专题讲练:三角形边角关系及命题与证明重难点问题
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系2三角形中角的关系授课
导引:有一个角是直角的三角形就是直角三角形,已 知∠ACB=90°,CD⊥AB,可得到∠ADC= ∠CDB=90°.
解: 图中直角三角形有:Rt△ABC,斜边为AB; Rt△ADC,斜边为AC;Rt△DBC,斜边为BC.
感悟新知
总结
知1-讲
找直角三角形就是找直角,找斜边也是找直角.
感悟新知
的三角形叫做钝角三角形.
要点精析:
(1)从角的角度判断三角形的形状,主要看最大的内角即 可,最大的内角为锐角、直角、钝角,则三角形的形
状分别为锐角三角形、直角三角形和钝角三角形;
感悟新知
(2)直角三角形夹直角的两边为直角边,直角的对边
知1-讲
为斜边,直角三角形ABC可以写成Rt△ABC. 2.三角形按角的大小可分为:
谢谢观赏
You made my day!
④直角三角形一定不是等腰三角形.
A.1个 B.2个 C.3个 D.4个
感悟新知
导引:紧扣三角形分类的标准进行辨析.
知1-练
①锐角三角形的三个角都为锐角,锐角小于 90°,故正确;
②等边三角形的三个角都为 60°,所以它是锐角三角形,故 正确;
③对于顶角是钝角的等腰三角形,不满足题设条件,故错误;
④直角三角形可能是等腰三角形,三角尺中就有一个是等腰 三角形的直角三角形,故错误.故选B.
(2)已知:∠A∶∠B∶∠C=3∶4∶5,则∠C=_____.
2 已知:如图,∠ACB=90°,CD⊥AB,垂足是D.
(1)写出图中所有相等的角;
(2)写出图中所有直角三角形,
并指出它们的斜边.
课堂小结
三角形中角的关系
1. 任意一个三角形的三个内角和都等于180°,这一性质 是三角形中角的关系的一个非常重要的性质,当已知 三角形的两个内角时,可以很容易求出第三个角.例 如,在△ABC中,如果∠A=30°,∠B=90°,那么 ∠C=180°- ∠A-∠B=180°-30°-90°=60°.
沪科8年级数学上册第13章2 命题与证明
作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.
八年级上册数学 三角形三边关系-命题与证明
三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。
第13章三角形中的边角关系命题与证明总复习
总复习
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
注意: 1:三条线段要不在同一直线上,且首尾顺
次相接; 2:三角形是一个封闭的图形; 3:△ABC是三角形ABC的符号标记,单独
的△没有意义
2.三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.
(1)基本事实:从长期实践中总结出来的,不需
要再作证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证
明为正确的,并被选作判断命题真假的依据的真命 题
(3)推论:由公理、定理直接得出的真命题。
(4)演绎推理:从已知条件出发,依据定义、公
理、定理,并按照逻辑规则,推导出结论的方法。
(5)证明:演绎推理的过程就是演绎证明,简称“证
O 1
图1
2 C
例3如图,在△ABC中, ∠BAC=4∠ABC=4∠C,BD⊥AC于点 D,求∠ABD的度数。
答案∠ABD=30°
例4如图,AC∥BD,AE平分∠BAC 交BD于点E,若∠1=64°,则 ∠2= .
例5:在三条边都不相等的三角形中,同一条边 上的中 线,高和这边所对角的角平分线,最
短的是( B )
A:中线
B:高线。
C:角平分线
D:不能确定。
6.有关“命题”的概念
命题的定义:用来判断它是真(正确)、假 (错误)的语句或式子。
命题的分类
命题的结构
命题的逆命题 如何说明一个命题是真命题?
7.有关“基本事实、定理、证明、推论、 演绎推理、辅助线”等概念
边所在 的直线作垂线,顶点和垂足之间的线
三角形中的边角关系、命题与证明
高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。
中考数学直角三角形的边角关系的综合热点考点难点含答案解析
中考数学直角三角形的边角关系的综合热点考点难点含答案解析一、直角三角形的边角关系1.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.2.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形3.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT△ADE中,22+34DE AE∵背水坡坡比为1:2,∴BF=60米,在RT△BCF中,22CF BF+5∴周长345(345)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.4.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB =30°,在Rt △ABE 中,AE =AB·cos30°=6×3=33, 在Rt △ADE 中,∠DAE =∠BAE =30°, ∴AD=cos30°×AE=3×33=92.【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.5.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310【解析】 【分析】(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BCAC,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OPGE ED =,然后根据勾股定理即可得到结果. 【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径, ∴¶¶ADAC =,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.6.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-33.11【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 331+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得. 【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DEODE DO∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=︒, ∴157BOC ∠=︒, ∴2360BOCn r S π=扇形 2157 3.1424.52360⨯⨯≈()2822cm ≈.答:扇形BOC 的面积约为2822cm . 【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.8. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.9.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.理由见解析.【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.10.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos ∠A 'CB 3'2BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论. 【详解】(1)由旋转可得:AC =A 'C =2. ∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'2BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =22()(2)1010+-=2410m -+,2'ED =22248()()551010+++=2128510m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E=2'ED 时,36+2410m -+=2128510m ++,解得:m =210,此时D ′(618551010,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+2128510m ++=2410m -+,解得:m =810-,此时D ′(618551010,-++)为(-6,2);③当2'A E +2'ED =2''A D 时,2410m -++2128510m ++=36,解得:m =810-或m =10,此时D ′(618551010,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.12.关于三角函数有如下的公式: sin (α+β)=sinαcosβ+cosαsinβ① cos (α+β)=cosαcosβ﹣sinαsinβ② tan (α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan (45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD 的水平距离BC 为42m ,求建筑物CD 的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.。
《第13章 三角形中的边角关系、命题与证明》学习指导
《第13章 三角形中的边角关系、命题与证明》学习要求:1.理解三角形的角平分线、中线、高线的概念及性质。
会用刻度尺和量角器画出任意三角形的角平分线、中线和 高。
2.掌握三角形的分类,理解并掌握三角形的三边关系。
3.掌握三角形内角和定理及推论,三角形的外角性质与外角和。
4.了解三角形的稳定性。
知识要点:一、三角形中的边角关系1.三角形有三条内角平分线,三条中线,三条高线,它们都相交于一点。
注意:三角形的中线平分三角形的面积。
2. 三角形三边间的不等关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
注意:判断三条线段能否构成一个三角形时,就看这三条线段是否满足任何两边之和大于第三边,其简便方法是看两条较短线段的和是否大于第三条最长的线段。
3.三角形各角之间的关系:①三角形的内角和定理:三角形的三个内角和为180°。
②三角形的外角和等于360°(每个顶点处只取一个外角); ③三角形的一个外角等于与它不相邻的两个内角的和; ④三角形的一个外角大于任何一个和它不相邻的内角。
4.三角形的分类①三角形按边的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧等边三角形角形底和腰不相等的等腰三等腰三角形不等边三角形三角形 ②三角形按角的关系可以如下分类:⎪⎩⎪⎨⎧⎩⎨⎧∆)()()(形有一个角为钝角的三角钝角三角形形三个角都是锐角的三角锐角三角形斜三角形形有一个角为直角的三角直角三角形三角形Rt 5.三角形具有稳定性。
知识结构:二、命题与证明1.判断一件事情的句子是命题,疑问句、感叹句不是命题,计算不是命题,画法不是命题。
2.命题都可以写成:“如果……,那么……。
”的形式。
为了语句通顺往往要加“字”,但不改变顺序。
3.命题由题设、结论两部分组成。
“如果”后面的是题设,“那么”后面的是结论。
4.命题分为真命题和假命题。
真命题需要证明,假命题只要举出一个反例。
5.将命题的题设和结论交换就得到原命题的逆命题。
专题13 全等三角形重难点模型(五大模型)(原卷版)
专题13全等三角形重难点模型(五大模型)模型一:一线三等角型模型二:手拉手模型模型三:半角模型模型四:对角互补模型模型五:平行+线段中点构造全等模型【典例分析】【模型一:一线三等角型】如图一,∠D=∠BCA=∠E=90°,BC=AC。
结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。
结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE =9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【模型二:手拉手模型】应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。
第13章 三角形中的边角关系、命题与证明(教材知识盘点+典例诠释解法+中考无缝对接,12页,PDF)
三边” 可以判断三条线段能否组成三角形. 取值范围是 m - n < x < m + n.
形的三边) ,Байду номын сангаас
边之和. 若三角形的两边长为 m, n ( m ≥ n ) , 则第三边长 x 的
长度即可判定这三条线段能构成一个三角形.
所以∠A = ∠2 . ( 等量代换)
所以∠3 = ∠B,∠DEC = ∠A. ( 两直线平行,同位角相等)
又因为∠1+∠2+∠3 = 180 ° ,( 平角的定义) 所以∠A +∠B +∠C = 180 °. ( 等量代换) 方法四:如图 13-1-7, 过点 A 任作直线 l1 ( 不平行于三角
图 13-1-1
包括等边三角形. 等边三角形是特殊的等腰三角形, 即底边和 腰相等的等腰三角形. 2 三角形按角分类 形;有一个角是直角的三角形叫做 直角三角形; 有一个角是钝 角的三角形叫做钝角三角形. 直角三角形中夹直角的两边叫做直角边,直角相对的边叫 (2) 三角形按角的大小分类: (1) 三角形中, 三个角 都是 锐角 的三角形叫做 锐角三角
1 三角形的定义 由不在同一条直线上 的 三条 线段 首尾依次相接 所组成的 图形叫做三角形. 注意:(1) 三条线段必须 不在同一直线上” 才能组成三角
知识点 2 三角形的分类 ( 重点㊁难点)
1 三角形按边分类 形;有两条边相等的三角形叫做 等腰三角形; 三条边都相等 的 三角形叫做等边三角形( 又叫做正三角形) . 等腰三角形中,相等的两边叫做腰,第三边叫做底边. 两腰 (2) 三角形按边长关系分类: (1) 三角形中,三条边互不相等 的三角形叫做 不等边三角
第 13 章 三角形中的边角关系㊁命题与证明
期末总复习 三、三角形中的边角关系、命题与证明
(2)根据第(1)问的结论猜想:三角形的三条外角平分线所在的直线形成的三 角形按角分类属于什么三角形? 解:根据(1)的结论可知三角形的三条外角平分线所在的直线形成的三角形 的三个角都是锐角,故三角形是锐角三角形.
8.如图,∠A=∠B,∠C=α,DE⊥AC于点E,FD⊥AB于点D,探索,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/132021/8/13Friday, August 13, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/132021/8/132021/8/138/13/2021 11:45:13 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/132021/8/132021/8/13Aug-2113-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/132021/8/132021/8/13Friday, August 13, 2021
【解答】 若P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由:如 图1,过点P作PE∥l1,则∠APE=∠PAC,又∵l1∥l2,∴PE∥l2.∴∠BPE =∠PBD.∴∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠ PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情 形:①如图2,结论:∠APB=∠PBD-∠PAC.理由:过点P作PE∥l1,则 ∠APE=∠PAC,又∵l1∥l2,∴PE∥l2.∴∠BPE=∠PBD.∵∠APB=∠ BPE-∠APE,∴∠APB=∠PBD-∠PAC.②如图3,结论:∠APB=∠ PAC-∠PBD.理由:过点P作PE∥l2,则∠BPE=∠PBD,又∵l1∥l2,∴ PE∥l1.∴∠APE=∠PAC.∵∠APB=∠APE-∠BPE,∴∠APB=∠PAC -∠PBD.
三角形中边角关系,命题与证明专项复习(附带知识点练习)
第十三章:三角形中的边角关系,命题与证明第一节:三角形三边关系知识点:1、三角形定义:由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形;组成三角形的线段叫做三角形的边;相邻两边的公共断点叫做顶点;相邻两边组成的角叫做三角形的内角。
如图三角形可记做,读作“三角形ABC”2、角形的分类:,有两条边相等的三角形叫做等腰三角形,的三角形叫做等边三角形又叫做正三角形.边,两腰的夹角叫做顶角,腰与底边的夹角叫做低角.3、三角形角的关系:三个角都是锐角的三角形叫做锐角三角形,有一个角是直角的三角形叫做直角三角形,有一个角是钝角的三角形叫做钝角三角形考点:(一)、会用符号表示三角形,了解什么是三角形的边、角、顶点,并且能用符号来表示;(二)、了解等腰三角形的腰,顶角,低角的概;(三)、运用两边之和大于第三边,两边之差小于第三边求范围和判断是否能围成三角形;(四)、运用三角形的内角和和直角三角形求角的度数例题:3、已知一个等腰三角形的一边长是5,一边长是12,求这个三角形的周长4、已知三角形的三边长分别是a、b、c,化简│a+b-c│-│b-a-c│的结果为————5、已知等腰∆ABC的周长为10,若设腰长为x,则x的取值范围————6、三角形中最大角α的范围是——————,最小角β的范围是——————7、在下列空白出,分别填上“锐角”、“直角”、“钝角”(一)∆ABC中,∠A=∠B+∠C,则∆ABC是——————三角形(二)∆ABC中,∠A+∠B=20°,则∆ABC是——————三角形(三)∆ABC中,∠A=40°,∠B=∠C,则∆ABC是——————三角形8、在∆ABC中,∠A是∠B的2倍,∠C比∠A与∠B的和还要大30°,求∆ABC各角的度数。
9、四条线段的长度分别为4、6、8、10,可以组成三角形的组数为()A.4B.3C.2D.1第二课时:三角形的角平分线、中线、高知识点:(一)、三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线(二)、三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线三角形的任意一条中线把三角形分成面积相等的两个三角形(三)、从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高线,也叫三角形的高。
八年级数学上册第13章三角形中的边角关系命题与证明13.1三角形中的边角关系第3课时三角形中几条重要线段教
第3课时三角形中几条重要线段◇教学目标◇【知识与技能】1.了解并掌握三角形的角平分线、中线和高的概念,会用直尺、量角器等工具作出三角形的角平分线、中线和高;2.通过作图了解三角形的三条角平分线、三条中线和三条高分别交于一点.【过程与方法】经历探究三角形的角平分线、中线和高的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】经历作图的实践过程,认识三角形的高、中线和角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.发展学生合情推理的能力.◇教学重难点◇【教学重点】三角形的角平分线、中线和高的画法.【教学难点】钝角三角形的三条高的画法.◇教学过程◇一、情境导入上节课我们学习了按角给三角形分类,分为锐角三角形、直角三角形和钝角三角形.这节课我们学习三角形中几条重要线段.二、合作探究问题1:三角形中三条边、三个角是它的六个基本元素,除此以外,还有其他什么元素吗?结论:角平分线、中线、高线.线、高线交于一点吗?都在三角形的内部吗?结论:三角形的三条角平分线、三条中线和三条高都交于一点.其中,三角形三条中线交于一点,这个交点就是三角形的重心.三角形的角平分线和中线都在三角形的内部,三角形的高线不一定在三角形的内部,直角三角形的高线可能在三角形上,钝角三角形的高线可能在三角形外部.典例1已知,如图,在△ABC中,O是高AD和BE的交点,观察图形,试猜想∠C和∠DOE 之间具有怎样的数量关系,并论证你的猜想.[解析]连接OC,由三角形的内角和等于180°,得∠OCE+∠COE+∠CEO=180°,∠OCD+∠COD+∠CDO=180°,又因为AD和BE是△ABC的高,所以∠CEO=∠CDO=90°,所以∠OCE+∠COE+∠OCD+∠COD=180°,即∠C+∠DOE=180°.三、板书设计三角形中几条重要线段角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线.中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.高线:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高线,也叫做三角形的高.◇教学反思◇本节课通过让学生自己动手作图,作出三角形的三条角平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的角平分线、中线、高分别是交于一点的,培养他们观察、总结的能力.。
专题1.6直角三角形的边角关系十大考点(老师版)
专题1.6直角三角形的边角关系十大考点【目标导航】【知识梳理】1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边除以斜边=a c(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边除以斜边=b c.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边除以∠A的邻边=a b.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.特殊角的三角函数值(1)30°、45°、60°角的各种三角函数值(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.3.解直角三角形:(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:222a b c +=③边、角之间的关系:sinA==a c ,cosA =b c ,tanA =ab,(a ,b ,c 分别是∠A 、∠B 、∠C 的对边).4.解直角三角形的应用:(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.5.坡度、坡角问题(1)坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1:m 的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i 与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.6.俯角、仰角问题:(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.【典例剖析】【考点1】锐角三角函数的定义【例1】(2020•河池)在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是()A .512B .125C .513D .1213【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【解析】如图所示:∵∠C=90°,BC=5,AC=12,∴AB=52+122=13,∴sinB=AC AB=1213.故选:D.【变式1.1】(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tanA=2,BC=8,则AC等于()A.6B.16C.12D.4【分析】直接利用正切的定义求解.【解答】解:∵∠C=90°,∴tanA=BC AC=2,∴AC=12BC=12×8=4.故选:D.【变式1.2】(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tanA=23B.cotA=23C.sinA=23D.cosA=23【分析】先利用勾股定理计算出AB=213,然后根据正弦、余弦、正切和余切的定义求出∠A的四个三角函数值,从而可对各选项进行判断.【解答】解:∵∠C=90°,AC=4,BC=6,∴AB=42+62=213,∴tanA=BC AC=64=32,cotA=AC BC=46=23,sinA=BC AB=6213=31313,cosA=AC AB=4213=21313.故选:B.【变式1.3】(2022•沈阳模拟)如图,已知AB为⊙O的直径,∠ADC=30°,则tan∠CAB的值为()A.3B.1C.32D.33【分析】根据圆周角定理可得∠ACB=90°,∠B=∠D=30°,进而求出∠CAB,再根据特殊锐角的三角函数值进行计算即可.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=∠ADC=30°,∴∠CAB=90°﹣30°=60°,∴tan∠CAB=tan60°=3,故选:A.【考点2】特殊角的三角函数值【例2】(2018•西湖区校级二模)在△ABC中,若|sinA−22|32−cosB|2=0,∠A,∠B都是锐角,则∠C的度数是()A.105°B.90°C.75°D.120°【分析】直接利用绝对值性质以及特殊角的三角函数值分别得出∠A=45°,∠B=30°,进而得出答案.【解析】∵|sinA−22|+|32−cosB|2=0,∴sinA=22,32=cosB,∴∠A=45°,∠B=30°,∴∠C的度数是:180°﹣45°﹣30°=105°.故选:A.【变式2.1】(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=()A.30°B.60°C.45°D.37.5°【分析】直接利用特殊角的三角函数值,进而得出答案.【解答】解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=12,∴∠β=60°.故选:B.【变式2.2】(2022秋•浦东新区校级期中)已知α为锐角,且sinα=513,那么α的正切值为()A.512B.125C.513D.1213【分析】在Rt△ABC中,∠C=90°,∠A=α,则利用正弦的定义得到sinA=sinα=BC AB=513,于是可设BC =5x,AB=13x,利用勾股定理计算出AC=12x,然后根据正切的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=α,∵sinA=sinα=BC AB=513,∴设BC=5x,AB=13x,∴AC=AB2−BC2=(13x)2−(5x)2=12x,∴tanA=BC AC=5x12x=512,即α的正切值为512.故选:A.【变式2.3】(2021秋•梁平区期末)式子2cos30°﹣tan45°−(1−tan60°)2的值是()A.0B.23C.2D.﹣2【分析】直接利用特殊角的三角函数值代入,进而结合二次根式的性质化简得出答案.【解答】解:原式=2321﹣(3−1)=3−1−3+1=0.故选:A.【考点3】锐角三角函数的增减性【例3】锐角α满足sinα22,且tanα<3,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°【分析】直接利用特殊角的三角函数值结合锐角三角函数关系的增减性,得出答案.【解析】∵sinα22,且tanα<3,∴45°<α<60°.故选:B.【变式3.1】(2022秋•惠山区校级期中)已知∠A为锐角,且tanA=3,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【分析】判断出所给的正切值在最接近的哪两个锐角的正切值之间,再得出选项即可.【解答】解:tan30°=33,tan45°=1,tan60°=3,∵tanA=3,∴3<3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.【变式3.2】(2022秋•莱芜区期中)已知sina32,那么锐角a的取值范围是()A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°【分析】根据特殊锐角三角函数值以及锐角三角函数的增减性进行判断即可.【解答】解:∵sin60°=32,sinα32,一个锐角的正弦值随着锐角的增大而增大,∴α>60°,∵α为锐角,∴60°<α<90°,故选:A.【变式3.3】(2021秋•新邵县期末)下列说法中正确的是()A.sin45°+cos45°=1B.若α为锐角,则sinα=cos(90°﹣α)C.对于锐角β,必有tanβ2=tanβ2D.若α为锐角,则sinα>cosα【分析】根据特殊角的三角函数值判断即可.【解答】解:A.sin45°+cos45°=22+22=2,故A不符合题意;B.若α为锐角,则sinα=cos(90°﹣α),故B符合题意;C.对于锐角β,当β=60°时,tanβ2=tan30°=33,tanβ2=tan60°2=32,此时tanβ2≠tanβ2,故C不符合题意;D.若α为锐角,当α=45°时,sinα=cosα=22,故D不符合题意;故选:B.【考点4】同角三角函数【例4】(2018秋•市中区校级期中)已知α为锐角,且tanα=13,则sinα=()A.23B.105C.31010D.1010【分析】根据tanα=13,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式,即可推出sinα的值.【解析】设在Rt△ABC中,∠C=90°,∠A=α,则sinα=a c,tanα=a b,a2+b2=c2,∵tanα=13知,∴可设a=x,则b=3x,∴c=a2+b2=10x.∴sinα=a c=x10x=1010,故选:D.【变式4.1】(2022春•巴东县期中)x为锐角,sinx=23,则cosx的值为()A.79B.73C.7D.23【分析】根据同角三角函数的平方关系:sin2x+cos2x=1解答即可.【解答】解:∵sin2x+cos2x=1,sinx=23,∴cosx=1−sin2x=1−29=73.故选:B.【变式4.2】(2022•内黄县模拟)在Rt△ABC中,∠C=90°,sinA=45,则tanA=()A.53B.43C.45D.34【分析】根据题意设BC=4a,AB=5a,然后利用勾股定理求出AC,最后根据锐角三角函数的定义进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sinA=45,∴sinA=BC AB=45,∴设BC=4a,AB=5a,∴AC=AB2−BC2=(5a)2−(4a)2=3a,∴tanA=BC AC=4a3a=43,故选:B.【变式4.3】(2020秋•黄浦区期末)对于锐角α,下列等式中成立的是()A.sinα=cosα•tanαB.cosα=tanα•cotαC.tanα=cotα•sinαD.cotα=sinα•cosα【分析】根据锐角三角函数的定义,分别验证每个选项的正误即可.【解答】解:如图,在Rt△ABC中,设∠C=90°,∠A=α,∠A、∠B、∠C的对边分别为a、b、c,有sinα=a c,cosα=b c,tanα=a b,cotα=b a,于是:A.cosα•tanα=b c•a b=a c=sinα,因此选项A符合题意;B.tanα•cotα=a b•b a=1≠cosα,因此选项B不符合题意;C.cotα•sinα=b a•a c=b c=cosα,因此选项C不符合题意;D.sinα•cosα=a c•b c=ab c2≠cotα,因此选项D不符合题意;故选:A.【考点5】锐角三角函数的新定义问题【例5】(2020秋•闵行区期中)我们把有三个内角相等的凸四边形叫做三等角四边形,例如:在四边形PQMN 中,如果∠P=∠Q=100°,∠M=60°,那么四边形PQMN是三等角四边形.请阅读以上定义,完成下列探究:如图,在△ABC中,AB=AC=9,cosB=13,如果点D在边AB上,AD=6,点E在边AC上,四边形DBCE是三等角四边形,那么线段CE的长是.【分析】如图,过点A作AJ⊥BC于J,连接CD,解直角三角形求出BK,CKAK,再利用相似三角形的性质求出DH,AH,想办法求出EH,即可解决问题.【解析】如图,过点A作AJ⊥BC于J,连接CD,过点C作CK⊥AB于K,过点D作DH⊥AC于H.∵AB=AC=9,AJ⊥BC,∴BJ=JC,∵cosB=BJ AB=13,∴BJ=JC=3,∵CK⊥AB,∴cosB=BK BC=13,∴BK=2,CK=BC2−BK2=62−22=42,∵∠DAH=∠CAK,∠AHD=∠AKC=90°,∴△AHD∽△AKC,∴AD AC=AH AK DH CK,∴69=AH7=DH42,∴AH=143,DH=823,∵四边形DBCE是三等角四边形,∴∠DEH=∠B,∴cos∠DEH=cos∠B=1EH,设EH=m,DE=3m,在Rt△DEH中,∵DE2=EH2+DH2,∴(3m)2=m2+(823)2,∴m=43或−43(舍弃),∴EH=43,∴AE=AH﹣EH=143−43=103,∴CE=AC﹣AE=9−103=173.故答案为:173.【变式5.1】(2021秋•冷水滩区月考)关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1−tanαtanβ(其中:1﹣tanαtanβ≠0)例如:sin90°=sin(30°+60°)=sin30℃os60°+cos30°sim60°=12×12+32×32=1.利用上述公式计算下列三角函数:①sin105°=6+24②sin15°=6−24③cos90°=0,④sin15°+tan105°=2﹣2364.其中正确的个数为()A.1B.2C.3D.4【分析】根据上述公式把一般角转化为特殊角的和或者差,然后进行计算即可.【解答】解:①sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=22122232=6+24,故①正确;②sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=322212×22=6−24,故②正确;③cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=22×2222×22=0,故③正确;④tan105°=tan(60°+45°)=tan45°+tan60°1−tan45°tan60°=1+31−3=−2−3,sin15°+tan105°=6−24(﹣2−3)=﹣2−36424,故④错误;所以正确的个数为:3个,故选:C.【变式5.2】(2020•广元)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,给出以下四个结论:(1)sin(﹣30°)=−12;(2)cos2x=cos2x﹣sin2x;(3)cos(x﹣y)=cosxcosy+sinxsiny;(4)cos15°=.其中正确的结论的个数为()A.1个B.2个C.3个D.4个【分析】根据题目中所规定公式,化简三角函数,即可判断结论.【解答】解:(1)sin(−30°)=−sin30°=−12,故此结论正确;(2)cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x,故此结论正确;(3)cos(x﹣y)=cos[x+(﹣y)]=cosxcos(﹣y)﹣sinxsin(﹣y)=cosxcosy+sinxsiny,故此结论正确;(4)cos15°=cos(45°﹣30°)=cos45°cos30°+sin45°sin30°=2232+22×12=6424=6+24,故此结论错误.所以正确的结论有3个,故选:C.【变式5.3】(2019•巴州区校级自主招生)规定:对任意角x,y,都有sin2x+cos2x=1,sin(﹣x)=﹣sinx,cos (﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,现给出下列等式:①sin(−60°)=−32;②cos15°=6−24;③cos2x=1﹣2sin2x;④cos(x﹣y)=cosxcosy+sinxsiny;⑤cosxcosy=12[cos(x+y)+cos(x−y)],其中,等式成立的个数为()A.2个B.3个C.4个D.5个【分析】根据所提供的材料解题即可.【解答】解:①﹣sin60°=sin(−60°)=−32,故正确;②cos15°=cos(60°﹣45°)=cos60°cos(﹣45°)﹣sin60°sin(﹣45°)=cos60°cos45°+sin60°sin45°=122232×22=2+64,即cos15°=6−24是错误的;③cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x=1﹣sin2x﹣sin2x=1﹣2sin2x,故正确;④cos(x﹣y)=cosxcosy+sinxsiny,故正确;⑤cosxcosy=12[cos(x+y)+cos(x−y)],故正确.综上所述,其中,等式成立的个数为4个.故选:C.【考点6】三角函数与网格问题【例6】(2018秋•乐山期末)如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA =45.【分析】根据勾股定理,可得AC的长,根据余弦为邻边比斜边,可得答案.【解析】如图,由勾股定理,得AC=AD2+CD2=42+32=5.cosA=AD AC=45,故答案为:45.【变式6.1】(2021•商河县校级模拟)如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=12.【分析】根据正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA,利用网格计算即可.【解答】解:tan∠ABC=24=12,故答案为:12.【变式6.2】(2021•甘谷县一模)如图,在5×5的正方形网格中,△ABC的三个顶点A,B,C均在格点上,则tanA的值为13.【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【解答】解:如图:作BD⊥AC于D,BD=2,AD=32,tanA=BD AD=232=13,故答案为:13.【变式6.3】(2020•铁东区四模)如图,将∠BAC放置在5×5的正方形网格中,如果顶点A、B、C均在格点上,那么∠BAC的正切值为1.【分析】连接BC,先利用勾股定理逆定理证△ABC是等腰直角三角形,再根据正切函数的定义可得.【解答】解:如图所示,连接BC,则AB=BC=12+32=10,AC=22+42=25,∴AB2+BC2=10+10=20=AC2,∴△ABC是等腰直角三角形,且∠ABC=90°,∴∠BAC=45°,则tan∠BAC=1,故答案为:1.【考点7】解直角三角形【例7】(2020秋•浦东新区期中)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,BC=18,AD=6.(1)求sinB的值;(2)点E在AB上,且BE=2AE,过E作EF⊥BC,垂足为点F,求DE的长.【分析】(1)先利用等腰三角形三线合一的性质求出BD,然后在Rt△ABD中,利用勾股定理求出AB,再根据sinB=AD AB计算即可;(2)由EF∥AD,BE=2AE,可得BE AB=EF AD=BF BD=23,求出EF、DF,再利用勾股定理解决问题.【解析】(1)∵AB=AC,AD⊥BC,BC=18,∴BD=DC=12BC=9,∴AB=AD2+BD262+92=313,∴sinB=AD AB=6313=21313;(2)∵AD⊥BC,EF⊥BC,∴EF∥AD,∴BE=EF=BF=2,∴EF=23AD=23×6=4,BF=23BD=23×9=6,∴DF=BD﹣BF=9﹣6=3,在Rt△DEF中,DE=EF2+DF2=42+32=5.【变式7.1】(2022秋•奉贤区期中)已知:如图,在△ABC中,AB=AC=15,tanA=43.;求:(1)S△ABC(2)∠B的余弦值.【分析】(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,利用锐角三角函数的定义设CD=4k,则AD =3k,从而利用勾股定理求出AC=5k,进而可得k=3,然后可得AD=9,CD=12,最后利用三角形的面积公式,进行计算即可解答;(2)在Rt△BCD中,利用勾股定理求出BC的长,然后再利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tanA=CD AD=43,∴设CD=4k,则AD=3k,∴AC=AD2+CD2=(3k)2+(4k)2=5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,=12AB•CD∴S△ABC=12×15×12=90,=90;∴S△ABC(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC=CD2+BD2=122+62=65,∴cosB=BD CB=665=55,∴∠B的余弦值为55.【变式7.2】(2022秋•浦东新区期中)如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan ∠B=23,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正切值.【分析】(1)解直角三角形求出CD=4,再利用勾股定理求出AC即可;(2)过点E作EH⊥AB于点H.求出AH,EH,可得结论.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠CDB=90°,∴tanB=CD DB=23,∵BD=6,∴CD=4,∴AC=CD2+AD2=42+22=25;(2)过点E作EH⊥AB于点H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∵EC=EB,∴DH=BH=3,∴EH=12CD=2,∴AH=AD+DH=2+3=5,∴tan∠EAB=EH AH=25.【变式7.3】(2022秋•虎丘区校级期中)(1)在△ABC中,∠C=90°.已知c=83,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sinA=35,D为AC上一点,∠BDC=45°,CD=6.求AD的长.【分析】(1)由∠A与∠B互余即可求出∠B,由直角三角形中30°的直角边等于斜边的一半可求b,由锐角的正切定义可求a;(2)由锐角的正弦定义,勾股定理可求AD长.【解答】解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=12c=43,∵tanA=a b,∴a=btanA,∴a=43×3=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sinA=BC AB,∴AB=BC sinA=10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.【考点8】锐角三角函数的应用:方向角问题【例8】(2020•启东市三模)如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.【分析】(1)由由题意即可得出答案;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,解直角三角形即可得到答案.【解析】(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=302,∴AE=BE=22AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=BE CE,∴CE=BE tan60°=303=103,∴AC=AE+CE=30+103,∴A,C两港之间的距离为(30+103)km.【变式8.1】(2022•锦州二模)某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:2≈1.414,3=1.732)【分析】根据三角形内角和得到∠ACB=180°﹣75°﹣30°=75°,求得∠ABC=∠ACB,根据等腰三角形的性质得到AC=AB=10海里,根据平行线的性质得到∠ACF=30°,求得∠ACD=60.平角的性质得到∠DAC=180°﹣70°﹣40°=70°,即可求得∠DAE=45°,解直角三角形求得CE=5海里,AE=DE=53海里,即可求得CD=5+53≈13.66(海里),进一步求得轮船航行的速度.【解答】解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=12AC=5海里,AE=32AC=53海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=53海里,∴CD=5+53≈13.66(海里),轮船航行的速度为:13.66÷12=27.3(海里/时),答:轮船航行的速度是27.3海里/时,【变式8.2】(2022秋•垦利区期中)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的北偏东15°方向,距离80千米的地方有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【分析】过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:由题意得:∠DOC=45°,∠BOD=15°,OB=80km,∴∠BOC=30°,OB=80km,如图,作BG⊥OC于G,∴BG=12OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∵BG=40km,∴EG=BE∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5(小时),∴影响时间约为1.5小时.【变式8.3】(2022秋•沙坪坝区校级期中)如图,海上有一座小岛C,一艘渔船在海中自西向东航行,速度为60海里/小时,船在A处测得小岛C在北偏东45°方向,1小时后渔船到达B处,测得小岛C在北偏东30°方向.(参考数据:2≈1.41,3≈1.73,6≈2.45)(1)求BC的距离;(结果保留整数)(2)渔船在B处改变航行线路,沿北偏东75°方向继续航行,此航行路线记为l,但此时发现剩余油量不足,于是当渔船航行到l上与小岛C最近的D处时,立即沿DC方向前往小岛C加油,加油时间为18分钟,在小岛C加油后,再沿南偏东75°方向航行至l上的点E处.若小船在D处时恰好是上午11点,问渔船能否在下午5点之前到达E处?请说明理由.【分析】(1)作CF⊥AB于点F,CD⊥BE于点D,设BF=x,则BC=2x,CF=3x,根据AF=CF,得60+x=3x,求出x的值即可求出答案;(2)根据特殊直角三角形求出CD,CE,即可求出从D到E用的时间,和6小时相比较即可.【解答】解:如图,作CF⊥AB于点F,CD⊥BE于点D,(1)由已知得AB=60海里,∠CAF=45°,∠BCF=30°,设BF=x,则BC=2x,CF=3x,∵AF=CF,∴60+x=3x,∴x=603−1=30(3+1),∴BC=60(3+1)≈142(海里),∴BC的距离为142海里;(2)由已知得∠CBD=∠BCD=45°,∴CD=22BC=30(6+2),∵∠ECF=75°,∴∠CED=180°﹣45°﹣30°﹣75°=30°,∴CE=2CD=60(6+2),∴从D到E用的时间为CD+CE60=90(6+2)60≈5.8<6,∴渔船能在下午5点之前到达E处.【考点9】锐角三角函数的应用:坡度坡角问题【例9】(2019秋•滨海县期末)速滑运动受到许多年轻人的喜爱.如图,四边形BCDG是某速滑场馆建造的滑台,已知CD∥EG,滑台的高DG为5米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为1:3.(1)求新坡面AC的坡角及AC的长;(2)原坡面底部BG的正前方10米处(EB=10)是护墙EF,为保证安全,体育管理部门规定,坡面底部至少距护墙7米.请问新的设计方案能否通过,试说明理由(参考数据:3≈1.73)【分析】(1)过点C作CH⊥BG,垂足为H,根据坡度的概念求出∠CAH,根据直角三角形的性质求出AC;(2)根据坡度的概念求出BH,根据正切的定义求出AH,得到AB,结合图形求出EB,计算得到答案.【解析】(1)如图,过点C作CH⊥BG,垂足为H,∵新坡面AC的坡度为1:3,∴tan∠CAH=13=33,∴∠CAH=30°,即新坡面AC的坡角为30°,∴AC=2CH=10米;(2)新的设计方案不能通过.理由如下:∵坡面BC的坡度为1:1,∴BH=CH=5,∵tan∠CAH=33,∴AH=3CH=53,∴AB=53−5,∴AE=EB﹣AB=10﹣(53−5)=15﹣53≈6.35<7,∴新的设计方案不能通过.【变式9.1】(2022秋•高新区校级期中)如图1,居家网课学习时,小华先将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角150°,侧面示意图如图2;如图3,使用时为了散热,他在底板下垫入散热架ACO'后,电脑转到AO'B'位置,侧面示意图如图4.已知OA=OB,O'C⊥OA于点C,AO':O'C=5:3,AC=40cm.(1)求OA的长;(2)垫入散热架后,显示屏顶部B'比原来升高了多少cm?【分析】(1)设AO′=5xcm,O′C=3xcm,利用勾股定理得到AO′=4x,则4x=40,解方程可得到AO′=50cm,O′C=30cm,所以AO为50cm;(2)过B点作BH⊥AO于H点,如图,先计算出∠BOH=30°,利用30的正弦得到BH=25cm,再计算CB′=80cm,然后计算B′C′﹣BH即可.【解答】解:(1)∵AO':O'C=5:3,∴设AO′=5xcm,O′C=3xcm,∵O'C⊥OA,∴∠ACO′=90°,∵AO′=(5x)2−(3x)2=4x,∴4x=40,解得x=10,∴AO′=50cm,O′C=30cm,∴AO=AO′=50cm;答:OA的长为50cm;(2)过B点作BH⊥AO于H点,如图,∴∠AOB=150°,∴∠BOH=30°,∵BH=12OB=25cm,∵CB′=O′B′+CO′=50+30=80(cm)∴B′C′﹣BH=80﹣25=55(cm),∴显示屏的顶部B′比原来升高了55cm.【变式9.2】(2022秋•高新区期中)如图,水坝的横截面是梯形ABCD(DC∥AB),迎水坡BC的坡角α为30°,背水坡AD的坡度i为1:1.2,坝顶宽DC=2.5米,坝高5米.求:(1)坝底宽AB的长(结果保留根号);(2)在上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽0.5米,背水坡AD的坡度改为1:1.4,求横截面增加的面积.(结果保留根号)【分析】(1)作DF⊥AB于点F,根据坡度的概念求出AF,根据正切的定义求出BE,得到坝底宽AB的长;(2)作D′G⊥A′B于点G,求出CD′、A′B,再根据梯形的面积公式计算,得到答案.【解答】解:(1)作DF⊥AB,垂足为F,∵DC∥EF,DF∥CE,DF⊥AB,∴四边形DFEC为矩形,∴FE=DC=2.5,DF=CE=5,在Rt△AFD中,坡AD的坡度i为1:1.2,∴AF=1.2DF=1.2×5=6,在Rt△CEB中,tanα=CE EB,∴BE=CE tan30°=53,∴AB=AF+FE+EB=(172+53)米;(2)如图,作D′G⊥A′B于G,在Rt△A'GD′中,A′G=1.4D′G=7,∴A′A=A′G+GF﹣AF=1.5,∴梯形D′A′AD的面积=12×(0.5+1.5)×5=5,答:横截面增加的面积为5平方米.【变式9.3】(2022秋•长春期中)如图是某地铁站自动扶梯的示意图,自动扶梯AB的倾斜角(∠BAC)为30.5°,自动扶梯AB的长为17米.(1)求乘客从扶梯底端升到顶端上升的高度BC.(结果精确到0.1米)(2)如果一层楼的高度为2.8米,问这个扶梯升高的高度BC相当于几层楼高?(结果保留整数)【参考数据:sin30.5°=0.51,cos30.5°=0.86,tan30.5°=0.59】【分析】(1)根据题意和锐角三角函数可以求得BC的长即可;(2)直接利用(1)中所求,即可得出答案.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=17×0.51≈8.7(米),答:乘客从扶梯底端升到顶端上升的高度BC约为8.7米;(2)由题意可得:8.7÷2.8≈3(层),答:这个扶梯升高的高度BC相当于3层楼高.【考点10】锐角三角函数的应用:俯角仰角问题【例10】(2020•大庆)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB 的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:2≈1.414,3≈1.732).【分析】在Rt△ABM中,根据等腰直角三角形的性质求得AM,在Rt△AME中,根据正弦函数求得AE,在Rt△AEC中,根据正弦函数求得AC.【解析】∵AB⊥BD,∠HAM=45°,∴∠BAM=∠AMB=45°,∴∠AMB=∠BAM,∴AB=BM=20(米),∴在Rt△ABM中,AM=202(米),作AE⊥MC于E,∵∠KCM=75°,∠ACK=30°,∴∠ACM=45°,∠ACK=∠CAH=30°,∵∠HAM=45°,∴∠CAM=75°,∴∠AMC=180°﹣45°﹣75°=60°,∴在Rt△AME中,AM=202(米),∵sin∠AME=AE AM,∴AE=sin60°•202=32202=106(米),在Rt△AEC中,∠AEC=90°,∠ACE=45°,AE=106(米),∴sin∠ACE=AE AC,∴AC=AE sin45°=10622=203≈35(米),答:两建筑物顶点A、C之间的距离约为35米.【变式10.1】(2021秋•临泉县期末)如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC的高度.(参考数据:3≈1.732)【分析】过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,得BF=DH,在Rt△ADH中求出DH,再解直角三角形求出EF、CF的长,即可解决问题.【解答】解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°=∴CF =3EF =503=86.6(米),∴BC =BF+CF =136.6(米).答:建筑物BC 的高度约为136.6米.【变式10.2】(2022秋•蓬莱区期中)如图中是抛物线形拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处观测P 处,仰角分别为α、β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系,若水面上升1m ,水面宽为多少?【分析】过点P 作PH ⊥x 轴于点H ,设PH =3xm ,则OH =6xm ,AH =2xm ,由OA =4m ,可求出x 值,进而可得出点P 的坐标;根据点O 、P 、A 的坐标利用待定系数法,可求出抛物线的解析式,再根据二次函数图象上点的坐标特征可求出y =1时x 的值,两值做差即可得出结论.【解答】解:过点P 作PH ⊥x 轴于点H ,如图所示.设PH =3xm ,则OH =6xm ,AH =2xm ,∴OA =OH+HA =6x+2x =4,解得:x =12,∴OH =6x =3,PH =3x =32,∴点P 的坐标为(3,32).设拱桥所在抛物线的解析式为y =ax 2+bx+c ,将点O (0,0)、B (4,0)、P (3,32)代入y =ax 2+bx+c ,c =016a +4b +c =09a +3b +c =32,解得:a =−12b =2c =0,∴拱桥所在抛物线的解析式为y =−12x 2+2x .当y =−12x 2+2x =1时,x =2±2,∴2+2−(2−2)=22(m ).答:水面上升1m ,水面宽22m .【变式10.3】(2022秋•莱阳市期中)如图,某物业楼上竖立一块广告牌,高CD=3m,小亮和小伟要测量广告牌底部D到水平地面AH的距离,小亮在水平地面A处安置测倾器,测得广告牌底部D的仰角为22°,小伟在水平地面B处安置测倾器,测得广告牌顶部C的仰角为45°,两人合作量得测倾器的高度AE=BF=1.2m,测点A和测点B之间的距离AB=9m,请根据以上信息,求广告牌底部D到水平地面AH的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【分析】延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,EF=AB=9m,AE =BF=GH=1.2m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,FG=EF+FG=(9+FG)m,利用锐角三角函数即可解决问题.【解答】解:延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,∴EF=AB=9m,AE=BF=GH=1.2m,∵∠CFG=45°,∴∠FCG=45°,∴FG=CG,∴GD=CG﹣CD=(CG﹣3)m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,EG=EF+FG=(9+FG)m,∵DG=EG•tan22°,∴CG﹣3≈(9+CG)×0.40,∴CG=11m,∴DG=CG﹣3=8(m),∴DH=DG+GH=8+1.2=9.2(m).答:广告牌底部D到水平地面AH的距离为9.2m.。
备战中考数学直角三角形的边角关系的综合热点考点难点附详细答案
备战中考数学直角三角形的边角关系的综合热点考点难点附详细答案一、直角三角形的边角关系1.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.2.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 31.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 115-+,x 215--(负值,舍去),则15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=15-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=-154-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是☉O 的切线; (2)若=,且OC=4,求PA 的长和tan D 的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB ,先由等腰三角形的三线合一的性质可得:OP 是线段AB 的垂直平分线,进而可得:PA=PB ,然后证明△PAO ≌△PBO ,进而可得∠PBO=∠PAO ,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA 是⊙O 的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去). ∴点D′到BC 边的距离为cm .考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.7.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴= 在Rt CEF V 中,30ECF ∠=︒tan EF ECF CF ∴∠= 312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为()1243+【点睛】 本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.8.某条道路上通行车辆限速60千米/时,道路的AB 段为监测区,监测点P 到AB 的距离PH 为50米(如图).已知点P 在点A 的北偏东45°方向上,且在点B 的北偏西60°方向上,点B 在点A 的北偏东75°方向上,那么车辆通过AB 段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB 段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB –∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PH PAH ∠33, ∵AC ∥BD ,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD –∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
中考数学直角三角形的边角关系的综合热点考点难点及详细答案
中考数学直角三角形的边角关系的综合热点考点难点及详细答案一、直角三角形的边角关系1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin ∠BOD=24×=12,由C 、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C ⊥OA 于C ,OA=OB=24cm ,∴sin ∠CAO′=, ∴∠CAO′=30°;(2)过点B 作BD ⊥AO 交AO 的延长线于D ,∵sin ∠BOD=,∴BD=OBsin ∠BOD ,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin ∠BOD=24×=12,∵O′C ⊥OA ,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C ﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm ; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B 与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中, {OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠, ∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB ,∴AOQ DQO ∠=∠,∵AOP ∆≌ODQ ∆,∴DQO APO ∠=∠,∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.4.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG =3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3AG . 又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .5.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.6.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A =∠FCE ,∴tan ∠FCE =3. 在Rt △CEF 中,设EF =x ,CF =3x (x >0),CE =2.5,代入得(52)2=x 2+3x 2, 解得x =1.25, ∴CF =3x ≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ =∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论8.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG ⊥AC ,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC ,∴∠GEC =∠GCE =45°,∴∠BEG =∠GCF =135°,由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ),∴BG =GF ,∵G 在正方形ABCD 对角线上,∴BG =DG ,∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,∴∠CGF+∠AGB =90°,∴∠AGD+∠CGF =90°,∴∠DGF =90°,∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°,∴GH 33236,∴DG =2GH =6,∴DF 2DG =3在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.9.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4.理由见解析.3【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG=EF,∠BAD=∠EAG=∠ADC=90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC =90°,∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,∴EH =AD =BC =8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.10.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD =2AD =3米, 又∴△BOD 是等边三角形, ∴(米),∴BC =BD −CD =4.5−3=1.5(米).答:浮漂B 与河堤下端C 之间的距离为1.5米.11.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)【答案】6.58米【解析】试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解.试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=62°. ∴AE=AB •sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18米,∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.12.如图,在平面直角坐标系xOy 中,已知点A (3,0),点B (0,3O 为原点.动点C 、D 分别在直线AB 、OB 上,将△BCD 沿着CD 折叠,得△B'CD .(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD为x,则3x,在RT△ODA中应用勾股定理即可求解;(2)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为2,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA2+OD2=DA2.∴9+OD2=(33﹣OD)2.∴3∴D(03)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴BD BCBO AB=且BD=AC,∴66 33BD-=∴BD=123﹣18 ∴OD=33﹣(123﹣18)=18﹣93∵tan ∠ABO=3OB AO =, ∴∠ABC=30°,即∠BAO=60° ∵tan ∠ABO=3BD CD =, ∴CD=12﹣63∴D (12﹣63,123﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE ⊥AO∴OE=2,且AO=3∴AE=1,∵CE ⊥AO ,∠CAE=60°∴∠ACE=30°且CE ⊥AO∴AC=2,3∵BC=AB ﹣AC∴BC=6﹣2=4若点B'落在A 点右边,∵折叠∴BC=B'C=4,3CE ⊥OA∴22'13B C CE -=∴13∴B'(130)若点B'落在A 点左边,∵折叠∴BC=B'C=4,3CE ⊥OA∴22'13B C CE -=∴132∴B'(20)综上所述:B'(0),(20)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。
八年级数学上册第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系第1课时三角形中边的
2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第1课时三角形中边的关系教案(新版)沪科版的全部内容。
第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系第1课时三角形中边的关系◇教学目标◇【知识与技能】1。
认识三角形,理解三角形的三边关系;2.会对三角形按边分类。
【过程与方法】经历三角形边长的数量关系的探索过程,理解三角形的三边关系。
掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。
让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.◇教学重难点◇【教学重点】三角形三边关系的探究和归纳.【教学难点】三角形三边关系的应用。
◇教学过程◇一、情境导入看下列实物中,有你熟悉的图形吗?二、合作探究在小学数学中我们学习了有关三角形的一些初步知识,现在请观察上面的屋顶框架图,并思考以下问题:(1)你能从图中找出几个不同的三角形?这些三角形有什么共同的特点?(2)什么叫做三角形?(3)三角形的边可以怎么表示?问题1:研究三角形的三条边是否相等,有多少种可能的情况?结论:三角形中,三条边互不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形,其中相等的两边叫做腰,第三边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角;三条边都相等的三角形叫做等边三角形。
中考数学直角三角形的边角关系的综合热点考点难点及答案
中考数学直角三角形的边角关系的综合热点考点难点及答案一、直角三角形的边角关系1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BGCF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12.【解析】 【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x ==∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x ==1504333131OF =-=即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M , ∵BC 是直径∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆∴8BG MG MGCF BC == ∵MG ≤半径4=∴41882BG MG CF =≤= ∴BG CF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN ,sin ∠BCP=,∴sin ∠CAN=,∴∴AC=5, ∴AB=AC=5, 设AF=x ,则CF=5﹣x ,在Rt △ABF 中,BF 2=AB 2﹣AF 2=25﹣x 2, 在Rt △CBF 中,BF 2=BC 2﹣CF 2=2O ﹣(5﹣x )2, ∴25﹣x 2=2O ﹣(5﹣x )2, ∴x=3,∴BF 2=25﹣32=16, ∴BF=4,即点B 到AC 的距离为4. 考点:切线的判定3.如图,反比例函数() 0k y k x=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒. (1)求k 的值及点B 的坐标; (2)求tanC 的值.【答案】(1)2k =,()1,2B --;(2)2. 【解析】【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0ky k x=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出Ctan 即可.【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴A (1,2),把A (1,2)代入 ky x= 得2k =, ∵反比例函数()0ky k x=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,∴()12B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,∵90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,∴AD 22OD 1tanC tan AOD =∠===.【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.4.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是☉O 的切线; (2)若=,且OC=4,求PA 的长和tan D 的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tanPHPAH∠33,∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,∵60千米/时=503米/秒,∴时间t=503505033≈8.1(秒),即车辆通过AB段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
必考点 三角形中的边角关系、命题与证明章节涉及的16个必考点全梳理(精编Word)
专题1.3 三角形中的边角关系、命题与证明章章末重难点题型考点1 三角形的概念三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).例题1下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④【分析】①根据等腰三角形及等边三角形的定义进行解答即可;②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;③根据等腰三角形的定义进行解答;④根据三角形按角分类情况可得答案.【解析】①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.故选:C.【小结】本题主要考查了与三角形相关的知识,熟练掌握三角形的分类是解答此题的关键.变式1下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形【分析】根据钝角三角形、锐角三角形、直角三角形、等边三角形和等腰三角形之间的关系,分别进行判断,即可求出答案.【解析】A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.【小结】此题考查了三角形,此题利用等边三角形和等腰三角形的定义和性质分别进行判断.变式2如图所示,在△ABC中,∠ACB是钝角,让点C在射线BD上向右移动,则()A.△ABC将先变成直角三角形,然后再变成锐角三角形,而不会再是钝角三角形B.△ABC将变成锐角三角形,而不会再是钝角三角形C.△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形变为钝角三角形D.△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形【分析】因为BC边变大,∠A也随着变大,∠C在变小.所以此题的变化为:△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形.【解析】根据∠A的旋转变化规律可知:△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形.故选:D.【小结】解题时要注意三角形的变化:∠B不变,∠A变大,∠C在变小.变式3已知a、b、c为三个正整数,如果a+b+c=12,那么以a、b、c为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论个数为()A.1个B.2个C.3个D.4个【分析】根据a、b、c是三个正整数,且a+b+c=12,分情况讨论得出.【解析】∵a、b、c是三个正整数,且a+b+c=12,∴所有a、b、c可能出现的情况如下:①2,5,5②3,4,5,③4,4,4,∴分别是:①等腰三角形;②直角三角形;③等边三角形,∴正确结论是①②③.故选:C.【小结】本题主要考查了学生分类讨论的能力和特殊三角形的判定方法,难度适中考点2 三角形中“三线”概念辨析解决此类问题的关键是掌握三角形的角平分线,中线,线段的定义;根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上进行判断.例题2下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点【分析】根据三角形的角平分线,中线,线段的定义;根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上进行判断.【解析】A、三角形的高、中线、角平分线都是线段,故正确;B、三角形的三条中线都在三角形内部,故正确;C、锐角三角形的三条高一定交于同一点,故正确;D、三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.故选:D.【小结】本题考查对三角形的中线、角平分线、高的正确理解.变式4下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解析】A、三角形三条高至少有一条在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、三角形三条角平分线都在三角形的内部,故正确.D、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.故选:D.【小结】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.变式5如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC=2S△ABF【分析】根据三角形的角平分线、中线和高的概念判断.【解析】∵AF是△ABC的中线,∴BF=CF,A说法正确,不符合题意;∵AD是高,∴∠ADC=90°,∴∠C+∠CAD=90°,B说法正确,不符合题意;∵AE是角平分线,∴∠BAE=∠CAE,C说法错误,符合题意;∵BF=CF,∴S△ABC=2S△ABF,D说法正确,不符合题意;故选:C.【小结】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.变式6如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD 于H,下列判断,其中正确的个数是()①BG是△ABD中边AD上的中线;②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线.A.0B.1C.2D.3【分析】根据三角形的高,中线,角平分线的定义可知.【解析】①G为AD中点,所以BG是△ABD边AD上的中线,故正确;②因为∠1=∠2,所以AD是△ABC中∠BAC的角平分线,AG是△ABE中∠BAE的角平分线,故错误;③因为CF⊥AD于H,所以CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线,故正确.【小结】熟记三角形的高,中线,角平分线是解决此类问题的关键.考点3 三角形中线的应用(面积问题)解决此类问题的关键是三角形的中线将三角形分成面积相等的两部分;两个三角形的高相同时,面积的比等于它们的底边的比.例题3如图,△ABC中,点D是AB边上的中点,点E是BC边上的中点,若S△ABC=12,则图中阴影部分的面积是()A.6B.4C.3D.2【分析】根据S△ABC=12和点D是AB边上的中点,点E是BC边上的中点,即可得到△DEC的面积,从而可以解答本题.【解析】∵S△ABC=12,点D是AB边上的中点,∴S△ACD=S△BCD=6,又∵点E是BC边上的中点,∴S△BDE=S△CDE=3,即阴影部分的面积是3,故选:C.【小结】本题考查三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.变式7如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【分析】根据三角形的中线平分三角形的面积,可得△ABE、△DBE、△DCE、△AEC的面积相等,从而计算△BEC的面积,根据EF=2FC,可得结论.【解析】∵D是BC的中点,∴S△ABD=S△ADC(等底等高的三角形面积相等),∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=12S△ABC=6cm2.∵EF=2FC,∴S△BEF=23S△BCE,∴S△BEF=23S△BEC=4cm2.故选:C.【小结】此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分解答.变式8如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD =2DC,S△BGD=16,S△AGE=6,则△ABC的面积是()A.42B.48C.54D.60【分析】根据两个三角形的高相同时,面积的比等于它们的底边的比,求出S△CGD,S△CGE的大小,进而求出S△BCE的大小;然后根据三角形的中线将三角形分成面积相等的两部分,用S△BCE的面积乘以2,求出△ABC的面积即可.【解析】∵BD=2DC,∴S△CGD=12S△BGD=12×16=8;∵E是AC的中点,∴S△CGE=S△BGE=6,∴S△BCE=S△BGD+S△CGD+S△CGE=16+8+6=30∴△ABC的面积是:30×2=60.故选:D.【小结】此题主要考查了三角形的面积的求法,以及三角形的中线的特征,解答此题的关键是要明确:三角形的中线将三角形分成面积相等的两部分;两个三角形的高相同时,面积的比等于它们的底边的比.变式9如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A.3B.4C.5D.6【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解析】∵△ABC的三条中线AD、BE,CF交于点G,AG:GD=2:1,∴AE=CE,∴S△CGE=S△AGE=13S△ACF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC=12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故选:B.【小结】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.考点4 三角形中线的应用(周长问题)解决此类问题的关键是掌握三角形的中线将所在边分成两条相等的线段,利用线段之间的等量代换或方程思想即可解决周长问题.例题4如图,已知BD是△ABC中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解析】∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,【小结】本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.变式10 【变式4-1】(2019秋•旌阳区校级月考)在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多3,AB 与AC 的和为13,则AC 的长为( )A .7B .8C .9D .10【分析】根据三角形的中线的定义得到BD =DC ,根据三角形的周长公式得到AC ﹣AB =3,根据题意列出方程组,解方程组得到答案.【解析】∵AD 是BC 边上的中线,∴BD =DC ,由题意得,(AC +CD +AD )﹣(AB +BD ﹣AD )=3,整理得,AC ﹣AB =3,则{AC −AB =3AC +AB =13, 解得,{AC =8AB =5, 故选:B .【小结】本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.变式11 已知AD 是△ABC 的中线,若△ABD 与△ACD 的周长分别是14和12.△ABC 的周长是20,则AD 的长为 .【分析】根据三角形的周长公式列式计算即可得解.【解析】∵△ABD 与△ACD 的周长分别是14和12,∴AB +BC +AC +2AD =14+12=26,∵△ABC 的周长是20,∴AB +BC +AC =20,∴2AD =26﹣20=6,∴AD =3.故答案为3.【小结】本题考查了三角形的\中线和高,熟记三角形的周长公式是解题的关键.变式12 如图,在△ABC 中(AC >AB ),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60和40两部分,求AC 和AB 的长.【分析】先根据AD 是BC 边上的中线得出BD =CD ,设BD =CD =x ,AB =y ,则AC =4x ,根据题意得出方程组,求出方程组的解,再根据三角形的三边关系定理判断即可.【解析】设BD =CD =x ,AB =y ,则AC =2BC =4x ,∵BC 边上的中线AD 把△ABC 的周长分成60和40两部分,AC >AB ,∴AC +CD =60,AB +BD =40,即{4x +x =60x +y =40,解得:{x =12y =28, 当AB =28,BC =24,AC =48时,符合三角形三边关系定理,能组成三角形,所以AC =48,AB =28.【小结】本题考查了等腰三角形的性质,三角形的三边关系定理的应用,等得出方程组是解此题的关键.考点5 三角形的三边关系掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.例题5 4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是( )A .1个B .2个C .3个D .4个【分析】先写出不同的分组,再根据三角形的任意两边之和大于第三边对各组数据进行判断即可得解.【解析】任取3根可以有一下几组:①2cm ,3cm ,4cm ,能够组成三角形,②2cm ,3cm ,5cm ,∵2+3=5,∴不能组成三角形;③2cm ,4cm ,5cm ,能组成三角形,③3cm ,4cm ,5cm ,能组成三角形,∴可以搭出不同的三角形3个.【小结】本题考查了三角形的三边关系,按照一定的顺序进行分组才能做到不重不漏.变式13长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.7【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【解析】①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.【小结】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.变式14已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.【分析】根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项求解.【解析】∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.【小结】考查了三角形三边关系,绝对值的性质,整式的加减,关键是得到a+c﹣b>0,b﹣c+a>0,a﹣b ﹣c<0.变式15△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有个.【分析】结合三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”和已知条件,进行分析.【解析】根据已知条件和三角形的三边关系,得当a=8,b=7时,则c=6或5或4或3或2;当a=8,b=6时,则c=5或4或3;当a=8,b=5时,则c=4.则满足条件的三角形共有9个.故答案为:9.【小结】考查了三角形三边关系,此题要能够把已知条件和三角形的三边关系结合起来考虑.考点6 三角形的三边关系(证明题)掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.例题6已知在△ABC中,AB=AC,D在AC的延长线上.求证:BD﹣BC<AD﹣AB.【分析】由三角形的三边关系可得BD﹣BC<AD﹣AC,即可得结论.【解析】证明:∵△BCD中,BD﹣BC<CD,∴BD﹣BC<AD﹣AC,且AB=AC,∴BD﹣BC<AD﹣AB,【小结】本题考查了三角形三边关系,熟练运用三角形的三边关系可求解.变式16如图,点P是△ABC内任意一点,求证:P A+PB+PC>12AB+12BC+12AC.【分析】根据三角形的三边关系可得出结论.【解析】证明:∵P A+PB>AB,PB+PC>BC,PC+P A>AC.∴把它们相加,再除以2,得P A+PB+PC>12AB+12BC+12AC.【小结】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边是解答此题的关键.变式17如图,O是△ABC内的一点,连结OB,OC,求证:AB+AC>OB+OC.【分析】根据三角形的三边关系证得AB+AD>OB+OD,OD+CD>OC,从而得到AB+AD+CD>OB+OC,进而得到AB+AC>OB+OC.【解析】证明:如上右图,延长BO交AC于点D,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.【小结】本题考出了三角形的三边关系,解题的关键是作辅助线构造三角形.变式18观察并探求下列各问题,写出你所观察得到的结论.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC AB+AC(填“>”、“<”或“=”)(2)将(1)中点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1、P2得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.【分析】(1)根据三角形中两边之和大于第三边,即可得出结果,(2)可延长BP交AC与M,根据两边之和大于第三边,即可得出结果,(3)分别延长BP1、CP2交于M,再根据(2)中得出的BM+CM<AB+AC,可得出BP1+P1P2+P2C<BM+CM <AB+AC,即可得出结果.【解析】(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,(2)△BPC的周长<△ABC的周长.理由:如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC <AB+AC,于是得:△BPC的周长<△ABC的周长,(3)四边形BP1P2C的周长<△ABC的周长,理由:如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得结论.【小结】本题考查了比较线段的长短常常利用三角形的三边关系以及不等式的性质,通过作辅助线进行解答,难度较大.考点7 利用三角形的高和角平分线性质求角例题7如图①,AD平分∠BAC,AE⊥BC,∠B=38°,∠C=64°.(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,∠B=α,∠C=β(α<β),请用α、β的代数式表示∠DFE.【分析】(1)求出∠ADE的度数,利用∠DAE=90°﹣∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°﹣∠ADE即可求出∠DAE的度数.【解析】(1)∵∠B=38°,∠C=64°,∴∠BAC=78°,∵AD平分∠BAC,∴∠BAD=∠CAD=39°,∴∠ADE=∠B+∠BAD=77°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°﹣∠ADE=13°.(2)∵B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵AD平分∠BAC,∴∠BAD=∠CAD=90°−12(α+β),∴∠ADE=∠B+∠BAD=α+90°−12(α+β),∵AE⊥BC,∴∠AEB=90°,∴∠DFE=90°﹣∠ADE=12(β﹣α).【小结】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.变式19如图,在△ABC中,∠B<∠ACB,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当点P在线段AD上运动时,求证:∠E=12(∠ACB−∠B).【分析】(1)首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;(2)根据第(1)小题的思路即可推导这些角之间的关系.【解析】(1)解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°.∵AD平分∠BAC,∴∠DAC=30°.∴∠ADC=65°.又∵∠DPE=90°,∴∠E=25°(2)证明:∵∠B+∠BAC+∠ACB=180°,∴∠BAC=180°﹣(∠B+∠ACB).∵AD平分∠BAC,∴∠BAD=12∠BAC=90°−12(∠B+∠ACB).∴∠ADC=∠B+∠BAD=90°−12(∠ACB﹣∠B).∵PE⊥AD,∴∠DPE=90°.∴∠ADC+∠E=90°.∴∠E=90°﹣∠ADC,即∠E=12(∠ACB﹣∠B).【小结】此题考查三角形的内角和定理以及角平分线的定义.掌握三角形的内角和为180°,以及角平分线的性质是解决问题的关键.变式20如图,AD、AE分别是△ABC的高和角平分线,∠B=50°,∠ACB=80°.点F在BC的延长线上,FG⊥AE,垂足为H,FG与AB相交于点G.(1)求∠AGF的度数;(2)求∠DAE的度数.【分析】(1)根据三角形的内角和定理和角平分线的定义即可得到结论;(2)根据垂直的定义得到∠ADB=90°,根据三角形的内角定理即可得到结论.【解析】(1)∵∠B=50°,∠ACB=80°,∴∠BAC=180°﹣50°﹣80°=50°,∵AE是∠BAC的角平分线,∴∠BAE=12∠BAC=25°,∵FG⊥AE,∴∠AHG=90°,∴∠AGF=180°﹣90°﹣25°=65°;(2)∵AD⊥BC,∴∠ADB=90°,∵∠AED=∠B+∠BAE=50°+25°=75°,∴∠DAE=180°﹣∠AED﹣∠ADE=15°.【小结】本题考查了三角形的内角和定理,垂直的定义,角平分线的定义,正确的识别图形是解题的关键.变式21△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=62°,请说明∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE、∠B、∠C的数量关系;(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.【分析】(1)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC﹣∠EAC,即可得出;(2)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC﹣∠EAC,即可得出;(3)设∠ACB=α,根据角平分线的定义得到∠CAG=12∠EAC=12(90°﹣α)=45°−12α,∠BCG=12∠BCF=12(180°﹣α)=90°−12α,根据三角形的内角和即可得到结论.【解析】(1)∵∠B=40°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,∵AD是∠BAC的平分线,∴∠DAC=12∠BAC=39°,∵AE是BC边上的高,在直角△AEC中,∵∠EAC=90°﹣∠C=90°﹣62°=28°,∴∠DAE=∠DAC﹣∠EAC=39°﹣28°=11°;(2)∵∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的平分线,∴∠DAC=12∠BAC=90°−12(∠B+∠C),∵AE是BC边上的高,在直角△AEC中,∵∠EAC=90°﹣∠C,∴∠DAE=∠DAC﹣∠EAC=90°−12(∠B+∠C)﹣(90°﹣∠C)=12(∠C﹣∠B);(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°﹣α,∠BCF=180°﹣α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°﹣α)=45°−12α,∠BCG=12∠BCF=12(180°﹣α)=90°−12α,∴∠G=180°﹣∠GAC﹣∠ACG=180°﹣(45°−12α)﹣α﹣(90°−12α)=45°.【小结】本题考查的是三角形的内角和定理,三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.考点8 直角三角板中的求角度问题例题8将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解析】如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.【小结】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.变式22一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β【分析】根据四边形的内角和定理即可得到结论.【解析】如上右图,∵∠1=α,∠2=β,在四边形ABCD中,∵∠A+∠1+∠C+∠2=360°,∴α+β=360°﹣90°﹣45°=225°.故选:B.【小结】本题考查了直角三角形的性质,正确的识别图形是解题的关键.变式23如图所示,有一块直角三角板DEF(足够大),其中∠EDF=90°,把直角三角板DEF放置在锐角△ABC上,三角板DEF的两边DE、DF恰好分别经过B、C.(1)若∠A=40°,则∠ABC+∠ACB=°,∠DBC+∠DCB=°∠ABD+∠ACD=°.(2)若∠A=55°,则∠ABD+∠ACD=°.(3)请你猜想一下∠ABD+∠ACD与∠A所满足的数量关系.【分析】(1)根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数;(2)根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=130°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数;(3)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°﹣∠A.【解析】(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)在△ABC中,∵∠A=55°,∴∠ABC+∠ACB=180°﹣55°=125°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=125°﹣90°=35°,故答案为:35;(3)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A,故答案为:∠ABD+∠ACD=90°﹣∠A.【小结】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解答的关键.变式24将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.【分析】(1)根据∠BAC=90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE=∠2,从而得解;(2)根据∠ACB和∠DCE的度数列出等式求出∠ACE﹣∠BCD=30°,再结合已知条件求出∠BCD,然后根据∠ACD=∠ACB+∠BCD代入数据计算即可得解.【解析】(1)∵∠BAC=90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.【小结】本题考查了三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.考点9 三角形的内角和及外角的性质(双角平分线)例题9某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=°.【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解析】(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的性质),∴∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠ECD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论∠BQC=90°−12∠A.∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠EQB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.【小结】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.变式25阅读下面的材料,并解决问题.(1)已知在△ABC中,∠A=60°,图1﹣3的△ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.如图1,∠O=;如图2,∠O=;如图3,∠O=;如图4,∠ABC,∠ACB的三等分线交于点O1,O2,连接O1O2,则∠BO2O1=.(2)如图5,点O是△ABC两条内角平分线的交点,求证:∠O=90°+12∠A.(3)如图6,△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1,O2,若∠1=115°,∠2=135°,求∠A的度数.【分析】(1)由∠A的度数,在△ABC中,可得∠ABC与∠ACB的和,又BO、CO是内角平分线或外角平分线,利用角平分线的定义及三角形内角和定理、三角形的外角性质进而可求得答案;(2)由∠A的度数,在△ABC中,可得∠ABC与∠ACB的和,又BO、CO是角平分线,利用角平分线的定义及三角形内角和定理可证得结论;(3)先分别求出∠ABC与∠ACB的度数,即可求得∠A的度数.【解析】解;(1)如图1,∵BO平分∠ABC,CO平分∠ACB∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠OBC+∠OCB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲练:二角形边角关系及命题与证
明重难点问题
※题型讲练
【例1】设厶ABC 的三边a , b ,c 的长度均为自然数, a
+ b + C =13 ,求以a , b , c 为三边的三角形共有多少
个
A B
【例5】已在 △ ABC 中,AB=AC, AC 上中线BD 把△ ABC 周长分别24和18两部分,求△ ABC 的三边长.
【例2】如图,已知P 是厶ABC 内一点,连结AP, PB,PC,
在某个区域时,连接 PA PB,得到/ PBD / PAC 两个角.
【例 3】在厶ABC 中,/ A <Z B <Z C, 2/ C=5/ A,求/B
的取值范围.
(1) 如图(1),当点P 落在第②区域时,求/ PAC /PBD 度数; (2) ____________________________________________ 如
图(2),当点P 落在第③区域时,/PAG / PBD= _______________ 度
(3)
如图(3),当点P 落在第①区域时,直接写出/ PAC /PBD
【例4】△ ABC 中,AD BE 、CF 是角平分线,交点是点 G,
GHL BC 。
求证:/ BGD /CGH.
※课后练习
【例6】如图,已知:AB
A
【例9】如图(1)直线GC/HD
直线把EF 右侧的平面分成①、②、 上各点不属于任何区域) EF 交 CG HD 于 A B ,三条
③三个区域,
(规定:直线
.将一个透明的直角三角尺放置在该图|Q 求证:(1)PA+PB+PC
(2) PA+PB+PC >
中,使得30。
角(即/ P )的两边分别经过点
A
之间的等量关系.
IS C2) £ (3}
1 •若三角形的三个外角的比是
2: 3: 4,则这个三角形
2 •若 ABC 的三个内角满足
三角形是()
A .钝角三角形 B
C .锐角三角形
D 3 A>5 B , 3 C<2 B ,则
•直角三角形
•都有可能
分别落在 C' , D'上,EC'交AD 于点G 已知2 EFG=58 , 那么2 BEG=.
5 •一条线段的长为
a ,若要使3a —l , 4a +1, 12-a 这三 9 •如图所示,已知在厶ABC 中,AB=AC=8, P 是BC 上任 意一点,PDL AB 于点D, PEI AC 于点E.若厶ABC 的面积
为14,问:PD+PE 的值是否确定若能确定,是 能确定,请说明理由
条线段组成一个三角形,求
a 的取值范围
10.如图,已知ADLBC FGLBC 垂足分别为 D G 且2 1=22,
的最大内角的度数是 8 .如图△ ABC 中,2 BAD 2 CBE 2 ACF, 2 ABC=50 ,
3 •如图 5, 11 //12 , 21=120°,
22=100°,则/ 3=
7 •周长为30,各边长互不相等且都是整数的三角形有多少个11.已知AB//CD直线I与AB CD分别交于点E、F,点P是
直线CD上的一个动点(点P不与F重合),点M在EF上,且
/FMPMFPM
(1)如图1,当点P在射线PC上移动时,若/ AEF=60,则ZFPM= ;假设/ AEF=a 贝U/ FPM=
(2)如图2,当点P在射线FD上移动时,猜想/ FPM与/AEF
有怎样的数量关系请你说明理由.
6 .如图,在△ ABC中,2 ABC= 2 ACB 2 A = 40 ° , P 是厶ABC内一点,且2 1 = 2 2 •则2 BPG ________
猜想2 BDE与2C有怎样的大小关系试说明理由.。