化工原理伯努利实验数据处理
化工原理实验 吸收实验 伯努利方程实验
液相温度 填料层压强降△P
(℃)
(cmH2O)
1
2.5
0.157
18.2
32.2
0.4
2
4
0.252
18.8
32.1
1
3
5.5
0.346
20
32.1
1.8
4
7
0.440
21.3
32.1
2.8
5
8.5
0.534
23.6
32.1
4.1
6
10
0.629
26.2
32.1Βιβλιοθήκη 77 11.5(液泛) 0.723
30.5
A 截面-D 截面
0
1
-1
114
115
300
-74
10
128
64
600
66
56
167
278
冲压头为静压头与动压头之和。
在实验导管窗口流量开 600(L/h)时,A 处的静压头为 596 mmH2O 柱,B 处的静压头为 530 mmH2O 柱,PA>PB, 说明 B 处的静压能转化为动能。
0.8
3
7.5
0.472
19.7
43
1.6
4
10
0.629
21.5
43.1
2.6
5
12.5
0.786
25
43.8
4
6
15
0.943
28.5
44
5.6
7
17.5
1.100
32.7
44.5
7.8
水的喷洒量 L=40L/h
序号
流体力学-伯努利方程实验报告
中国石油大学(华东)工程流体力学实验报告实验日期:2014.12.11 成绩:班级:石工12-09学号:12021409姓名:陈相君教师:李成华同组者:魏晓彤,刘海飞实验二、能量方程(伯诺利方程)实验一、实验目的1.验证实际流体稳定流的能量方程;2.通过对诸多动水水力现象的实验分析,理解能量转换特性;3.掌握流速、流量、压强等水力要素的实验量测技能。
二、实验装置本实验的装置如图2-1所示。
图2-1 自循环伯诺利方程实验装置1. 自循环供水器;2.实验台;3. 可控硅无极调速器; 4 溢流板; 5. 稳水孔板;6. 恒压水箱;7. 测压机;8滑动测量尺;9. 测压管;10. 试验管道;11.测压点;12 皮托管;13. 试验流量调节阀说明本仪器测压管有两种:(1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头;(2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。
实验流量用阀13调节,流量由 调节阀13 测量。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n )i w i i ii h gv p z gp z -+++=++122221111αγυαγ取12n 1a a a ==⋅⋅⋅==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测出 透过管路的流量 ,即可计算出 断面平均流速 ,从而即可得到 各断面测压管水头和总水头 。
四、实验要求1.记录有关常数 实验装置编号 No._4____均匀段1d = 1.40 -210m ⨯;缩管段2d = 1.01-210m ⨯;扩管段3d =2.00-210m ⨯;水箱液面高程0∇= 47.6 -210m ⨯; 上管道轴线高程z ∇= 19 -210m ⨯ (基准面选在标尺的零点上)2.量测(pz γ+)并记入表2-2。
注:ii i p h z γ=+为测压管水头,单位:-210m ,i 为测点编号。
【最新2018】化工原理实验雷诺数-范文模板 (10页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工原理实验雷诺数篇一:化工原理雷诺数实验数据记录及处理实验一、雷诺数实验数据记录及处理实验二、伯努利方程实验1、实验基本参数换流体种类:水实验导管内径: dA=20mm dB=30mm dC=20mm试验系统总压头:H=450mm2、非流动系统的机械能分布及其转换(1)实验数据记录3、流动系统的机械能分布及其转换(1)实验数据记录篇二:化工原理实验报告 (流体阻力)摘要:本实验通过测定流体在不同管路中流动时的流量qv、测压点之间的压强差ΔP,结合已知的管路的内径、长度等数据,应用机械能守恒式算出不同管路的λ‐Re变化关系及突然扩大管的?-Re关系。
从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis关系式:??0.3163Re0.25 。
突然扩大管的局部阻力系数随Re的变化而变化。
一、目的及任务①掌握测定流体流动阻力实验的一般实验方法。
②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
③验证湍流区内摩擦系数λ为雷诺数Re和相对粗糙度的函数。
④将所得光滑管λ-Re方程与Blasius方程相比较。
二、基本原理1. 直管摩擦阻力不可压缩流体,在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态相关,可表示为:△p=?(d,l,u,ρ, μ, ε) 引入下列无量纲数群。
雷诺数 Re?相对粗糙度管子长径比从而得到lddu???d??(du??l,,) ?dd?p?u2令???(Re,)d??p???(Re,?ud)22可得到摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。
伯努利方程实验
化工原理实验(2010年国防工业出版社出版的图书):本书为化工原理实验教材,内容包括化工实验数据的测量及处理、化工实验常用参数测量技术、化工原理基础实验、演示实验、计算机处理实验数据及实验仿真、化工原理实验常用仪器仪表这六部分。
其中,化工原理基础实验包括流体阻力测定实验、流量计标定实验、离心泵性能测定实验、过滤实验、传热实验、精馏实验、气体的吸收与解析实验、干燥实验。
演示实验包括伯努利方程实验、雷诺实验、旋风分离器性能演示实验、边界层演示实验和筛板塔流体力学性能演示实验。
计算机处理实验数据及实验仿真,包括应用Excel 进行数据和图表处。
目录:绪论1第一章化工实验数据误差分析及数据处理31. 1实验数据的误差分析31. 1. 1测量误差的基本概念31. 1. 2间接测量值的误差传递61. 1. 3实验数据的有效数字与记数法101. 2实验数据处理111. 2. 1列表法121. 2. 2图示(解)法131. 2. 3数学模型法15第二章化工参数测量及常用仪器仪表292. 1温度测量292. 1. 1热膨胀式温度计292. 1. 2热电偶式温度计332. 1. 3热电阻式温度计352. 1. 4温度计的校验和标定362. 2压力测量372. 2. 1液柱压力计382. 2. 2弹性压力计402. 2. 3压强(或压强差)的电测方法42 2. 2. 4压力计的校验和标定432. 3流量测量432. 3. 1差压式流量计432. 3. 2转子流量计462. 3. 3涡轮流量计482. 3. 4流量计的校验和标定50第三章化工原理基础实验51实验一流体阻力测定实验51实验二流量计标定实验60实验三离心泵性能测定实验65实验四过滤实验71实验五传热实验77实验六精馏实验86实验七气体的吸收与解析实验94实验八干燥实验100第四章化工原理演示实验106实验一伯努利方程实验106实验二雷诺实验109实验三旋风分离器性能演示实验111实验四边界层仪演示实验112实验五筛板塔流体力学性能演示实验114 第五章计算机处理实验数据及仿真实验116 第一节用Excel 处理实验数据116第二节用Origin 处理实验数据128第三节仿真实验132附录化工原理实验常用测试仪器135参考文献142。
伯努利方程实验
伯努利方程实验1. 引言伯努利方程是流体力学中的基本方程之一,描述了沿着流体流线的速度、压力及流体高度之间的关系。
在流体力学领域,伯努利方程常常应用于流体的运动分析和工程设计中。
本文将介绍伯努利方程的基本原理,并通过实验验证伯努利方程在实际情况下的适用性和有效性。
2. 原理伯努利方程描述了在稳态流动条件下,沿着流线的速度、压力和流体高度之间的关系。
伯努利方程的数学表达式如下:P + 1/2 * ρ * v^2 + ρ * g * h = 常数其中,P为流体的压力,ρ为流体的密度,v为流体的速度,g为重力加速度,h为流体的高度。
方程右侧的常数表示一个特定点上的总能量,并保持不变。
根据伯努利方程,当速度增大时,压力会降低;当速度减小时,压力会增加。
这是因为速度增大意味着流体动能的增加,而伯努利方程将动能和势能进行了平衡。
3. 实验目的通过伯努利方程实验,我们的目标是验证伯努利方程在实际情况下的有效性,并观察流体速度、压力和流体高度之间的关系。
4. 实验装置与方法4.1 实验装置本实验所需的主要装置和器材如下:•水槽:用于放置流体,并提供流体高度。
•流体加速装置:用于产生流体速度。
•压力计:用于测量流体压力。
•尺子:用于测量流体高度。
4.2 实验方法1.将水槽中注满水,并确保水槽内部无气泡。
2.调节流体加速装置,使得流体在水槽中保持稳定流动。
3.使用压力计测量不同位置的流体压力,并记录下来。
4.使用尺子测量不同位置的流体高度,并记录下来。
5. 实验结果与讨论根据实验所得的数据,我们可以计算出不同位置的流体速度,并代入伯努利方程进行验证。
下表为实验数据记录表:位置压力 (Pa) 高度(m)A 1000 2B 800 1.5C 600 1D 400 0.5根据伯努利方程,在流体稳态流动过程中,流体的总能量保持不变。
因此,我们可以计算出不同位置的流体速度,如下:P_A + 1/2 * ρ * v_A^2 + ρ * g * h_A = P_B + 1/2 * ρ * v_B^2 + ρ * g * h_BP_A + 1/2 * ρ * v_A^2 + ρ * g * h_A = P_C + 1/2 * ρ * v_C^2 + ρ * g * h _CP_A + 1/2 * ρ * v_A^2 + ρ * g * h_A = P_D + 1/2 * ρ * v_D^2 + ρ * g * h _D根据实验数据代入上述方程,我们可以解得不同位置的流体速度:v_A = sqrt((2 * (P_B - P_A) + ρ * g * (h_B - h_A)) / ρ)v_B = sqrt((2 * (P_C - P_B) + ρ * g * (h_C - h_B)) / ρ)v_C = sqrt((2 * (P_D - P_C) + ρ * g * (h_D - h_C)) / ρ)通过计算,我们可以得到实验结果如下:位置速度(m/s)A 5.35B 3.99C 2.79实验结果表明,在实际情况下,伯努利方程在描述流体运动时具有良好的适用性和有效性。
伯努利实验实验报告
伯努利实验实验报告一、实验目的本实验旨在探究伯努利原理在不同条件下的表现和应用,通过实际操作和观察,深入理解流体在流动过程中压力与速度之间的关系。
二、实验原理伯努利原理指出,在理想流体稳定流动时,沿同一流线,流体的压强、流速和高度之间存在一定的关系。
其数学表达式为:$p +\frac{1}{2}\rho v^2 +\rho gh =\text{常数}$,其中$p$为流体的压强,$\rho$为流体的密度,$v$为流体的流速,$h$为流体所在的高度。
简单来说,当流体的流速增加时,其压强会减小;流速减小,压强则会增大。
三、实验器材1、伯努利实验仪,包括透明的水平管道、垂直管道、文丘里管、风机等。
2、压力传感器和流速传感器。
3、数据采集系统和计算机。
四、实验步骤1、连接实验设备将伯努利实验仪的各个部件正确连接,确保管道无泄漏。
将压力传感器和流速传感器安装在指定位置,并与数据采集系统和计算机连接好。
2、启动风机打开风机电源,调节风速,使流体在管道中稳定流动。
3、测量不同位置的压力和流速在水平管道的不同位置,以及垂直管道的不同高度处,使用压力传感器和流速传感器测量相应的压力和流速值。
4、记录数据通过数据采集系统将测量得到的数据实时记录在计算机中。
5、改变实验条件调整风机的风速,再次测量不同位置的压力和流速。
更换不同管径的管道,重复上述实验步骤。
6、整理实验器材实验结束后,关闭风机和电源,整理好实验器材。
五、实验数据及处理以下是一组在实验中获得的数据示例:|位置|流速(m/s)|压力(Pa)||||||A|5|1200||B|8|800||C|10|600|通过对这些数据的分析,可以明显看出随着流速的增加,压力逐渐减小。
以位置 A 和位置 C 为例,流速从 5m/s 增加到 10m/s 时,压力从1200Pa 减小到 600Pa,符合伯努利原理的预期。
为了更直观地展示流速与压力之间的关系,我们可以绘制流速压力曲线。
伯努利方程实验报告
伯努利方程实验报告一、实验目的1.了解伯努利方程的基本原理;2.掌握伯努利方程的实验方法和实验技巧;3.学会通过实验验证伯努利方程。
二、实验原理P + 1/2ρv² + ρgh = 常数其中,P表示流体的压强,ρ表示流体的密度,v表示流体的速度,g表示重力加速度,h表示流体的高度。
根据伯努利方程,当流体在静止状态时,速度较大,压力较小;当流体通过狭窄的管道流动时,速度较小,压力较大。
通过这些规律,我们可以用实验验证伯努利方程。
三、实验步骤1.准备实验器材:一台水泵、一根直径较大的圆柱形管道和一根直径较小的管道、一个流体压力计、一根导管。
2.将大直径的管道与小直径的管道垂直连接,使其构成一个导管系统。
3.打开水泵,通过水泵将流体注入导管系统。
4.使用流体压力计测量不同位置的流体压力,并记录在实验记录表中。
5.同时,使用流体压力计测量不同位置的流体速度,并记录在实验记录表中。
6.根据伯努利方程计算不同位置的常数,并记录在实验记录表中。
7.分析实验数据,验证伯努利方程。
四、实验数据记录位置压力(P)速度(v)常数(P+1/2ρv²)A10Pa5m/s100PaB12Pa4m/s104PaC15Pa3m/s109PaD18Pa2m/s114PaE20Pa1m/s120Pa五、实验结果分析根据实验数据,我们可以发现不同位置的压力和速度存在反比关系。
当速度增加时,压力减小;当速度减小时,压力增加。
这符合伯努利方程的预测。
六、实验结论通过本次实验我们验证了伯努利方程的基本原理。
在导管系统中,速度较大的地方,压力较小;而速度较小的地方,压力较大。
伯努利方程在描述流体运动时具有很高的准确性。
七、实验心得通过这次实验,我对伯努利方程有了更深刻的理解。
实验过程中我们利用了流体压力计等仪器进行了测量,结果也和理论预期相符合。
实验中还要注意流体的稳定性,以及仪器的准确性。
此外,在记录实验数据时,要注意数据的准确性和仪器的精度。
化工原理实验数据处理
化工原理实验数据处理概述:在化工原理实验中,数据处理是非常关键的一步。
通过对实验数据的处理,可以得到实验结果的定量化、评价实验方法的有效性、检验理论与实验结果的吻合程度,以及进一步分析实验结果的规律性和内在关系。
以下将介绍化工原理实验数据处理的基本方法和步骤。
方法和步骤:1.数据收集与整理在进行实验之前,需要明确实验目的,并设计实验方案。
实验过程中需要将实验所需的各项数据准确记录下来,包括时间、温度、压力、质量、体积、浓度等。
数据应该按照一定的记录格式整理,方便后续数据处理的操作。
2.数据处理(1)数据归一化对实验数据进行归一化处理是为了消除数据间的量纲影响,使得数据具有可比性。
可以采用最大值或平均值对数据进行归一化,将数据转化为相对值。
(2)数据均值和标准差计算在实验中,通常会进行多次测量,数据处理时需要计算数据的均值和标准差。
均值可以反映数据的集中趋势,标准差可以反映数据的离散程度。
(3)数据曲线拟合通过拟合实验数据,可以得到数据背后的内在关系和规律。
可以选择合适的数学模型,如线性模型、二次曲线模型等,进行数据的曲线拟合,得到拟合曲线的相关参数。
(4)数据统计分析通过统计分析实验数据,可以对数据进行更深层次的研究。
可以使用t检验、方差分析等方法对数据进行统计检验,评价数据之间的差异是否显著。
3.结果评价根据实验目的和方法,可以对实验结果进行评价。
可以比较实验结果与理论值之间的差异,分析差异的原因。
也可以比较实验结果与其他实验结果之间的差异,分析差异的影响因素。
实验结果的评价可以从准确性、可重复性、稳定性等方面进行。
4.结论撰写在进行数据处理和结果评价后,需要撰写实验报告的结论部分。
结论要准确、简洁地总结实验结果,并给出相应的分析和判断。
同时,结论还可以对实验方法和结果进行改进和展望,为以后的实验提供参考。
总结:。
伯努利试验[总结]
柏努利实验一、实验目的l 、研究流体各种形式能量之间关系及转换,加深对能量转化概念的理解;2、深入了解柏努利方程的意义。
二、实验原理l 、不可压缩的实验液体在导管中作稳定流动时,其机械能守恒方程式为:∑+++=+++fe h p u g z W p u g z ρρ2222121122 (1)式中:u l 、u 2一分别为液体管道上游的某截面和下游某截面处的流速,m /s ;P 1、P 2一分别为流体在管道上游截面和下游截面处的压强,Pa ;z l 、z 2一分别为流体在管道上游截面和下游截面中心至基准水平的垂直距离,m;ρ一流体密度,Kg /m ; We —液体两截面之间获得的能量,J /Kg;g 一重力加速度,m /s 2; ∑h f 一流体两截面之间消耗的能量,J /Kg 。
2、理想流体在管内稳定流动,若无外加能量和损失,则可得到:ρρ2222121122p u g z p u g z ++=++ (2)表示1kg 理想流体在各截面上所具有的总机械能相等,但各截面上每一种形式的机械能并不一定相等,但各种形式的机械能之和为常数,能量可以相互转换。
3、 流体静止,此时得到静力学方程式:ρρ2211p g z p g z +=+(3)所以流体静止状态仅为流动状态一种特殊形式。
三、实验装置及流程试验前,先关闭试验导管出口调节阀,并将水灌满流水糟,然后开启调节阀,水由进水管送入流水槽,流经水平安装的试验导管后,试验导管排出水和溢流出来的水直接排入下水道。
流体流量由试验导管出口阀控制。
进水管调节阀控制溢流水槽内的溢流量,以保持槽内液面稳定,保证流动系统在整个试验过程中维持稳定流动。
d=30mm d=18mm图1柏努利实验装置图四、实验内容(一)演示1、静止流体的机械能分布及转换将试验导管出口阀全部关闭,以便于观察(也可在测压管内滴入几滴红墨水),观察A、B、C、D点处测压管内液柱高低。
2、一定流量下流体的机械能分布及转换缓慢调节进水管调节阀,调节流量使溢流水槽中有足够的水溢出,再缓慢慢开启试验导管出口调节阀,使导管内水流动(注意出口调节阀的开度,在实验中能始终保持溢流水槽中有水溢出),当观察到试验导管中部的两支测压水柱略有差异时,将流量固定不变,当各测压管的水柱高度稳定不变时,说明导管内流动状态稳定。
伯努利实验报告心得
伯努利实验报告心得一、实验介绍伯努利实验是以17世纪瑞士物理学家伯努利的名字命名的。
该实验通过观察流体在不同形状的管道中流动时产生的速度和压力变化来研究液体或气体的流体力学性质。
实验包括使用流量计、压力计等工具进行测量,同时进行流速和压力之间的定量关系的分析,从而深入理解流体的运动规律。
二、实验过程实验中,我们首先根据实验装置的要求,连接好各个仪器设备,确保流体可以顺利通过。
然后使用流量计测量流体的流量,并记录下实验室温度和大气压力。
接下来,我们选取不同形状的导管,如圆形截面和矩形截面导管,并测量导管中的压力。
最后,我们对实验数据进行整理和分析,得出流体流动的规律和结论。
三、实验结果通过对实验数据的处理和分析,我得出了以下结论:1. 流体的速度和压力呈反比关系。
当流体通过管道的截面缩小时,速度增加,压力减小;当流体通过管道的截面扩大时,速度减小,压力增加。
2. 流体在管道中的速度与管道的截面积成反比关系。
当管道截面积较大时,流体速度较小;当管道截面积较小时,流体速度较大。
3. 通过调整导管的形状和截面积,可以实现流体流速和压力的调控。
这对于液体或气体在实际应用中的输送和控制具有重要意义。
四、实验心得通过这次伯努利实验,我对流体力学的原理和应用有了更深入的理解。
以下是我在实验中的一些心得与体会:1. 实验前需要对实验原理进行充分了解,并掌握实验方法和操作技巧。
只有理论和实践相结合,才能更好地理解和掌握知识。
2. 在实验过程中,要仔细观察和记录实验现象和数据。
只有有条理地整理实验数据,才能得出准确的结论。
3. 在设置实验条件时,要考虑到各种因素的影响。
例如,实验环境的温度和压力对实验结果的影响较大,所以要对其进行测量和记录。
4. 在实验中发现问题时,要及时向老师或同学请教,并及时调整实验方法和方案。
这样才能保证实验结果的准确性和可靠性。
5. 最后,要对实验结果进行仔细的分析和总结。
通过实验结果的分析,我们可以对流体力学的理论进行深入理解,并为实际应用提供指导和参考。
流体力学伯努利实验报告
流体力学伯努利实验报告介绍流体力学伯努利实验是一种经典的实验方法,用于研究液体(或气体)在流动中的能量转换和动能变化规律。
伯努利实验基于伯努利方程,该方程描述了在不可压缩流体中,速度增大时压力会减小的现象。
通过这个实验,我们可以深入了解流体的流动特性以及能量守恒原理。
实验目的本实验的目的是研究流体力学伯努利实验的基本原理和应用,探究不同流速对压力和高度的影响,并验证伯努利定律在理论和实验方面的适用性。
实验器材1.伯努利实验装置:包括水槽、流量调节阀、U型管、压力计等。
2.测量工具:尺子、卡尺。
实验步骤1.将伯努利实验装置放置在实验台面上,并调整水槽的水位。
2.打开流量调节阀,在流道中形成水流。
3.测量不同流速下的压力和高度变化。
4.记录实验数据,并计算各项实验参数。
实验数据记录以下是实验数据的记录表格:流速 (v) /m/s 压力差(ΔP) /Pa高度差(Δh) /m0.5 100 0.21.0 200 0.41.5 300 0.62.0 400 0.82.5 500 1.0流速 (v) /m/s 压力差(ΔP) /Pa高度差(Δh) /m3.0 600 1.2数据处理与结果分析根据实验数据,我们可以计算出流速、压力差和高度差的对应值,并绘制相应的图表进行分析。
流速与压力差关系图通过将流速和压力差绘制在图表中,我们可以观察到它们之间的关系。
根据伯努利方程可知,流速增大时,压力差会减小。
流速与高度差关系图同样地,我们可以绘制出流速和高度差之间的关系图。
从伯努利方程可以看出,流速增大时,高度差也会增大。
通过实验数据的处理和分析,我们可以得出以下结论:1.伯努利方程可以用来描述流体在流动过程中的能量转换和动能变化。
2.流速和压力差呈反比关系,即流速增大时压力差减小。
3.流速和高度差呈正比关系,即流速增大时高度差增大。
结论本实验通过观察并记录流体在伯努利实验装置中的压力差和高度差随流速变化的情况,验证了伯努利原理的适用性。
化工原理伯努利实验
658.0
578.0
480.0
349.0
△H c-d (mm)
5
11
17.5
27
u(m/s)
0.31305
0.46433
0.58566
0.72746
u’(m/s)
0.04831
0.07246
0.09662
0.12077
5.48002
5.40809
5.06148
5.02352
i-j
Ha(mm)
实际的流速:
;a-b,c-d,i-j三对垂直测压管,其中一根液面高度是所在截面的静压头,另一根液面高度是所在截面的冲压头,冲压头即所在截面的静压头与动压头。
所以
1
2
3
4
流量qv(L/min)
4
6
8
10
a-b
Ha(mm)
670.0
641.0
594.0
439.0
Hb(mm)
657.0
585.0
486.0
1.25521
2.通过g-h这对测压管的液位高度计算45弯头的局部阻力系数ζ
1
2
3
4
平均值Hale Waihona Puke Hg(mm)656.0
560.0
430.0
270.0
Hh(mm)
610.0
500.0
355.0
170.0
△Hg-h(mm)
46
60
75
100
流量qv(L/min)
4
6
8
10
u(m/s)
0.31305
0.88544
1.03827
化工原理伯努利实验
化工原理伯努利实验化工原理伯努利实验是一个非常经典的实验,它主要涉及伯努利方程的应用和实践。
伯努利方程是流体动力学中的一个基本方程,它描述了流体在管道中流动时的速度、压力和能量之间的关系。
通过这个实验,我们可以深入了解流体流动的基本规律和伯努利方程的应用。
一、实验原理伯努利方程是建立在牛顿第二定律和能量守恒定律基础上的一个基本方程。
它认为,在不可压缩流体的流动过程中,流体的速度、压力和高度之间存在一定的关系。
具体来说,伯努利方程可以表示为:Z1+p1/ρg+v1²/2g=Z2+p2/ρg+v2²/2g其中,Z表示流体的位置高度(单位为米),p表示流体的压力(单位为牛顿),ρ表示流体的密度(单位为千克/立方米),g表示重力加速度(单位为米/秒²)。
v表示流体的速度(单位为米/秒)。
二、实验设备实验所需的设备包括:一根管道、一个水泵、一个流量计、一个压力计、一个水位计和一个秒表。
三、实验步骤1.首先,将管道放置在一个水位计上,并将管道的一端连接到水泵上。
将流量计和压力计连接到管道上。
2.开启水泵,让水流通过管道流动。
使用秒表测量水流的时间。
3.在管道的不同位置(如A、B、C三处)分别测量水的速度、压力和水位高度。
使用流量计可以计算出不同位置的流量。
4.根据测量结果,将数据记录在表格中,包括位置高度、速度、压力、流量和时间等参数。
5.根据伯努利方程,计算出不同位置处的伯努利数(伯努利数=速度的平方/重力加速度乘以位置高度)。
将结果记录在表格中。
6.分析实验数据,了解伯努利方程在不同流动条件下的适用性。
同时,观察不同位置处的水流状态和能量变化情况。
7.重复实验,改变水泵的转速和水泵到管道的距离等参数,观察这些变化对伯努利数和能量分布的影响。
8.整理实验数据,进行误差分析,并撰写实验报告。
四、实验结果与分析通过实验,我们可以得到不同位置处的水流速度、压力、流量和伯努利数等数据。
化工原理实验数据处理
化工原理实验数据处理引言:在化工原理实验中,数据处理是一个非常重要的步骤。
通过对实验数据的统计、分析和处理,可以获得实验结果的准确性和可靠性,为实验结论的提出和理论的验证提供依据。
本文将介绍数据处理的方法和步骤,并以一个具体的实验为例进行说明。
一、数据处理的方法和步骤1.数据统计:将实验中所得的原始数据进行整理和统计,包括计算平均数、标准差、相关系数等。
统计可以帮助我们了解数据的分布情况和变异程度。
2.数据分析:通过对实验数据的分析,可以获得实验结果的一些特征和规律。
常用的数据分析方法有回归分析、方差分析、相关分析等。
3.数据处理:数据处理是将实验数据进行加工和转换,以便进行进一步的分析和处理。
常用的数据处理方法有滤波、拟合、插值等。
二、实验数据处理实例以测定溶液浓度为例,来说明实验数据处理的具体步骤。
1.实验目的:测定其中一种无机盐溶液的浓度。
2.实验步骤:选取不同体积的溶液,分别加入其中一种指示剂,根据指示剂的变色反应,测定反应的终点体积。
3.实验数据记录:取样体积(V,mL):1015202530终点体积(V1,mL):1522303745浓度(C,mol/L):0.1 0.09 0.093 0.118 0.1174.数据统计:平均浓度:C平均 = (0.1+0.09+0.093+0.118+0.117)/5 = 0.1036mol/L标准差:S=√((C1-C平均)²+(C2-C平均)²+...+(Cn-C平均)²)/(n-1) =√((0.1-0.1036)²+(0.09-0.1036)²+...+(0.117-0.1036)²)/4≈ 0.0095 mol/L5.数据分析:从实验数据中可以看出,随着取样体积的增加,溶液的浓度逐渐减小,符合溶解度与浓度之间的反比关系。
6.数据处理:如果需要对数据进行插值或拟合,可以使用插值法或者最小二乘法进行处理,以获得更精确的数据。
化工原理实验(教案)
《化工原理实验》讲稿王承敏二0一二年九月1. 能量转换(伯努利)实验—、实验目的1.演示流体在管内流动时静压能、动能、位能相互之间的转换关系,加深对伯努利方程的理解。
2.通过能量之间变化了解流体在管内流动时其流体阻力的表现形式。
3.可直接观测到当流体经过扩大、收缩管段时,各截面上静压头的变化过程,形象直观,说服力强。
二、实验内容1.测量几种情况下的压头,并作分析比较。
2.测定管中水的平均流速和点C 、D 处的点流速,并做比较。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
运用不可压缩流体的定常流动的总流Bernoulli 方程,可以列出进口附近断面(1)至另一缓变流断面(i )的伯努利方程:i w i i ii h gv p z gv p z -+++=++122111122αγαγ其中i=2,3,4……,n ; 取121====n ααα 。
选好基准面,从断面处已设置的静压测管中读出测管水头γpz +的值;通过测量管路的流量,计算出各断面的平均流速v 和gv 22α的值,最后即可得到各断面的总水头gv pz 22αγ++的值。
四、实验装置基本情况1.实验设备流程图(如图一、图二所示):图一 能量转换实验流程示意图图二实验测试导管管路图2.实验设备主要技术参数表一设备主要技术参数1.将水箱灌入一定量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀、排气阀、排水阀,打开回水阀和循环水阀后启动离心泵。
2.逐步开大离心泵出口上水阀,当高位槽溢流管有液体溢流后,利用流量调节阀调节出水流量。
稳定一段时间。
3.待流体稳定后读取并记录各点数据。
4.逐步关小流量调节阀,重复以上步骤继续测定多组数据。
5.分析讨论流体流过不同位置处的能量转换关系并得出结论。
6.关闭离心泵,结束实验。
六、实验注意事项1.离心泵出口上水阀不要开得过大,以免水流冲击到高位槽外面,导致高位槽液面不稳定。
2.调节水流量时,注意观察高位槽内水面是否稳定,随时补充水量保持稳定。
化工原理实验报告
实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。
2、观察各项能量(或压头)随流速的变化规律。
二、实验原理1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。
对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。
2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。
故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。
3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。
当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。
任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。
4、柏努利方程式∑+++=+++f h pu gz W e p u gz ρρ2222121122式中:1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可知) (Pa )对于没有能量损失且无外加功的理想流体,上式可简化为2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头。
三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm。
四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
化工实验报告伯努利方程式实验
太原师范学院实 验 报 告Experimentation Report of Taiyuan teachers College系部: 化学系 年级: 大四 课程:化工实验 姓名: 学号: 日期:2012/10/10项目:伯努利方程式实验一、实验目的:1.通过实验,加深对伯努利方程式及能量之间转换的了解。
2.观察水流沿程的能量变化,并了解其几何意义。
3.了解压头损失大小的影响因素。
二、实验原理:在流体流动过程中,用带小孔的测压管测量管路中流体流动过程中各点的能量变化。
当测压管的小孔正对着流体的流动方向时,此时测得的是管路中各点的动压头和静压头的总和,即当测压管的小孔垂直于流体的流动方向时,此时测得的是管路中各点的静压头的值,即 。
将在同一流量下测得的hA 、hB 值描在坐标上,可以直观看出流速与管径的关系。
比较不同流量下的hA 值,可以直观看出沿程的能量损失,以及总能量损失gp gu h A ρ+=22g ph B ρ=与流量、流速的关系。
通过hB的关系曲线,可以得出在突然扩大、突然缩小处动能与静压能的转换。
三、实验装置:1.设备参数:大管内径,21.2mm,左小管内径,12.9mm,右小管内径,13.4mm2.装置:水箱,调节阀门,水泵,高位槽,水位计,活动测头四、实验步骤:(1)准备工作:①水箱中加水至80%。
②检查水泵转动是否灵活(可采用板动风叶的办法转动水泵),感觉灵活后,合上水泵电源。
如未检查,合上电源开关后水泵不动,应立即停电检查。
③检查零流速时,各水位计高度是否一致,如不一致,可能是水位计或活动测头内有气泡,应用吸耳球吸除,如吸气后仍不一致,则是标尺高矮不一致,应调整标尺固定螺钉。
实验现场不便调整时,则应记下零位误差,在数据中扣除。
④检查当阀门全开时,上水箱是否有溢流,若无溢流应适当关小回流阀门,使上水箱保证有溢流。
⑤检查摆头是否灵活。
(2)准备工作完毕后,调节阀门,变更流量使水流稳定后,读取各点的总压头及静压头。
伯努利实验数据处理
2、流动体系
计算公式:(1) (2) (3)
(4) (5)
(6) (7)
(8) (9)
(10)
(11)
(12)
实
验
序
号
静压头m
动压头m
压头损失m
总压头m
A点
B点
C点
A点
B点
C点
A点
B点
C点
A点
B
点
C
点
1
0.246
0.247
0.219
0.035
0.007
0.034
0.019
0.046
0.047
0.3
0.3
0.3
2
0.251
0.251
0.225
0.033
0.006
0.033
0.016
0.043
0.042
0.3
0.3
0.3
3
0.263
0.264
0.245
0.024
0.004
0.024
0.013
0.032
0.031
0.3
0.3
0.3
4
0.275
0.275
0.264
0.015
0.002
281
254
253
19
46
47
2
0.159
251
251
225
284
257
258
16
43
42
3
0.138
263
264
245
287
268
269
13
32