2.旋转体的表面积(讲课)
空间几何旋转体的表面积与体积
![空间几何旋转体的表面积与体积](https://img.taocdn.com/s3/m/2af105bd0342a8956bec0975f46527d3250ca670.png)
空间几何旋转体的表面积与体积空间几何常常涉及到旋转体的表面积与体积的计算,这在数学中具有重要的理论和应用价值。
本文将介绍旋转体的概念,并探讨如何计算旋转体的表面积与体积。
一、旋转体的概念旋转体是指由平面图形绕某一轴旋转而生成的立体图形。
在数学中,旋转体通常围绕x轴、y轴或z轴旋转。
根据旋转轴的不同,旋转体可以分为横截面旋转体和轴截面旋转体。
横截面旋转体是指当一个平面图形沿与它平行的轴旋转一周,形成的立体图形。
常见的横截面旋转体有圆柱体、圆锥体和球体。
其中圆柱体是由一个矩形或圆形横截面图形沿着与横截面平行的轴旋转一周形成,圆锥体是由一个三角形横截面图形沿着与横截面平行的轴旋转一周形成,而球体是由一个圆形横截面图形沿着与横截面平行的轴旋转一周形成。
轴截面旋转体是指当一个平面图形沿与它的一个边垂直的轴旋转一周,形成的立体图形。
常见的轴截面旋转体有圆盘和球壳。
圆盘是指由一个圆形边界沿着与边界垂直的轴旋转一周形成,球壳是由一个圆形边界沿着与边界垂直的轴旋转一周形成。
二、计算旋转体的表面积计算旋转体的表面积需要根据旋转体的类型进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的表面积计算方法。
1. 横截面旋转体的表面积计算对于圆柱体的表面积计算,可以利用公式S = 2πrh + 2πr²,其中r是圆柱体的底面半径,h是圆柱体的高。
对于圆锥体的表面积计算,可以利用公式S = πrl + πr²,其中r是圆锥体的底面半径,l是圆锥体的斜高。
对于球体的表面积计算,可以利用公式S = 4πr²,其中r是球体的半径。
2. 轴截面旋转体的表面积计算对于圆盘的表面积计算,可以利用公式S = πr²,其中r是圆盘的半径。
对于球壳的表面积计算,可以利用公式S = 2πrh,其中r是球壳的半径,h是球壳的高。
三、计算旋转体的体积计算旋转体的体积同样需要根据旋转体的性质进行计算,下面将分别介绍横截面旋转体和轴截面旋转体的体积计算方法。
8.3.2旋转体的表面积与体积课件高一下学期数学人教A版
![8.3.2旋转体的表面积与体积课件高一下学期数学人教A版](https://img.taocdn.com/s3/m/a68c30a77d1cfad6195f312b3169a4517723e5e7.png)
内容索引
(3)圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆
台的表面积为( C )
A. 81π
l'
lr2 r1 r2
S小扇形 πr2l '
πr12l r2 r1
S大扇形
πr(2 l
' +l)
πr22l r2 r1
S大扇形 -S小扇形 πr1l πr2l
l' 2r1
2 r
r1
2 R
l
r2
S圆台 =S上 +S下 +S扇环 =πr12 πr22 πr1l πr2l =π(r12 r22 r1l r2l)
探究新知
探究1:圆柱、圆锥、圆台有的面是曲面,需要将其展开,大家可 以根据展开图得到它们的表面积公式么?
l
r
2r
圆柱表面积 : 侧面展开面积+上下底面圆面积
S表 = S侧+2S底 =2rl+2r2
探究新知
探究2:圆柱、圆锥、圆台有的面是曲面,需要将其展开,大家 可以根据展开图得到它们的表面积公式么?
第八章立体几何初步
8.3.2圆柱、圆锥、圆 台的表面积和体积
回顾所学的有关公式
圆面积公式: S r2
圆周长公式: C 2 r
扇形弧长公式:l | a | r
扇形面积公式: s 1 rl 1 | a柱,圆锥,圆台的的表面积
与多面体的表面积一样,圆柱、圆锥、圆台的表 面积也是围成它的各个面的面积和.
简单旋转体的表面积和体积关系教学案
![简单旋转体的表面积和体积关系教学案](https://img.taocdn.com/s3/m/236c9d52f08583d049649b6648d7c1c708a10bcf.png)
简单旋转体的表面积和体积关系教学案一、引言旋转体是数学中的一种非常重要的几何体,在现实生活中也有很多应用。
比如我们日常生活中听到的“圆柱形”、“圆锥形”、“球形”等,这些都属于旋转体。
旋转体的表面积和体积关系是数学中一个基础又实用的概念,而且对于那些想深入研究数学的人来说,这是必学的一部分。
二、旋转体的概念旋转体是由一个基本形状,绕某一条轴线旋转而生成的几何体,比如圆形绕着轴线旋转,就可以生成一个圆柱形;三角形绕着轴线旋转,可以生成一个圆锥形。
旋转体有许多种类,比如圆柱体、圆锥体、球体,甚至我们平时看到的各种像眼镜、奖杯、水瓶等等,都可以看成是由某一基本形状旋转而成的。
三、旋转体的表面积和体积旋转体的表面积和体积是我们最为关心的问题,因为在很多实际问题中,我们需要通过表面积和体积来计算物体的质量、重量、密度等等一系列问题。
1、旋转体的表面积旋转体的表面积就是它的侧面积与底面积的和。
比如一个圆柱体,它的表面积等于其侧面积与两个底面积之和,即:S=2πrh+2πr²其中r为圆柱体的半径,h为圆柱体的高度。
对于其他类型的旋转体,我们也可以采用类似的方法来计算它的表面积。
2、旋转体的体积旋转体的体积就是其所包含的空间体积。
对于圆柱体、圆锥体、球体等等,它们的体积计算公式分别为:圆柱体的体积:V=πr²h圆锥体的体积:V=13πr²h球体的体积:V=43πr³其中r为基本形状的半径,h为由基本形状绕轴线旋转得到的旋转体的高度。
四、旋转体的表面积和体积关系一个简单的旋转体,它的表面积和体积之间并没有什么直接关系。
但是在实际应用中,我们通常会遇到一些需要计算其表面积和体积之比的问题。
比如我们需要制作一个密度为1克/立方厘米的铁球体,在保证铁球体积不变的条件下,如果我们要增加铁球体的质量,我们应该怎样做?答案是,这时我们需要将铁球表面加厚,因为铁球的密度不变,增加表面积就等于增加了总质量。
9.4.5旋转体的表面积
![9.4.5旋转体的表面积](https://img.taocdn.com/s3/m/0a77c8db4028915f804dc262.png)
360
nπl l扇= 180
r
2
l
求多面体的表面积可以通过求各 个平面多边形的面积和得到,那么 旋转体的表面积该如何求呢?
思考:把圆锥的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?
扇形
nπl l扇= 180
nπl 1 S圆锥侧=S扇= = l扇l = πrl 360 2
2
R扇=l
l
r
r O
l
O
圆柱的侧面展开图是矩形
2 r
S 2 r 2 rl 2 r ( r l )
2
例1.一个圆柱形的锅炉,底面半径 r=1m, 高h=2.3m。求锅炉的表面积(保留2位有效数 字)。 注意:表面积=全面积= 侧面积+底面积.
O`
O
解:锅炉的侧面积:
S1=2πrl=4.6πm2,
隆德职中 2017
一、知识回顾
1、棱柱: 侧面积公式: 表面积公式: 2、棱锥: 侧面积公式: 表面积公式:
忆一忆
1.已知圆的半径为r,则圆的面积为
r
r2
2
2.如图③ 扇形的半径为 r, 圆心角 ,
弧长是
S
l , 则扇形的面积是
r2
也可表示成 —————— , 1 S lr 2 ——————。弧长是
作业:
s = 4πR
2
154页练习1、2、3
17
开,得到什么图形?
2r
S r rl r (r l )
2
S圆锥侧=πrl
l
r
O
圆锥的侧面展开图是扇形
例2:已知圆锥的底面半径为2,母线长
课件2:11.1.5 旋转体
![课件2:11.1.5 旋转体](https://img.taocdn.com/s3/m/52c5d208e418964bcf84b9d528ea81c758f52e3d.png)
[解] (1)错.由圆柱母线的定义知,圆柱的母线应平行于轴. (2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个 圆柱与一个圆锥组成的简单组合体,如图所示. (3)正确. (4)错.应为球面.
规律方法 旋转体的判断问题的解题策略
1.准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决 此类概念问题的关键. 2.判断简单旋转体结构特征的方法
(2)圆柱、圆锥、圆台的表面积公式
几何体
侧面展开图
表面积公式
圆柱
S 圆柱=2πr(r+l),r 为 底面半径 , l 为 侧面母线长
圆锥
S 圆锥=πr(r+l),r 为 底面半径 , l 为 侧面母线长
圆台
S 圆台=π(r′2+r2+r′l+rl),r′为上底面半径, r 为 下底面半径 ,l 为 侧面母线长
念
侧面: 不垂直于轴 的边旋转而成的曲面
母线:无论旋转到什么位置,不垂直于轴的边
3.圆台的结构特征
以直角梯形垂直于底边的腰所在直线为旋转轴,将直角梯形 定义
旋转一周而形成的曲面所围成的几何体
轴: 旋转轴 叫做圆台的轴
图示及
高:在轴上的边(或它的长度)
相关概
底面: 垂直于轴 的边旋转而成的圆面
念
侧面: 不垂直于轴的边 旋转而成的曲面
母线:无论旋转到什么位置,不垂直于轴的边
4.轴截面 在旋转体中,通过轴的平面所得到的截面通常简称为轴截面,圆
柱、圆锥、圆台的轴截面分别是矩形、 等腰三角形 、 等腰梯形 .
5.旋转体的侧面积与全面积 (1)旋转体侧面的面积称为旋转体的侧面积,侧面积与 底面积 之
和称为旋转体的表面积(或全面积).
【例 3】 一个圆台的母线长为 12 cm,两底面面积分别为 4π cm2 和 25π cm2,求圆台的高. [思路探究] 作出圆台的轴截面,是一个等腰梯形.
旋转体的表面积(讲课)课件
![旋转体的表面积(讲课)课件](https://img.taocdn.com/s3/m/b2b35bbe5901020206409c09.png)
扇形面积公式
S 1 rl 2
17
小结: 柱体、锥体的表面积
圆柱S 2r(r l)
圆柱、圆锥
棱柱、棱锥
圆锥 S r(r l)
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
18
1、只要朝着一个方向奋斗,一切都会变得得心应手。20.6.166.16.202010:0010:00:23Jun-2010:00 2、心不清则无以见道,志不确则无以定功。二〇二〇年六月十六日2020年6月16日星期二 3、有勇气承担命运这才是英雄好汉。10:006.16.202010:006.16.202010:0010:00:236.16.202010:006.16.2020 4、与肝胆人共事,无字句处读书。6.16.20206.16.202010:0010:0010:00:2310:00:23 5、阅读使人充实,会谈使人敏捷,写作使人精确。Tuesday, June 16, 2020June 20Tuesday, June 16, 20206/16/2020 6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。10时0分10时0分16-Jun-206.16.2020 7、自知之明是最难得的知识。20.6.1620.6.1620.6.16。2020年6月16日星期二二〇二〇年六月十六日 8、勇气通往天堂,怯懦通往地狱。10:0010:00:236.16.2020Tuesday, June 16, 2020
解:(1)圆锥的侧面展开后是一个扇形,该扇形
的半径为l,扇形的弧长为2πr,
所以
又
SS底侧==12π×r22 πr×l=πr
l
所以 S全 =πrl +πr2=π
× 2×4+π ×22=12π
第二章多面体与旋转体球的表面积
![第二章多面体与旋转体球的表面积](https://img.taocdn.com/s3/m/acdd41aeb0717fd5360cdc36.png)
高中立体几何教案第二章多面体与旋转体球的表面积教案教学目标1.使学生理解球的表面积公式的推导方法,并能熟记公式内容;2.在引理的论证过程中,进一步要求学生树立转化的思想(把空间问题转化为平面问题);3.通过寻求如何研究球表面积的方法,培养学生应用无限分割和极限思想的意识,进而在实施推导公式的过程中,对学生进行“以直代曲”的辩证唯物主义思想教育.教学重点和难点本节教材的重点是掌握球的表面积的计算公式,而如何推导球的表面积公式是本节的难点.教学设计过程一、新课引入师:(手持模型)今天,我们要研究的课题就是如何求得球的表面积.下面,请同学们各抒己见.(板书课题)生甲:(脱口而出)可以仿照圆柱、圆锥和圆台的侧面积的求法,设法剪开球面,使其展成平面图形而求得结果.(同学们立即反驳,此办法不可能实现)生甲:(申辩)如果像家里削水果皮那样(想象水果是个球体),球的表面就会被削下来,然后展开,再进行计算.生乙:削下来的球表面是螺旋状连接的,根本无法展平.另外,条形表面也有一定的弯曲度.生甲:那可以把条形表面尽可能地削得窄一点,弯曲度也会随之变小,也就接近平面图形了.生丙:(好像受到了启发)我们要求球的表面积,可以先求半球面的大小.用一组平行于底面圆的平面去截球面,随着平行平面间距离的逐渐减小,原来弯曲的球面就转化为一族圆柱侧面的总和,圆柱侧面积有计算公式,那么再找到这一族圆柱侧面积之间的大小关系,最后求出这所有圆柱侧面积之和,我们要求的球表面积就可以解决了.生丁:我想用一些很小的正方形去贴满球体表面,那么只要求出这些小正方形的面积和,问题也可以解决.……师:同学们的想法都很好.要求球的表面积不再能简单地利用已学过的几何体侧面展开的办法了,因为对球体而言,无论怎样剪开,它还是曲面,不可能成为平面图形.大家可以来仔细分析一下刚才几位同学的解题方案,都有一个共同的想法,这就是我们将要在高二进一步学习的极限思想.若把球表面无限分割,将会得到许多近似于平面图形的图形.问题解决已有些眉目,再让咱们大家集思广议,完善求解方法.(课堂内鸦雀无声)(需引导一下)二、新课师:回忆一下,在平面几何的学习过程中,求圆的周长公式,我们采取了什么办法?生:是用圆内接正多边形的周长来近似地表示它的.师:当边数逐渐增加时,正多边形的周长就越来越接近圆的周长.当边数无限增加时,圆内接正多边形的周长就是圆的周长,这正是“以直代曲”的尝试.我们是否可以对此方法稍加改造,来完成球的表面积计算公式的推导?生丙:我想用球的内接圆柱的侧面积来近似求球表面积,只要用越来越多的平行平面把球分割,那么所得到的许多个内接圆柱的侧面积的全体就越来越接近球的表面积了.师:只能用球的内接圆柱去研究吗?生:圆台也可以.师:下面,我们以圆台为例,证明一个预备定理.目的是求出球内接圆台的侧面积公式.(板书引理)引理球面内接圆台(圆台上、下底面是球的两个平行截面)的高为h,球心到母线的距离为P,那么圆台的侧面积为2πPh.下一步,求半球面的面积.用n-1个平行于半球大圆面的平面将半球分为n个部分,使每一部分的母线都相等,则球心到它们的母线的距离都是p,而它们的高分别为h1,h2,h3,…,hn.如果平行平面无限增加,这些圆台、圆锥的侧面和就无限地接近于半球面,同时p无限地接近于R.当p变为R时,侧面积的和S变为2πR2,我们把这个和作为半球面的面积.例2 口答下面问题,并说明理由.(1)球的半径扩大n倍,它的面积扩大多少倍?(2)球的面积扩大n倍,它的半径扩大多少倍?(3)球大圆的面积扩大n倍,球面积扩大多少倍?(4)球的面积扩大n倍,球的大圆面积扩大多少倍?生:设球半径为R.(1)因球半径扩大n倍,S球面=4π(nR)2=n2×4πR2,即球面积扩大n2倍.四、小结在本节课内,我们讲了(1)球表面积等于它的大圆面积的4倍.(2)“以直代曲”的研究方法.(3)无限分割和逐次逼近的数学方法.五、作业1.课本p.92.6,2.课本p.92.7,3.课本p.92.8,4.两底面半径为r1和r2(r1<r2)的圆台中有一个内切球,求这个球的表面积.(4πr1r2)5.(思考题)球面上有四个点P,A,B,C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球面的面积.(3πa2)(提示:把PA,PB,PC看成正方体内相交于一点的三条棱.因P,A,B,C在球面上,则此正方体内接于球.正方体的对角线恰为球的直径)课堂教学设计说明这堂课的知识量不算很大,主要任务就是完成球表面积公式的推导.作为生活常识,学生们大部分都已经知道了公式的内容.那么采用什么办法去吸引学生的注意力,激发学生的学习兴趣,使这堂课上得比较生动活泼呢?这是我在准备教案前首先想到的问题.其次,要想求出球的表面积,还需先证明一个引理.一部分学生在预习中可能会产生这样的疑问:为什么非要找一个球的内接圆台,而不是内接圆柱,内接圆锥?为什么此内接圆台还必须知道球心到母线的距离P,而不是底面圆的半径r?我为了处理好这两个大问题,就设计了一个教学过程的粗线条:先准备让学生自由讨论,(我借机,听取学生的想法,同时找一个没有预习课本,而又出现的是常见错误想法的同学,先汇报思考结果)再讲评总结的方式,一步步地引出学生们自行产生的无限分割和极限思想.由于学生更熟悉圆柱的结构,用圆柱的侧面积去逼近球表面的想法会很自然地产生.我在肯定此想法的基础上,引导学生去用圆台的侧面积逼近球的表面积的想法就容易了.对于球来说,它的基本元素是球半径,球面上任意一点到球心的距离都一样.所以,要找的球表面的相似体也要抓住这一性质.课堂习题的配备,主要想让学生了解到:要求球表面积只要抓住球半径即可.无论所给具体题目的条件如何变化,始终从公式出发,“缺什么,找什么,要什么,求什么”,紧紧围绕能求出球半径的目的而思考.。
古尔丁定理求旋转体表面积
![古尔丁定理求旋转体表面积](https://img.taocdn.com/s3/m/bdcbe70f5b8102d276a20029bd64783e09127db8.png)
古尔丁定理求旋转体表面积1. 引言在数学中,古尔丁定理是一个基本的定理,可以用于计算旋转体的表面积。
旋转体是指由曲线在某个轴上旋转而成的立体图形,在物理学、工程学以及计算机图形学中都有广泛的应用。
本文将介绍古尔丁定理的原理及推导过程,并通过具体的例子来说明如何使用古尔丁定理计算旋转体的表面积。
2. 古尔丁定理的原理古尔丁定理是基于微积分的概念和公式推导出来的。
定理的内容可以简述为:如果一个曲线在一个坐标轴上旋转一周,那么旋转体的表面积可以通过计算曲线在该轴上的弧长并乘以一个固定的因子来得到。
古尔丁定理的表达式如下:S =2π∫f ba (x )√1+[f′(x )]2 dx其中,S 表示旋转体的表面积,f(x)表示曲线在该轴上的函数表达式,a 和b 表示曲线所在的区间。
3. 古尔丁定理的推导为了推导古尔丁定理,我们需要先了解微元的概念。
微元是指曲线上的一个极小的线段,可以用微分来表示。
设曲线上的一小段长度为ds ,其对应的弧长即为dx 。
根据微元的定义,可以得到以下关系:ds =√1+(dy dx)2 dx 对上式两边取平方可得:ds 2=1+(dy dx)2 dx 2由于旋转体的表面积是由许多微元叠加而成的,我们需要将微元的表面积相加。
根据旋转体的性质,可以知道微元的表面积等于2πrds,其中r 为曲线上某点到旋转轴的距离。
将上述关系代入表面积的计算公式中,可得:dS =2πr √1+(dy dx)2 dx 为了得到整个旋转体的表面积,我们需要将上式积分:S =2π∫r ba √1+(dy dx )2 dx 由于古尔丁定理是基于曲线在坐标轴上的旋转而推导出来的,因此r 可以表示为曲线上的函数f(x)。
将r 替换为f(x),即可得到古尔丁定理的表达式。
4. 古尔丁定理的应用例子为了更好地理解古尔丁定理的应用,我们以一个具体的例子进行说明。
例子:计算函数f (x )=x 2在区间[0,1]上绕x 轴旋转所得旋转体的表面积。
§6.2.1旋转体的表面积教案)
![§6.2.1旋转体的表面积教案)](https://img.taocdn.com/s3/m/419559f6910ef12d2af9e725.png)
2.圆锥的侧面积:
教师展 示, 让学生 观察
学生 口答 扇形 面积 公式
圆锥的侧面展开图是扇形 S 圆锥侧=π rl 圆锥的表面积=扇形面积+底面面积
S r 2 rl r r l
点评:将空间图形问题转化为平面图形问题,是解立体几何问题基 本、常用的方法。
教师点 评
应用
例1
已知圆锥的底面半径为 2,母线 长为 4. 求: (1)该圆锥的全面积; (2)侧面展开图的圆心角. 解:(1)该圆锥的全面积是侧面积与 它的底面积的和,因此 S=π×2×+π×22=12π (2)由弧长公式,有 360 180 2
教师给 出步骤 及结论
学生 思考 讨论
跟踪练 练习:已知圆锥的母线长为 2,圆锥的表面积是底面积 习2 的 3 倍,则圆锥的底面半径是( B ) A.2 B.1 C.3 D.4 2 S表 r r 2
S底 r 2
r 2 2r 3r 2
而S 表 3S 底
学生 独立 完成
r 1,r 0舍去
提高练 练习: 习 已知圆锥的表面积为 am2,且它的侧面展开图是一个半圆,求这个圆 锥的底面直径。
解:因为圆锥的侧面展开图是半圆, 所以,
让学生 画出图 形
1 1 l 2 2 r l , l 2r. 2 2
《旋转体的表面积》
单 课题 知识目标 位: 授课班级: 旋转体的表面积
1、通过展开柱、锥的侧面,进一步认识柱、锥. 2、理解掌握柱、锥、球的表面积的计算公式.
课型
新 授 课
教学目 标
学会用类比的方式掌握公式 能力目标 培养学生数形结合的思想 情感目标 旋转体的表面积的计算公式及其应用 重点 教材分 难点 公式的理解识记 析 关键 类比为识记公式 教具 多媒体投影仪 教学方 启发诱导、主动探究、交流合作相结合 法
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解
![2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解](https://img.taocdn.com/s3/m/d7d1ced96037ee06eff9aef8941ea76e58fa4aac.png)
专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
弧长及旋转体的表面积
![弧长及旋转体的表面积](https://img.taocdn.com/s3/m/848046df6294dd88d0d26b8d.png)
6
3
0
ò =
6
2p y
y2 + 36 dy
0
36
ò = 1
6
2p y y2 + 36dy
60
3
3
=
p 9
(72 2 -
36 2 )
ò = p
6
y y2 + 36 dy
30
ò = p
6
y y2 + 36 dy
30
ò = p 6 2 y( y2 + 36)1/2 dx 60
單元結語
曲線的弧長公式看起來簡單又對稱,但實 際積分將會發現非常難以積分,例如橢圓 的弧長所造成的橢圓積分只能計算近似值, 真值是無法以初等函數的型態表達。
Find the length of the arc of the function
y2 = x3 from point (0, 0) to (4,8)
Solution :
b
s = ò 1+ ( f ¢(x))2 dx a
y2 = x3 ? y x3/2
?
y¢
3
x
1 2
2
ò s =
4
1+
(3
1
x2 )2
旋轉體的表面積也是一樣,能計算出來的 例子很少,故本單元以介紹觀念為主要目 的。
33
= 2 12p 2 (x + 3)2
3
3
30
= 4 12p ( 6 2- 3 2 )
3
= 4 12p (6 6- 3 3 )
3
Example
Find the surface area of the surface generated by
高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)
![高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)](https://img.taocdn.com/s3/m/bdc9072ba7c30c22590102020740be1e640ecc50.png)
8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。
古尔丁定理求旋转体表面积
![古尔丁定理求旋转体表面积](https://img.taocdn.com/s3/m/14a45f0f86c24028915f804d2b160b4e767f8106.png)
古尔丁定理求旋转体表面积古尔丁定理求旋转体表面积一、引言在数学中,旋转体是一个非常重要的概念,它是由一个平面图形绕着某个轴线旋转而成的立体图形。
旋转体广泛应用于各种领域,比如建筑设计、机械制造、航空航天等。
在计算旋转体表面积时,古尔丁定理是一个非常有用的工具。
二、古尔丁定理的定义古尔丁定理是指,在平面上存在一条曲线,将其绕某个轴线旋转一周所得到的旋转体表面积等于该曲线沿轴线方向上的长度与该曲线绕轴线旋转一周所得到的螺旋线长度之积。
三、古尔丁定理的证明为了证明古尔丁定理,我们需要从几何和微积分两个角度进行分析。
1. 几何分析设平面上存在一条曲线L,并以y轴为轴将L绕x轴逆时针旋转一周所得到的立体图形为S。
我们可以将S划分成无数个小块,每个小块都可以看作一个圆台。
设第i个小块半径为ri,高为hi,底面圆周长为Li,则该小块的表面积为:Si = πri^2 + πriLi将该小块绕x轴旋转一周所得到的螺旋线长度为:di = 2πrihi则整个立体图形S的表面积为:S = ∑Si = ∑(πri^2 + πriLi) = π∑(ri^2 + riLi)将该曲线L沿y轴方向上的长度表示为L,则有:L = ∫[a,b]√(1+(dy/dx)^2)dx其中a和b分别表示曲线L在x轴上的两个交点。
我们可以通过微积分方法求出该曲线绕y轴旋转一周所得到的螺旋线长度,即:d = 2π∫[a,b]√(1+(dy/dx)^2)dx因此,根据古尔丁定理可得:S = Ld即旋转体表面积等于曲线沿轴线方向上的长度与曲线绕轴线旋转一周所得到的螺旋线长度之积。
2. 微积分分析古尔丁定理还可以通过微积分方法进行证明。
设平面上存在一条曲线L,并以y轴为轴将L绕x轴逆时针旋转一周所得到的立体图形为S。
我们可以将该曲线表示为y=f(x),则有:S = 2π∫[a,b]f(x)√(1+(dy/dx)^2)dx其中a和b分别表示曲线L在x轴上的两个交点。
高等数学旋转体表面积公式
![高等数学旋转体表面积公式](https://img.taocdn.com/s3/m/e1e14d36a55177232f60ddccda38376bae1fe07b.png)
高等数学旋转体表面积公式
1. 绕x轴旋转体的表面积公式。
- 设y = f(x)在[a,b]上具有连续导数,那么由曲线y = f(x),a≤slant x≤slant b绕x轴旋转一周所得到的旋转体的表面积S为:
- S = 2π∫_a^bf(x)√(1 + [f^′(x)]^2)dx。
- 推导过程(简单理解):
- 我们把曲线y = f(x)分成很多小段弧,对于一小段弧Δ s,当它绕x轴旋转时,近似得到一个圆台的侧面。
- 圆台侧面积公式为S=π(r_1 + r_2)l,这里r_1=f(x),r_2 = f(x+Δ x),l近似为√((Δ x)^2)+(Δ y)^{2},当Δ xto0时,l=√(1+(y^′)^2)Δ x。
- 对每一小段弧旋转得到的侧面积求和取极限就得到上述积分公式。
2. 绕y轴旋转体的表面积公式。
- 若x = g(y)在[c,d]上具有连续导数,由曲线x = g(y),c≤slant y≤slant d绕y轴旋转一周所得到的旋转体的表面积S为:
- S = 2π∫_c^dg(y)√(1+[g^′(y)]^2)dy。
- 推导过程与绕x轴旋转类似,也是将曲线分割成小段弧,考虑小段弧绕y轴旋转得到近似的旋转体侧面积,然后求和取极限得到积分公式。
旋转体的表面积和体积计算
![旋转体的表面积和体积计算](https://img.taocdn.com/s3/m/256d785b58eef8c75fbfc77da26925c52cc59107.png)
旋转体的表面积和体积计算旋转体是指通过绕某一轴旋转而形成的立体图形。
在几何学中,计算旋转体的表面积和体积是一种重要的技巧。
本文将介绍旋转体的表面积和体积计算方法,以及一些常见的旋转体示例。
一、旋转体的表面积计算方法要计算旋转体的表面积,我们可以使用定积分的方法。
设旋转体由曲线y=f(x)(0≤x≤a)绕x轴旋转而成,其中f(x)在闭区间[0,a]上连续且非负。
基于定积分的表面积计算公式为:S = 2π∫[a→0] y·ds其中,ds表示曲线的微小弧长。
在极坐标下,微小弧长ds可以表示为:ds = √(1+(dy/dx)²)·dx通过将dy/dx替换为f'(x),我们可以将表面积计算公式简化为:S = 2π∫[a→0] f(x)·√(1+f'(x)²)·dx通过求解上述定积分,即可得到旋转体的表面积。
二、旋转体的体积计算方法旋转体的体积计算同样可以使用定积分的方法。
仍假设旋转体由曲线y=f(x)(0≤x≤a)绕x轴旋转而成。
体积计算公式为:V = π∫[a→0] y²·dx通过将y替换为f(x),我们可以将体积计算公式写为:V = π∫[a→0] f(x)²·dx求解上述定积分即可得到旋转体的体积。
三、旋转体计算示例下面将以圆锥为例,演示旋转体的表面积和体积计算方法。
圆锥由一条斜边和底面形成,底面是一个半径为r的圆。
我们将底面放置在坐标轴上,圆锥的斜边与x轴的交点记为(0,h)。
要计算圆锥的表面积和体积,首先我们需要确定圆锥的方程。
通过类似三角函数的方法,我们可以得到圆锥的方程为:y = h/r·x其中,0≤x≤r,0≤h≤√(r²-x²)。
根据上述方程,我们可以计算出圆锥的表面积和体积。
四、总结通过本文的介绍,我们了解了旋转体的表面积和体积计算方法,并以圆锥为例进行了演示。
多面体和旋转体的表面积(精)
![多面体和旋转体的表面积(精)](https://img.taocdn.com/s3/m/158c98c93186bceb19e8bb6d.png)
证明思路:
1 . 可证侧棱与高互相平行且 垂直于底面,它们都夹在两 个平行平面内。 2. 可证侧棱平行且相等。
C1
B1
2. 有一个侧面是矩形的棱柱是不是直棱柱? 有两个相邻侧面是矩形的棱柱呢?为什么?
分析:
右图:AA1⊥AB且 A A1与底面不垂直 时,棱柱为斜棱柱。 左图:
A1 B1 C1
两个相邻侧面与底 面垂时,它们的交 线也与底面垂直。
M
h
Q
例2:在斜三棱柱ABC-A1B1C1中,已知底面是 边长为a的正三角形,侧棱长为b,一条侧棱与 底面内相邻两边所夹的角都为45,求它的侧面 积和体积。 C1 A1 B1 b O A N a
M
C B
例2:在斜三棱柱ABC-A1B1C1中,已知底面是 边长为a的正三角形,侧棱长为b,一条侧棱与 底面内相邻两边所夹的角都为45,求它的侧面 积和体积。 C1 A1 B1 b
5. 正四棱柱中,求A C1与DC所成 角的取值范围。
D1
A1 B1 C1
D A B
C
6. 看图说出在底面正方形边长为a 时,正四棱柱中点B到面AC B1 距 离的取值范围。 分析:底面正方形为 固定图形,但是棱柱 的高在变化,在这个 变化过程中,当棱柱 的高逼近零和逼近无 穷进时,所求距离的 取值变化情况如何?
4.求棱柱的侧面积,还可各个侧面逐个分析计算,然 后求和.
:如图,在三棱柱 ABC-A1B1C1中,AB= 例 3
BC=CA=AA1=a,A1在底面ABC上的射影O在AC 上,(1)求AB与侧面AC1所成的角;(2)若O 恰为AC中点,求此三棱柱的侧面积。 A1 C1
2 a,
B1
A
M
O
B
平面几何中的旋转体和旋转体的表面积和体积
![平面几何中的旋转体和旋转体的表面积和体积](https://img.taocdn.com/s3/m/e01f8228001ca300a6c30c22590102020740f23f.png)
平面几何中的旋转体和旋转体的表面积和体积在平面几何中,旋转体是一种常见的二维图形,它可以通过沿着一条固定的轴线旋转而生成。
旋转体的表面积和体积是我们研究旋转体的重要内容之一,在本文中,我们将详细探讨旋转体的表面积和体积以及它们的计算方法。
一、什么是旋转体旋转体是由一个平面图形沿着一条固定的轴线旋转而形成的一种三维图形。
常见的旋转体包括圆柱体、圆锥体和球体等。
例如,我们可以将一个直径为d的圆形绕着它的直径旋转一周,就可以形成一个圆柱体,其高度为d,底面积与初始的圆形相等。
二、旋转体的表面积1. 圆柱体的表面积圆柱体的表面积是由底面积、顶面积和侧面积三部分组成的。
底面积是一个圆形,其面积为πr^2,顶面积与底面积相同;侧面积是一个矩形,其宽度为圆柱体的高度h,长度为底面的周长2πr。
因此,圆柱体的表面积为:2πr^2 + 2πrh = 2πr(r + h)。
2. 圆锥体的表面积圆锥体的表面积是由底面积、侧面积和斜面积三部分组成的。
底面积是一个圆形,其面积为πr^2。
侧面积是一个三角形,由圆锥体的母线和斜面组成,母线的长度为l,斜面的长度为s,圆锥体的高为h。
根据勾股定理,有l^2 = h^2 + r^2,同时s = √(h^2 +r^2),因此侧面积为πrl。
斜面积是由圆锥体顶点到底面的距离所形成的圆,它的面积为πr^2。
因此,圆锥体的表面积为:πr^2 +πrl + πr^2 = πr(r + l)。
3. 球体的表面积球体的表面积是由无数个半径相等的圆圆心旋转而形成的,因此其表面积为4πr^2。
三、旋转体的体积1. 圆柱体的体积圆柱体的体积是底面积与高的乘积。
因此,圆柱体的体积为πr^2h。
2. 圆锥体的体积圆锥体的体积是底面积与高的乘积再除以三。
因此,圆锥体的体积为πr^2h/3。
3. 球体的体积球体的体积是由圆心到球面的距离为半径的圆旋转形成的,因此其体积为4/3πr^3。
四、旋转体的应用旋转体的应用非常广泛,例如,在工业制造中,圆柱体可以用作储存器或压缩机的部件,圆锥体可以用作灯罩或者烟囱的设计,球体则可以用来设计珠子或者风铃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间体侧面展开图
空间体的侧面积 平面图形面积
S侧 2r l 2rl
S侧
1 2
2r
l
rl
矩 S ab
形
三
角 S 1 ah
形
2
1 .已知圆柱的底面半径为3,母线长为6, 求该圆柱的全面积. 54
2 .已知圆锥的底面半径为2,母线长为4, 求该圆锥的全面积以及侧面展开图的圆心角. 12
圆柱的表面积
一般地,多面体的表面积就是各个面的面积之和
表面积=侧面积+底面积
棱柱、棱锥的表面积
h'
棱柱、棱锥都是由多个平面图形围成的几何体,它 们的侧面展开图还是平面图形,计算它们的表面积就是 计算它的各个侧面面积和底面面积之和.
思考
求多面体的表面积可以通过求各个 平面多边形的面积和得到,那么旋 转体的面积该如何求呢?
Байду номын сангаас
的半径为l,扇形的弧长为2πr,
所以
又
SS底侧==12π×r22 πr×l=πr
l
所以 S全 =πrl +πr2=π
× 2×4+π ×22=12π
(2)由弧长公式,有:
l
3600×π/8π=1800
r
球的表面积 例 3:已知过球面上 A、B、C 三点的截面和球心的距离为 球半径的一半,且 AB=BC=CA=2,求球的表面积。(课本130页)
北京奥运会场馆图
“鸟巢(nest)”
38.9亿 30亿
赫尔佐格
德梅隆
相信自己:一定行!!
2.旋转体的表面积
柱体、锥体的表面积 思考:面积是相对于平面图形而言的,体 积是相对于空间几何体而言的.
面积:平面图形所占平面的大小
体积:几何体所占空间的大小
表面积:几何体表面面积的大小
怎样理解棱柱、棱锥的表面积?
解:如图 1,设截面圆心为 O′,连接 O′A,设球半径为
R,
则
O′A=23×
23×2=2
3
3 .
在 Rt△O′OA 中,OA2=O′A2+O′O2,
∴R2=2
3
32+14R2,
∴R=43.
图1
∴S=4πR2=694π.
它已的知展圆开锥图的的底形面状半为径_为_2_c_扇m_,_形_母_。线该长图为形3c的m弧。 长为_4__π__cm,半径为___3___cm,所以圆 锥的侧面积为___6_π__cm2。
r O
l
2r
O
c
圆柱的侧面展开图是矩形
S圆柱侧面积 cl =2rl
圆锥的侧面展开图是扇形
S圆锥侧面积
1 cl 2
rl
圆柱、圆锥、圆台表面积
侧面展开图
侧面积
表面积
S侧 2r l 2rl
S 2r(r l)
S侧
1 2
2r
l
rl
S r(r l)
问题:圆柱、圆锥、圆台的侧面积分别和矩形、三角 形、梯形的面积有什么相似的地方?
扇形面积公式
S 1 rl 2
小结: 柱体、锥体的表面积
圆柱S 2r(r l)
圆柱、圆锥
棱柱、棱锥
圆锥 S r(r l)
展开图
各面面积之和
所用的数学思想: 空间问题“平面”化
知识回顾 Knowledge Review
祝您成功!
r O
l 2r
O
圆柱的侧面展开图是矩形
S圆柱表面积 2r 2 2rl 2r(r l)
圆锥的表面积
2r l
rO
圆锥的侧面展开图是扇形
S圆锥表面积 r2 rl r(r l)
例2、一个圆锥底面的半径为2,母线长为4,
求:(1)该圆锥的全面积.
(2)侧面展开图的圆心角(课本130页)
解:(1)圆锥的侧面展开后是一个扇形,该扇形