2010年高考数学(全国Ⅰ)试卷分析及思考

合集下载

最新2010年高考数学试卷分析优秀名师资料

最新2010年高考数学试卷分析优秀名师资料

2010年高考数学试卷分析20010年高考数学全国卷I分析及2011年高考复习建议河北省秦皇岛市第一中学李丽侠赵成海 0660002010年高考数学(全国卷I)整体而言,延续了往年的命题风格,题型结构、分值情况、题目设置情况等均没有太大变化,只不过难度有所加大;由于多数试题集中于中档、中档偏难;计算量较大;分散难点,多处把关等特点,试题区分度显得不是特别明显,从考试情况看,绝大部分考生是很难理想完成,取得往年150分是相当困难的。

(可见附表:二卷试题难度分析,2010年难度与2009相比理科与去年差1个百分点,而文差1.3个百分点,总体二卷难度略升,但一卷难度过大) 从整个试卷看,注重学科基础知识的综合性和灵活性,不刻意追求知识覆盖面,传统主干内容依然受到重视,体现了对数学“双基”的新诠释;注重对常规思想方法、理性思维的考查,在平稳中有创新,利于人才的选拔,对新课程标准下的中学数学起导作用。

一(三个突出特点(1)全面考查,重点突出对知识点较单一的“边沿”带,考查比较全面。

如复数、二项式定理、排列组合,概率统计,线性规划等知识,一个都不少。

对核心概念,重点知识的考查不回避。

如函数、导数、不等式、数列、解析几何与立体几何等。

综合程度加深,特别是不等式,不等式证明,比较大小,求最值等蕴含在所有主干知识中。

(2)计算量大,整体难度有所提升从第一题开始,每道题都得动笔计算,且大多数都得讲究算法、算理。

基本上没有出现一望而答的简单题或结论性的题。

(3)稳中求变,凸显数学本质延续前几年的特点,选择题、填空题中,没有出现几何图形,进一步考查考生的作图、识图、空间想象能力、数形结合思想,转化思想等。

如第3,7,9,10,11,12,15,16题。

六个大题所考查的知识内容是在意料之中,表现了稳中有变的设计思路。

似曾相识的题,平淡中见真(数学本质),入口较宽,但考的比较深入,对考生数学能力的要求提高了。

综合性试题以知识网络的交汇点作为设计的起点和着力点,力图实现全面考查数学基础和数学素质的目标。

2010数学高考试题分析

2010数学高考试题分析

(2)从一套试卷看,试题的综合主要体现
在一个主干知识在多个题目中交汇
以不等式为例,不等式是解决数学问题的重要工具,在试卷 中,单独出现不等式的题目并不多见,但是,它却多次出现 在与其它知识交汇的题目中。
四.考查实践能力,贴近生活, 背景公平
概率与统计应用题
这一试题设计,有以下几点好处: (1) 考查了解决实际问题的能力和数学建模能力等实践能力; (2) 考查了必然与或然的数学思想; (3) 体现了新课程标准的理念; (4) 控制了试卷的难度.
4. 对解法选择的思辨
例9. ①(2010天津理10)如图,用四种不同颜色给图中的A,
B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每
条线段的两个端点涂不同颜色,则不同的涂色方法有( A.288种 B.264种 C.240种 D.168种 )
教学启示:
基础知识复习与学科能力培养
问题:一个现象是(由于学生学习基础弱、学习自觉性不够、知识遗忘严 重)过于强调知识性的基础复习,以记忆性的解题练习为主;另一个现象
例 11.①(2009 宁夏理 3)对变量 x,y 有观测数据理力争(x 1,y1)
(i=1,2,„,10) ,得散点图 1;对变量 u,v 有观测数据(u 1, v1) (i=1, „, , ( ) 2, 10) 得散点图 2.由这两个散点图可以判断
A.变量 x 与 y 正相关,u 与 v 正相关 B.变量 x 与 y 正相关,u 与 v 负相关 C.变量 x 与 y 负相关,u 与 v 正相关 D.变量 x 与 y 负相关,u 与 v 负相关
1

1
0
f ( x ) dx 的近似值为
. N 1/ N
0 | lg x | , x 10, 例 4. (2010 全国新课标理 11 文 12)已知函数 f( x) = 1 若 a,b,c 2 x 6, x 10 .

2010高考数学全国卷1(题题详细解析)

2010高考数学全国卷1(题题详细解析)

2010年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)kkn kn n P k C p p k n -=-=…一.选择题 (1)复数3223i i+=-(A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【解析】32(32)(23)694623(23)(23)13i i i i i i ii i +++++-===--+.(2)记cos(80)k -︒=,那么tan 100︒=A.21k k- B. -21k k- C.21k k- D. -21k k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.【解析】222sin 801cos 801cos (80)1k=-=--=-,所以tan 100tan 80︒=-2sin 801.cos 80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为m ax 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则a a a=(A) 52(B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1)x x +-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 45.B 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式0x y += 1Oy x = y20x y --=xA0:20l x y -=2-2 AA BC DA 1B 1C 1D 1O的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++-故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23B33C 23D637.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO⊥平面AC 1D ,由等体积法得11D A C D DA C DV V --=,即111133A C D A C D S D O S D D ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222AC D S AC AD a a ∆==⨯⨯=,21122A C D S A D C D a ∆== .所以1312333AC D AC D S D D aD O a S a∆∆===,记DD 1与平面AC 1D 所成角为θ,则13sin 3D O D D θ==,所以6cos 3θ=.(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b,c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b.(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32(B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a P F e x a e x x c=--=+=+,22000||[)]21aPF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||P F P F F F P F P F +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y =(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a=,所以a+2b=2a a+又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为 (A) 42-+(B)32-+(C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos 2P A P B P A P B α∙=⋅ =22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233(B)433(C) 23 (D)83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有A B C D 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =.PABO。

2010年高考数学全国1卷分析大多数题不怪

2010年高考数学全国1卷分析大多数题不怪

2010年高考数学全国1卷分析:大多数题不怪2010年高考数学全国1套试卷(文科),整体难度和去年相近,这套题对程度中等的学生来说有非常大的麻烦,估计最后的考试分数不会特别理想。

本套题知识分布还是比较广的,题的形式稳定,延续以前试题格式。

解答题基本上还是以前的固定的内容,但难易有了调整,有的难度比较大。

下面是对试卷的详细分析。

客观题中,前6题都是常见题,在考场上能够稳定学生情绪,让他们很快进入考试状态,达到思维的巅峰;第7、8、9三题有陷阱,特别是第7题弄不好就中招了;每8、9题只要按平时要求认真点都是能够做对的;第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,第10题看似简单但比较了前两个后第三个数就不好下手了,第11题没有太简单的方法用坐标做也很繁琐我借助三角函数去做,但求最值时运算量也大,就算是能够做出来所花的时间也会比较长,第12题有的同学可能没有想法,没有抓住内接的四面体体积最大考虑让2是高。

13、14、15三个填空题问题不算大,16题相对来说稍难。

客观题中如果考生在选择题后三个题中一直纠缠的话,势必会影响情绪,如果能先跳过11、12去做后面的填空题应该是个不错的选择。

主观题试题类型都是常规题,难度和运算量仍然不小。

第17题很简单,考生都没有问题;第18题方向明确就是先把边化角得到sinA+sinB=cosA+cosB,但接下来恐怕就挡住了很多考生,借助辅助角就解决了问题;第19题是概率题,中规中矩,不应该做不出来;立体几何题平时大家都练过这种类型的,常规解法和向量法都可以,本题第一问用常规法做并不比用向量法差;第21的第一问解决还是相对容易的,但要把一元三次方程熟练解出再讨论极值,22题第一问只要设出直线方程用韦达定理得到x1*x2=1就可顺利解出,但这两题的第二问都有一定的运算量,当然也有不小的难度。

当然这是压轴题,做不全对也是可以理解的。

理科卷和文科卷相同的题目非常多,也可以说今年文理科卷区别非常小。

2010年高考全国卷1理科数学试题答案及解析

2010年高考全国卷1理科数学试题答案及解析

2010年普通高等学校招生全国统一考试(1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【解析】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k k- D. -21k k-2.B 【解析】222sin 801cos 801cos (80)1k =-=--=- ,所以tan100tan80︒=-2sin801.cos80k k-=-=-(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 3.B 【解析】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456aaa = (A) 52 (B) 7 (C) 6 (D) 424.A 【解析】由等比数列的性质知31231322()5a a a a a a a === ,0x y += 1O y x = y20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1O37897988()a a a a a a a === 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a ===== (5)353(12)(1)x x +-的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 45.B 【解析】35533(12)(1)(16128)(1)x x x x x x x +-=+++- 故353(12)(1)x x +-的展开式中含x 的项为3303551()1210122C x xC x x x ⨯-+=-+=-,所以x 的系数为-2.(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A) 30种 (B)35种 (C)42种 (D)48种6.A 【解析】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种.(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A23 B 33 C 23 D 637.D【解析】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则12211133sin 60(2)2222ACD S AC AD a a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1312333A C D A C D S D D a D O a S a ∆∆=== ,记DD 1与平面AC 1D 所成角为θ,则13sin 3DO DD θ==,所以6cos 3θ=. (8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 0602220000(12)(21)(22)2(12)(21)x x x x ++--=+-, 解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||2y = (10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). (11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ∙的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 11.D【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,PO=21x +,21sin 1xα=+,||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令P A P B y∙=,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得322y ≤--或322y ≥-+.故min ()322PA PB ∙=-+.此时21x =-.(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)233 (B)433 (C) 23 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,22max 22123h =-=,故max 433V =. (13)不等式2211x x +-≤的解集是 .PABO12x =y=1 xyaO12x =-414a y -=2y x x a=-+13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化与化归的数学思想体现得淋漓尽致.解析:原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【解析】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4s i n 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【解析】如图,在同一直角坐标系内画出直线1y =与曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解得514a <<. (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =uu r uu r,则C 的离心率为 .16.23【解析】如图,22||BF b c a =+=,作1DD y ⊥轴于点D 1,则由BF 2FD =uu r uu r,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D c x =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效............) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望. 18.(19如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)已知函数()(1)ln 1f x x x x =+-+.(Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 中,1111,n n a a c a +==- .(Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式;(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .。

2010年高考数学全国卷一(理科)分析

2010年高考数学全国卷一(理科)分析

面 AB D, D=\ 2 , =S C A / DC D=2 点 M ,
在侧棱 S C上 , B 厶4 M=6 。 . 0

学 生 很 容 易忽 略 。的范 围 导致 错
误 。 ( 1题 、1 ) 、2 ) 也 是 易 于 出 1 ) (5 题 ( 2 题
错 的 。这 些 题 目不 仅 考 查 了基 本 概 念 和
分 布 大 同小 异 。选 择 题 中 , 1一 (0 题 () 1)
都 比较 简单 , 考查 的知识 点明显 , 比较容
易 人 手 。 ( 1 、 1 ) 对 思 维 的要 求 较 但 1 )(2 题
本题在 三角形 中考查 三角 函数 , 是 比较典型 的边角互换 问题 ,通 常运用 正
( ( A)2
, ) ( ) 2 + B [
, ] +
( )3 + ) C ( ,
( [ , ∞] D)3 +
(2 1 )已知 在 半径 为 2的球 面上 有 A、 C D 四点 , AB=C B、 、 若 D=2 贝 四面 ,0
体 A C 的体 积 的最 大 值 为 ( ) BD 填 空 题 中 , 1 ) (5 (3 一 1 )题 难 度 比 较 低 、 常规 , 很 主要 考 查 基 本 知 识 , 题 思 解
性质 , 而且还考查 了数形结合 思想 、 函数
与方 程 思 想 、 归 与转 化 思 想 。 化

路 清晰 。但 也配 备了难度 适 当的题 , 例
如: (6 已知 F是 椭 圆 C的一 个焦 点 , 1) B
3 知 识 点 考 查 全 面 , 出主 干 知 识 . 突 纵 览 这 份 试 卷 ,试 题 整 体 贯 穿 各 大 板 块 的 知 识 , 别 是 对 函数 、 特 圆锥 曲线 、 直 线 、 面 、 单 几 何 体 的 考 查 , 现 了 平 简 体

2010年全国高考解析几何试题分析

2010年全国高考解析几何试题分析

近三年来各地高考试题中解析几何内容在全卷的平均分值为27分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

题目突出主干知识、注重“知识交汇处”命题,强化思想方法、突出创新意识,综合性较强。

从题型来看,选择题和填空题考查直线、圆、圆锥曲线和参数方程的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何的基本知识和向量的基本方法。

解题时谨记“用代数方法研究几何性质”这一学习解析几何的方法灵魂!因此,函数,方程,不等式的相关知识就必须熟练掌握和应用。

在复习过程中这一点值得强化。

本文从2010年考纲的角度,对2010年全国各地解析几何题型和解题方法进行分析,以便同仁对2011年的高考做到心中有数。

一 考查基础知识、基本运算例1:(2010年高考福建卷理科2)以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为( )A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2-x=0D.x2+y2-2x=0解析:因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x-1)2+y2=1,即x2-2x+y2=0,选D。

命题意图:本题考查抛物线的几何性质以及圆的方程的求法,属基础题。

例2:(2010年高考安徽卷理科5)双曲线方程为x2-2y2=1,则它的右焦点坐标为解析:双曲线的a2=1,b2= ,c2= ,c= ,所以右焦点为命题意图:本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用c2=a2+b2求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为b2=1或b2=2,从而得出错误结论。

二、考查基本方法与基本技能例3:(2010年高考全国卷I理科9)已知F1、F2为双曲线C:.x2-y2=1的左、右焦点,点p在C上,∠F1pF2=60°,则P到x轴的距离为命题意图:本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.解析:不妨设点P(x0,y)在双曲线的右支,由双曲线的第二定义得由余弦定理得cos ,解得x02= ,所以y2=x2-1= ,故P到x轴的距离为三、考查圆锥曲线定义例4:(2010年高考江苏卷试题6)在平面直角坐标系xO y中,双曲线 =1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是__________解析:考查双曲线的定义。

2010年高考数学(全国Ⅰ)试卷分析及思考

2010年高考数学(全国Ⅰ)试卷分析及思考

⽴⾜基础,强化主⼲——2010年⾼考(论坛)数学(全国Ⅰ)试卷分析及思考河南许昌县⼀⾼张留星⼀、总体评析2010年⾼考已经结束,今年⾼考数学(全国Ⅰ)试卷命题按照“考查基础知识的同时,注重考查能⼒”的原则,确⽴以能⼒⽴意命题的指导思想,将知识、能⼒和素质融为⼀体,全⾯检测了考⽣的数学素养。

既考查了考⽣对中学的基础知识、基本技能的掌握程度,⼜考查了对数学思想⽅法和数学本质的理解⽔平,以及进⼊⾼等学校继续学习的潜能。

今年的考题总体来说难度⽐较平稳,具有很⾼的可信度,但有些题⽬有⼀定的难度。

遵循了考试⼤纲所倡导的“⾼考应具有较⾼的信度、效度,必要的区分度和适当的难度”这⼀原则。

很多题⽬似曾见过,但⼜不完全相同,适度创新,更加体现了对考⽣思维能⼒和灵活应⽤知识的考查。

总之,试题融⼊了考纲的命题理念,以重点知识构建试题的主体,选材寓于教材⼜⾼于教材,⽴意创新⼜朴实⽆华,为以后的⾼中新课程的数学教学改⾰和⽇常教学,发挥了良好的导向作⽤。

⼆、试卷结构与往年⼀样,⽂、理科试卷结构不变,依然分为两部分:第Ⅰ卷为12个选择题;第Ⅱ卷为⾮选择题为4道填空题和6道解答题。

解答题分别是三⾓函数、概率统计、⽴体⼏何、函数与导数、解析⼏何、数列与不等式。

其排列顺序与2009年相⽐有所改变,但总体难度设置相当。

除理科17题,⽂科17,18题外,每题都以两问形式设置,先易后难,形成梯度,层次分明。

试卷分值设置未做调整。

三、试题的主要特点1. ⽴⾜基础,由易到难⽂、理科试卷遵循考纲,⽴⾜基础考查,突出能⼒⽴意,试题平稳⽽⼜不乏新意,平中见奇,难易适度。

选择⽂科1-10题,理科1-8题;⽂理填空题;解答题⽂理前三(17-19)题以及后三⼤题的第⼀问,都属基础题,常规题;理科第10题有⼀定的灵活性,容易出错,⽂理第11,12,16题命制新颖,⽴意深刻,考查学⽣的能⼒⽔平。

2.强化主⼲知识涵盖⾯⼴不回避热点知识考查⽂、理试卷⼏乎涵盖了近⼏年⾼考数学的所有知识,涵盖知识⾯⼴,强化主⼲。

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)答案与解析

2010年全国统一高考数学试卷(理科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2]D.{0,1,2}【考点】交集及其运算.【专题】计算题.【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【考点】复数代数形式的混合运算.【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.3.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【考点】利用导数研究曲线上某点切线方程.【专题】常规题型;计算题.【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【考点】复合命题的真假;指数函数与对数函数的关系.【专题】简易逻辑.【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题.6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】计算题;应用题.【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目.7.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】设计程序框图解决实际问题.【专题】操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}【考点】偶函数;其他不等式的解法.【专题】计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.9.(5分)若,α是第三象限的角,则=()A. B.C.2 D.﹣2【考点】半角的三角函数;弦切互化.【专题】计算题.【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.【点评】本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力.10.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C. D.5πa2【考点】球内接多面体.【专题】计算题.【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.【点评】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.11.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】分段函数的解析式求法及其图象的作法;函数的图象;对数的运算性质;对数函数的图像与性质.【专题】作图题;压轴题;数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB 的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【考点】双曲线的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.【点评】本题主要考查了双曲线的标准方程.考查了学生综合分析问题和解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【考点】模拟方法估计概率;定积分在求面积中的应用;几何概型.【专题】计算题.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.【点评】本题考查几何概型模拟估计定积分值,以及定积分在面积中的简单应用,属于基础题.14.(5分)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【考点】简单空间图形的三视图.【专题】阅读型.【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.【点评】本题主要考查三视图以及常见的空间几何体的三视图,考查空间想象能力.15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2 .【考点】圆的标准方程;直线与圆的位置关系.【专题】压轴题.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.【点评】命题意图:本题主要考查利用题意条件求解圆的方程,通常借助待定系数法求解.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【考点】余弦定理的应用.【专题】计算题;压轴题.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.【点评】本题主要考查解三角形中的边角关系及其面积等基础知识与技能,分析问题解决问题的能力以及相应的运算能力.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【专题】计算题.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+...+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+ (2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.【点评】本题主要考查数列累加法(叠加法)求数列通项、错位相减法求数列和等知识以及相应运算能力.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【考点】用向量证明垂直;直线与平面所成的角.【专题】计算题;作图题;证明题;转化思想.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.【点评】本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【考点】简单随机抽样;独立性检验.【专题】计算题.【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【点评】本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【考点】椭圆的简单性质;等差数列的性质;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.【点评】本题主要考查圆锥曲线中的椭圆性质以及直线与椭圆的位置关系,涉及等差数列知识,考查利用方程思想解决几何问题的能力及运算能力21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】分类讨论.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.【点评】本题主要考查利用导数研究函数性质、不等式恒成立问题以及参数取值范围问题,考查分类讨论、转化与划归解题思想及其相应的运算能力.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】圆的切线的判定定理的证明;弦切角.【专题】证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】简单曲线的极坐标方程;轨迹方程;直线和圆的方程的应用;直线的参数方程;圆的参数方程.【专题】综合题;压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】绝对值不等式的解法;函数的图象;其他不等式的解法.【专题】计算题;作图题;压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或x≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。

2010年高考数学全国_卷分析及高三数学备考建议

2010年高考数学全国_卷分析及高三数学备考建议

研究近几年的高考试题,掌握高考命题的趋势和方向,设计整体的复习计划,运用高效的复习策略是我们每位高三教师必备的工作和要求。

笔者作为教研员也想通过自己对试卷的感知和对教学的理解谈一下自己对2010年全国Ⅰ卷数学试卷和高三复习的想法。

2010年高考数学试卷(全国Ⅰ卷)延续了全国卷多年的命题风格,题型结构、分值没有太大的变化。

试卷遵循《考试大纲》的指导思想:在对数学基础知识、基本技能考查的同时突出了重点和主干知识;从学科的整体高度和思维价值的角度设计试题,注重了学科的内在联系和知识的综合性;试题朴实无华,没有偏题怪题,注重了对常规思想方法、理性思维的考查。

在平稳中有创新,有利于选拔人才,又兼顾了对中学数学教学的导向作用。

当然它的特点也非常明显。

一、由浅入深,突出重点从试卷的设计结构而言,由易到难,逐渐深入,突出主干,遵循了科学性、公平性、规范性的原则,彰显了时代精神。

比如选择题的前七题,填空题的前三道题,属于基础题,比较容易得分,稳定了考生的情绪,使其能迅速地进入考试状态。

以理科为例,理数解答题第17题仍为三角函数问题,18题概率统计,19题立体几何,20题导数问题,第21题解析几何和平面向量结合,第22题数列、不等式的综合问题。

二、注重对思想方法和思维能力的考查对数学思想方法的考查几乎贯穿于整个试卷,尤其是对化归与转化思想的考查,理科第1题的分母的实数化,第2题的切化弦,13题的去根式,20题和22题整个解题过程均渗透着转化的思想。

另外数形结合思想、函数与方程思想、分类与整合思想、运动与变换思想均在试题中得到了很好地考查,不再赘述。

由上可知试卷的每道试题均是一个能力的考查点,对学生运算能力、空间想像能力、推理论证能力,抽象概括能力、分析问题和解决问题的能力以及创新能力进行了很好地考查。

比如选择题的11题、12题,填空题16题,理科22题,都考查了学生思维能力的综合性水平和学习潜能,为高水平学生展示数学能力提供了机会,体现了高考的选拔功能。

2010年高考数学全国卷一(理科)分析

2010年高考数学全国卷一(理科)分析

2010年高考数学全国卷一(理科)分析一、试卷分析1.试卷结构保持不变,试题有梯度试卷结构与往年一样,分三大部分:(1) 12道选择题(60分);(2)4道填空题(20分);(3)6道解答题(70分)。

试题难度适中,梯度合理,与往年考题的难度分布大同小异。

选择题中,(1)一(10)题都比较简单,考查的知识点明显,比较容易人手。

但(11)、(12)题对思维的要求较高,重视数形结合思想的运用。

(11)已知圆0的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA- PB的最小值为()(12)已知在半径为2的球面上有A、B、C、D四点,若AB-CD-2,则四面体ABCD的体积的最大值为( )填空题中,(13)-( 15)题难度比较低、很常规,主要考查基本知识,解题思路清晰。

但也配备了难度适当的题,例如:(16)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且BF=2FD,则c的离心率为____.本题主要通过建立相似三角形,再运用椭圆第二定义求解,注重对学生化归能力的考查.解答题中,(17)-(20)题与往年的难度相当。

总体来说,今年的考题没有偏题怪题,解答题的难度比选择题和填空题都大,梯度和区分度较明显。

难题、简单题、中档题的分值分别为24、35、91,有明显的梯度。

2.题型稳定,合理性强今年的试卷灵活性强的题目较少,试题起点低.但计算中会遇到一些障碍,对学生的思辨能力要求较高。

例如:(17)已知△ABC的内角A、B及其对边a、b满足a+b=acotA +bcotB,求内角C.本题在三角形中考查三角函数,是比较典型的边角互换问题,通常运用正弦定理,把所有边换成角,人手很简单。

2009年(17)题也考查了同样的定理及方法:在△ABC中,内角A、B、C的对边长分别为a,6,c.已知sinA sinC=3cosA sinC,求6.又如,2009年(18)题:如下图,四棱柱S-A BCD,底面ABCD为矩形,SDI底面ABCD,AD=、2,DC-SD-2,点M在侧棱SC上,LA BM - 600.(1)证明:M是侧棱SC的中点;(2)求二面角S-A M-B的大小.2010年(19)题:如下图,四棱锥S-A BCD中.SD上底面ABCD,A B//DC,ADIDC,A B=A D=l,DC=SD=2,E为棱SB上的一点,平面EDCI平面SBC.(I)证明:SE=2EB;(Ⅱ)求二面角A -DE-C的大小。

2010年高考数学全国卷一_理科_分析

2010年高考数学全国卷一_理科_分析

63
广西教育 2010.9
B 教学创新 ·考试大家谈GVANGJSIH GYAUYUZ
因此,高考复习要全面。首先,要建立系 统的知识网络。要攻破各个知识点,从本 质上发现数学知识之间的区别和联系, 并将其加以分类、整理、综合、构造,形成 一个排列有序、信手可用的“数学的认知 结构”。其次,要加强重点知识的复习.在 “数学的认知结构”中要突出主干,可以 分块整合重点知识,按照数学学科的逻 辑特点,将平面解析几何和圆锥曲线与 方程整合,集合、函数与导数整合,等等。 最后,要有效地进行专题复习训练。通过 多种形式突出对重点内容的复习,从学 科知识的内在联系合理划分专题,有计划 地组织专题复习训练,要研究知识的交汇 点、常考点,选择典型的例题作为训练材 料,以数学思想和数学基本方法的运用为 线索,引导学生寻求解题策略,形成解题 策略系统,切实提高学生的解题能力。
二、对高中数学教学的建议 1. 回归教材,重视“四基” 从这套试卷的整体分析可以知道, 回归教材,重视“四基”是很必要的。试卷 中 有 相 当 多 的 试 题 是 课 本 上 的 例 题 、习 题改编的,绝大多数试题的解决思想方 法可以从书本的例题、习题中找到范例, 其目的在于引导师生重视教材的示范作 用,重视基础,切实抓好基础知识和基本 技能的训练。因此,在平时教学中,教师 要深入挖掘教材,教好课本,引导学生用 好教材。随着素质教育的推进,高考越来 越注重考查学生的数学思维能力、数学 创新意识以及数学实践能力,几乎每道 试题的设计都考虑到数学思想和数学基 本方法的运用,要求学生现学知识,自主 探究,结合数学基本活动经验创造性地 解决问题的试题逐渐增多。因此,学校以 及教师要积极倡导主动学习,营造自主 探索和合作交流的环境,善于从教材实 际和社会生活中提出问题,开设研究性 课程,让学生在体验数学基本活动中有 意识地使用数学思想和数学基本方法, 提高数学思维能力和实践创新能力。 2. 系统复习,抓好重点知识 考纲 对 理 科 数 学 列 出 了 129 个 考 点,2010 年的理科数学试卷所考查的知 识点占该总数的 80%左右。《考试大纲》 指出函数、数列、三角函数、平面向量、不 等式、圆锥曲线、直线平面简单几何体、 概率与统计、导数九大章节知识是中学 数学重点章节,是中学数学的主干知识。

2010年高考数学试题的评价

2010年高考数学试题的评价

2010年高考数学试题的评价2010年的高考数学试题一直备受争议和关注,广大考生和教师纷纷对其进行评价和讨论。

面对这样的评价,有人认为试题设计合理,在考核学生数学能力方面有着良好的引导作用;而也有人批评试题过于难、题量过大,增加了考生的压力。

下面本文将对2010年高考数学试题进行评价,并从试题难度、命题角度和整体设计等方面进行分析。

首先从试题难度角度来看,2010年的高考数学试题整体难度较高,尤其是选择题和填空题的难度较以往年份有所增加。

这增加了考生的答题压力,考查了考生对知识点的深入理解和应用能力。

单项选择题的难度系数普遍较高,一些选项之间的差异较小,增加了考生的猜测概率。

填空题的难度也较大,一些填空需要使用多个知识点的结合,考查了考生的综合运用能力。

这种较高的难度可以激发考生思考和拓宽他们的数学思维,发展他们的解决问题的能力。

其次,从命题角度来看,2010年高考数学试题在综合性和应用性方面体现得比较好。

试卷中有较多的综合题,涉及多个知识点的融会贯通,考查了考生对知识的整合和运用能力。

举例来说,有一道与函数有关的题目要求求导数,然后根据求得的导数进行分段求面积,涉及到了函数的导数和积分等多个知识点的综合运用。

这种命题方式有助于培养学生的综合分析和解决问题的能力。

再者,整体设计方面,2010年高考数学试题的整体设计比较合理,各个题型之间有一定的难度层次,从容易到较难,有利于考生逐步提高自己的答题水平。

同时,试卷中涉及到了不同的数学思维方式,既有计算题和填空题等需要运用对具体知识的掌握,也有证明题和综合题等需要运用抽象思维和分析能力。

这种多样化的题型设计有助于考核学生的多方面能力,并帮助他们全面提高。

然而,2010年高考数学试题也存在一些问题,例如选择题和填空题的题量较多,而解答题的题量相对较少。

这使得考生在有限的时间内难以较好地完成整个试卷,增加了答题压力和心理负担。

同时,一些题目的表述不够准确清晰,容易引起歧义,给考生带来困扰。

2010年普通高等学校招生全国统一考试数学理试题(课标全国卷Ⅰ,解析版)

2010年普通高等学校招生全国统一考试数学理试题(课标全国卷Ⅰ,解析版)

2010年普通高等学校招生全国统一考试数学理试题(课标全国卷Ⅰ,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第(22)~(24)题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

【教师简评】2010年新课标高考数学试题从整体看,体现“总体稳定,深化能力”的特点,在保持2009年特点的同时,又力争创新与变化;试题不仅注意对基础知识的考查,更注重了对能力的考查。

从考生角度来说,试卷总体难度“没有想象的那么难”。

试题有较好的梯度,注重认知能力和数学运用能力的考查,稳中求新.注意事项:1、答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卡面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差 锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 24S R π= 343V R π=其中S 为底面面积,h 为高 其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z =,z 是z 的共轭复数,则z z ⋅(A )14 (B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--切线方程为[](1)2(1)y x --=-- ,即21y x =+.(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q有∵122222x xx x y -=+=+≥,∴22x x y -=+不是减函数,故2p 为假. ∴112:q p p ∨为真;212:q p p ∧为假;312:()q p p ⌝∨为假;412:()q p p ∧⌝为真. (6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45 (C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A )12- (B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为(A )2a π (B )273a π (C )2113a π (D )25a π22227()212a a OA R ==+=, 227744123a a S R πππ==⨯=球. (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分。

2010年高考试题——数学理(全国卷1)解析版

2010年高考试题——数学理(全国卷1)解析版

2010年高考大纲卷全国Ⅰ理科数学试题分析(必修+选修II)第I 卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题1. A2. B3. B4. A5. C6. A7. D8. C9. B 10. C 11. D 12. B (1)复数3223ii+=- (A)i (B)i - (C)12-13i (D) 12+13i1.A 【命题意图】本小题主要考查复数的基本运算,重点考查分母实数化的转化技巧.【分析1】32(32)(23)694623(23)(23)13i i i i i i i i i +++++-===--+. 【分析2】232322323i i ii i i+-+==-- (2)记cos(80)k -︒=,那么tan100︒=A.21k k -B. -21k k- C.21k- D.21k-2.B 【命题意图】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的使用.【分析1】222sin801cos 801cos (80)1k =-=--=-,所以tan100tan80︒=-2sin 801cos80k -=-=- 【分析2】cos(80)k -︒=cos(80)k ⇒︒=,()()00000sin 18080sin100sin 80tan1001008018080oo ocon con con -︒===--21k -=(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【分析1】画出可行域(如右图),由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.【分析2】11222z x y y x z =-⇒=-,画图知过点()1,1-是最大,()1213Max z =--=(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式和指数式的互化等知识,着重考查了转化和化归的数学思想.【分析1】由等比数列的性质知31231322()5a a a a a a a ===,37897988()a a a a a a a ===10,所以132850a a =,所以13336456465528()()(50)52a a a a a a a a a =====(5)353(12)(1x x +的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4【分析2】123a a a =5325a ⇒=;789a a a =103810,a ⇒=633352845655052a a a a a a a ⇒==⇒==5.C 【分析】2 124513353333322(12)(1)161281510105x x x x x x x x x x ⎛⎫⎛⎫+=+++-+-+- ⎪ ⎪⎝⎭⎝⎭0x y +=1 Oy x =20x y --=xA0:20l x y -=2-2AABC DA 1B 1C 1D 1Ox 的系数是 -10+12=2(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种6.A 【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想. 【分析1】:可分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有1234C C +2134181230C C =+=种. 【分析2】33373430C C C --=(7)正方体ABCD-1111A B C D 中,B 1B 和平面AC 1D 所成角的余弦值为A23 B 33 C 23D 637.D 【命题意图】本小题主要考查正方体的性质、直线和平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【分析1】因为BB 1//DD 1,所以B 1B 和平面AC 1D 所成角和DD 1和平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a, 则12211133sin 60(2)2222ACD S AC AD a ∆==⨯⨯=,21122ACD S AD CD a ∆==. 所以131233ACD ACD S DD a DO S a∆∆===,记DD 1和平面AC 1D 所成角为θ, 则13sin 3DO DD θ==,所以6cos 3θ=. 【分析2】设上下底面的中心分别为1,O O ;1O O 和平面AC 1D 所成角就是B 1B 和平面AC 1D 所成角,111136cos 2O O O OD OD ∠===(8)设a=3log 2,b=In2,c=125-,则A a<b<c Bb<c<a C c<a<b D c<b<a8.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数和对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的使用. 【分析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-52252log 4log 3>=>,所以c<a,综上c<a<b. 【分析2】a =3log 2=21log 3,b =ln2=21log e, 221log log 32e <<< ,2211112log 3log e <<<; c =1215254-=<=,∴c<a<b (9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P到x 轴的距离为 (A)32 (B)62(C) 3 (D) 69.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【分析1】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]12a PF e x a ex x c =--=+=+,22000||[)]21a PF e x ex a x c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 06022200002(2(22)2(12)(21)x x x x =+-,解得2052x =,所以2200312y x =-=,故P 到x 轴的距离为06||y =【分析2】由焦点三角形面积公式得:1202260116cot 1cot 322222222F PF S b c h h h θ∆=====⇒=(10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是 (A)(22,)+∞ (B)[22,)+∞ (C)(3,)+∞ (D)[3,)+∞10.A 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 222a a=+>,从而错选A,这也是命题者的用苦良心之处.【分析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a+ 又0<a<b,所以0<a<1<b ,令2()f a a a=+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞). 【分析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,求2z x y =+的取值范围问题,11222z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为3,∴(C)(3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+11.D 【命题意图】本小题主要考查向量的数量积运算和圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【分析1】如图所示:设||OP x =,2APB θ∠=,则2||||1PA PB x ==-, 1sin x θ=,222cos 212sin 1t θθ=-=-, 则222222211(1)3223PA PB x x x x x⋅=---=+-≥当且仅当22x ==”,故PA PB ⋅的最小值为223,故选D.【分析2】法一: 设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭ABO法二:换元:2sin,012x x θ=<≤,()()112123223x x PA PB x xx--•==+-≥或建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2111011,,0AO PA x y x x y x x⊥⇒⋅-=⇒-()22222222110011011022123223PA PB x x x x y x x x x x •=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A)33 (B)433 (C) 3 (D) 83312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【分析1】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 和P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 和CD 的中点时,22max 22123h =-故max 33V =. 【分析2】过CD 作平面PCD ,AB ⊥平面PCD,交AB 于P,设点P 到CD 的距离为h,则有11222323ABCD V h h ==,当直径通过AB 和CD 的中点时,最大222123Max h =-=∴43MAX V =二、填空题13. {|02}x x ≤≤ 14. 17-15. 5(1,)416. 33(13)2211x x +≤的解集是 .13.[0,2] 【命题意图】本小题主要考查根式不等式的解法,利用平方去掉根号是解根式不等式的基本思路,也让转化和化归的数学思想体现得淋漓尽致.【分析1】原不等式等价于2221(1),10x x x ⎧+≤+⎨+≥⎩解得0≤x ≤2.【分析2】()()22210110111001,,2PA PB x x y x x y x x x x y •=-⋅--=-+-12x =y=1 xyaO12x =-414a y -=2y x x a=-+(){}2222211211*********x x x x x x x x x x ⎧+≤+⎪+≤⇒++⇒⇒≤≤⇒≤≤⎨+≥⎪⎩,(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 14.17-【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.【分析1】因为α为第三象限的角,所以2(2(21),2(21))()k k k Z απππ∈+++∈,又3cos 25α=-<0, 所以2(2(21),2(21))()2k k k Z παπππ∈++++∈,于是有4sin 25α=,sin 24tan 2cos 23ααα==-,所以tan(2)4πα+=41tan tan 2134471tan tan 2143παπα-+==--+. 【分析2】α为第三象限的角, 3cos 25α=-,3222k k ππαππ+<<+42243k k ππαππ⇒+<<+⇒2α在二象限,4sin 25α=sin(2)sin cos 2cos sin 2cos 2sin 21444tan(2)4cos 2sin 27cos(2)cos cos 2sin sin 2444πππαααπαααπππααααα++++====--+-(15)直线1y =和曲线2y x x a =-+有四个交点,则a 的取值范围是 .15.(1,5)4【命题意图】本小题主要考查函数的图像和性质、不等式的解法,着重考查了数形结合的数学思想.【分析1】如图,在同一直角坐标系内画出直线1y =和曲线2y x x a =-+,观图可知,a 的取值必须满足1,4114a a >⎧⎪⎨-<⎪⎩解514a <<. 【分析2】由数型结合知:151144a a a -<<⇒<< (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为 .16.3【命题意图】本小题主要考查椭圆的方程和几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显分析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【分析1】如图,22||BF b c a =+=, 作1DD y ⊥轴于点D 1,则由BF 2FD =,得1||||2||||3OF BF DD BD ==,所以133||||22DD OF c ==,即32D cx =,由椭圆的第二定义得2233||()22a c c FD e a c a=-=-又由||2||BF FD =,得232c c a a=-,整理得22320c a ac -+=.两边都除以2a ,得2320e e +-=,解得1()e =-舍去,或23e =. 【分析2】设椭圆方程为:第一标准形式,F 分 BD 所成的比为2,222230223330;122212222c c c c y b x b y b bx x x c y y -++⋅-=⇒===⇒===-++, 代入222291144c b a b +=,3e ⇒=-----------------------------------------------------------2010年全国卷1理科数学试题答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ABBACADCBCDB1.A 分析:本题考查了复数代数形式的运算法则.32(32)(23)1323(23)(23)13i i i ii i i i ++⋅+===--⋅+,故选A.2.B 分析:本题考查了同角三角函数关系以及诱导公式.cos(80)cos80k -==,2sin801k =-21tan 80k k -=,21tan100tan 80k k-=-=-,故选B.3.B 分析:本题考查了在线性约束条件下求目标函数的最值问题,即线性规划xO yBF1DDOxy=1x+y=0x-y-2=0yAZ=x-2y问题.如图,画出约束条件表示的可行域,当目标函数2z x y =-经过0x y +=和20x y --=的交点(1,1)A -时,取到最大值3,故选B.4.A 分析:本题考查了等比数列的性质.61237895()()50a a a a a a a ⨯==,3456552a a a a == A.另法: 由等比数列的性质知123a a a ,456a a a ,789a a a 成等比数列,则2456()a a a =123a a a ×456a a a =50,∵n a >0,所以4565052a a a ==5.C 分析:本题考查了二项式定理.3(1x +展开式的通项为2133(2)2r r r rr r T C x C x +==,53(1)x 展开式的通项为33155()(1)r r r r r r T C x C x ''''''+==-,因此,353(1)(1)x x +-展开式的各项为2335(1)2r r r rr r C C x'+''-⋅⋅⋅⋅,当123r r '+=时有0r =且3r '=或2r =且0r '=两种情况,因此展开式中x 的系数为(-10)+12=2,故选C.6.A 分析:本题考查了排列组合知识.不同的选法分两类,A 类选修课1门,B 类选修课2门,或者A 类选修课2门,B 类选修课1门,因此,共有2112343430C C C C ⋅+⋅=种选法,故选A.7.D 分析:本题考查了立体几何中线面角的求法. 1BB 和平面1ACD 所成角等于1DD 和平面1ACD 所成角,在三棱锥1D ACD -中,由三条侧棱两两垂直得点D 在底面1ACD 内的射影为等边1ACD ∆的垂心即中心H ,则1DD H ∠为1DD 和平面1ACD 所成角,设正方体棱长为a ,则1663cos 3DD H a ∠==,故选D.8.C 分析:本题考查了代数式大小比较的方法.3ln 2log 2ln 2ln 3a b ==<=,又121525c -==<,331log 2log 32a =>=,因此c a b <<,故选C.9.B 分析:本题考查了双曲线中有关焦点三角形的问题.由双曲线焦点三角形面积公式得122cot1cot 3032F PF S b θ∆==⨯=,设P 到x 轴的距离为h ,则由12121122322F PF S F F h h ∆=⨯⨯=⨯=6h =,P 到x 6 B.10.C 分析:本题考查了对数函数、对数式的运算性质、对勾函数图像性质.由题意01a b <<<,由()()f a f b =得lg lg a b -=,lg lg 0a b +=,1ab =,因此,22a b a a +=+,由对勾函数性质知2y x x=+在(0,1)单调递减,因此23a b +>,即2a b +的取值范围是(3,)+∞,故选C.11.D 分析:本题考查了向量数量积的定义运算,考查了最值的求法,考查了圆的切线性质.设||OP x =,2APB θ∠=,则2||||1PA PB x ==-, 1sin x θ=,222cos 212sin 1t θθ=-=-, 则222222211(1)3223PA PB x x x x x⋅=---=+-≥当且仅当22x =时,取“=”,故PA PB ⋅的最小值为223,故选D.12.B 分析:本题考查了球和多面体的组合体问题,考查了空间想象能力.如图,过OCD 三点作球的截面,交AB 于点M ,由条件知,OAB ∆、OCD ∆均为边长为2的等边三角形,设M 到CD 的距离为h ,A 到面MCD 的距离为1h ,B 到面MCD 的距离为2h ,则1212111()()332A BCD A MCDB MCD MCD V V V S h h CD h h h ---∆=+=+=⋅⋅⋅⋅+,因此,当AB ⊥面MCD 时, 1143223(11)32A BCD V -=⋅⋅⋅+=最大,故选B. 二、填空题13. {|02}x x ≤≤ 分析:本题考查了不等式的基本性质. 2211x x +≤得22210121121(1)02x x x x x x x +≥≥-⎧⎧+≤+⇔⇔⎨⎨+≤+≤≤⎩⎩02x ⇔≤≤,不等式解集为. {|02}x x ≤≤.14. 17-分析:本题考查了同角三角函数的关系,二倍角公式以及两角和差的三角函数公式.由23cos 22cos 15αα=-=-,且α为第三象限角得5cos α=,得tan 2α=,4tan 23α=-,1tan 21tan(2)41tan 27πααα++==--.15.514a << 分析:本题考查了利用数形结合的思14a -2y x x a-+2y x x a =++axy A BCDM O想解题的策略. 如图,作出2||y x x a =-+的图像,若要使1y =和其有四个交点,需满足114a a -<<,解得514a <<. 16.3分析:本题考查了椭圆离心率的求解策略.不妨设椭圆C 焦点在x 轴上,中心在原点,B 点为椭圆上顶点,F 为右焦点,则由2BF FD =,得D 点到右准线的距离是B 点到右准线距离的一半,则D 点横坐标22D a x c=,由2BF FD =知,F 分BD 所成比为2,,由定比分点坐标公式得22022123a a c c c+⨯==+,得223c a =,得3e =三、解答题 17. 解:由cot cot a b a A b B +=+及正弦定理得sin sin cos cos sin cos cos sin A B A BA AB B+=+-=-从而sin coscos sincos sinsin cos4444A AB B ππππ-=-sin()sin()44A B ππ-=-又0A B π<+< 故44A B ππ-=-2A B π+=所以2C π=18. 解:(Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用.则 D=A+B·C,()0.50.50.25,()20.50.50.5,()0.3,P A P B P C =⨯==⨯⨯==()()P D P A B C =+ =()()P A P B C + =()()()P A P B P C + =0.25+0.5×0.3 =0.40.(Ⅱ)~(4,0.4)X B ,其分布列为: 4(0)(10.4)0.1296,P X ==-=134(1)0.4(10.4)0.3456,P X C ==⨯⨯-= 2224(2)0.4(10.4)0.3456,P X C ==⨯⨯-= 334(3)0.4(10.4)0.1536,P X C ==⨯⨯-=4(4)0.40.0256.P X === 期望40.4 1.6EX =⨯=.19. 解法一:(Ⅰ)连接BD,取DC 的中点G ,连接BG,由此知 1,DG GC BG ===即ABC ∆为直角三角形,故BC BD ⊥. 又ABCD,BC SD SD ⊥⊥平面故,所以,BC ⊥⊥平面BDS,BC DE .作BK ⊥EC,EDC SBC K ⊥为垂足,因平面平面, 故,BK EDC BK DE DE ⊥⊥平面,和平面SBC 内的两条相交直线BK 、BC 都垂直DE ⊥平面SBC ,DE ⊥EC,DE ⊥SB226SB SD DB =+=23SD DB DE SB == 22626-,-33EB DB DE SE SB EB ====所以,SE=2EB (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF ,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°. 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的直角坐标系D xyz -, 设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2) (Ⅰ)(0,2,-2),(-1,1,0)SC BC ==设平面SBC 的法向量为n =(a,b,c)由,n SC n BC ⊥⊥,得0,0n SC n BC == 故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n =(1,1,1) 又设SE EB λ= (0)λ>,则2(,,)111E λλλλλ+++ 2(,,),(0,2,0)111DE DC λλλλλ==+++设平面CDE 的法向量m =(x,y,z)由,m DE m DC ⊥⊥,得0m DE ⊥=,0m DC ⊥=故20,20111x y zy λλλλλ++==+++. 令2x =,则(2,0,)m λ=-.由平面DEC ⊥平面SBC 得m ⊥n ,0,20,2m n λλ=-== 故SE=2EB(Ⅱ)由(Ⅰ)知222(,,)333E ,取DE 的中点F ,则111211(,,),(,,)333333F FA =--,故0FA DE =,由此得FA DE ⊥又242(,,)333EC =--,故0EC DE =,由此得EC DE ⊥, 向量FA 和EC 的夹角等于二面角A DE C --的平面角 于是 1cos ,2||||FA EC FA EC FA EC <>==-所以,二面角A DE C --的大小为120 20.解: (Ⅰ)11()ln 1ln x f x x x x λ+'=+-=+, ()ln 1xf x x x '=+,题设2()1xf x x ax '≤++等价于ln x x a -≤. 令()ln g x x x =-,则1()1g x x'=- 当01x <<,'()0g x >;当1x ≥时,'()0g x ≤,1x =是()g x 的最大值点, ()(1)1g x g =-≤ 综上,a 的取值范围是[)1,-+∞.(Ⅱ)由(Ⅰ)知,()(1)1g x g =-≤即ln 10x x -+≤.当01x <<时,()(1)ln 1ln (ln 1)0f x x x x x x x x =+-+=+-+≤; 当1x ≥时,()ln (ln 1)f x x x x x =+-+1ln (ln 1)x x x x =++- 11ln (ln 1)x x x x=--+0≥ 所以(1)()0x f x -≥21. 解:设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠.(Ⅰ)将1x my =-代入24y x =并整理得2440y my -+=从而12124,4y y m y y +==直线BD 的方程为212221()y y y y x x x x +-=--,即222214()4y y y x y y -=--令0y =,得1214y y x == 所以点F(1,0)在直线BD 上(Ⅱ)由(Ⅰ)知,21212(1)(1)42x x my my m +=-+-=-1212(1)(1) 1.x x my my =--=因为 11(1,),FA x y =-22(1,)FB x y =-,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-故 28849m -=,解得 43m =± 所以l 的方程为 3430,3430x y x y ++=-+= 又由(Ⅰ)知 2214(4)4473y y m -=±-⨯=故直线BD 的斜率2147y y =-因而直线BD 的方程为3730,3730.x x y +-=--=因为KF 为BKD ∠的平分线,故可设圆心(,0)(11)M t t -<<,(,0)M t 到l 及BD 的距离分别为3131,54t t +-.由313154t t +-=得19t =,或9t =(舍去), 故 圆M 的半径31253t r +==. 所以圆M 的方程为2214()99x y -+=. 22. 解:(Ⅰ)12512222n n n na a a a +--=--=, 112142,42222n n n n n n a b b a a a ++==+=+---即11112214(),1,1332n n b b a b a ++=+===--又故 所以2{}3n b +是首项为13-,公比为4的等比数列, 121433n n b -+=-⨯112433n n b -=-⨯-(Ⅱ)12211,1, 2.a a c a a c ==->>由得用数学归纳法证明:当2c >时1n n a a +<. (ⅰ)当1n =时,2111a c a a =->,命题成立; (ⅱ)设当n=k 时,1k k a a +<,则当n=k+1时,21111k k k ka c c a a a +++=->-= 故由(ⅰ)(ⅱ)知,当c>2时1n n a a +<当c>2时,令242c c a -=,由111n n n na a c a a ++<+=得n a a < 当102,33n c a a <≤<≤时 当103c >时,3a >,且1n a a ≤< 于是111()()3n n n n a a a a a a a a +-=-≤-,11(1)3n n a a a +-≤-当31log 3a n a ->-时,113,3n n a a a a ++-<-> 因此103c >不符合要求 所以c 的取值范围是10(2,]32010年普通高等学校招生全国统一测试 数学(全国卷I )(理工农医类)点评和去年数学试题相比,今年高考数学试题在题型和题量上基本保持不变。

2010年高考数学全国一卷试卷分析

2010年高考数学全国一卷试卷分析

2010年高考数学全国一卷试卷分析一、试卷分析2010年高考数学试卷基本符合《考试大纲》的各项要求,结构稳定,试题排列由易到难,在多角度、多层次考查数学基础知识的基础上,注重了对数学思想和方法及数学能力的考查,尤其是思维能力和运算能力的考查。

1、试题立足基础,突出主干知识,注重通性通法初看试卷,给人的感觉是首先是在题型、题量及分值上同往年一样,没有变化,无论文理全卷都是22道题,其中选择题12道,每题5分,共60分,填空题4道,每道5分,共20分,解答题6道,共70分;其次题的面貌好像也似曾相识,没有出现乍一看就很陌生或很新颖的题目。

理科选择题以复数的除法运算开篇,文科选择题以求特殊角的三角函数值开篇,都较易上手。

六道大题的编排依次为理科:17三角、18概率、19立体几何、20函数与导数、21解析几何、22数列与不等式,文科:17数列、18三角、19概率、20立体几何、21函数与导数、22解析几何,考查的都是高中数学学科知识体系的主干内容,文理科共有1 4道完全相同题目,其中选择题有8道,填空题有1道,解答题有5道,故今年考题对文科考生来说,整体难度仍要高于理科。

考题对函数、不等式、解析几何、立体几何、三角函数、数列等重点内容以及线性规划、概率、向量、导数的应用等热点问题都予以了重点考查。

高考重视的是具有普遍意义的方法和相关知识,例如解析几何中有关直线与圆锥曲线的问题,基本解法是将直线方程代入圆锥曲线方程,整理出一元二次方程,再利用根的判别式、求根公式、韦达定理、两点间距离公式等解题,理科21题(文22)就考查了解析几何的这种基本方法,理18(文19)概率题贴近生活,背景简单,试题切合我国中学数学的实际,难度符合考生的水平。

2、以能力立意,强调基本数学思想和方法数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确定以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学(全国Ⅰ)试卷分析及思考
发表时间:2011-01-26T16:50:15.423Z 来源:《少年智力开发报》2010年第9期供稿作者:陈先锋[导读] 就整个试卷来说,重点考查函数与导数、数列与不等式、概率与统计、直线与圆锥曲线综合的相关内容。

光山二高陈先锋
一. 总体评析
2010年高考数学试题与2009年试题在题量和题型上基本保持不变,但与09年相比,能力立意类型试题较多,适度创新,难度比较平稳,具有很高的可信度,遵循了考试大纲所倡导的“高考应具有较高的信度、效度,必要的区分度和适当的难度”这一原则。

总之,2010年高考数学(全国Ⅰ)试卷命题按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测了考生的数学素养。

就整个试卷来说,重点考查函数与导数、数列与不等式、概率与统计、直线与圆锥曲线综合的相关内容。

试题融入了考纲的命题理念,以重点知识构建试题的主体,选材寓于教材又高于教材,立意创新又朴实无华,为以后的高中新课程的数学教学改革和日常教学,发挥了良好的导向作用。

二. 试卷结构
与往年一样,文、理科试卷结构不变,依然分为两部分:第Ⅰ卷为12个选择题;第Ⅱ卷为非选择题为4道填空题和6道解答题。

解答题分别是三角函数、概率统计、立体几何、函数与导数、解析几何、数列与不等式。

其排列顺序与2009年相比有所改变,但总体难度设置相当。

除理科17题,文科17,18题外,每题都以两问形式设置,先易后难,形成梯度,层次分明。

试卷分值设置未做调整。

三. 试题的主要特点
特点一:中等难度试题较多
择题与往年相比难度偏大。

前7题属于基础题,比较容易得分,但从第8 题开始,难度增大。

第8题注重考查指数函数、对数函数的图象和性质及学生的估算能力;第9题考查双曲线的第一定义(其中利用重要结论处理比较简捷);第10题考查函数的图象和性质,侧重数形结合思想的应用,包含了对重要不等式或线性规划的应用;第11题侧重考查平面向量与解析几何的综合应用,以及利用重要不等式求函数的最值;第12题属于立体几何类型题目,考查空间想象能力以及体积分割法。

填空题第13题至第15题属于基础题,第16题属于09年高考考题的变形,重点考查圆锥曲线的第二定义。

解答题第17题仍为三角函数问题,但与往年相比有一定的新意,着重考查了正弦定理及三角公式的恒等变形,在思路上与往年试题有所不同;第18题概率统计题考查思路常规,着重考查独立重复事件的概率,难度较小;第19题立体几何问题,传统方法与向量方法并行(相比之下向量法更易入手),和往年相比,变化不大。

试题重点考查空间面面关系和线线关系以及二面角的求法,难度适中;第20题导数问题,学生感觉入题容易,但深入较难,不易得高分。

此题重点考查了函数的单调性、极值、最值及不等式证明;第21题解析几何问题,重点考查设而不求的常规思路,但由于运算量大,容易使学生产生畏难情绪;第22题数列问题,考查简单的递推关系求通项和不等式证明。

第一问较易,大多数学生应该能够顺利完成,第二问难度较大,灵活性较强,能有效的区分不同能力层次的学生群体。

特点二:强化主干知识涵盖面广不回避热点知识考查
文、理试卷几乎涵盖了近几年高考数学的所有知识,涵盖知识面广,强化主干。

函数,三角,数列,立体几何,概率统计,解析几何等主干知识勾勒出整个试卷。

热点问题,尤其是理科的复数,线性规划,概率统计,导数的应用等问题几乎每年都有所考查。

特点三:注重方法体现常规
高考数学,要解决的一个问题就是要发挥数学作为主要基础学科的作用。

诚然数学思维,数学方法是数学的核心。

2010年高考数学试题在考查知识的同时更注重数学方法的考查,强化考查函数与方程思想、分类与整合思想、转化与化归思想、特殊与一般的思想。

对数学思想方法的考查几乎贯穿于整个试卷中如:第10题、第11题、第12题、第16题、第21题、第22题等。

真正做到突出考查常规方法和通性通法,淡化特殊技巧,较好地体现了以知识为载体,以方法为依托的命题方向。

特点四:注重能力的考查
对学生能力的考查主要体现在运算能力、空间想象能力、分析问题和解决问题的能力以及创新能力。

试题从不同思维层次设计不同题目,区分出不同思维层次的考生。

压轴题考查学生综合性水平的思维能力和学习潜能,为高水平学生展示数学能力提供机会,体现了高考的选拔功能,以及以能力考查为目的的命题指向
特点五:体现常规,适度创新,凸现学科能力
2010年全国数学试卷充分关注对考生创新意识和创造思维能力的考查。

不仅考查对一些定理、公式、法则的理解,而且更多考查了学生灵活运用这些知识和法则分析、解决综合性数学问题的能力。

2010年全国高考数学试题从整张试卷来看,结构是由易到难,梯度把握也比较好,比较有利于各类考生的发展。

同时,试题遵循了科学性、公平性、规范性的原则,彰显了时代精神。

四. 备考建议
1. 重视基础回归教材
常规题型依然是试卷的主流,考查的几乎都是现行高中数学教材中最基本、最重要的数学知识和数学思想方法。

高三复习应改变以往片面追求“新、奇、怪”的极端做法,回归教材,狠抓基础,灵活运用知识处理分析问题。

2.强化主干突出重点
纵观近几年高考数学试卷,不难发现:主干知识支撑了整个试卷;分值设置固定;题型固定,命题方式几乎固定;对知识的考查角度、深度相差无几;对热点知识的考查也是年年都有等等。

故此,研究高考试题,以高考试题为范例展开发散思维,变式演练,以主干知识复习为核心,突出重点,目标明确,通法通解,狠抓实练。

相关文档
最新文档