第八章中子及中子探测
第八章-中子测井PPT课件
同位素中子源(连续,产生快中子):
95 A2m 4 19N 3 2p372H4(ea)
平均能量为5MeV
4B9 e2H4 e6C12 0n1Q(5.70M 1)ev
加速器中子源(脉冲,产生高能中子):
D T 2H4 e0n11.7 58 M 8ev
•3
第一节 中子测井的核物理基础
二、中子和物质的作用
任何物质单位体积(1立方厘米)的氢核数与同样体积淡水氢核数 的比值。
根据规定,将淡水含氢指数定义为1,而任何其他物质的含氢指数 将与其单位体积内的氢核数成正比。
即: H K x
M
式中:ρ——介质密度,g/cm3;
x——介质分子中的氢原子数;
M——介质的分子量;
K——比例常数。 对于水:ρ=1,x=2,M=18 (水分子),规定其
含氢指数为1,解得K=9
•19
第二节 超热中子测井
(1)饱和淡水纯石灰岩的含氢指数
孔隙度为φ的石灰岩,则含氢指数为:
H=Hma(1-φ)+Hwφ 中子孔隙度测井仪在饱和淡水的纯石灰岩刻度井中进行含 氢指数刻度,使它测量的含氢指数即为饱和淡水纯石灰岩的 φ。这里,也就人为的将岩石骨架的含氢指数定为0,也就是 没有考虑石灰岩骨架的减速能力。若孔隙度为φ,则含氢指 数为:φ×Hw=φ×1=φ,将中子孔隙度测井得到的含氢指 数记为φN ,并称为中子孔隙度,其单位是石灰岩孔隙度单 位。
决于岩石的含H量。
•7
第一节 中子测井的核物理基础
•散射截面: 微观散射截面σs:一个中子与一个原子核发生弹性散射的几 率,单位1b=10-24cm2; 宏观散射截面Εs:单位体积物质中的原子核的微观散射截面 之和,单位cm-1 结论:氢是岩石中最主要的减速元素,岩石对快中子的减速 能力取决于岩石的含H量,纯岩石的宏观减速能力基本上决 定于纯岩石的孔隙度(含淡水条件)。 用中子测井估算孔隙 度的物理基础。
中子探测的基本方法及13.5常用中子探测器
13.6 中子注量率测量的主要指标
中子灵敏度
13.7 堆用探测器
13.6 中子注量率测量的主要指标 中子灵敏度
R 中子灵敏度定义:
0
反应的发生率 中子注量率
R N t ( E ) ( E )dE
Nt 为探测器灵敏体积 中辐射体的靶核数。
对能量低于30keV的中子: 30 keV v 0 0 R Nt ( E )dE 0 v 由 ( E ) n( E ) v n(E)为能量E处单位能量 间隔的中子密度。 v为中子速度。
反应截面与中子能量的关系:
100000
0 v0
v
1 1 v Tn
B-10 Li-6 He-3
capture cross section(barn)
10000
1000
100
10
1
0.1 1E-111E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01
可选用微型裂变室,且电极涂235U+239Pu(可增殖, 总积分通量由1.7×1021提高到4.8×1021中子); 也可以用自给能探测器。
3) 功率量程:大于1010/cm2s;足够大,本底相 对较小;用电流型裂变室或硼电离室。
2. 堆芯探测器——堆芯内中子注量率的空 间分布。
要求体积小,寿命长; 典型工作条件:
~ 5 10 / cm s
8 2
8
本底 ~ 10 R / h
工作温度 ~ 300 C 2 ~ 2500 N / cm 工作压力
v0 为热中子的最可 其中 v 为中子的平均速度, 几速度。
对热中子,在T=20C时,v / v0
中子探测技术
(2)6Li(n,α)反应,放出能量大,易区分信号和本底。但 是缺少气体化合物,并且天然6Li丰度低,浓缩后价格贵。 (3)3He(n,p)反应,优点是反应截面大,缺点是放出能量 低,不易除本底。并且3He含量低,制备困难。
核反冲法
入射能量为E的中子和原子核发生弹性散射时,中子 的运动方向改变,能量也有所减少。中子减少的能量传递 给原子核,使原子核以一定速度运动。这个原子核就称为 “反冲核”,反冲核具有一定电荷,可以作为带电粒子来 记录。记录了反冲核,就是探测到中子。它是探测快中子的 主要方法。 由动量.能量守恒定律可以推出,反冲核的质量愈小, 获得的能量就愈大。所以,在反冲法中通常都选用氢核做 辐射体。这时,反冲核就是质子,有时就称反冲质子法。
中子具有波动性,当它的波长与物质原子之间的距离数
量级相同时就会发生衍射,利用这一原理制成了中子晶体衍
射仪,既可用来研究中子能量分布,也可分解出单色中子。
第四节 中子通量密度及中子源强度的测 量
研究一束中子与物质的相互作用时,我们主要关心的是
每秒钟射到物体上的中子数。当距离较远时,中子束可近似
看成平行束。令中子束里单位体积内的中子数为n,称为中 子密度。如果中子的速度为v(cm/s),则单位时间内在垂直于 中子束方向单位面积上将有nv个中子通过。中子密度n和速 度的乘积nv,称为中子通量密度,用符号ϕ表示。
它放出的β或γ放射性,根据衰变纲图可算出此材料中形成的
放射性核的活度,从而求得中子通量密度。优点是测量容易、 体积小、无本底、灵敏度变化范围大、可以测量不同材料等, 缺点是不能连续指示通量密度随时间的变化。
锰浴法测量中子源强度
所谓“锰浴法”是将待测中子源放置在体积很大的含锰
元素的水溶液中,中子在水中充分慢化后被溶液中的55Mn俘 获,变成放射性核素56Mn,通过测量56Mn的放射性核素,就 可得出中子源强度,这一方法专门用来标定各种携带式中子 源强度。
中子探测器原理
中子探测器原理中子探测器是一种用于检测中子的仪器。
它可以测量中子的数目和能量,从而用于许多应用领域,如核能、医学、材料科学等。
中子是一种无电荷的粒子,因此无法通过电磁场的方法进行检测。
中子探测器的原理是利用中子与物质作用的特性来进行中子的检测。
中子与物质作用主要有以下几种形式:1. 碰撞散射中子与物质中原子核或电子发生碰撞,使其运动方向发生改变,从而产生了散射。
被散射的中子会沿着散射方向继续运动,直到再次与物质相互作用。
2. 吸收中子与物质原子核碰撞后,被吸收进入原子核。
此时中子会释放出能量,使原子核发生变化,产生新粒子。
3. 俘获中子与物质原子核发生碰撞后,被原子核俘获成为一个中子和一个新的粒子。
俘获后的中子被固定在原子核内部,形成一个新的核同位素。
对于中子探测器,主要利用中子与原子核产生碰撞散射和吸收的过程进行中子探测。
根据不同的应用需求,中子探测器可以分为以下几类:1. 显微中子探测器显微中子探测器通常使用硼、锂等元素作为探测器材料。
当中子与硼、锂原子核发生碰撞后,会产生一系列反应,最终产生电子和正离子,从而形成放电电子流,进而测量中子的数目。
显微中子探测器可以测量单个中子,并可以获得中子的高精度测量结果。
2. 漫反射中子探测器漫反射中子探测器通常使用氢等元素作为探测器材料。
当中子与氢原子核碰撞后,被散射到不同方向上。
通过检测反散射中子的位置和方向,可以推断出入射中子的参数,从而获得中子的数目和能量。
3. 闪烁体中子探测器闪烁体中子探测器通常使用氚、硼等元素作为探测器材料。
闪烁体中子探测器的原理是利用中子与探测器材料中的元素产生反应时释放出的能量,激发闪烁体中的分子电子跃迁,形成一系列的光子。
通过检测光子的数量和能量,可以获得中子的数目和能量。
中子探测器的应用范围非常广泛,如核反应堆的监测、医学放射治疗、未爆炸物品探测等。
通过不同类型的中子探测器可以获得中子的不同参数,并在不同领域具有重要的应用价值。
中子探测技术及其在工业和核能领域中的应用
中子探测技术及其在工业和核能领域中的应用中子是一种不带电的粒子,它具有穿透性和敏感性,因此被广泛应用于工业和核能领域。
中子探测技术是一种通过使用中子来测量物质性质的技术。
本文将介绍中子探测技术及其在工业和核能领域中的应用。
中子探测技术的原理中子探测技术利用中子与物质发生反应时所产生的特征来测量物质性质。
中子可以与物质发生三种类型的反应:散射、吸收和放射。
基于这些反应,中子探测技术可以被分为三种类型:散射、吸收和反应。
这些技术在测量物质的质量、组成和结构方面具有广泛的应用。
中子探测技术的应用在工业领域中,中子探测技术用于测量金属材料中的残留应力、腐蚀、松动部分等。
此外,中子探测技术也可应用于石油和煤矿等行业中,用于地质勘探、矿物探测、钻孔采样等。
在核能领域中,中子探测技术被广泛应用于核反应堆监测、核材料鉴定、辐射剂量测量、放射性废物处理等方面。
中子探测技术还能通过中子活化分析技术确定矿石中各种元素的含量,从而帮助研究地球的物理、化学和地质学特性。
中子束使用的影响因素中子束的空间和时间分布是中子探测技术的关键因素。
中子束的能量、来源、生产方式和文教化程度都会影响中子束的能量和强度分布。
因此,在设计和使用中子探测仪器时必须考虑这些因素。
中子探测技术发展的趋势目前,中子探测技术已经取得了重大进展,同时也存在一些挑战。
例如,中子产生率低、测量精度受到干扰等。
因此,团队正在努力开发新的中子探测技术,以克服这些限制并提高测量精度。
一些新技术已经被开发出来,如快中子束技术、中子衍射技术等。
总之,中子探测技术在工业和核能领域中具有广泛的应用前景。
它为工业、环保、能源和安全等方面提供了重要的支持。
中子探测技术也将会在未来的发展中带来更多的可能性和挑战。
中子探测
方法分类
核反冲法 核反应法
核裂变法 活化法
反冲法探测中子是测量中子与原子核弹性散射后的反冲核在探测介质中引起的电离来反推原始中子的性质, 这种方法只适用于探测快中子。在使用于空间的中子探测器中,利用反冲核法的有反冲正比计数器(充甲烷)、液 体闪烁体探测器和塑料闪烁体探测器,特别是后两种探测器因具有面积大、探测效率高等特点而得到广泛的应用。 因为我们拟研制的碳化硅中子探测器的探测目标是空间辐射中的快中子部分,探测原理是基于中子与 Si C或聚 乙烯的弹性散射作用。
中子探测
对中子的数目和能量的测量
01 方法分类
03 探测器
ቤተ መጻሕፍቲ ባይዱ
目录
02 特点
中子探测即对中子的数目和能量的测量。在核能的利用、放射性同位素的产生和应用核物理研究中都需要进 行中子的探测,然而中子本身不带电,不会引起电离等作用,不产生直接的可观察效果,因此中子的探测是通过 中子同原子核的相互作用,对反应的产物进行探测。
通过测量中子核反应产生的带电粒子来探测中子的方法称为核反应法。核反应法主要用于探测慢中子的强度, 也可用来测定快中子的能谱。
中子轰击重核时会引起核裂变,通过探测裂变碎片来探测中子的方法称为核裂变法。常用235U,233U和 239Pu作为裂变材料,裂变过程中释放的能量约为200Me V,两个碎片带走的能量约为 165Me V,远远大于入射 中子和 γ射线的能量。因此,该方法主要用于热中子和慢中子的通量测量,强 γ射线本底对测量也不会造成响。
谢谢观看
中子探测器的工作原理是:中子与某种核产生反应时放出带电粒子,带电粒子在气体中运动时产生气体电离, 通过测量气体电离量来确定中子注量率水平。例如,中子与B的 (n,α)反应,放出α粒子;或中子与U反应生成 裂变碎片。
中子探测技术
氢反冲法
氢反冲法是利用中子和含氢物质中的氢原子发生碰撞, 反冲出来的氢核能量与入射中子存在以下关系:
Ep = Ecos2ϕ 测量了反冲质子能量,就能推算出中子能量 1 微分测量法 2 积分测量法
6Li和3He谱仪
利用中子和6Li或3He发生核反应,记录反应产物的能量从 而计算出中子能量
6LiI Eu 闪烁体和6LiF夹心式半导体探测器使用较多,闪 烁谱仪分辨较差只能测量MeV能区的中子,而半导体探测器可 以测量较高通量的中子,并且分辨率较好
1、气体探测器: 1 3氟化硼正比计数管 2 硼电离室和裂变室
2、闪烁探测器 1 硫化锌快中子屏 2 硫化锌慢中子屏 3 锂玻璃闪烁体 4 有机闪烁体
3、半导体探测器 4、其它中子探测器
1 “自给能”探测器 2 固体径迹探测器
第3节 中子能谱的测量
对于热中子和快中子,能谱测量方法差异很大 快中子的 能谱测量有4种方法:氢反冲法、核反应法、飞行时间法和 阈探测器法 热中子能谱测量主要是飞行时间法和晶体衍射法
核裂变法
中子与重核作用可以产生核裂变 裂变法就是通过记录 重核裂变碎片来探测中子的方法 对于热中子、慢中子,1般 选235U、239Pu、233U做裂变材料 裂变时放出的能量很大 大 约200 MeV ,入射中子能量远小于这个数值 所以本法不能用 来测定中子能量,只能测定中子通量
由于Q值很大,所以γ本底的影响很小,故可以在强γ本底 下测量中子 中子能量大于某个值 阈值 时,才能产生裂变 核 素不同,则阈值也不同 因此,可以用1系列阈值不同的核素来 判定中子的能量范围
热中子:En=0.0253 eV 与周围分子处于热平衡 冷中子:En<0.0253 eV
核反应法
国防科学技术大学2017年《核辐射探测》硕士考试大纲_国防科大考研网
国防科学技术大学2017年《核辐射探测》硕士考试大纲一、考试要求主要考查学生对辐射与物质相互作用基本规律的掌握;对放射性统计规律的掌握;对核物理实验结果进行误差分析基本方法的掌握;对常见三种类型探测器工作原理、输出信号特征、主要性能及应用范围的掌握;对核物理实验中常用测量方法的掌握;对中子基本性质及探测方法的掌握等。
二、考试内容1.辐射与物质的相互作用α、β、γ三种衰变的基本特点;放射性衰变的基本规律;重带电粒子能量损失bethe公式;射程的概念;快电子与物质的相互作用规律;轫致辐射;光电效应;康普顿散射;电子对效应;α、β、γ射线的衰减规律等。
2.辐射探测中的统计学二项式分布、泊松分布、高斯分布及三者之间的相互关系;期望、方差、相对方差等统计学中的数字表征;串级随机变量;串级随机变量期望及其平均值、相对方差的计算;误差传递公式;法诺分布;带电粒子电离过程的统计涨落等。
3.气体探测器平均电离能的概念;气体中电子和离子的运动规律;气体探测器工作模式与工作电压的关系;电离室的基本结构、信号形成过程及其涨落;电离室输出回路的等效电路;平板型电离室;圆柱型电离室;屏栅电离室;电子脉冲电离室;离子脉冲电离室;电流电离室;正比计数器工作原理;光子反馈的概念;离子反馈的概念;死时间的概念;死时间的修正;G-M计数管工作原理;常见气体探测器的主要性能指标等。
4.闪烁探测器闪烁探测器工作的物理过程;闪烁体分类;闪烁体的性能指标;光导的概念及应用;光电倍增管的结构及工作原理;光电倍增管的性能指标;光电倍增管的供电方式;闪烁探测器的电压工作状态;闪烁探测器的电流工作状态;输出信号的统计涨落;γ射线的能谱分析等。
5.半导体探测器半导体的基本性质;PN结的形成及其特征;PN结型半导体探测器;高纯锗探测器;PIN型探测器;半导体探测器的主要性能及其应用等。
6.核辐射测量方法放射性活度测量方法及其影响因素;相对测量方法;符合的概念;符合时间的概念;符合曲线的概念;符合测量系统;辐射成像测量原理等;7.中子及中子探测中子的基本性质;中子的分类;裂变中子源;加速器中子源;反应堆中子源;散裂中子源;反应截面的概念;中子的吸收与散射;中子的慢化;中子的探测方法及其应用范围;常见中子探测器及其特点;中子的屏蔽与防护等。
中子探测器的原理和方法
中子探测器的原理和方法中子探测器是一种能够检测到中子和其它微粒的精密仪器。
它是1933年由罗杰洛伊德和克劳斯格兰特发明的,它的发明标志着原子物理学进入了新的发展时期。
中子探测器根据不同的机制可以检测到不同能量的中子,其中最常用的有空气型探测器、放射性型探测器和电气型探测器。
空气型探测器是依赖空气散射机制的一种探测器。
它可以将检测到的基本粒子能量转换为电荷,从而检测出中子的能量和向量方向。
它一般由电子和费米子产生电荷,而二极管检测器可以检测到这些电荷,从而检测出中子。
空气型探测器能检测到不同能量的中子,但其探测效率较低,适用于检测能量较低的中子。
放射性探测器是结合放射性源和检测仪,依靠被放射物质释放出来的放射性物质,来检测出中子的机制。
在放射性源中,放射性粒子会撞击加热电离介质,从而产生放射性物质,并排出向空间的放射性物质。
这些放射性物质可以被检测仪检测到,因此可以检测出中子的能量和向量方向。
放射性探测器的探测效率较高,但适用于检测能量较高的中子。
电气探测器是基于介质电导检测原理的一种探测器,它可以检测出被穿过电导介质中的负电荷。
它一般由电极、电极信号放大器和计算机三部分组成,由电极收集到的信号通过放大器放大后,再通过计算机,从而检测出通过电导介质中的中子的能量和向量方向。
电气探测器的探测灵敏度高,能够检测到能量较低的中子,但其探测效率较低。
除了上述三种常用的探测器外,还有其它的探测器,如高压金属管探测器、晶体探测器、核跃迁探测器和电离室探测器等。
它们各有自己独特的优点,可以检测到不同能量和不同方向的中子。
在实际应用中,需要根据对象及其检测要求,选择合适的探测器,来提高检测效率。
中子探测器的应用比较广泛,已经广泛应用于科学研究、医学检测、安全监测和核工业等领域。
它可以用来研究原子和分子结构、分辨放射性核素和诊断癌症、检测放射性泄漏和识别爆炸物等。
对于原子核科学和放射医学的研究,中子探测器的应用更加广泛,是科学研究和生活中不可或缺的工具。
《核物理》中子探测岩石的中子特性参数
《核物理》中子探测岩石的中子特性参数中子是构成原子核的一种基本粒子,具有很强的穿透能力和不带电荷的特性。
在核物理领域,中子被广泛用于研究岩石的中子特性参数。
本文将详细介绍中子探测岩石的中子特性参数,并阐述其在地质勘探和地震研究中的应用。
首先,中子在岩石中的相互作用可以通过散射和吸收两种方式进行。
中子在岩石中的散射主要包括弹性散射、非弹性散射和多次散射。
弹性散射是指中子与原子核碰撞后改变方向而能量守恒的方式。
非弹性散射是指中子与原子核碰撞后能量转化为其他形式,比如激发、离解、俄歇效应等。
多次散射是指中子与多个原子核碰撞多次后的散射效应。
中子在岩石中的吸收主要是指中子与原子核碰撞后能量被全部或部分吸收的过程。
其次,中子在岩石中的散射与吸收过程与中子的能量息息相关。
通常,中子的能量范围可以分为热中子、热中子和高能中子三个区域。
热中子是指能量较低(几十电子伏特至几百电子伏特)的中子,其与原子核的碰撞引起的散射和吸收效应较大。
热中子主要与岩石中的氢、氧、硼等轻元素相互作用,对于测量地下水分布和土壤湿度具有很好的效果。
热中子还可以通过与铀、钍等放射性元素发生冲突,用于核燃料的检测。
热中子的探测通常采用中子散射谱仪或中子计数器。
高能中子是指能量较高(几兆电子伏特至几百兆电子伏特)的中子,其散射效应较小,主要表现为中子的穿透能力。
高能中子可以穿透岩石较深的层次,探测原子核密度分布、岩石中的金属矿物分布和地下空洞等信息。
高能中子的探测通常采用伽马-射线和中子探测器。
此外,中子探测岩石的中子特性参数还包括中子的衰减长度、中子的扩散系数和中子的衰减截面。
中子的衰减长度是指中子在岩石中衰减到原始强度的距离。
中子的扩散系数是指中子在岩石中的扩散能力,可以反映岩石的孔隙结构、渗透性和存水能力。
中子的衰减截面是指中子与岩石物质相互作用的效率,可以用于推测岩石中的元素含量和组成。
总之,中子在岩石中的散射和吸收过程以及中子的能量分布对于探测岩石的物理性质和地质结构具有重要意义。
中子探测器 标准
中子探测器标准中子探测器是一种用于检测和测量中子粒子的仪器。
中子是构成原子核的基本粒子,具有无电荷和质量较大的特点。
在许多领域,如核科学、核能工程、辐射监测和材料研究等,对中子的探测和测量非常重要。
本文将介绍中子探测器的工作原理、分类以及常见的应用领域。
一、中子探测器的工作原理中子探测器的工作原理是基于中子与物质相互作用的特性。
中子在物质中的相互作用主要包括散射、吸收和俘获等过程。
根据这些相互作用,中子探测器可以通过测量中子与物质发生相互作用后所产生的信号来检测和测量中子的能量、角分布和强度等信息。
常见的中子探测器包括以下几种:1. 闪烁体探测器:闪烁体探测器是一种利用闪烁材料中发光现象来检测中子的探测器。
当中子与闪烁体相互作用时,会产生光子,通过光电倍增管或光电二极管等光电转换器件将光信号转换为电信号进行测量。
2. 电离室探测器:电离室探测器利用中子在气体中电离产生的电荷来检测中子。
当中子与气体分子相互作用时,会产生离子对,通过电极系统将离子对收集并测量电荷信号的大小,从而确定中子的能量和强度。
3. 核反应探测器:核反应探测器利用中子与特定核反应产生的粒子或辐射来检测中子。
例如,中子与核反应产生的γ射线、α粒子或β粒子等,可以通过相应的探测器来测量,从而间接检测中子的存在和能量。
4. 导电探测器:导电探测器是一种利用中子与导电材料发生相互作用后引起电阻变化的探测器。
中子的散射或吸收作用会导致导电材料的电阻发生变化,通过测量电阻的变化可以间接检测中子。
二、中子探测器的分类根据中子探测器的工作原理和结构特点,可以将中子探测器分为以下几类:1. 依据探测原理分类:- 散射探测器:通过测量中子在物质中的散射过程来检测中子。
- 吸收探测器:通过测量中子在物质中的吸收过程来检测中子。
- 核反应探测器:通过测量中子与物质发生核反应后产生的粒子或辐射来检测中子。
2. 依据探测介质分类:- 固体探测器:利用固体材料作为探测介质的中子探测器。
中子探测器的物理与应用
中子探测器的物理与应用中子是一种无电荷、质量较小的粒子,同时还具有波粒二象性以及一定的穿透力等特性。
近年来,中子探测器在核物理、物理学、材料科学等领域中的应用越来越广泛。
本文将介绍中子探测器的物理原理和一些常见的应用。
一、中子探测器的物理原理中子探测器是一种利用中子与物质相互作用所产生的电离、致动或散射等现象来检测中子的装置。
中子与物质的相互作用方式有碰撞、俘获、轰击等多种形式,因此中子探测器的工作原理也因此而有所差别。
1. 气体中子探测器气体中子探测器常用于强辐射区域的中子探测,其原理是利用中子与气体分子发生碰撞,使气体分子电离或致动,从而探测出中子。
常用的气体有氦气、氖气等。
气体中子探测器的优点是探测精度高、响应速度快,但灵敏度较低。
2. 闪烁体中子探测器闪烁体中子探测器是利用中子的轰击产生闪烁光子,在光电倍增管的作用下加以放大来检测中子。
闪烁体通常是有机、无机结晶体,如氧化铝、聚苯乙烯等。
闪烁体中子探测器的灵敏度高、响应速度快,但成本相对较高。
3. 半导体中子探测器半导体中子探测器是利用中子与半导体材料发生俘获反应,从而形成电子-空穴对,利用电子学技术来检测中子。
常用的半导体材料有锗、硅等。
半导体中子探测器的响应速度快,分辨率高,但成本相对较高。
4. 闪烁核探测器闪烁核探测器是在闪烁体中加入少量的放射性核素,当中子进入其中时,核素与中子发生俘获反应,产生闪烁光子,从而检测中子的装置。
常用的核素有卡钙、硼、银等。
闪烁核探测器具有较高的灵敏度和可靠性,但核素的辐射性需要加以掌握。
二、中子探测器的应用1. 核物理研究中子在核物理中具有重要的作用。
中子探测器可以用于中子的测量和探测,以便深入了解核反应、核衰变等物理过程。
中子探测器还可以用于中子源的辐射实验、核物理反应研究等。
2. 物理学研究中子在物理学中的应用也非常广泛。
中子探测器可以用于中子散射实验、中子衍射实验、中子反弹实验等,以便深入了解材料的结构、性质等。
中子探寻法
中子探寻法
中子探寻法(Neutron probe method)是一种用中子测量土壤含水量的方法。
利用中子的穿透能力和与水分子的相互作用,可以间接测量土壤中的水分含量。
中子探寻法的原理是利用中子在物质中的散射和吸收特性来测量土壤中的水分含量。
中子在物质中的散射和吸收程度与物质的密度和水分含量有关。
当中子进入土壤中时,会与土壤中的原子核发生散射,部分中子被散射出来,部分中子被土壤吸收。
水分子对中子的吸收能力较强,因此土壤中的水分含量越高,中子的吸收程度越大。
中子探寻法一般使用中子源和探测器。
中子源通常采用放射性同位素,如锶-90/钇-90(90Sr/90Y)或氘-氚反应的中子源。
探测器可以是闪烁体探测器或半导体探测器。
通过测量中子源发出的中子经过土壤后到达探测器的数量,可以推算出土壤中的水分含量。
中子探寻法具有非侵入性、快速、准确的优点,可以在现场实时测量土壤含水量。
它广泛应用于农业、水利、环境科学等领域,用于监测土壤水分状况、灌溉管理、土壤水分传输研究等。
中子及中子测量PPT文档共30页
中子及中子测量
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
中子在核物理实验中如何产生和探测
中子在核物理实验中如何产生和探测关键信息项:1、中子产生的方法核反应堆加速器放射性同位素源2、中子探测的原理弹性散射核反应电离作用3、常用的中子探测器类型气体探测器闪烁探测器半导体探测器11 中子产生的方法111 核反应堆核反应堆是一种常见的中子产生源。
在核反应堆中,通过控制核燃料(通常是铀或钚)的链式裂变反应,大量的中子被释放出来。
这些中子具有不同的能量分布,从热能中子到快中子都有。
核反应堆产生的中子通量通常较高,适用于大规模的核物理实验和应用。
112 加速器利用加速器也可以产生中子。
例如,通过加速质子、氘核等带电粒子,并使其撞击靶物质,引发核反应从而产生中子。
加速器产生的中子能量通常可以通过调节入射粒子的能量和靶物质的种类来控制,具有较好的能量可调性。
113 放射性同位素源某些放射性同位素在衰变过程中会释放出中子。
这些同位素源通常中子产额较低,但具有体积小、便于携带等优点,适用于一些特殊的应用场景。
12 中子探测的原理121 弹性散射当中子与原子核发生弹性散射时,中子的动量和能量会发生改变。
通过测量散射前后中子的能量和方向变化,可以推断出中子的信息。
这种方法常用于气体探测器和液体探测器中。
122 核反应中子与某些原子核可以发生特定的核反应,产生新的粒子和能量。
通过探测这些反应产物,可以确定中子的存在和能量。
例如,常用的氦-3 探测器就是基于中子与氦-3 发生核反应的原理工作的。
123 电离作用当中子与物质相互作用时,可能产生次级带电粒子,这些带电粒子在物质中会引起电离。
通过测量电离产生的电信号,可以探测中子。
这种方法常用于半导体探测器中。
13 常用的中子探测器类型131 气体探测器气体探测器如正比计数器和盖革计数器,利用中子与气体分子的相互作用产生的电离效应来探测中子。
它们结构简单,成本较低,但探测效率和能量分辨率相对有限。
132 闪烁探测器闪烁探测器由闪烁体和光电倍增管组成。
当中子与闪烁体相互作用时,闪烁体发出闪光,通过光电倍增管转换为电信号。
中子探测器的原理和方法
中子探测器的原理和方法
中子探测器(neutron detector)是一种可以发现和测量中子的设备。
广泛应用于核能、核物理和环境研究,是北京郊设施的重要组成部分。
中子探测器的原理是中子会在接
触了原子核以后形成少量的热量和电荷,不同类型的中子探测器会检测这些热量和电荷,
并通过一定的算法确定中子的能量和数量。
中子探测器一般可分为两类:一是对热量能量法,另一类是对电荷能量法。
前者主要
是利用被中子击中时产生的热量计算中子的能量,而后者主要利用中子在原子核上击中时
产生的电荷来计算中子的能量。
由于中子的能量比较低,各种中子探测器的常用方法就是
检测放射性能量。
对电荷能量法是一种通过检测电荷变化来测量能量的中子探测器,由于传统的对热量
能量法只能测量极低能量的中子,对电荷能量法就是针对能量高一点的中子而开发出来的,此外,该法也有其特殊的优势,比如能较为准确地测量出中子的能量和方向。
该法的工作
原理和对热量能量法类似,通过测量被引发的电荷变化来测量中子的能量和方向,但是其
仪器结构远比对热量能量法复杂。
总之,中子探测器是一种可以发现和测量中子的设备,其工作原理是根据中子接触原
子核产生的热量和电荷,来测量出中子的能量和方向。
目前,常用的两种中子探测器是对
热量能量法和对电荷能量法,两者在实际检测中各有优势,可以根据需求来选择使用。
第八章 中子及中子 探测
4. 活化法
选用一些核素具有较高的活化截面,活化 后放射性核素也具有较易测量的放射性。
如:
n In In
115 116 116
~ In Sn v
116
测量粒子的发射率可确定中子的注量率。 一般,热中子的活化截面较高,此法适用于热 中子的注量率的测量。
8.5 常用中子探测器
1) 中子为中性粒子,不能直接引起探测介质的电 离、激发。 2) 在探测器或探测介质内必须具备能同中子发生 相互作用产生可被探测的次级粒子的物质(辐射 体),中子在辐射体上发生核反应、核反冲、核 裂变等次级过程,产生带电的次级粒子,如, p,f 等,探测器记录这些次级粒子并输出信号。
3) 中子与辐射体有较大的作用截面,以获得较 大的中子探测效率。
10 7
反应截面与中子能量的关系:
1 1 v v Tn
0 v0
1/v规律,即随中子能量增加,反应截面减 小,因此核反应法适用于慢中子的测量,尤其 是热中子的测量。
反应均为放热反应,反应能Q在生成核与出 射粒子之间分配。由于反应能Q比较大,又主要 用于慢中子探测,即:
Q Tn
8.6 中子注量率测量的主要指标 中子灵敏度
R 中子灵敏度定义:
0
反应的发生率 中子注量率
R N t ( E ) ( E )dE
Nt 为探测器灵敏体积 中辐射体的靶核数。
对能量低于30KeV的中子: 30 KeV v 0 0 R Nt ( E )dE 0 v 由 ( E ) n( E ) v n(E)为能量E处单位能量 间隔的中子密度。 v为中子速度。
1. 核反应法 主要的核反应有:
28 2 3841 11 10 m n B Li 2.792MeV 0 28 2 n 6Li 3He 4.786MeV 0 936 6 10 m n 3He p 3H 0.764MeV 0 5327 10 1028 m2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 发射带电粒子的中子核反应
如(n,? ),(n,p)等,这些反应在中子探测中
应用很多,成为探测中子的主要手段。
3) 裂变反应 (n,f )
4) 多粒子发射
如(n,2n),(n,np)等,这些反应的阈能较高, 在8~10MeV以上,只有特快中子才能发生。
8.4 中子探测的基本方法
中子探测的特点:
1) 中子为中性粒子,不能直接引起探测介质的电 离、激发。
2) 在探测器或探测介质内必须具备能同中子发生
相互作用产生可被探测的次级粒子的物质(辐射 体),中子在辐射体上发生核反应、核反冲、核
裂变等次级过程,产生带电的次级粒子,如? , p,f 等,探测器记录这些次级粒子并输出信号。
3) 中子与辐射体有较大的作用截面,以获得较 大的中子探测效率。
属于(? ,n)型中子源。由241Am放射源放出的? 粒 子,打在Be上发生反应,产生中子。
? ? 9Be? 12C ? n
性能:中子产额——2.2×106/s.Ci
T1/2=433年;
中子能量为0.1~11.2MeV,平均5MeV;
n/?比(中子?强度比)为10:1;
2) (?,n)型中子源。 利用(?,n)反应获得中子。
入射中子的能量损失不仅使靶核得到 反冲 , 且使靶核处于 激发态。处于激发态的靶核退激 时放出一个或几个 特征 ?光子,在 核分析技术 中有重要的应用。
2. 中子的俘获 复合核的形成。
1) 中子的辐射俘获 (n,?)
中子射入靶核后与靶核形成一个 复合核, 而后复合核通过发射一个或几个特征?光子跃迁
4) 特快中子:>10MeV。
2、中子的性质
质量:mn=1.008665u=939.565300MeV/c2 自旋:sn=1/2, 费米子 电荷:0,中性粒子
磁矩:? n=-1.913042? N
中子寿命:发生? -衰变的半衰期T1/2=10.60min
8.2 中子源
1、同位素中子源 1) 241Am-Be中子源。
1. 核反应法
主要的核反应有:
n? 10B ? ? ? 7Li ? 2.792MeV n? 6Li ? ? ? 3He ? 4.786 MeV
n? 3He ? p? 3H ? 0.764 MeV
? 0 ? 3841 ? 11 ? 10 ?28 m2 ? 0 ? 936 ? 6 ? 10 ?28 m2 ? 0 ? 5327 ? 10 ? 10?28 m 2
Q ? 3.269MeV En ? 2.5MeV Q ? 17.59MeV En ? 14MeV
3、反应堆中子源
高中子注量率:1010 ~ 1016 / s ?cm2
宽中子能量:0.001eV~十几MeV
8.3 中子与物质的相互作用
中子与物质的相互作用实质上是中子与 物质的靶核的相互作用。
1. 中子的散射
可以在相当宽的能区内获得单能中子源。
对放能反应,如2H(d,n)3He,3H(d,n)4He,当入 射氘核能量不高时( Td ? 200KeV),反应就可以
有效进行,当?=90?时,就可得到能量分别为
~2.5MeV和~14MeV的单能中子。
主要反Байду номын сангаас:
2 H (d, n)3He 3 H (d, n)4He
探测介质中含有上述核素的气体探测器、闪 烁探测器,或上述材料作为外辐射体的半导体探 测器均可用核反应法进行中子探测。
2. 核反冲法
中子与靶核的弹性碰撞产生反冲核。
主要发生在氢核上,常用含氢物质作为辐射 体。反冲质子使探测介质电离、激发而产生输 出信号。
反冲质子能量: Tp ? Tn cos2 ? 反冲质子数: N p ? ? ? S
1) 弹性散射 (n,n) 出射粒子仍为中子、剩余核仍为靶核。
出射中子的动能:
Tn??
Tn
m2 (M ? m)2
?
?cos?
??
?
2
M2 m2
?
sin2 ?
? ? ??
反冲核的动能:
TM
?
4mM (M ? m)2
Tn cos2 ?
当反冲核为质子(氢核)时,M=m,上式变
为:
Tp ? Tn cos2 ?
反冲质子的能谱为矩形分布。此法主要用于 快中子的探测,尤其是快中子能量的测量。因 此,探测介质中富含含氢物质的探测器,如含 氢正比管、有机闪烁体等适用于核反冲法测量 快中子能谱。
到基态。这些特征 ? 光子不同于 (n,n' ?) 的特征
? 光子。由于这些 ? 光子的发射与复合核的寿 命相关,一般很快,故称为“中子感生瞬发?射 线”,同样在核分析技术中有重要的应用。
当发生 (n,?)反应后, 新形成的核素 是放射
性的,就是常说的“ 活化”,测量活化核素的 放射性可以用来测量中子流的注量率,区分中 子的能量范围。
反应截面与中子能量的关系:
?
? ? 0v0 ?
1 ?
1
v v Tn
1/v规律,即随中子能量增加,反应截面减 小,因此核反应法适用于慢中子的测量,尤其 是热中子的测量。
反应均为放热反应,反应能Q在生成核与出 射粒子之间分配。由于反应能Q比较大,又主要 用于慢中子探测,即:
Q ?? Tn
故出射粒子能量难以反映慢中子的能量,因此, 核反应法常用于中子注量率的测量。这时,Q大 易于甄别去除?本底信号。
当? = 0 时,反冲质子能量最大,Tp = Tn
反冲质子在实验室座标系中的能量分布的
概率密度函数为:
1
P(Tp ) ? Tn
即对入射的单能中子而言,实验室坐标系
中,其反冲质子的能量分布是一个矩形,最大
能量为Tn,最小为零。这个关系可用于快中子 能谱测量。
P(Tp )
1 / Tn
0
Tn
Tp
2) 非弹性散射 (n,n' ?)
优点:中子能量单一;
缺点:中子产额低,装置体积大。
3) 自发裂变中子源
自发裂变中子源为超环元素。以252Cf (锎) 最常用。1克252Cf 发射中子率为2.31×1013个
中子。半衰期:T1/2(自发裂变)=85.5a,T1/2(? 衰变)=2.64a。中子平均能量为2.2MeV。
2、加速器中子源
第8章
中子及中子探测
8.1 中子的分类与性质
1、中子的分类 1) 慢中子:0~1KeV。包括冷中子、热 中子、超热中子、共振中子。
热中子:与吸收物质原子处于热平衡状态, 能量为0.0253eV,中子速度~2.2×103m/s.
2) 中能中子:1KeV~0.5MeV。
3) 快中子:0.5MeV~10MeV。