离散数学图论练习题

合集下载

离散数学测验题--图论部分(优选.)

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题一、单项选择题(本大题共10小题,每小题2分,共20分)1、在图G =<V ,E >中,结点总度数与边数的关系是( )(A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=Vv E v )deg(2、设D 是n 个结点的无向简单完全图,则图D 的边数为( )(A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/23、 设G =<V ,E >为无向简单图,∣V ∣=n ,∆(G )为G 的最大度数,则有(A) ∆(G )<n (B)∆(G )≤n (C) ∆(G )>n (D) ∆(G )≥n4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( )(A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( )(A) },,,,,,,,,{><><><><><=c d b c d b a b d a E(B) },,,,,,,,,{><><><><><=c d d b c b a b d a E(C) },,,,,,,,,{><><><><><=c d a d c b a b c a E6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的() (A)度数 (B) 出度 (C)最大度数 (D) 入度7、设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .48、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( )(A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +29、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。

应用离散数学图论欧拉图与哈密尔顿图题库试卷习题及答案

应用离散数学图论欧拉图与哈密尔顿图题库试卷习题及答案

§5.5 欧拉图与哈密尔顿图习题5.51.判断图5.31中哪些图是欧拉图那些图不是。

对不是欧拉图的至少要加多少条新边才能成为欧拉图?对是欧拉图的,用Fleury算法求出欧拉回路。

图5.31 习题1的图解:(a)是欧拉图。

如下图为顶点号和边的标记,则欧拉回路为(e1,e2,e6,e10,e12,e11,e7,e8,e9,e5,e4,e3)e645e106 e117 e12 8。

(b)不是欧拉图。

需要加4条新边才能成欧拉回路。

(c)是欧拉图。

如下图为顶点号和边的标记,则欧拉回路为(1,2,3,4,5,6,1,8,7,10,11,7,9,1)236 5 4(d)不是欧拉图。

需要加2条新边才能成欧拉回路。

2.画一个欧拉图,使它具有:(1)偶数个顶点,偶数条边。

(2)奇数个顶点,奇数条边。

(3)偶数个顶点,奇数条边。

(4)奇数个顶点,偶数条边。

解 四个图按顺序分别如下:3.在k (k ≥2)个长度大于或等于3的无公共点的环型图之间至少加多少条边才能使它们组成一个简单欧拉图。

解:环形图中每个点的度是2,要形成欧拉回路,就要使新图是一个连通图,并且每个点的度仍保度偶数,因此,要让新图是欧拉图,则至少要加k 条边。

4.证明:可以从连通图中任意一点出发,经过这个图中每条边恰好两次,回到出发点。

解 将每条边都增加一条平行边,则得到一个多重图,此多重图的每个顶点的度数都是偶数,所以存在欧拉闭迹。

在欧拉闭迹中,将经过平行边改成第二次经过原来的边,定理即得证。

5.完全图p K 是欧拉图吗?是哈密尔顿图吗?完全二部图n m K ,是欧拉图吗?是哈密尔顿图吗?解 (1)K p ⎩⎨⎧不是欧拉图是欧拉图 为偶数时当为奇数时当p p K p (p ≥3)为哈密尔顿图((v 1,v 2,v 3,……,v p )即是一个哈密尔顿回路)。

(2)因为K m,n 中顶点的度数要么为m ,要么为n ,所以K m,n ⎩⎨⎧不是欧拉图是欧拉图 为奇数时或当为偶数时和当n m n m因为K m,n 的顶点数为m+n ,而任意两点的度数之和为2m 或2n 或m+n 。

应用离散数学图论图的连通性题库试卷习题及答案

应用离散数学图论图的连通性题库试卷习题及答案

§5.2 图的连通性习题5.21.证明或否定:(1)简单图G 中有从点u 到点v 的两条不同的通路,则G 中有基本回路。

(2)简单图G 中有从点u 到点v 的两条不同的基本通路,则G 中有基本回路。

解:(1)简单图G 中有从点u 到点v 的两条不同的通道,则G 中有回路。

(2)简单图G 中有从点u 到点v 的两条不同的路,则G 中有回路。

解 (1)不一定:如下图,点1与点3之间有两条通道:(1、2、3)和(1、2、1、2、3),但图中没有回路。

(2)一定:设两条路分别为),,,,,(211v x x x u L m =和),,,,,(212v y y y u L n =。

若对m i ≤≤1,n j ≤≤1有j i y x ≠,则),,,,,,,,,,(12121u y y y y v x x x u n n m -是一条回路。

否则假设l k y x =且是离u 最近的一对(即对k i ≤≤1,l j ≤≤1,不存在j i y x =),则),,,,,,,,,(12121v y y y x x x u l k -是一条回路。

2.设G 是简单图,)(G δ≥2,证明G 中存在长度大于或等于1)(+G δ的基本回路。

证:以图G 中一点v 1出发,与之相邻的点设为v 2,由于)(G δ≥2,则v 2至少还有一个邻接点,设为v 3,若v 3与v 1邻接,则形成长度为1)(+G δ的基本回路,则若v 3不与v 1邻接,则至少还有一个邻接点,设为v 4,若v 4与v 1或v 2邻接,则形成长度为大于或等于1)(+G δ的基本回路,若v 4与v 1和v 2都不邻接,至少还有一个邻接点,设为v 5,…,依次类推,一定可以到达最后一个顶点v i ,由于)(G δ≥2,则除了v i -1外,一定会与前面的某个顶点邻接,就会形成长度为大于或等于1)(+G δ的基本回路。

3.证明:若连通图G 不是完全图,则G 中存在三个点w v u ,,,使E v u ∈)(,,E w v ∈)(,,E w u ∉)(,。

离散数学图论习题

离散数学图论习题

1 第4章 图论综合练习一、 单项选择题1.设L 是n 阶无向图G 上的一条通路,则下面命题为假的是( ). (A) L 可以不是简单路径,而是基本路径可以不是简单路径,而是基本路径 (B) L 可以既是简单路径,又是基本路径又是基本路径 (C) L 可以既不是简单路径,又不是基本路径可以既不是简单路径,又不是基本路径 (D) L 可以是简单路径,而不是基本路径可以是简单路径,而不是基本路径 答案:A 2.下列定义正确的是( ). (A) 含平行边或环的图称为多重图含平行边或环的图称为多重图 (B) 不含平行边或环的图称为简单图不含平行边或环的图称为简单图 (C) 含平行边和环的图称为多重图含平行边和环的图称为多重图 (D) 不含平行边和环的图称为简单图不含平行边和环的图称为简单图 答案:D 3.以下结论正确是.以下结论正确是 ( ).(A) 仅有一个孤立结点构成的图是零图仅有一个孤立结点构成的图是零图 (B) 无向完全图K n 每个结点的度数是n (C) 有n (n >1)个孤立结点构成的图是平凡图个孤立结点构成的图是平凡图 (D) 图中的基本回路都是简单回路图中的基本回路都是简单回路 答案:D 4.下列数组中,不能构成无向图的度数列的数组是( ). (A) (1,1,1,2,3) (B) (1,2,3,4,5) (C) (2,2,2,2,2) (D) (1,3,3,3) 答案:B 5.下列数组能构成简单图的是( ). (A) (0,1,2,3) (B) (2,3,3,3) (C) (3,3,3,3) (D) (4,2,3,3) 答案:C 6.无向完全图K 3的不同构的生成子图的个数为(的不同构的生成子图的个数为( ).). (A) 6 (B) 5 (C) 4 (D) 3 答案:C 7.n 阶无向完全图K n 中的边数为(中的边数为().). (A) 2)1(+n n (B) 2)1(-n n (C) n (D)n (n +1) 答案:B 8.以下命题正确的是( ).(A) n (n ³1)阶完全图K n 都是欧拉图都是欧拉图 (B) n (n ³1)阶完全图K n 都是哈密顿图都是哈密顿图(C) 连通且满足m =n -1的图<V ,E >(½V ½=n ,½E ½=m )是树是树(D) n (n ³5)阶完全图K n 都是平面图都是平面图 答案:C 10.下列结论不正确是( ).(A) 无向连通图G 是欧拉图的充分必要条件是G 不含奇数度结点不含奇数度结点(B) 无向连通图G 有欧拉路的充分必要条件是G 最多有两个奇数度结点最多有两个奇数度结点 (C) 有向连通图D 是欧拉图的充分必要条件是D 的每个结点的入度等于出度的每个结点的入度等于出度(D) 有向连通图D 有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等2 于出度于出度 答案:D 11.无向完全图K 4是(是().). (A )欧拉图)欧拉图 (B )哈密顿图)哈密顿图 (C )树)树 答案:B 12.有4个结点的非同构的无向树有个结点的非同构的无向树有 ( )个.个. (A) 2 (B) 3 (C) 4 (D) 5 答案:A 13.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.一棵生成树.(A) 1+-n m (B) m n - (C) 1++n m (D) 1+-m n 答案:A 14.设G 是有6个结点的完全图,从G 中删去( )条边,则得到树.条边,则得到树. (A) 6 (B) 9 (C) 10 (D) 15 答案:C 二、 填空题1.数组{1,2,3,4,4}是一个能构成无向简单图的度数序列,是一个能构成无向简单图的度数序列, 此命题的真值是此命题的真值是 . 答案:0 2.无向完全图K 3的所有非同构生成子图有的所有非同构生成子图有个.个. 答案:4 3.设图G =<V ,E >,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = . 答案:n -1 4.连通图G 是欧拉图的充分必要条件是是欧拉图的充分必要条件是 . 答案:图G 无奇数度结点无奇数度结点5.连通无向图G 有6个顶点9条边,从G 中删去中删去 条边才有可能得到G 的一棵生成树T . 答案:4 6.无向图G 为欧拉图,当且仅当G 是连通的,且G 中无中无 结点.结点. 答案:奇数度答案:奇数度7.设图>=<E V G ,是简单图,若图中每对结点的度数之和是简单图,若图中每对结点的度数之和 ,则G 一定是哈密顿图.一定是哈密顿图. 答案:V ³8.如图1所示带权图中最小生成树的权是所示带权图中最小生成树的权是 .答案:12三、化简解答题1.设无向图G =<V ,E >,V ={v 1,v 2,v 3,v 4,v 5,v 6}, E ={( v 1,v 2), ( v 2,v 2), ( v 4,v 5), ( v 3,v 4), ( v 1,v 3), ( v 3,v 1), ( v 2,v 4)}. (1) 画出图G 的图形;的图形;v 1 v 2v 6 v 5v 3v 4图2 ·2 2 3 · 1 · 7 9 2 · 8 · 6 图1 3 (2) 写出结点v 2, v 4,v 6的度数;的度数; (3) 判断图G 是简单图还是多重图.是简单图还是多重图. 解:(1) 图G 的图形如图5所示.所示. (2) 0)deg(,3)deg(,4)deg(642===v v v .(3) 图G 是多重图.作图如图2. 2.设图G =<V ,E >,其中,其中V ={a ,b ,c ,d ,e }, E ={(a ,b ),(b ,c ),(c ,d ), (a ,e )} 试作出图G 的图形,并指出图G 是简单图还是多是简单图还是多重图?是连通图吗?说明理由. 解:图G 如图8所示.. 图G 中既无环,也无平行边,是简单图.中既无环,也无平行边,是简单图. 图G 是连通图.G 中任意两点都连通.所以,图G 有9个结点.作图如图3.四、计算题1.设简单连通无向图G 有12条边,G 中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G 中有多少个结点.试作一个满足该条件的简单无向图.中有多少个结点.试作一个满足该条件的简单无向图.解:设图G 有x 个结点,由握手定理个结点,由握手定理2´1+2´2+3´4+3´(x -2-2-3)=12´2 271821243=-+=xx =9 故图G 有9个结点.个结点. 满足该条件的简单无向图如图4所示所示2.设图G (如图5表示)是6个结点a ,b ,c , d ,e ,f的图,试求,图G 的最小生成树,并计算它的权.的最小生成树,并计算它的权.解:构造连通无圈的图,即最小生成树,用解:构造连通无圈的图,即最小生成树,用克鲁斯克尔算法:克鲁斯克尔算法: 第一步:第一步: 取ab =1;第二步:;第二步: 取af =4 第三步:第三步: 取fe =3;第四步:;第四步: 取ad =9 第五步:第五步: 取bc =23 如图6.权为1+4+3+9+23=40 3.一棵树T 有两个2度顶点,1个3度顶点;3个4度顶点,度顶点, 问它有几片树叶?问它有几片树叶?解:设T 有n 顶点,则有n -1条边.T 中有2个 2度顶点,1个3度顶点,3个4度顶点,度顶点, 其余n -2-1-3个1度顶度顶点.点.由握手定理:由握手定理: 2·2+12+1··3+3·4+ (n -2-1-3)=2(n -1) 解得解得 n =15.于是T 有15-6=9片树叶片树叶五、证明题1.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.中只有两个奇数度结点,则这两个结点一定是连通的.证:用反证法.设G 中的两个奇数度结点分别为u 和v .假若u 和v 不连通.不连通.即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.各含有一个奇数度结点.这与握手定理的推论矛盾.这与握手定理的推论矛盾.这与握手定理的推论矛盾.因而因而u 和v 一定是连通的.通的.a hb h h ec h hd 图3 图4 b · 23 1 c · · a 4 · f 9 3 d · ·e 图6 b · 23 1 15 c · 25 ·a 4 · f 28 9 16 3 d · 15 ·e 图5 。

离散数学图论部分经典试题及答案

离散数学图论部分经典试题及答案

离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010*******11100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。

离散数学图论答案

离散数学图论答案

离散数学图论答案【篇一:离散数学图论习题】综合练习一、单项选择题1.设l是n阶无向图g上的一条通路,则下面命题为假的是( ). (a) l可以不是简单路径,而是基本路径 (b) l可以既是简单路径,又是基本路径 (c) l可以既不是简单路径,又不是基本路径 (d) l可以是简单路径,而不是基本路径答案:a2.下列定义正确的是( ).(a) 含平行边或环的图称为多重图(b) 不含平行边或环的图称为简单图 (c) 含平行边和环的图称为多重图(d) 不含平行边和环的图称为简单图答案:d3.以下结论正确是 ( ).(a) 仅有一个孤立结点构成的图是零图 (b) 无向完全图kn每个结点的度数是n (c) 有n(n1)个孤立结点构成的图是平凡图(d) 图中的基本回路都是简单回路答案:d4.下列数组中,不能构成无向图的度数列的数组是( ). (a)(1,1,1,2,3) (b) (1,2,3,4,5) (c) (2,2,2,2,2) (d) (1,3,3,3) 答案:b5.下列数组能构成简单图的是( ). (a) (0,1,2,3)(b) (2,3,3,3)(c) (3,3,3,3)(d) (4,2,3,3) 答案:c6.无向完全图k3的不同构的生成子图的个数为(). (a) 6 (b)5(c) 4 (d) 3 答案:c7.n阶无向完全图kn中的边数为().(a)n(n?1)n(n?1)(b) (c) n (d)n(n+1) 22答案:b8.以下命题正确的是( ).(a) n(n?1)阶完全图kn都是欧拉图(b) n(n?1)阶完全图kn都是哈密顿图(c) 连通且满足m=n-1的图v,e(?v?=n,?e?=m)是树 (d) n(n?5)阶完全图kn都是平面图答案:c10.下列结论不正确是( ).(a) 无向连通图g是欧拉图的充分必要条件是g不含奇数度结点(b) 无向连通图g有欧拉路的充分必要条件是g最多有两个奇数度结点 (c) 有向连通图d是欧拉图的充分必要条件是d的每个结点的入度等于出度(d) 有向连通图d有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等1于出度答案:d11.无向完全图k4是().(a)欧拉图(b)哈密顿图(c)树答案:b12.有4个结点的非同构的无向树有 ( )个.(a) 2 (b) 3(c) 4(d) 5 答案:a13.设g是有n个结点,m条边的连通图,必须删去g的( )条边,才能确定g的一棵生成树.(a) m?n?1 (b) n?m (c) m?n?1 (d) n?m?1 答案:a14.设g是有6个结点的完全图,从g中删去( )条边,则得到树. (a) 6 (b) 9 (c) 10 (d) 15 答案:c二、填空题1.数组{1,2,3,4,4}是一个能构成无向简单图的度数序列,此命题的真值是 . 答案:02.无向完全图k3的所有非同构生成子图有个.答案:43.设图g??v,e?,其中?v??n,?e??m.则图g是树当且仅当g是连通的,且m?.答案:n-14.连通图g是欧拉图的充分必要条件是答案:图g无奇数度结点 5.连通无向图g有6个顶点9条边,从g中删去g的一棵生成树t.答案:46.无向图g为欧拉图,当且仅当g是连通的,且g中无答案:奇数度7.设图g??v,e?是简单图,若图中每对结点的度数之和,则g一定是哈密顿图.答案:?8.如图1所示带权图中最小生成树的权是.答案:12三、化简解答题1.设无向图g=v,e,v={v1,v2,v3,v4,v5,v6}, e={( v1,v2), ( v2,v2), ( v4,v5), ( v3,v4), ( v1,v3),( v3,v1), ( v2,v4)}. (1) 画出图g的图形;2图15图22(2) 写出结点v2, v4,v6的度数; (3) 判断图g是简单图还是多重图.解:(1) 图g的图形如图5所示.(2) deg(v2)?4,deg(v4)?3,deg(v6)?0.(3) 图g是多重图.作图如图2. 2.设图g=v,e,其中v={a,b,c,d,e}, e={(a,b),(b,c),(c,d), (a,e)}试作出图g的图形,并指出图g是简单图还是多重图?是连通图吗?说明理由.b e解:图g如图8所示.. 图g中既无环,也无平行边,是简单图. cd 图g是连通图.g中任意两点都连通.图3所以,图g有9个结点.作图如图3.四、计算题1.设简单连通无向图g有12条边,g中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求g中有多少个结点.试作一个满足该条件的简单无向图.解:设图g有x个结点,由握手定理2?1+2?2+3?4+3?(x?2?2?3)=12?23x?24?21?18?27x=9 故图g有9个结点.图4满足该条件的简单无向图如图4所示2.设图g(如图5表示)是6个结点a,b,c, d,e,f的图,试求,图g的最小生成树,并计算它的权.c 解:构造连通无圈的图,即最小生成树,用克鲁斯克尔算法:第一步:取ab=1;第二步:取af=4第三步:取fe=3;第四步:取ad=9图5 第五步:取bc=23如图6.权为1+4+3+9+23=403.一棵树t有两个2度顶点,1个3度顶点;3个4问它有几片树叶?解:设t有n顶点,则有n-1条边.t中有2个 2度顶点,1个3度顶点,3个4度顶点,其余n-2-1-3个1度顶点.五、证明题1.若无向图g中只有两个奇数度结点,则这两个结点一定是连通的.证:用反证法.设g中的两个奇数度结点分别为u和v.假若u和v不连通.即它们之间无任何通路,则g至少有两个连通分支g1,g2,且u和v分别属于g1和g2,于是g1和g2各含有一个奇数度结点.这与握手定理的推论矛盾.因而u和v一定是连通的.3【篇二:离散数学图论练习题】题1、设g是一个哈密尔顿图,则g一定是()。

离散数学特殊图练习题

离散数学特殊图练习题

离散数学特殊图练习题一、基本概念与性质1. 判断下列说法是否正确:(1)完全图是连通图。

(2)树是一个无环的连通图。

(3)平面图一定可以画在一个平面上,使得任意两边都不相交。

2. 填空题:(1)一个有n个顶点的完全图的边数为______。

(2)一个有n个顶点的连通图至少有______条边。

(3)一个有n个顶点的树有______条边。

二、特殊图的判定1. 判断下列图是否为特殊图,并说明理由:(1)一个有5个顶点的图,其中每个顶点的度数分别为4, 4, 3, 3, 2。

(2)一个有6个顶点的图,其中每个顶点的度数都为3。

2. 下列图是否为平面图?请给出证明或反例:(1)K5(完全图K5)。

(2)K3,3(完全二部图K3,3)。

三、特殊图的性质与应用1. 计算下列图的色数:(1)一个有5个顶点的完全图。

(2)一个有6个顶点的环形图。

2. 下列图是否存在哈密顿回路?请给出证明或反例:(1)一个有5个顶点的环形图。

(2)一个有6个顶点的完全二部图。

四、综合题(1)若G为连通图,则G至少有n1条边。

(2)若G为平面图,则G的边数e ≤ 3n 6。

(1)完全图K6。

(2)完全二部图K3,3。

(3)一个有5个顶点的树。

3. 设G是一个有8个顶点的连通图,其中每个顶点的度数都为3。

证明:G至少有一个哈密顿回路。

五、图的同构与子图(1)图G1:顶点集{A, B, C, D},边集{AB, AC, BC, BD, CD};图G2:顶点集{P, Q, R, S},边集{PQ, PR, QR, QS, RS}。

(1)一个有4个顶点的完全图。

(2)一个有5个顶点的星形图。

六、路径与距离(1)一个有6个顶点的环形图。

(2)一个有5个顶点的完全图。

(1)一个有6个顶点的路径图,顶点A和顶点B分别位于路径的两端。

(2)一个有7个顶点的图,顶点A和B不相邻,但通过其他顶点可以到达。

七、欧拉图与哈密顿图(1)一个有5个顶点的环形图。

离散图论部分习题

离散图论部分习题
一个路径是哈密顿回路,如果它通过图中的每个顶点恰好一 次,并从某个顶点开始,最后回到这个顶点结束。
图的着色问题习题解答
01
图的着色问题:给定一个图,使 用最少的颜色对图中顶点进行着 色,使得相邻的顶点颜色不同。
02
图的着色问题是一个经典的NP难 问题,其求解方法包括贪心算法 、回溯算法等。
最小生成树问题习题解答
习题解答与解析
欧拉路径与回路习题解答
欧拉路径
一个路径是欧拉路径,如果它通过图 中的每条边恰好一次。
欧拉回路
一个路径是欧拉回路,如果它通过图 中的每条边恰好一次,并从某一条边 开始,最后回到这条边结束。
哈密顿路径与回路习题解答
哈密顿路径
一个路径是哈密顿路径,如果它通过图中的每个顶点恰好一 次。
哈密顿回路
02
基础问题解析
欧拉路径与回路
定义
一个遍历图中的所有边且每条边只遍历一 次的路径称为欧拉路径。如果这个路径的 起点和终点是同一点,则称为欧拉回路。
求解方法
应用
在计算机科学中,欧拉回路可用于解 决一些优化问题,如旅行商问题。
通过穷举法或动态规划法寻找是否存 在欧拉回路,并确定回路的长度。
哈密顿路径与回路
应用场景
最短路径问题在路由选择、 物流配送、旅行规划等领 域有广泛应用。
图的连通性问题
连通性定义
一个无向图是连通的,如果任意两个顶点之间都存在一条路径。
连通性判定
常用的连通性判定算法有深度优先搜索和广度优先搜索。
应用场景
图的连通性问题在社交网络分析、交通网络分析、通信网络分析 等领域有广泛应用。
04
离散图论部分习
目录
• 基础知识回顾 • 基础问题解析 • 高级问题解析 • 习题解答与解析

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

(图论)离散数学习题参考答案2

(图论)离散数学习题参考答案2
2 6 2 4 1 1 3 3 2 5 8 7 5 1 3 6 8 6 6 3
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6

离散数学_傅彦_图论部分例题精选(可编辑)

离散数学_傅彦_图论部分例题精选(可编辑)

第12~13章图论部分例题精选例 1 下列各组数中,哪些能构成无向图的度数序列?哪些能构成无向简单图的度数序列?1 1,1,1,2,32 2,2,2,2,23 3,3,3,34 1,2,3,4,5 5 1,3,3,3解根据握手定理,非负整数序列d1,d2,…,dn 能构成无向图的度数序列当且仅当d1+d2+…+dn 为偶数,即由推论知,d1,d2,…,dn中奇度数结点的个数为偶数个。

而1,2,3, 5分别有4个,0个,4个,4个奇度数结点,所以可以构成无向图的度数序列。

而(4)中有3个奇度数结点,因而不能构成无向图的度数序列。

但这些图并不一定是简单无向图。

其中,1,2,3为简单无向图,(5)不是简单无向图。

因为,在(5)中,若存在无向简单图,是v1,v2,v3,v4,是G中四个顶点,其中,degv11, degv23, degv33, degv43,则结点v1 仅能与v2, v3, v4,之一相邻,不妨设v1与v2相邻,则除v2能达到度数3外, v3, v4都不能达到度数3.因为,简单图要求两个结点之间至多一条边相联结,所以, v3和v4外分别至多和v2与v4, v2与v3相邻,即degv3, degv4至多为2,与已知矛盾,因此,5不是无向简单图. 对应的图如6.1所示,其中1,2,3分别对应a,b,c,5对应d例2 下列各无向图中有几个结点?(1)16条边,每个结点的度数均为2;(2)21条边,3个度数为4的结点,其余结点的度数均为3;(3)24条边,每个结点的度数均相同。

解设该图的结点数为n,则由握手定理可知:,由上式可得 n=16,即该图有16个结点;由上式可得 n =13,即该图有13个结点;.①如果k1,则n48;②如果k2,则n24;③如果k3,则n16;④如果k4,则n12;⑤如果k6,则n8; ⑥如果k8,则n6;⑦如果k12,则n4;⑧如果k16,则n3;⑨如果k24,则n2;⑩如果k48,则n1.例3 已知无向简单图G有m条边,各结点的度数均为3.1 若m3n-6,证明G在同构意义下唯一,并求m和n;2 若n6,证明G在同构意义下不唯一.北师大2000年考研试题分析在图论中,对于简单无向图和简单有向图,若涉及到边和结点的问题,握手定理是十分有用的.解 1 由于各结点的度数均为3,现在有n个结点和m条边,所以由握手定理知:.又因为m3n-6,故可得m6,n4.此时所得的无向图如图6-2所示.该图是简单无向图中边最多的图,即为无向完全图K4.对于4个结点的完全图,在同构意义下是唯一的.2 若n6,由握手定理:故m9.此时有n6,m9,且每个结点的度数为3,此时对于简单无向图,6个结点,9条边及每个结点的度数为3的有如图6-3所示的两个非同构的图.因此,n6,m9,度数为3的无向图G在同构意义下是不唯一的.例4 无向图G有21条边,12个3度数结点,其余结点的度数均为2,求G 的阶数n.北大2001年考研试题解由握手定理:从而,n15,即该图有15个结点,则G的阶数n为15 例5 证明若无向图G 是不连通的,则G的补图是连通的.西南交大1999年考研试题证明: 设不连通的无向图GV,E仅有两个不连通的分支.将点集划分为两个子集V1u1,u2,…,ur和V2v1,v2,…,vs.同属一个子集的两结点是连通的即其间有无向通路,分属不同子集的两结点是不连通的.这样的图,以结点数n4为例来证明G的补图V,Ek-E是连通的,其图如图6-4a所示.任取点集V中的两结点,分两种情况讨论:2 ,即这两个结点属于图G的同一个连通分支.不妨假,如图6-4a,假设它们.在另一连通分中任取一,对照图6-4c中的结.显然因为两两均不在同一连通分支内,所以. 按照1的证明可知: 和因此可通过无向路相连通.由此可知,无论1,2都有G的补图是连通的,所以,对任意不连通的图G,其补图都是连通的.例6 已知n阶简单图G中有m条边,各顶点的度数均为3,又2nm+3,试画出满足条件的所有不同构的G.西南交大2000年考研试题解又2nm+3,即m2n-3故3n2m22n-34n-6故n6m2n-32×6-39此时有n6,m9且每个结点的度数为3,则不同构的图有两个,如图6.5所示.。

离散数学 图论习题

离散数学 图论习题

3
三、判断题。正确的在(
)内写“√”,错误的选项写“×”。 ( ) ( ) ( )
1、完全图 Kn(n>=3)是欧拉图。
2、n(n>=2)阶有向完全图是欧拉图。
3、当 r、s 为正偶数时,完全二部图 Kr,s 是欧拉图。 4、完全图 Kn(n>=1)都是哈密顿图。 ( ) ( )
5、平凡图不是欧拉图,也不是哈密顿图。
图 2 有向图 D
2
3、如图 3 所示,实线边所示为图 G 的生成树,虚线为图 G 的弦,求基本回路系 统与基本割集系统。
图3
图G
4、无向树 T 有 ni 个 i 度顶点,i=2, 3, „,k,其余顶点全是树叶,求 T 的树 叶数。
5、证明下图不是哈密顿图。
6、设 n 阶 m 条边的无向图 G 中, m n 1 ,证明 G 中存在顶点 v : d (v) ≥3。
6、设 G 是 n 阶无向连通图。若 G 中有割点或桥,则 G 不是哈密顿图。


7、设 G 是 n(n>=3)阶无向简单哈密顿图,则对于 G 中任意不相邻的顶点 vi,vj, 均有 d(vi)+d(vj)>=n。 ( ) 8、设无向图 G=<V,E>是一无向图,对于任意 V 的真子集 V1,且 V1 不是空集,均 有 p(G-V1)≤|V1| , 其中 p(G-V1)为 G-V1 的连通分支数, 则 G 是哈密顿图。( ) 9、强连通的有向图都是哈密顿图。 ( )
10、 G 是 n 阶无向简单图, 若 G 中存在不相邻的顶点 vi,vj, 且满足 d(vi)+d(vj)<=n-1, 则 G 不是哈密顿图。 ( )
4
Байду номын сангаас

离散数学习题三参考答案

离散数学习题三参考答案

离散数学习题三参考答案第三节图论1.画出所有4个顶点的简单图。

解:本题这考虑连通图的情况。

共有5个不同构的图。

2.在某次宴会上,许多人互相握手,证明奇数次握手的人一定是偶数个。

解:设每个人看成一个顶点,两人握手看成两顶点间的一条边,每人握手的次数就是该顶点的度数,由定理1的推论2马上可得结论。

3.设图G=(V,E)中有12条边,已知G中3度顶点的有3个,其余顶点的度数均小于3,问G中至少有多少个顶点?为什么?解:如图G不是连通图,那么12条边最多的顶点数是12×2=24;一个顶点的度数是3,则要减去2个顶点数,所以3度顶点的有3个,就要减去2×3-6个顶点;同样一个顶点的度数是2,则要减去1个顶点数;为了使顶点数最小,图必须是连通图,所以顶点数为2的顶点的个数是(12×2-3×3)÷2的整数部分等于7个,有一个顶点的度数是1,所以G中至少有的顶点数是3+7+1=11(个)。

4.n个运动队之间安排一项比赛,已赛完了n+1场,求证:一定存在这样一个队,它已经至少参加了3场比赛。

解:如果每个运动队都只赛了2场,则共赛了2n÷2=n<n+1,所以一定存在这样一个队,它已经至少参加了3场比赛。

5.下图表示用堤埂分割成很多小块的水稻田。

为了用水灌溉需要挖开一些堤埂(不能挖堤埂的交点)。

问最少要挖开多少条堤埂,才能使水浇灌到每小块稻田?第五题解:把每块田看成顶点,相邻的田同一条边连接,这题就是最小生成树问题。

因为有12块田地,所以最少要挖开11条堤埂,才能使水浇灌到每小块稻田。

(见上右图)6在下列图中,求一条欧拉通路。

解:略2,其中m为图的边数,n为图的顶7.证明:若G=〈V,E〉是简单图,则m≤Cn点数。

(7,9一样)解:顶点数相同的情况下,简单图的边数一定小于完全图的边数。

8.设G是一个连通图,不含奇数点,证明:从G中任意去掉一条边,得到的图仍是连通图。

离散数学第7章 图论 习题

离散数学第7章 图论 习题

1 0 1 10
A=
1 0 0 00
1 0 1 00
0 0 0 00 i=4时,因为A[4,2]=1,将第四行
用Warshall算法求可
加到第2行,A不变。
达性矩阵。
i=5时,因为A的第5列全为0,所
i=1时,因为A的第一行 以A不变。
0 0 0 00
全为0,所以A不变。
i=2时,因为A的第2列 全为0,所以A不变。
充分性。 如果边e不包含在G的任一条回路中,那么连接结点u和v的边只 有e,而不会有其它连接u和v的任何路。因为如果连接u和v还有 不同于边e的路,此路与边e就组成一条包含边e的回路,从而导 致矛盾。所以删去边e后,u和v就不连通,故边e是割边。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
2
练习7-2(2):若无向图G中恰有两个奇数度的结点, 则这两个结点之间必有一条路。
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
第7章 习题课
离散数学第7章 图论 习题
1
练习7-1(6)简单图的最大度小于结点数。
证明:设简单图G中有n个结点。 任取一个结点v, 由已知G是简单图没有环和重边,

应用离散数学图论平面图及图的着色题库试卷习题及答案

应用离散数学图论平面图及图的着色题库试卷习题及答案

§5.6 平面图与图地着色 习题5.61. 假定一个连通平面图有8个顶点,每个顶点地度数都为3。

请问,这个图地平面嵌入将平面分成多少个面?解 根据条件有8=p ,122/83=⨯=q ,从而根据欧拉定理有62=+-=p q f 。

2.设G 是具有k 个连通分图地)(q p ,平面图地一个平面嵌入,其面数为f ,证明:1+=+-k f g p解 下面用数学归纳法证明如下:(1)1=k 时即为欧拉公式,所以成立。

(2)假设m k ≤时公式成立。

(3)当1+=m 时,将图G 看成两个图1G 与2G 地并,其中1G 为一个连通分图, 2G 为其余m 个连通分图地并,根据上面地假设,对图1G 与2G 有:11111+=+-f q p ,1222+=+-m f q p ,将上两式相加得: 1)1()1()()(212121++=-+++-+m f f q q p p注意到图1G 与2G 共用一个外部面,我们即得1+=+-k f g p 。

3.假定一个)(q p ,图是连通地平面二部图,且p ≥3,则q ≤42-p 。

证;由于二部图中每个回路地长度都是偶数。

当p ≥3时,即每个面地围数至少是4。

据定理,2q ≥4f=4(2-p+q) 从而q ≤42-p 。

4.图5.42地4个图是平面图吗?如果是,给出一个平面嵌入;如果不是,找出与5K 或K 3,3同胚地子图。

图5.42 习题4地图解 图(1),(2),(4)改画如下:从而知图(1),(2)是可平面图,图(4)是5阶完全图5K ,从而是非可平面图。

图(3)也是一个非可平面图,可用库拉托斯基定理证明如下:5.一个简单图地交叉数是指在平面里画这个图且不允许任何三条边在同一点交叉时,各边交叉地最少次数。

求以下非平面图地交叉数:3,3K , 5K , 6K , 7K , 4,3K , 4,4K , 5,5K解:3,3K 地交叉次数是15K 地交叉次数是56K 地交叉次数是107K 地交叉次数是184,3K 地交叉次数是84,4K 地交叉次数是115,5K 地交叉次数是166.下面地算法可以用来为简单图点着色。

计算机科学与技术 离散数学 练习-第4部分 图论

计算机科学与技术 离散数学 练习-第4部分 图论

1、一个7阶无向简单图,其结点的最大度数为()A、5B、6C、7D、82、设G为7阶无向简单图,下列命题成立的是()A、G的每个结点度数均为3B、G的每个结点度数均为5C、G的每个结点度数均为6D、G的每个结点度数均为73、由4个点3条边构成的无向简单图中,结点的最大度数为()A、1B、2C、3D、44、(多选题)下列度数列,可以简单图化的是()A、5,5,4,4,2,1B、5,5,4,1,1C、5,4,4,2,1D、5,4,3,2,2E、4,4,3,3,2,2F、4,3,2,1G、3,3,2,2,1,1H、3,3,3,1I、3,3,1,15、下列可作为4阶无向简单图的结点度数序列是()A、1,2,3,4B、0,2,2,3C、1,1,2,2D、1,3,3,38、下列关于图的命题正确的是()A、欧拉图都是哈密顿图B、哈密顿图都是欧拉图C、4阶以上的完全图都是欧拉图D、4阶以上的完全图都是哈密顿图9、下列关于欧拉图的描述正确的是()A、K4是欧拉图B、K5是欧拉图C、完全图都是欧拉图D、K6是欧拉图13、一棵无向树有5片树叶,3个2度结点,其余都是3度结点,这棵树的结点数是()A、10B、11C、12D、1314、G是有n个结点,m条边的连通图,要确定G的一棵生成树,必须删去G的多少条边()A、m-n+1B、m-nC、m+n+1D、n-m+115、一个n阶图不一定是树的是()A、无回路的连通图B、无回路且有n-1条边C、n阶连通图D、有n-1条边的连通图16、下列6阶无向树的度数序列,对应不止一棵同构树的是()A、1,1,1,1,2,4B、1,1,1,2,2,3C、1,1,2,2,2,2D、1,1,1,1,3,31、设5阶简单连通图G所有结点的度数之和为18,则G的结点的最大度数为_____,最小度数为______2、4阶完全图K4是平面图,其面数r为_____,记结点数为n,边数为m,则n-m+r=_______3、一个简单无向连通图,有n个结点,m条边,则边数m的最大值为_________,最小值为_______4、7阶无向简单图G,最多有________条边5、连通平面图G的每个面至少由5条边围成,则G的边数m与顶点数n满足的不等式关系为______________6、连通平面图G共有8个顶点,其平面表示中共有6个面,则边数为______7、如题的9阶无向图,需要添加边使其称为欧拉图,至少需要添加_____________和______________8、一棵n(n>2)阶无向树T,其最大度数⊿(T)的最小值为_____,最大值为________9、一棵7阶树T,其分支点最多有____个,最多有____片树叶10、无向完全图K8,需要删掉______条边才能得到生成树;无向完全图K9,需要删掉______条边才能得到生成树11、无向树有4个3度分支点,2个2度分支点,其余为树叶,则树叶数为______12、设无向树有8片树叶,1个4度分支点,其余都是3度分支点,则该树共有______个结点1、研究4阶完全图K4,判断其是否存在欧拉回路?是否存在哈密顿回路?如果存在,共有多少个非同构的回路?2、9阶无向图G中,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。

《离散数学》图论部分习题

《离散数学》图论部分习题

《离散数学》图论部分习题《离散数学》图论部分习题1.已知⽆向图G有12条边,6个3度顶点,其余顶点的度数均⼩于3,问G⾄少有⼏个顶点?并画出满⾜条件的⼀个图形. (24-3*6)/2 +6=92.是否存在7阶⽆向简单图G,其度序列为1、3、3、4、6、6、7.给出相应证明.不存在;7阶⽆向简单图G中最⼤度≤63.设d1、d2、…、d n为n个互不相同的正整数. 证明:不存在以d1、d2、…、d n为度序列的⽆向简单图.Max{d1,d2,…,dn}≥n,n阶⽆向简单图G中最⼤度≤n-14.求下图的补图.5.1)试画⼀个具有5个顶点的⾃补图2)是否存在具有6个顶点的⾃补图,试说明理由。

对于n阶图,原图与其补图同构,边数应相等,均为(n*(n-1)/2)/2,即n*(n-1)/4且为整数,n=4k或n=4k+1,不存在6阶⾃补图。

6.设图G为n(n>2且为奇数)阶⽆向简单图,证明:G与G的补图中奇度顶点个数相等.n(n>2且为奇数),奇度点成对出现7.⽆向图G中只有2个奇度顶点u和v,u与v是否⼀定连通.给出说明或证明。

只有2个奇度顶点u和v,如果不连通,在u和v在2个连通分⽀上,每个分⽀上仅有⼀个奇度顶点,与握⼿引理相⽭盾。

8.图G如下图所⽰:1)写出上图的⼀个⽣成⼦图.2)δ(G),κ(G),λ(G).δ(G)=2,κ(G)=1,λ(G)=2.说明:δ(G)=min{ d(v) | v V } ;κ(G)=min{ |V’| |V’是图G的点割集} ;λ(G)=min{ |E’| |E’是图G的边割集} 9.在什么条件下⽆向完全图K n为欧拉图?n为奇数时10.证明:有桥的图不是欧拉图.假设是欧拉图:桥的端点是u和v,并且图各顶点度均为偶数;桥为割边,删除桥,图不再连通,u和v应该在2各不同的连通分⽀上;且u和v度数变为奇数;由于其他顶点度数均为偶数,则u和v所在的连通分⽀上只有⼀个奇度顶点,与握⼿引理⽭盾。

离散数学习题集及答案第6-7章图论含答案

离散数学习题集及答案第6-7章图论含答案

第6-7章一.选择/填空1、设图G 的邻接矩阵为0101010010000011100000100,则G 的边数为( D ). A .5 B .6 C .3 D .42、设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( A ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的3、给定无向图G 如下图所示,下面给出的结点集子集中,不是点割集的为( B ).A .{b , d }B .{d }C .{a , c }D .{b , e }4、图G 如下图所示,以下说法正确的是 ( D ) .A .{(a , c )}是割边B .{(a , c )}是边割集C .{(b , c )}是边割集D .{(a, c ) ,(b, c )}是边割集5、无向图G 存在欧拉通路,当且仅当(D ).A .G 中所有结点的度数全为偶数B .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点6、设G 是有n 个结点,m 条边的连通图,必须删去G 的( A )条边,才能确定G 的一棵生成树.A .1m n −+B .m n −C .1m n ++D .1n m −+7、已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为(B ).A .8B .5C .4D .38、已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 9、连通无向图G 有6个顶点9条边,从G 中删去 4 条边才有可能得到G 的一棵生成树T .10、如右图 相对于完全图K 5的补图为(A )。

11、给定无向图,如下图所示,下面哪个边集不是其边割集( B )。

A 、;B 、{<v1,v4>,<v4,v6>};C 、;D 、。

12、设D 是有n 个结点的有向完全图,则图D 的边数为( A ) (A))1(−n n (B))1(+n n (C)2/)1(+n n (D)2/)1(−n n 13、无向图G 是欧拉图,当且仅当( C )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。

离散数学图论部分综合练习

离散数学图论部分综合练习

. 离散数学图论部分综合练习1.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v V v 2)deg(=∑∈D .E v V v =∑∈)deg(2.图G 如图一所示,以下说确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集3.如图二所示,以下说确的是 ( ).A .e 是割点B .{a, e }是点割集C .{b , e }是点割集D .{d }是点割集4.如图三所示,以下说确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集图三5.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的6.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 ο ο ο ο ο ca b e dο f 图一图二. 7.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +28.无向图G 存在欧拉通路,当且仅当( ).A .G 中所有结点的度数全为偶数B .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点9.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+10.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 . 4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 .6.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T ο ο ο ο ο c a b e dο f 图四. 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由.(2)若是欧拉图,请写出一条欧拉回路.图七 3.判别图G (如图八所示)是不是平面图, 并说明理由. 4.设G 是一个有6个结点14条边的连 通图,则G 为平面图. 四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示;(2)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),v 1v 2v 3v 4 v 5v 6v 1v 2 v 3 v 5 d bae f g h n 图六 οοο ο ο v 5v 1 v 2 v 4 v 6 ο v 3 图八. (v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示;(2)求出每个结点的度数;(3)画出图G 的补图的图形.3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示;(2)求出每个结点的度数;(3)画出其补图的图形.4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形;(2)求出G 权最小的生成树及其权值.5.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二叉树; (2)计算它们的权值.6.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它的权.五、证明题1.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.2.设G 是一个n 阶无向简单图,n 是大于等于2的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.3.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.参考解答一、单项选择题1.C 2.C 3.A 4.D 5.D 6.C7.A 8.D 9.A 10.A二、填空题1.15 2.{f },{c ,e } 3.W |S|4.所有结点的度数全为偶数 5.等于出度6.n 为奇数 7.v -e +r =2 8.3. 9.e=v -1 10.4 11.512.3 13.0三、判断说明题1.解:正确.因为图G 为连通的,且其中每个顶点的度数为偶数.2.解:(1)图G 1是欧拉图.因为图G 1中每个结点的度数都是偶数.图G 2是汉密尔顿图.因为图G 2存在一条汉密尔顿回路(不惟一):a (a ,b )b (b , e ) e (e , f ) f (f , g ) g (g , d ) d (d ,c ) c (c , a )a问题:请大家想一想,为什么图G 1不是汉密尔顿图,图G 2不是欧拉图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图论练习题
一.选择题
1、设G是一个哈密尔顿图,则G一定是( )。

(1) 欧拉图(2) 树(3) 平面图(4)连通图
2、下面给出的集合中,哪一个是前缀码?()
(1) {0,10,110,101111}(2) {01,001,000,1}
(3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011}
3、一个图的哈密尔顿路是一条通过图中()的路。

4、设G是一棵树,则G 的生成树有( )棵。

(1) 0(2) 1(3) 2(4) 不能确定
5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。

6、一棵无向树的顶点数n与边数m关系是()。

7、一个图的欧拉回路是一条通过图中( )的回路。

8、有n个结点的树,其结点度数之和是()。

9、下面给出的集合中,哪一个不是前缀码( )。

(1) {a,ab,110,a1b11} (2) {01,001,000,1}
(3) {1,2,00,01,0210} (4) {12,11,101,002,0011}
10、n个结点的有向完全图边数是( ),每个结点的度数是( )。

11、一个无向图有生成树的充分必要条件是( )。

12、设G是一棵树,n,m分别表示顶点数和边数,则
(1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。

13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。

14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。

15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于:
(1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。

16、设T是一棵树,则T是一个连通且( )图。

17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。

(1) 10 (2) 4 (3) 8 (4) 16
18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。

(1) 10 (2) 4 (3) 8 (4) 12
19、任一有向图中,度数为奇数的结点有( )个。

20、具有6 个顶点,12条边的连通简单平面图中,每个面都是由( )条边围成? (1) 2 (2) 4 (3) 3 (4) 5
21、在有n 个顶点的连通图中,其边数( )。

(1) 最多有n-1条 (2) 至少有n-1 条 (3) 最多有n 条 (4) 至少有n 条
22、一棵树有2个2度顶点,1 个3度顶点,3个4度顶点,则其1度顶点为( )。

(1) 5 (2) 7 (3) 8 (4) 9
23、若一棵完全二元(叉)树有2n-1个顶点,则它( )片树叶。

(1) n (2) 2n (3) n-1 (4) 2 24、下列哪一种图不一定是树( )。

(1) 无简单回路的连通图 (2) 有n 个顶点n-1条边的连通图 (3) 每对顶点间都有通路的图 (4) 连通但删去一条边便不连通的图 25、连通图G 是一棵树当且仅当G 中( )。

(1) 有些边是割边 (2) 每条边都是割边
(3) 所有边都不是割边 (4) 图中存在一条欧拉路径 26.对于无向图,下列说法中( )是正确的. A .不含平行边及环的图称为完全图
B .任何两个不同结点都有边相连且无平行边及环的图称为完全图
C .具有经过每条边一次且仅一次回路的图称为哈密尔顿图
D .具有经过每个结点一次且仅一次回路的图称为欧拉图
27.设图G 的邻接矩阵为
⎥⎥⎥
⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100
则G 的边数为( ).
A .5
B .6
C .3
D .4 28.设图G =<V ,
E >,则下列结论成立的是 ( ).
A .deg(V )=2∣E ∣
B .deg(V )=∣E ∣
C .
E v V
v 2)deg(=∑∈ D .E v V
v =∑∈)deg(
29.图G 如右图所示,以下说法正确的是 ( ) .
A .{(a , d )}是割边
B .{(a , d )}是边割集
C .{(d , e )}是边割集
D .{(a, d ) ,(a, c )}是边割集
30.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).
A .e -v +2
B .v +e -2
C .e -v -2
D .e +v +2 31.无向图G 存在欧拉通路,当且仅当( ).
A .G 中所有结点的度数全为偶数
B .G 中至多有两个奇数度结点
C .G 连通且所有结点的度数全为偶数
D .G 连通且至多有两个奇数度结点
二、填空题
1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .
2.设给定图G (如右图所示),则图G 的点割集是 .
3.设无向图G =<V , E >是汉密尔顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣.
4.设有向图D 为欧拉图,则图D 中每个结点的入度 .
5.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.
6.给定一个序列集合{1,01,10,11,001,000},若去掉其中的元素 ,则该序列集合构成前缀码.
ο
ο
ο ο ο
c
a
b e
d ο f
ο
ο
ο
ο ο
c
a b e d
ο f
三、计算题
1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},
E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}
(1)试给出G 的图形表示; (2)求G 的邻接矩阵;
(3)判断图G 是强连通图、单侧连通图还是弱连通图?
2.图G =<V , E >,其中V ={a , b , c , d , e , f },E ={(a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ), (d , f ), (e , f )},对应边的权值依次为5,2,1,2,6,1,9,3及8.
(1)画出G 的图形;
(2)写出G 的邻接矩阵;
(3)求出G 权最小的生成树及其权值.
问:如果结点集是V ={a , b , c , d , e },边集E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ) },对应边的权值依次为5,2,1,2,6,1,9,那么会求吗?
3.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试 (1)画出相应的最优二叉树; (2)计算它们的权值.
解:(1)最优二叉树如右图所示:
问:如果一组权为2,3,6,9,13,15,能否画出最优二叉树?
ο ο ο ο ο
c a b e
d
ο f
1
5 2 2 6
1
9
3 8
ο ο ο ο
ο
ο ο ο ο 3
2 7 1
3 5 5
11 17 34 ο ο 160 29 10 ο ο ο 23 19
42 ο ο 17 ο 24 ο 53 31
ο ο
ο 95
65。

相关文档
最新文档