多元统计正交因子分析实验报告
多元统计分析 实验报告
多元统计分析实验报告1. 引言多元统计分析是一种用于研究多个变量之间关系的统计方法。
在实验中,我们使用了多元统计分析方法来探索一组数据中的变量之间的关系。
本报告将介绍我们的实验设计、数据收集和分析方法以及结果和讨论。
2. 实验设计为了进行多元统计分析,我们设计了一个实验,收集了一组相关变量的数据。
我们选择了X、Y和Z这三个变量作为我们的研究对象。
为了获得准确的结果,我们采用了以下实验设计:1.确定研究目的:我们的目标是探索X、Y和Z之间的关系,并确定它们之间是否存在任何相关性。
2.数据收集:我们通过调查问卷的方式收集了一组数据。
我们请参与者回答与X、Y和Z相关的问题,以获得关于这些变量的定量数据。
3.数据整理:在收集完数据后,我们将数据进行整理,将其转化为适合多元统计分析的格式。
我们使用Excel等工具进行数据整理和清洗。
4.数据验证:为了确保数据的准确性,我们对数据进行验证。
我们检查数据的有效性,比较数据之间的一致性,并排除任何异常值。
3. 数据分析在数据收集和整理完毕后,我们使用了一些常见的多元统计分析方法来分析我们的数据。
以下是我们使用的方法和步骤:1.描述统计分析:我们首先对数据进行了描述性统计分析。
我们计算了X、Y和Z的均值、标准差、最大值和最小值等。
这些统计量帮助我们了解数据的基本特征。
2.相关性分析:接下来,我们进行了相关性分析,以确定X、Y和Z之间是否存在相关关系。
我们计算了变量之间的相关系数,并绘制了相关系数矩阵。
这帮助我们确定变量之间的线性关系。
3.回归分析:为了更进一步地研究X、Y和Z之间的关系,我们进行了回归分析。
我们建立了一个多元回归模型,通过回归方程来预测因变量。
同时,我们还计算了回归系数和R方值,以评估模型的拟合度和预测能力。
4. 结果和讨论根据我们的实验设计和数据分析,我们得出了以下结果和讨论:1.描述统计分析结果显示,X的平均值为x,标准差为s;Y的平均值为y,标准差为s;Z的平均值为z,标准差为s。
多元统计实验报告
多元统计实验报告一、实验目的多元统计分析是统计学的一个重要分支,它能够处理多个变量之间的复杂关系。
本次实验的主要目的是通过实际操作和数据分析,深入理解多元统计分析的基本原理和方法,并掌握其在实际问题中的应用。
二、实验数据本次实验使用了一组来自某市场调研公司的数据集,包含了消费者的年龄、性别、收入、消费习惯等多个变量,共计_____个样本。
三、实验方法1、主成分分析(PCA)主成分分析是一种降维方法,它通过将多个相关变量转换为一组较少的不相关变量(即主成分),来简化数据结构并提取主要信息。
2、因子分析因子分析用于发现潜在的公共因子,这些因子能够解释多个观测变量之间的相关性。
3、聚类分析聚类分析将数据对象分组,使得同一组内的对象具有较高的相似性,而不同组之间的对象具有较大的差异性。
四、实验过程1、数据预处理首先,对原始数据进行了清洗和预处理,包括处理缺失值、异常值和数据标准化等操作,以确保数据的质量和可用性。
2、主成分分析使用统计软件进行主成分分析,计算出特征值、贡献率和累计贡献率。
根据特征值大于 1 的原则,确定了保留的主成分个数。
通过主成分载荷矩阵,解释了主成分的实际意义。
3、因子分析运用因子分析方法,提取公共因子,并通过旋转因子载荷矩阵,使得因子的解释更加清晰和具有实际意义。
计算因子得分,用于进一步的分析和应用。
4、聚类分析采用 KMeans 聚类算法,根据选定的变量对样本进行聚类。
通过不断调整聚类中心和重新分配样本,最终得到了较为合理的聚类结果。
五、实验结果与分析1、主成分分析结果提取了_____个主成分,它们累计解释了_____%的方差。
第一个主成分主要反映了_____,第二个主成分主要与_____相关,以此类推。
这为我们理解数据的主要结构提供了重要的线索。
2、因子分析结果成功提取了_____个公共因子,它们能够较好地解释原始变量之间的相关性。
每个因子所代表的潜在因素也得到了清晰的解释,有助于深入了解消费者的行为特征和市场结构。
因子分析实验报告
因子分析实验报告一、实验目的因子分析是一种多元统计分析方法,旨在将多个相关变量归结为少数几个综合因子,以简化数据结构和揭示潜在的变量关系。
本次实验的主要目的是通过因子分析方法,对给定的数据集进行分析,提取主要因子,并解释其含义和实际应用价值。
二、实验数据来源及描述本次实验所使用的数据来源于一项关于消费者购买行为的调查。
该数据集包含了 500 个样本,每个样本包含了 10 个变量,分别是:价格敏感度、品牌忠诚度、产品质量感知、售后服务满意度、促销活动参与度、购买频率、购买金额、购买渠道偏好、口碑传播意愿和推荐他人购买意愿。
这些变量反映了消费者在购买过程中的不同方面的态度和行为,通过对这些变量的分析,可以更好地了解消费者的购买模式和偏好,为企业的市场营销策略提供决策依据。
三、实验方法及步骤1、数据预处理首先,对数据进行了缺失值处理。
对于存在少量缺失值的变量,采用了均值插补的方法进行填充。
然后,对数据进行了标准化处理,以消除量纲的影响,使得不同变量之间具有可比性。
2、因子提取运用主成分分析法(PCA)进行因子提取。
通过计算相关矩阵的特征值和特征向量,确定因子的个数。
根据特征值大于 1 的原则,初步确定提取 3 个因子。
3、因子旋转为了使因子更具有可解释性,采用了方差最大正交旋转(Varimax rotation)方法对因子进行旋转。
4、因子解释对旋转后的因子载荷矩阵进行分析,解释每个因子所代表的含义。
四、实验结果及分析1、因子载荷矩阵经过旋转后的因子载荷矩阵如下:|变量|因子 1|因子 2|因子 3|||||||价格敏感度|075|-012|021||品牌忠诚度|018|072|-015||产品质量感知|025|068|028||售后服务满意度|022|065|031||促销活动参与度|032|-025|078||购买频率|015|028|072||购买金额|012|025|068||购买渠道偏好|028|-035|052||口碑传播意愿|018|032|058||推荐他人购买意愿|021|035|055|2、因子解释因子 1 主要反映了消费者对产品本身相关因素的关注,包括价格敏感度、产品质量感知、售后服务满意度等,可命名为“产品相关因子”。
多元统计正交因子分析实验报告
正交因子分析(设计性实验)(Orthogonal factor analysis)实验原理:因子分析是主成分分析的推广和发展,其目的是用少数几个不可观测的隐变量,即因子,来解释原始变量之间的相关关系,它也是属于多元分析中处理降维的一种统计方法。
因子分析的基本思想是通过变量间的协方差矩阵(或相关系数矩阵)内部结构的研究,寻找能控制所有变量的少数几个因子去描述多个变量之间的相关关系。
因子分析中最常用的数学模型是正交因子模型,其特点是模型中的因子相互之间正交。
实验题目一:下表中给出了二战以来奥运会运动员十项运动成绩的相关系数矩阵:(E9a6) 100米 1.00 . . . . . . . . .跳远0.59 1.00 . . . . . . . .铅球0.35 0.42 1.00 . . . . . . .跳高0.34 0.51 0.38 1.00 . . . . . .400米0.63 0.49 0.19 0.29 1.00 . . . . .110米跨栏0.40 0.52 0.36 0.46 0.34 1.00 . . . .铁饼0.28 0.31 0.73 0.27 0.17 0.32 1.00 . . .撑竿跳高0.20 0.36 0.24 0.39 0.23 0.33 0.24 1.00 . .标枪0.11 0.21 0.44 0.17 0.13 0.18 0.34 0.24 1.00 .1500米-0.07 0.09 -0.08 0.18 0.39 0.00 -0.02 0.17 -0.00 1.00实验要求:(1)试由相关系数矩阵作因子分析;covmat(2)试根据因子载荷,并结合题目背景知识,对公共因子进行命名。
实验题目二:下表中给出了不同国家及地区的女子径赛记录:(t1a7)Country 100 m(s)200 m(s)400 m(s)800 m(min)1500 m(min)3000 m(min)Marathon(min)australi 11.2 22.35 51.08 1.98 4.13 9.08 152.37 austria 11.43 23.09 50.62 1.99 4.22 9.34 159.37 belgium 11.41 23.04 52 2 4.14 8.88 157.85 bermuda 11.46 23.05 53.3 2.16 4.58 9.81 169.98 brazil 11.31 23.17 52.8 2.1 4.49 9.77 168.75 burma 12.14 24.47 55 2.18 4.45 9.51 191.02 canada 11 22.25 50.06 2 4.06 8.81 149.45 chile 12 24.52 54.9 2.05 4.23 9.37 171.38 china 11.95 24.41 54.97 2.08 4.33 9.31 168.48 columbia 11.6 24 53.26 2.11 4.35 9.46 165.42 cookis 12.9 27.1 60.4 2.3 4.84 11.1 233.22 costa 11.96 24.6 58.25 2.21 4.68 10.43 171.8 czech 11.09 21.97 47.99 1.89 4.14 8.92 158.85 denmark 11.42 23.52 53.6 2.03 4.18 8.71 151.75 domrep 11.79 24.05 56.05 2.24 4.74 9.89 203.88 finland 11.13 22.39 50.14 2.03 4.1 8.92 154.23 france 11.15 22.59 51.73 2 4.14 8.98 155.27 gdr 10.81 21.71 48.16 1.93 3.96 8.75 157.68 frg 11.01 22.39 49.75 1.95 4.03 8.59 148.53 gbni 11 22.13 50.46 1.98 4.03 8.62 149.72 greece 11.79 24.08 54.93 2.07 4.35 9.87 182.2 guatemal 11.84 24.54 56.09 2.28 4.86 10.54 215.08 hungary 11.45 23.06 51.5 2.01 4.14 8.98 156.37 india 11.95 24.28 53.6 2.1 4.32 9.98 188.03 indonesi 11.85 24.24 55.34 2.22 4.61 10.02 201.28 ireland 11.43 23.51 53.24 2.05 4.11 8.89 149.38 israel 11.45 23.57 54.9 2.1 4.25 9.37 160.48 italy 11.29 23 52.01 1.96 3.98 8.63 151.82 japan 11.73 24 53.73 2.09 4.35 9.2 150.5 kenya 11.73 23.88 52.7 2 4.15 9.2 181.05 korea 11.96 24.49 55.7 2.15 4.42 9.62 164.65 dprkorea 12.25 25.78 51.2 1.97 4.25 9.35 179.17 luxembou 12.03 24.96 56.1 2.07 4.38 9.64 174.68 malaysia 12.23 24.21 55.09 2.19 4.69 10.46 182.17 mauritiu 11.76 25.08 58.1 2.27 4.79 10.9 261.13 mexico 11.89 23.62 53.76 2.04 4.25 9.59 158.53 netherla 11.25 22.81 52.38 1.99 4.06 9.01 152.48 nz 11.55 23.13 51.6 2.02 4.18 8.76 145.48 norway 11.58 23.31 53.12 2.03 4.01 8.53 145.48 png 12.25 25.07 56.96 2.24 4.84 10.69 233 philippi 11.76 23.54 54.6 2.19 4.6 10.16 200.37 poland 11.13 22.21 49.29 1.95 3.99 8.97 160.82 portugal 11.81 24.22 54.3 2.09 4.16 8.84 151.2singapor 12.3 25 55.08 2.12 4.52 9.94 182.77 spain 11.8 23.98 53.59 2.05 4.14 9.02 162.6 sweden 11.16 22.82 51.79 2.02 4.12 8.84 154.48 switzerl 11.45 23.31 53.11 2.02 4.07 8.77 153.42 taipei 11.22 22.62 52.5 2.1 4.38 9.63 177.87 thailand 11.75 24.46 55.8 2.2 4.72 10.28 168.45 turkey 11.98 24.44 56.45 2.15 4.37 9.38 201.08 usa 10.79 21.83 50.62 1.96 3.95 8.5 142.72 ussr 11.06 22.19 49.19 1.89 3.87 8.45 151.22 wsamoa 12.74 25.85 58.73 2.33 5.81 13.04 306 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)ussr 11.06 22.19 49.19 1.89 3.87 8.45 151.22 rumania 11.44 23.46 51.2 1.92 3.96 8.53 165.45 实验要求:(1)根据以上数据对女子径赛项目作因子分析;(2)对公共因子进行解释;(3)计算各个国家的第一因子得分并进行排名。
正交实验设计及结果分析报告(2024)
正交实验设计及结果分析报告(二)引言概述:正交实验设计是一种重要的统计方法,用于系统地研究多个因素对实验结果的影响。
本报告旨在继续探讨正交实验设计,并通过对结果的分析来进一步验证实验设计的有效性和可行性。
本报告将分为五个大点进行阐述,包括实验设计的优势、正交设计的基本原理、正交设计中的参数设定、模型建立与分析、以及结果的解释与验证。
正文内容:1.实验设计的优势1.1提高实验效率:正交实验设计可以将多个因素同时考虑,并将因素的组合设计为试验方案,从而减少试验次数,提高实验效率。
1.2确定关键因素:正交实验设计通过系统地考虑多个因素及其组合方式,可以帮助研究人员确定对实验结果最为关键的因素。
1.3提高可靠性:正交实验设计具有统计学严谨的基础,能够提高实验结果的可靠性和可重复性。
2.正交设计的基本原理2.1正交表的构造:正交表是正交实验设计的基础工具,通过构造正交表,可以实现各个因素水平的均衡分布,从而减少误差的影响。
2.2剔除交互作用:正交设计通过设置正交表中的交互作用项为0,将多个因素的相互作用剔除,使得试验结果更加直接和可解释。
2.3方差分析原理:正交设计采用方差分析方法对结果进行分析,通过检验因素的显著性和误差的可接受程度,得出结果是否具有统计学意义。
3.正交设计中的参数设定3.1因素的选择:根据实验目的和已知因素,选择对结果影响较大的因素作为试验因素,并确定其水平个数。
3.2正交表的选择:根据因素的个数和水平个数,选择合适的正交表进行试验设计,确保每个水平均匀分布。
3.3重复次数的确定:根据实验结果的稳定性和误差容忍度,确定试验的重复次数,以提高结果的可靠性。
4.模型建立与分析4.1建立线性模型:根据试验数据,建立线性回归模型,将各个因素的水平值与结果进行关联,用于后续的参数估计和显著性检验。
4.2参数估计与显著性检验:通过最小二乘法估计模型参数,并进行显著性检验,判断因素是否对结果产生显著影响。
多元统计分析因子分析(方法步骤分析总结)
因子分析+聚类分析:一.对数据进行因子分析,实验步骤:1在SPSS窗口中选择:分析-降维-因子分析,在因子分析主界面将变量X1 移入变量框2点击“描述”,在对话框中,统计量选择:原始分析结果,相关矩阵选择:系数,以描述相关系数,点击继续3点击“抽取”,在对话框中,方法为主成份,分析选择:相关性矩阵,输出选择:未旋转的因子解和碎石图,抽取中选择基于特征值(特征值大于1)或者因子的固定数量(要提取的因子为2),点击继续4点击“旋转”,在对话框中,方法为最大方差法,在输出中选择旋转解和载荷图(当因子数=2时),点击继续5点击“得分”,在对话框中,选中“保存为变量”和“显示因子得分系数矩阵”,在方法中选择“回归”,点击继续6点击确定实验结果分析:1.特征根和累计贡献率由表中可以看出,因为成份1和2的特征值>1,被提取出来,而且由于第三个特征根相比下降比较快,我们也只选取两个公共因子,对1和2旋转后其累计贡献率为82.488%。
由碎石图,我们也可以看出1和2的特征值大于1,可以被提取出来,其余变量特征值过小,不予提取。
从旋转成份矩阵可以看出,经过旋转的载荷系数产生了明显的区别,横向找到最大的一个数,如上表中黄色部分画出,第一个公因子在v1,v3,v5上占有较大载荷,说明于这三个指标有较大的相关性,命名为;第二个公因子在v2,v4,v6上有较大载荷,有较大相关性,归为一类,可命名为。
该表为成分转换矩阵,给出旋转所需的矩阵可以用成份得分系数矩阵写出各个因子关于中心标准化后的变量的表达式。
F1=0.385x1-0.001x2+…..F2=…..(分析的举例:第一个因子在外貌自信心洞察力推销能力工作魄力志向抱负理解能力潜能等变量上有较大的系数,可以抽象为应聘者主客观工作能力因子第二个因子在简历格式工作经验适应力变量上有较大的系数,可抽象为应聘者对客观环境的适应力因子第三个因子在兴趣爱好诚信度求职渴望度变量上有较大的系数,可抽象为应聘者的兴趣和诚信因子。
因子分析实验报告范本
因子分析实验报告范本(8)对实验结果进行分析研究5、预习抽查、提问及成绩(请按优,良,中,及格,不及格五级评定)6、未抽查学生的预习成绩(请按优,良,中,及格,不及格五级评定,由教师评阅实验报告时确定)第二部分:实验过程记录(可加页)1、实验原始记录(包括实验数据记录,实验现象记录,实验过程发现的问题等)第一步:导入数据交作® 编勘视图茁fttg(D)炜飘D 分折他)图羽〔① 起H■幵数据俸回3檢素…■关闭Q Ct甘斗Q 探存Ctrl-S另存M£0...1舲股票代冯蛋票启称星玉每股收主营业务临入万元主营壮务和净利掏万元总资庐万元总氏储万元am万元净资庐万元1600519蛊州茅台9.3500217181918531611D69333536615&831023:625034133 2520*ST 風圈 4.3100 765S9 91S3 4360£9 5321S J3330 34 48773 2304 洋河战储370001230535 735376 396274 29^0921D08495 3719206974 E00694大酋股盼 3.5100244355349&401 1029551M0G9409297431E177205 551 格力电器 3.27® 9341Q06 35387J6982755 1595O3B3 11073129 1140772596 600392 广杀朋珠 2.42008612 5149 02756 2&35B1 1041310 25314B76031B8亚邦股粘 2.380019276S9613051512365843105490 10 260053 8300386 飞天诚信 2.3200 73471 31617 18937 1452S8 13802 13 131J869 33B 建茉动力 2.2200 5614B38 1196345 J44543 12291644 8253531 4B4038113 10300Q95三六五网•-■'ill3275730342117353B773BO536080720 111600340 痒夏車舊 2 130******** 5SI71492821171O454E07 0757223 75 1697464 12333 美的菓团 2.120010908416 2724175895296 115822077164805 7D 4417492 13601336新华■保晞 2.030010992500770400&3250061043000663669001246B2100 14 E0Q742 一汽宣錐 1.0300 321935 44368 39B42E25EQ323354120392142 15538 云甫白药 1.0700 1331752397977 194470 1471992397999 37 1074393 1660D436片甘腐 1.06001067735215223877338619&37^025274S21 17 600104 上芫棄团1,0500 46954731 528B0772CMO93238147695 2127279010 16674997 106D3168 张普罢思 1.B400 5B567 41D699995 8347S 1031789 7315819601533匠城汽生 1.BJ0042665B9105313355S625543O55J2317249213113305 2060081G 妄怯信托1,6100135026 109457 S209Q22956270060:45 1594&4图1数据第二步:将数据标准化fe9.36004.3100口十"gn丄H L H教IM也…,貝谒股J締出(①…■本©•••r Trnrsn点击分析f 描述统计f 描述。
《多元统计实验》因子分析实验报告一
《多元统计实验》因子分析实验报告newscore2 #显示以第二因子得分排序结果newscore3<-newscore[order(newscore[,4],decreasing=T),] #按第三因子得分排序newscore3 #显示以第三因子得分排序结果newscore4<-newscore[order(newscore[,5],decreasing=T),] #按因子综合得分排序newscore4 #显示以因子综合得分排序结果三、实验结果分析下图为数据标准化后相关系数矩阵图,可以看出x3、x8、x4之间的存在较大的相关性,这些消费指标之间存在较强的线性相关关系,适合用因子分析模型进行分析,下面用极大似然估计法进行因子分析。
将公共因子设置为3个,从下运行结果可以看出,累计方差贡献率达到了83.36%,说明选择3个是合适的,从初始载荷阵可以看出消费指标无法准确的解释因子的含义,故我们在进行基于极大似然法的正交旋转。
由下图旋转得到的因子载荷估计,居住(x3)、生活用品及服务(x4)、交通通信(x5)、教育文化娱乐(x6)、医疗保健(x7)和其他用品及服务(x8)在因子f1上的载荷分别为0.772、0.679、0.663、0.858、0.733、0.692,这六个消费指标反映了日常消费,因此f1命名为日常消费因子;x1在f2上反映了食品烟酒的消费,因此f2命名为食品烟酒因子;x2在f3上反映了衣着的消费,因此命名为衣着因子。
也由此可得到因子分析模型:x*1≈0.208f1+0.975f2+ε1x*2≈0.220f1+0.972f3+ε2x*3≈0.772f1+0.510f2+ε3x*4≈0.679 f1+0.361 f2+0.405f3+ε4x*5≈0.663 f1+0.440 f2+0.271 f3+ε5x*6≈0.858 f1+0.262 f2+ε6x*7≈0.733 f1+0.350 f3+ε7x*8≈0.692 f1+0.522 f2+0.391+ε8从下图的各因子得分结果,可以看出,在第一因子上得分多的为上海、北京、天津;第二因子上得分多的为北京、上海、云南;第三因子得分多的为海南、广东、上海;但是这样得到的结果,较难找,因此我们对得分分别按第一因子和第二因子以及第三因子进行排序可直观看出。
主成分分析、因子分析实验报告--SPSS
主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
实验报告-因子分析(多元统计)精选全文
精选全文完整版可编辑修改实验报告主成分分析(综合性实验)(Principal component analysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。
这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。
利用矩阵代数的知识可求解主成分。
实验题目一:将彩色胶卷在显影液下处理后在不同情形下曝光,然后通过红、绿、蓝三种滤色片并在高、中、低三种密度下进行测量,每个胶卷有高红、高绿、高蓝、中红、…、低蓝等九个指标(分别记为X1-X9九个变量)。
试验了108个胶卷,由数据已算得如下协差阵:(S2a1)177 179 95 96 53 32 -7 -4 -3419 245 131 181 127 -2 1 4302 60 109 142 4 4 11158 102 42 4 3 2137 96 4 5 6128 2 2 834 31 3339 3948实验要求:(1)试从协差阵出发进行主成分分析;(2)计算方差累积贡献率;(3)作Scree图,并结合(2)的结果确定主成分的个数;(4)试对结果进行解释。
实验题目二:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m(s) 200m(s)400m(s)800m(min)1500m(min)5000m(min)10,000m(min)Marathon(mins)Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55 Italy 10.01 19.72 45.26 1.73 3.6 13.23 27.52 131.08 Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27 Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR 10.07 20 44.6 1.75 3.59 13.2 27.53 130.55Western Samoa 10.82 21.86 49 2.02 4.24 16.28 34.71 161.83 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)实验要求:(1)试求主成分,并对结果进行解释;(2)试用方差累积贡献率和Scree图确定主成分的个数;(3)计算各国第一主成分的得分并排名。
多元统计分析实验报告(精选多篇)
多元统计分析实验报告(精选多篇)第一篇:多元统计分析实验报告多元统计分析得实验报告院系:数学系班级:13级 B 班姓名:陈翔学号:20131611233 实验目得:比较三大行业得优劣性实验过程有如下得内容:(1)正态性检验;(2)主体间因子,多变量检验a;(3)主体间效应得检验;(4)对比结果(K 矩阵);(5)多变量检验结果;(6)单变量检验结果;(7)协方差矩阵等同性得Box 检验a,误差方差等同性得Levene 检验 a;(8)估计;(9)成对比较,多变量检验;(10)单变量检验。
实验结果:综上所述,我们对三个行业得运营能力进行了具体得比较分析,所得数据表明,从总体来瞧,信息技术业要稍好于电力、煤气及水得生产与供应业以及房地产业。
1。
正态性检验Kolmogorov-SmirnovaShapir o—Wilk 统计量 df Sig.统计量df Sig、净资产收益率。
113 35、200*。
978 35。
677 总资产报酬率。
121 35、200*。
964 35、298 资产负债率。
086 35。
200*.962 35、265 总资产周转率.180 35、006。
864 35。
000流动资产周转率、164 35、018.88535、002 已获利息倍数、28135.000。
55135、000 销售增长率.103 35、200*。
949 35、104 资本积累率。
251 35。
000、655 35。
000 *。
这就是真实显著水平得下限。
a。
Lilliefors显著水平修正此表给出了对每一个变量进行正态性检验得结果,因为该例中样本中n=35<2000,所以此处选用 Shapiro—W ilk 统计量。
由 Sig。
值可以瞧到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面得分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成得向量遵从正态分布(尽管事实上并非如此)。
《多元统计分析分析》实验报告
《多元统计分析分析》实验报告2012 年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。
选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。
最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。
多元统计分析 实验报告
多元统计分析实验报告多元统计分析实验报告一、引言多元统计分析是一种研究多个变量之间关系的统计方法,可以帮助我们更全面地了解数据集中的信息。
本实验旨在通过多元统计分析方法,探索不同变量之间的关系,并分析其对研究结果的影响。
二、数据收集与处理在本实验中,我们收集了一份关于学生学业成绩的数据集。
数据集包括学生的性别、年龄、家庭背景、学习时间、考试成绩等多个变量。
为了方便分析,我们对数据进行了清洗和预处理,包括删除缺失值、标准化处理等。
三、描述性统计分析在进行多元统计分析之前,我们首先对数据进行了描述性统计分析。
通过计算各变量的均值、标准差、最小值、最大值等统计量,我们对数据的整体情况有了初步的了解。
例如,我们发现男生和女生的平均成绩存在差异,家庭背景与学习时间之间存在一定的相关性等。
四、相关性分析为了探索不同变量之间的关系,我们进行了相关性分析。
通过计算各个变量之间的相关系数,我们可以了解它们之间的线性关系强弱。
通过绘制相关系数矩阵的热力图,我们可以直观地观察到各个变量之间的相关性。
例如,我们发现学习时间与考试成绩之间存在较强的正相关关系,而年龄与考试成绩之间的相关性较弱。
五、主成分分析主成分分析是一种常用的降维方法,可以将多个相关变量转化为少数几个无关的主成分。
在本实验中,我们应用主成分分析方法对数据进行了降维处理。
通过计算各个主成分的解释方差比例,我们可以确定保留的主成分个数。
通过绘制主成分得分图,我们可以观察到不同变量在主成分上的贡献程度。
例如,我们发现第一主成分主要与学习时间和考试成绩相关,而第二主成分主要与家庭背景和性别相关。
六、聚类分析聚类分析是一种将样本按照相似性进行分类的方法,可以帮助我们发现数据集中的潜在模式和群体。
在本实验中,我们应用聚类分析方法对学生进行了分类。
通过选择适当的聚类算法和距离度量,我们可以将学生分为不同的群体。
通过绘制聚类结果的散点图,我们可以观察到不同群体之间的差异。
多元统计实验报告--因子分析
多元统计实验报告设计题目:因子分析一、分析数据1995年我国社会发展状况的数据二、基本原理因子分析的基本思想是把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。
三、实验步骤及其结果分析1、选择Analyze→Data Reduction→Factor,打开Factor Analysis主对话框;2、选择变量X1至X6,点击向右的箭头按钮,将六个变量移到Variable栏中;3、点击Descriptives…按钮,打开Descriptives子对话框。
在此对话框的Statistics下选择Initial solution;Correlation Matrix下选择coefficients,单击Continue按钮,返回Factor Analysis主对话框;4、单击Extraction…按钮,打开Extraction子对话框。
在此对话框的Method 下选择Principal components;Analyze下选择Correlation Matrix;Extract下选择Number of Factor,并在其右端的矩形框键入6;Display下选择Unrotated factor 和Scree plot,单击Continue按钮,返回Factor Analysis主对话框;点击OK按钮,显示结果清单。
(1)相关矩阵从表Correlation Matrix(相关矩阵)可知,各变量间存在较强的相关关系,因此有必要进行因子分析。
表中主对角线上的元素为1,表明变量自身于自身的相关系数为1。
(2)解释总方差从表Total Variance Explained(解释总方差)可知,前三个因子一起解释总方差的93.466%(累计贡献率),这说明前三个因子提供了原始数据的足够信息。
5、根据以上分析提取因子情况,单击Extraction…按钮,打开Extraction子对话框。
多元统计分析实验报告3
黑龙江八一农垦大学
多元统计分析实验报告
实验项目因子分析
专业信息与计算科学专业
年级班
姓名
学号
黑龙江八一农垦大学文理学院数学实验室
学生实验守则
1、参加实验的学生必须按时到实验室上实验课,按指定的席位操作,不得迟到早退。
迟到10分钟,禁止实验。
2、遵守实验室的一切规章制度,不喧哗,不吸烟,保持室内安静、整洁。
3、学生实验前要认真预习实验内容,接受指导教师的提问和检查。
4、严格遵守操作规程。
5、应认真记录原始数据,填写实验报告,及时送交实验报告。
6、不准动用与本实验无关的仪器设备和室内的其它设施。
7、实验中发生事故时,要保持镇静,并立即采取抢救措施,及时向指导教师报告。
8、损坏实验设备应主动向指导教师报告,由指导教师根据情况进行处理,需要赔偿的应写出书面报告,填写赔偿单。
9、实验结束,将实验结果交实验教师检查,合格后,经指导教师同意后,方可离开实验室。
10、实验完毕后,应按时写出实验报告,及时交指导教师审阅,不交者,该实验无成绩。
实验报告。
多元统计分析实验报告
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,还应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。
多元统计分析实验报告
多元统计分析实验报告多元统计分析实验报告引言:多元统计分析是一种研究多个变量之间关系的方法,通过对多个变量进行综合分析,可以揭示出变量之间的相互作用和影响,帮助我们更好地理解数据背后的规律和现象。
本实验旨在通过对一组数据进行多元统计分析,探索变量之间的关系,并对实验结果进行解读。
实验设计:本实验选取了一组包含多个变量的数据集,其中包括性别、年龄、教育程度、收入水平、婚姻状况等变量。
通过对这些变量进行多元统计分析,我们希望了解这些变量之间是否存在相关性,并进一步探究各个变量对于整体数据集的影响。
数据收集与处理:首先,我们收集了一份包含上述变量的样本数据,共计1000个样本。
接下来,我们对数据进行了清洗和处理,包括去除异常值、缺失值的处理等。
经过处理后,我们得到了一份完整的数据集,可以进行后续的多元统计分析。
多元统计分析方法:在本实验中,我们使用了多元统计分析中的主成分分析和聚类分析两种方法。
主成分分析是一种通过将原始变量转化为一组新的综合变量,来降低数据维度并保留尽可能多的信息的方法。
聚类分析则是一种通过对样本进行分类,使得同一类别内的样本相似性较高,不同类别之间的差异性较大的方法。
实验结果与分析:经过主成分分析,我们得到了一组主成分,它们分别代表了原始变量的不同方面。
通过对主成分的解释,我们可以发现性别、年龄和教育程度等变量对于整体数据集的解释性较高,而收入水平和婚姻状况等变量的解释性较低。
这说明性别、年龄和教育程度等因素在整体数据中起着较为重要的作用。
接下来,我们进行了聚类分析,将样本分为若干个类别。
通过观察不同类别的样本特征,我们可以发现在同一类别内,样本的性别、年龄和教育程度等变量较为相似,而收入水平和婚姻状况等变量的差异较大。
这说明性别、年龄和教育程度等因素在样本分类中起到了重要的作用,而收入水平和婚姻状况等因素则对样本分类的影响较小。
结论与展望:通过本次实验的多元统计分析,我们可以得出以下结论:性别、年龄和教育程度等因素在整体数据集中起着较为重要的作用,并且对样本分类也具有一定的影响。
多元统计分析实验报告3
黑龙江八一农垦大学
多元统计分析实验报告
实验项目因子分析
专业信息与计算科学专业
年级班
姓名
学号
黑龙江八一农垦大学文理学院数学实验室
学生实验守则
1、参加实验的学生必须按时到实验室上实验课,按指定的席位操作,不得迟到早退。
迟到10分钟,禁止实验。
2、遵守实验室的一切规章制度,不喧哗,不吸烟,保持室内安静、整洁。
3、学生实验前要认真预习实验内容,接受指导教师的提问和检查。
4、严格遵守操作规程。
5、应认真记录原始数据,填写实验报告,及时送交实验报告。
6、不准动用与本实验无关的仪器设备和室内的其它设施。
7、实验中发生事故时,要保持镇静,并立即采取抢救措施,及时向指导教师报告。
8、损坏实验设备应主动向指导教师报告,由指导教师根据情况进行处理,需要赔偿的应写出书面报告,填写赔偿单。
9、实验结束,将实验结果交实验教师检查,合格后,经指导教师同意后,方可离开实验室。
10、实验完毕后,应按时写出实验报告,及时交指导教师审阅,不交者,该实验无成绩。
实验报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交因子分析(设计性实验)(Orthogonal factor analysis)实验原理:因子分析是主成分分析的推广和发展,其目的是用少数几个不可观测的隐变量,即因子,来解释原始变量之间的相关关系,它也是属于多元分析中处理降维的一种统计方法。
因子分析的基本思想是通过变量间的协方差矩阵(或相关系数矩阵)内部结构的研究,寻找能控制所有变量的少数几个因子去描述多个变量之间的相关关系。
因子分析中最常用的数学模型是正交因子模型,其特点是模型中的因子相互之间正交。
实验题目一:下表中给出了二战以来奥运会运动员十项运动成绩的相关系数矩阵:(E9a6) 100米 1.00 . . . . . . . . .跳远 0.59 1.00 . . . . . . . .铅球 0.35 0.42 1.00 . . . . . . .跳高 0.34 0.51 0.38 1.00 . . . . . . 400米 0.63 0.49 0.19 0.29 1.00 . . . . . 110米跨栏 0.40 0.52 0.36 0.46 0.34 1.00 . . . .铁饼 0.28 0.31 0.73 0.27 0.17 0.32 1.00 . . .撑竿跳高 0.20 0.36 0.24 0.39 0.23 0.33 0.24 1.00 . .标枪 0.11 0.21 0.44 0.17 0.13 0.18 0.34 0.24 1.00 . 1500米 -0.07 0.09 -0.08 0.18 0.39 0.00 -0.02 0.17 -0.00 1.00实验要求:(1)试由相关系数矩阵作因子分析;covmat(2)试根据因子载荷,并结合题目背景知识,对公共因子进行命名。
实验题目二:下表中给出了不同国家及地区的女子径赛记录:(t1a7)Country 100 m(s)200 m(s)400 m(s)800 m(min)1500 m(min)3000 m(min)Marathon(min)australi11.222.3551.08 1.98 4.139.08152.37 austria11.4323.0950.62 1.99 4.229.34159.37 belgium11.4123.04522 4.148.88157.85 bermuda11.4623.0553.3 2.16 4.589.81169.98 brazil11.3123.1752.8 2.1 4.499.77168.75 burma12.1424.4755 2.18 4.459.51191.02 canada1122.2550.062 4.068.81149.45 chile1224.5254.9 2.05 4.239.37171.38 china11.9524.4154.97 2.08 4.339.31168.48 columbia11.62453.26 2.11 4.359.46165.42 cookis12.927.160.4 2.3 4.8411.1233.22 costa11.9624.658.25 2.21 4.6810.43171.8 czech11.0921.9747.99 1.89 4.148.92158.85 denmark11.4223.5253.6 2.03 4.188.71151.75 domrep11.7924.0556.05 2.24 4.749.89203.88 finland11.1322.3950.14 2.03 4.18.92154.23 france11.1522.5951.732 4.148.98155.27 gdr10.8121.7148.16 1.93 3.968.75157.68 frg11.0122.3949.75 1.95 4.038.59148.53 gbni1122.1350.46 1.98 4.038.62149.72 greece11.7924.0854.93 2.07 4.359.87182.2 guatemal11.8424.5456.09 2.28 4.8610.54215.08 hungary11.4523.0651.5 2.01 4.148.98156.37 india11.9524.2853.6 2.1 4.329.98188.03 indonesi11.8524.2455.34 2.22 4.6110.02201.28 ireland11.4323.5153.24 2.05 4.118.89149.38 israel11.4523.5754.9 2.1 4.259.37160.48 italy11.292352.01 1.96 3.988.63151.82 japan11.732453.73 2.09 4.359.2150.5 kenya11.7323.8852.72 4.159.2181.05 korea11.9624.4955.7 2.15 4.429.62164.65 dprkorea12.2525.7851.2 1.97 4.259.35179.17 luxembou12.0324.9656.1 2.07 4.389.64174.68 malaysia12.2324.2155.09 2.19 4.6910.46182.17 mauritiu11.7625.0858.1 2.27 4.7910.9261.13 mexico11.8923.6253.76 2.04 4.259.59158.53 netherla11.2522.8152.38 1.99 4.069.01152.48 nz11.5523.1351.6 2.02 4.188.76145.48 norway11.5823.3153.12 2.03 4.018.53145.48 png12.2525.0756.96 2.24 4.8410.69233 philippi11.7623.5454.6 2.19 4.610.16200.37 poland11.1322.2149.29 1.95 3.998.97160.82 portugal11.8124.2254.3 2.09 4.168.84151.2singapor12.32555.08 2.12 4.529.94182.77 spain11.823.9853.59 2.05 4.149.02162.6 sweden11.1622.8251.79 2.02 4.128.84154.48 switzerl11.4523.3153.11 2.02 4.078.77153.42 taipei11.2222.6252.5 2.1 4.389.63177.87 thailand11.7524.4655.8 2.2 4.7210.28168.45 turkey11.9824.4456.45 2.15 4.379.38201.08 usa10.7921.8350.62 1.96 3.958.5142.72 ussr11.0622.1949.19 1.89 3.878.45151.22 wsamoa12.7425.8558.73 2.33 5.8113.04306(数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)ussr11.0622.1949.19 1.89 3.878.45151.22 rumania11.4423.4651.2 1.92 3.968.53165.45实验要求:(1)根据以上数据对女子径赛项目作因子分析;(2)对公共因子进行解释;(3)计算各个国家的第一因子得分并进行排名。
要求列出排名前10的国家或地区,并给出中国的名次。
实验题目一分析报告:R程序:输出结果及分析:(1)试由相关系数矩阵作因子分析;record<-read.table("data4.txt",head=F) #导入数据record<-record[,-1] #删除第一列record<-as.matrix(record) #将原数据矩阵化options(digits=2) #保留两位小数pca.data1<-princomp(covmat=record)#以相关系数矩阵作为基础,建立主成分分析summary(pca.data1) #输出主成分分析报表为了确定因子分析中因子的数目,我们先对相关系数矩阵做主成分分析表 1主成分分析报表Comp. 1Comp.2Comp.3Comp.4Comp.5Comp.6Comp.7Comp.8Comp.9Comp.10Standarddeviation1.95 1.23 1.060.9560.8490.7710.7260.6190.4850.456 Proportion ofVariance0.380.150.110.0910.0720.0590.0530.0380.0240.021 CumulativeProportion0.380.530.640.7330.8050.8650.9170.9560.979 1.000由方差累计贡献率得到,在第五主成分,累积贡献率达到了80%以上,并趋于稳定。
我们确定因子分析中因子数目为5.fact1.st<-factanal(covmat=record,factors=5,rotation="none") #作因子分析,不旋转fact1.ro<-factanal(covmat=record,factors=5,rotation="varimax")#作因子分析,旋转fact1.st #输出不旋转的结果fact1.ro #输出旋转的结果apply((fact1.ro$loadings)^2,1,sum) #计算共同度做因子分析,得到未旋转的因子载荷以及旋转的因子载荷观察表格中被标注为绿色的两个因子载荷(标枪项目一行),在Factor1中的因子载荷为0.408,在Factor5中的因子载荷为0.401,比较两个因子载荷,0.408>0.401, 因此我们最终选取0.408。
这样一来,我们做因子分时,只需要4个因子即可。
因此,我们下面再做4个因子的旋转因子分析。
fact2.ro<-factanal(covmat=record,factors=4,rotation="varimax")#作因子分析,旋转fact2.ro #输出旋转的结果apply((fact2.ro$loadings)^2,1,sum) #计算共同度(2)试根据因子载荷,并结合题目背景知识,对公共因子进行命名由旋转后的载荷可发现,第一因子中,铅球、铁饼和标枪的载荷较大,可命名为投掷因子;第二因子中,100米和400米的载荷较大,可命名为短跑因子;第三因子中,跳远、跳高、110米跨栏、撑竿跳高较大,可命名为弹跳因子;第四因子中,1500米的载荷较大,可命名为长跑因子。