个公式来计算平抛运动的时间。

例如,当我们知道物体的初速度和抛出角度时,可以直接代入公式中计算得到时间。

同样地,当我们知道物体的初速度和时间时,也可以通过公式反推抛出角度。

这个公式可以帮助我们解决很多与平抛运动时间相关的问题。

平抛运动规律及应用

平抛运动规律及应用

5、类平抛问题
例4. 如图5,光滑斜面长为a,宽为b,倾角为θ 。一物块从斜面左上方顶点P水平入射,从右下 方顶点Q离开斜面,则入射的初速度为多大?
N Qθ
M G1mgsin
D
M
G1
a
G2
D G
a G1 m
m g sin m
g sin
M
N
a v0t
b1•gsin•t2
2
D
v0 a
gsin
速度
合速度v= vx2 vy2
速度方向角的正切值: tan
vy
gt
vx v0
位移规律:如图,以物体的出发点为原点,沿水 平和竖直方向建成立坐标。
水平分位移x= v 0 • t
竖直分位移y=
1 2
gt2
位移 合位移s= x2 y2
位移方向角的正切值:tan y gt
x 2v0
例1、如图,小球在斜面上A点以速度v0水平抛出 ,落在斜面上的C点,已知斜面倾角为θ,求:
平抛运动规律及应用
【知识回顾】 1.平抛运动及规律:1、运动性质:平抛运动 是 匀变速曲线 运动。
2、分解: 平抛运动可分解为水平方向的 匀速直线 运动 和竖直方向的 自由落体 运动。
速度规律:如图,以物体的出发点为原点,沿水 平和竖直方向建成立坐标。
v 水平分速度vx= 0
竖直分速度vy= g t
例3、如图,从倾角为θ的足够长斜面上的A点
,先后将一小球以不同的水平初速度抛出。第一
次初速度为v1,球落到斜面上瞬时速度方向与斜面
夹角为α1,,第二次初速度为v2,球落到斜面上瞬
时速度方向与斜面夹角为α2,,不计空气阻力,若
v1>v2,则α1

求解平抛的初速度

求解平抛的初速度

谈平抛实验中初速度的几种求解方法河北省三河市第一中学王荣英邮编: 065200E-mail: wry20071224@2011年7月5日谈平抛实验中初速度的几种求解方法平抛运动是曲线运动一种重要的运动形式,其研究方法一般为:运动的合成和分解。

研究平抛运动的实验是高中物理必修二中的一个重要实验,其实验的目的之一便是计算平抛物体的初速度。

但学生遇到此类问题时,总感觉无从下手,不知所措。

现把平抛实验中求解初速度的几种情况总结如下,以供同行们借鉴。

一、已知平抛物体的抛出点求初速度【例1】:如图1所示,小球从O 点抛出,其轨迹上的一点A 的坐标为(x,y ),求小球的初速度。

【解析】:根据平抛运动水平方向是匀速直线运动, 竖直方向是自由落体运动,即 x=v 0t y=21gt 2所以 v 0=tx =xhg 2【答案】:v 0=xhg 2这是计算平抛初速度最简单的方法,但要求知道平抛的起始点,若不知道抛出点,又如何计算初速度呢? 二、在不知抛出点的情况下求初速度【例2】:某同学在做研究平抛运动的实验时,忘记记下小球的抛出点,右图2中的A 点为小球运动一段时间后的位置,他便以A 点为坐标原点,建立了水平方向和竖直方向的坐标轴,得到如图2所示)图2的图像。

试根据图像求出小球做平抛运动的初速度。

(g 取10m/s 2) 【解析】:从题目中的图像可以看出小球的A 、B 、C 、D 位置间的水平距离都是0.20m ,由于小球在水平方向做匀速直线运动,则小球由A 运动到B ,由B 运动到C ,以及由C 运动到D 所用时间都是相等的,设该时间为t 。

又因为小球在竖直方向做匀加速直线运动,加速度为g ,根据匀变速直线运动的特点Δy=gt 2,得 t=gy ∆=1015.0)15.040.0(--=0.10s小球的初速度v 0可由水平分运动求出,由于在时间t 内的位移为0.20m ,所以v 0=t x=10.020.0m/s=2.0m/s【答案】:2.0m/s应用此种方法进行求解,要注意观察所给的几个点是否为连续相等时间,若满足此条件,则可以应用匀变速运动的基本规律Δy=gt 2求到时间t ,再根据x=v 0t 求解v 0。

第二讲:平抛运动解析版

第二讲:平抛运动解析版

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动【解答】解:A、平抛运动是匀变速曲线运动,速率不断增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创新微课 现在开始
平抛运动初速度
平抛运动初速度
平抛运动的规律:
(1) 水平方向
ax=0 vx=v0 x=v0t
竖直方向
ay=g
vy=gt y= 1 gt2
2
(2) 高度y决定下落时间t, v0 和t决定水平位移X
创新微课
平抛运动初速度
创新微课
1.从同时经历两个分运动的角度求平抛运动的水平速度
例1.如图,在同一竖直面内,小球a、b从高度不同的两 点,分别以初速度va和vb沿水平方向抛出,经过时间ta和tb 后落到与两抛出点水平距离相等的P点。若不计空气阻力,
A.v0<v<2v0 C.2v0<v<3v0
B.v=2v0 D.v>3v0
平抛运动初速度
创新微课
2.非同时平抛运动的相遇问题
例2:甲乙两球位于同一竖直线上的不同位置,甲比乙高h,如图,
将甲乙分别以速度v1和v2水平抛出,不计空气阻力,下列条件中
有可能使乙球击中甲球的是(D )
A、同时抛出,且v1<v2 B、甲迟抛出,且v1>v2 C、甲早抛出,且v1>v2 D、甲早抛出,且v1<v2
平抛运动初速度
创新微课
练习2.质点从同一高度水平抛出,不计空气阻力,下列说法正确的
是( D )
A.质量越大,水平位移越大 B.初速度越大,落地时竖直方向速度越大 C.初速度越大,空中运动时间越长 D.初速度越式正确的是 ( A )
A.ta>tb, va<vb C.ta<tb, va<vb
B.ta>tb, va>vb D.ta<tb, va>vb
平抛运动初速度
创新微课
练习:如图,斜面上a、b、c三点等距,小球从a点正上方O 点抛出,做初速为v0的平抛运动,恰落在b点.若小球初速变为 v,其落点位于c,则 ( A )
相关文档
最新文档