spss主成分分析结果汇报

合集下载

SPSS超详细教程:主成分分析

SPSS超详细教程:主成分分析

SPSS超详细教程:主成分分析1、问题与数据某公司经理拟招聘⼀名员⼯,要求其具有较⾼的⼯作积极性、⾃主性、热情和责任感。

为此,该经理专门设计了⼀个测试问卷,配有25项相关问题,拟从315位应聘者中寻找出最合适的候选⼈。

在这25项相关问题中,Qu3-Qu8、Qu12、Qu13测量的是⼯作积极性,Qu2、Qu14-Qu19测量的是⼯作⾃主性,Qu20-Qu25测量的是⼯作热情,Qu1、Qu9-Qu11测量的是⼯作责任感,每⼀个问题都有⾮常同意“Agree”、同意 “Agree Some”、不确定“Undecided”、不同意 “Disagree Some”和⾮常不同意 “Disagree”五个等级。

该经理想根据这25项问题判断应聘者在这四个⽅⾯的能⼒,现收集了应聘者的问卷信息,经汇总整理后部分数据如下:2、对问题的分析研究者拟将多个变量归纳为某⼏项信息进⾏分析,即降低数据结果的维度。

针对这种情况,我们可以进⾏主成分提取,但需要先满⾜2项假设:假设1:观测变量是连续变量或有序分类变量,如本研究中的测量变量都是有序分类变量。

假设2:变量之间存在线性相关关系。

经分析,本研究数据符合假设1,那么应该如何检验假设2,并进⾏主成分提取呢?3、SPSS操作(1) 在主页⾯点击Analyze→Dimension Reduction →Factor弹出下图(2) 将变量Qu1-Qu25放⼊Variables栏(3) 点击Descriptive弹出下图(4) 点选Statistics栏的Initial solution选项,并点选Correlation Matrix栏的Coefficients、KMO andBartlett’s test of sphericity、Reproduced和Anti_image选项(5) 点击Continue→Extraction(6) 点击Display栏中的Scree plot选项(7) 点击Continue→Rotation(8) 点选Method栏的Varimax选项,并点选Display栏的Rotated solution和Loading plot(s)选项(9) 点击Continue→Scores(10) 点击Save as variables,激活Method栏后点击Regression选项(11) 点击Continue→Options(12) 点击 Sorted by size和Suppress small coefficients选项,在Absolute value below栏内输⼊“.3”(13) 点击Continue→OK假设检验假设2:线性相关关系经上述操作,SPSS输出相关矩阵表如下:在变量⽐较多的时候,各变量之间的相关矩阵表会⾮常⼤。

SPSS数据的主成分分析报告

SPSS数据的主成分分析报告

2019/9/10
4
zf
多个指标的问题:
1、指标与指标可能存在相关关系 信息重叠,分析偏误
2、指标太多,增加问题的复杂性和分析难度
如何避免?
2019/9/10
5
zf
主成分分析的基本思想
一项十分著名的工作是美国的统计学家斯通(stone)在 1947年关于国民经济的研究。他曾利用美国1929一1938 年各年的数据,得到了17个反映国民收入与支出的变量 要素,例如雇主补贴、消费资料和生产资料、纯公共支 出、净增库存、股息、利息外贸平衡等等。
运用主成分得分系数矩阵解释主成分:
王冬《我国外汇储备增长因素主成分分析》,《北京工商大学学报》, 2006年4期。
田波平等《主成分分析在中国上市公司综合评价中的作用》,《数学 的实践与认识》,2004年4期
2019/9/10
25
zf
主成分解释的案例分析
基于相关系数矩阵的主成分分析。对美国纽约上市的有关化学产业的三支股票 (Allied Chemical, du Pont, Union Carbide)和石油产业的2支股票(Exxon and Texaco )做了100周的收益率调查(1975年1月-1976年10月)。
F1
F2
F3
i
i
t
F1
1
F201源自F3001
i 0.995 -0.041 0.057 l
Δi -0.056 0.948 -0.124 -0.102 l
t -0.369 -0.282 -0.836 -0.414 -0.112 1
2019/9/10
7
zf
主成分分析:将原来具有相关关系的多个指标简化为少数几个 新的综合指标的多元统计方法。

SPSS进行主成分分析

SPSS进行主成分分析

欢呼词语的近义词有哪些欢呼词语的意思是什么呢?如何使用欢呼词语造句呢?关于欢呼词语的近义词有哪些呢?小编给大家收集了关于表达欢呼词语的解释呢,希望能帮助大家,欢迎大家学习参考!欢呼词语解释欢呼的近义词:欢庆、呐喊、呼喊、欢叫、欢乐、欢畅、喝彩基本信息拼音:huānhū释义:形容一种欢乐而振臂高呼的激情场面。

基本解释[hail;cheer;acclaim;applaud] 欢乐地喊叫他作为英雄而受到欢呼这场战争尚未正式结束,民众已在欢呼引证解释1. 欢乐地喊叫。

《东观汉记·王霸传》:“贼众欢呼,雨射营中。

” 唐元稹《辨日旁瑞气状》:“其日三将同升,万姓欢呼,四方来贺。

” 元萨都剌《将至太平驿》诗:“到驿欢呼如到家,明日舟行复如此。

” 明冯梦龙《东周列国志》第七十一回:“(齐)景公大悦,于是解衣卸冠,与梁邱据欢呼于丝竹之间,鸡鸣而返。

”毛泽东《中国人民站起来了》:“我们的革命已经获得全世界广大人民的同情和欢呼,我们的朋友遍于全世界。

”2. 懽呼:欢乐地呼喊。

唐薛用弱《集异记·李钦瑶》:“举军懽呼,声振山谷。

” 明张居正《贺瑞雪表》五:“懽呼敢效乎虫鸣,踊跃岂殊於兽舞!” 康有为《将至桂林望诸石峰》诗:“昔游燕吴读园记,每见叠石辄懽呼。

”关于欢呼造句1, 在荣誉的桂冠下面,在欢呼声的背后,便是孤独,我们的孤独!2, 收到大学录取通知书,她立刻欢呼雀跃起来。

3, 首先是50米跑,运动员们都摩拳擦脚,准备一举夺下桂冠。

随着一声令下,运动员像脱了弦的箭似的飞了出去,同学们不断为自己的班级喝彩加油打气。

观众席上欢呼声拍掌声此起彼伏,久久不断。

4, 最后一个敌人在血泊里倒下,战争胜利了,满目疮痍的战场上响起了震耳欲聋的欢呼声,只是那命悬一线的惊心动魄始终萦绕在每个人的心头。

5, 每个人都有自己的梦,都有自己的偶像,都有自己的爱好,都有自己的个性……生命中有很多事情,可能没人在乎,但说不定会有谁为你而欢呼。

spss进行主成分分析及得分分析

spss进行主成分分析及得分分析

s p s s进行主成分分析及得分分析This manuscript was revised by the office on December 22, 2012spss进行主成分分析及得分分析1将数据录入spss1. 2数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量:2.3进行主成分分析:选择分析→降维→因子分析,3.4设置描述性,抽取,得分和选项:4.5查看主成分分析和分析:相关矩阵表明,各项指标之间具有强相关性。

比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。

这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。

(下表非完整呈现)5.6由 TotalVarianceExplained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。

这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。

主成分,分别记作F1、F2。

6.7指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。

第一主成分集中反映了总体的经济总量。

X11在第二主成分上有较高载荷,相关性强。

第二主成分反映了人均的经济量水平。

但是要注意:这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。

7.8成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。

故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX 18+0.32ZX19+0.21ZX110+0.15ZX111F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10ZX29+0.47ZX210+0.78ZX2118.9主成分的得分是相应的因子得分乘以相应的方差的算术平方根。

统计分析软件应用SPSS-主成分分析实验报告

统计分析软件应用SPSS-主成分分析实验报告

本科学生综合性、设计性实验报告实验课程名称统计分析软件应用开课学期2010至2011学年下学期上课时间2011 年4 月25 日辽宁师范大学教务处编印、实验方案、实验目的:掌握主成分分析的思想和具体步骤。

掌握SPSS实现主成分分析的具体操作,并对处理结果做出解释。

5、参考文献:[1]卢纹岱.SPSS for Window銃计分析[M].电子工程出版社,2006[2]郭显光.如何用SPS歎件进行主成分分析[J].统计与信息论坛,1998, (2)[3]何晓群.现代统计分析方法与应用[M].中国人民大学出版社,1998[4]余建英、何旭宏.数据统计分析与SPSS^用[M].人民邮电出版社,2003、实验报告1、 实验目的、设备与材料、理论依据、实验方法步骤见实验设计方案2、 实验现象、数据及结果表1描述性统计量表表2主成分因子荷载矩阵表表3相关系数矩阵表表4公因子方差表Descriptive Statistics图1碎石图Component U 刨乡至拜占,3 GQmponenls extrudedCommunalitiesExtraction Method: Principal Component Analysis.表总方差分解表Total Variance ExplainedCompoiieint initial EigenvaluesExtraction Sums of Squared Loadings Tota J cf Variance Cumulabv? % Total % of '/a™nee Cumulative %1 3&14 48.929 +£.929 3.914 4S929 48.92921 312 23.BSS 723271.912 23B96 72 S2? 3■1.430 17.9911.43917 曲■!&G.S1B4 S79 7.335 SB.'353 5,1441,797 9^.3506.012150 100.000 76 13E-Q13 7.66E-017 1Q0JO0S-4.2E-016-4.25E-015IQO.OOQExtraction Method: Prkicipal Component AnalysisInitial Extraction赔付率1.000 .964 净收入与总收入之比 1.000 .993 投资收益率 1.000 .923 再保险率 1.000 .968 总资产报酬率 1.000 .919 两年保费收入收益率 1.000 .659 保费收入变化率 1.000 .961 流动性比率 1.000.879Plolb1= *X1+*X2+**X4+*X5+***X8b2=*X1+**X3+***X6+*X7+*X8 b3=*X1+*X2+*X3+***X6+**X8表7Y1= *x1+*x2+**x4+*x5+***x8 Y2=*xi+*x2- **x4+*x5+***x8 Y3=*x1+*x2+*x3+*x4+**x6+**x8加权:输出结果,并从高到低进行排序:表81:人保2:平安3:太平洋4:大众5:华泰6:永安7:华安 Z 主成分综合得分Num 1 Z 主成分综合得分 | Num华泰1:人保可以如上所述计算主成分得分,还可以通过综合评价函数计算综合得分综合评价函数:Z=%*Y1+%*Y2+%*Y34、结论:表8中,综合得分出现负值,这只表明该保险公司的综合水平处于平均水平之下。

SPSS进行主成分分析报告报告材料地步骤(图文)

SPSS进行主成分分析报告报告材料地步骤(图文)

主成分分析的操作过程原始数据如下(部分)调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框:其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。

①KMO和Bartlett球形检验结果:KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P 值为0.000<0.05,亦说明数据适合做因子分析。

②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。

本表在主成分分析中用处不大,此处列出来仅供参考。

③总方差分解表如下表。

由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。

④因子截荷矩阵如下:根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式:λiiiAU=故可以由这二者通过计算变量来求得主成分载荷矩阵U 。

新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示:计算变量(Transform-Compute Variables)的公式分别如下二张图所示:计算变量得到的两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵):所以可以得到两个主成分Y1和Y2的表达式如下:Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6由上面两个表达式,可以通过计算变量来得到Y1、Y2的值。

主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。

本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。

二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。

这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。

主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。

(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。

公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。

因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。

三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。

数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。

四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。

2、选择“分析”>“降维”>“主成分分析”。

3、将需要分析的变量选入“变量”框。

4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。

5、点击“确定”,运行主成分分析。

(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。

2、选入变量。

3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。

4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。

SPSS进行主成分分析报告

SPSS进行主成分分析报告

实验七、利用SPSS进行主成分分析【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径图3 因子分析选项框第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。

在本例中,全部8个变量都要用上,故全部调入(图4)。

因无特殊需要,故不必理会“Value ”栏。

下面逐项设置。

图4 将变量移到变量栏以后⒈设置Descriptives描述选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框在Statistics 统计 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。

其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

设置完成以后,单击Continue 按钮完成设置(图5)。

⒉ 设置Extraction 选项。

打开Extraction 对话框(图6)。

因子提取方法主要有7种,在Method 栏中可以看到,系统默认的提取方法是主成分(Principal Components ),因此对此栏不作变动,就是认可了主成分分析方法。

如何利用SPSS进行主成分分析

如何利用SPSS进行主成分分析

利用SPSS进行主成分分析【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据⒋其它。

图8 主成分分析的结果第四步,结果解读。

在因子分析结果(Output )中,首先给出的Descriptive Statistics ,第一列Mean 对应的变量的算术平均值,计算公式为∑==ni ij j x n x 11第二列Std. Deviation 对应的是样本标准差,计算公式为2/112])(11[∑=--=ni j ij j x x n σ 第三列Analysis N 对应是样本数目。

这一组数据在分析过程中可作参考。

Descriptive Statistics1921.0931474.80603301745.933861.6419330511.5083402.88548305457.6331310.2180530666.1400459.9669930117.2867 2.025*******.9067 1.8980830862.9980584.5872630国内生产居民消费固定资产职工工资货物周转消费价格商品零售工业产值Mean Std. Deviation Analysis N接下来是Correlation Matrix(相关系数矩阵),一般而言,相关系数高的变量,大多会进入同一个主成分,但不尽然,除了相关系数外,决定变量在主成分中分布地位的因素还有数据的结构。

相关系数矩阵对主成分分析具有参考价值,毕竟主成分分析是从计算相关系数矩阵的特征根开始的。

相关系数阵下面的Determinant=1.133E-0.4是相关矩阵的行列式值,根据关系式0)det(=-R I λ可知,det(λI )=det(R ),从而Determinant=1.133E-0.4=λ1*λ2*λ3*λ4*λ5*λ6*λ7*λ8。

这一点在后面将会得到验证。

在Communalities(公因子方差)中,给出了因子载荷阵的初始公因子方差(Initial )和提取公因子方差(Extraction ),后面将会看到它们的含义。

基于SPSS下主成分分析中若干问题的总结

基于SPSS下主成分分析中若干问题的总结
可见前三个 主成分 能够较好 的解 释原始变量 。
住, X 。: 杂项 商 品和服 务 。
S P S S操作 步 骤 如 下 : ①进入 S P S S软 件 , 打
开数据; ② 依次 点选 分 析 一 降 维一 因 子 分 析进 入
对话框, 此 时样 本 的变量 均 已显 示在 左 边列 表 中 ,
Vo1 . 2 6 No . 2
2 O13

大 学 生 园地 ・
基于 S P S S下 主 成 分 分 析 中若 干 问题 的 总结
俞 文 强 朱 春 华
( 南京审计学院 数学与统计学院 , 南京 2 1 1 8 1 5 )
摘 要: 本 文基 于 S P S S软 件 进 行 主 成 分 分析 时 , 从 样 本 相 关 矩 阵 出发 , 利 用 得 到 的 因 子 栽 荷

, 磅 , …

t p 。为相应特 征值 的单位正 交特 征 向量 , 则第 i 主
= 1 菩 一 L . . . . . 成份; 分 析选 项默 认 为相关 性矩 阵 ; 输 出选 项默 认
为旋转 的 因子解 ; 抽 取选项 默认 为基 于特 征值 ( 特
成分的表达式为多 一 一 一 X , 其中z 是各分量
标 准 化 的 随 机 向 量, 标准化 规则 为 X 一
征值 大于 1 ) ; 单击继 续; ④完 成 上述操 作 后 , 单 击
确定 , 得到数据表 1 。
表 1 总 方 差 解 释 表
I n i t i a l Ei g “ l “ 。 。 。 f s qu a r e d L。 a d i n g s o f Cu mu l a d v e T o t a l

spss主成分分析报告

spss主成分分析报告

spss主成分分析报告目录spss主成分分析报告 (1)引言 (2)研究背景 (2)研究目的 (2)研究意义 (3)主成分分析的基本概念 (4)主成分分析的定义 (4)主成分分析的原理 (5)主成分分析的应用领域 (6)数据收集与准备 (7)数据收集方法 (7)数据预处理 (8)数据清洗 (9)主成分分析的步骤 (9)因子提取 (9)因子旋转 (10)因子解释 (11)SPSS软件在主成分分析中的应用 (12)SPSS软件的介绍 (12)数据导入与处理 (13)主成分分析的操作步骤 (14)主成分分析结果的解读 (15)因子载荷矩阵的解读 (15)方差解释率的解读 (16)因子得分的解读 (17)主成分分析的结果验证与评价 (18)因子可靠性分析 (18)因子有效性分析 (19)结果的稳定性分析 (19)主成分分析的局限性与改进 (20)主成分分析的局限性 (20)主成分分析的改进方法 (21)结论 (22)研究总结 (22)研究展望 (23)引言研究背景主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,广泛应用于各个领域的研究中。

它通过将原始数据转换为一组新的无关变量,即主成分,来揭示数据中的潜在结构和模式。

主成分分析不仅可以帮助我们降低数据的维度,减少冗余信息,还可以提取出数据中的主要特征,帮助我们更好地理解和解释数据。

在当今信息爆炸的时代,数据的获取和处理变得越来越重要。

各个领域的研究者和决策者需要从大量的数据中提取有用的信息,以支持决策和研究。

然而,原始数据往往包含大量的冗余信息和噪声,使得数据分析变得困难和复杂。

主成分分析作为一种有效的数据降维方法,可以帮助我们从复杂的数据中提取出关键信息,简化数据分析的过程。

主成分分析最早由卡尔·皮尔逊(Karl Pearson)于1901年提出,并在之后的几十年中得到了广泛的研究和应用。

SPSS进行主成分分析报告

SPSS进行主成分分析报告

实验七、利用SPSS进行主成分分析【例子】以全国31个省市得8项经济指标为例,进行主成分分析.第一步:录入或调入数据(图1)。

图1原始数据(未经标准化)第二步:打开“因子分析”对话框。

沿着主菜单得“Analyze→Data Reduction→Factor”得路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框得路径图3因子分析选项框第三步:选项设置。

首先,在源变量框中选中需要进行分析得变量,点击右边得箭头符号,将需要得变量调入变量(Variables)栏中(图3)。

在本例中,全部8个变量都要用上,故全部调入(图4).因无特殊需要,故不必理会“Value”栏。

下面逐项设置。

图4 将变量移到变量栏以后⒈设置Descriptives描述选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5).图5描述选项框在Statistics 统计栏中选中Univariate descriptives复选项,则输出结果中将会给出原始数据得抽样均值、方差与样本数目(这一栏结果可供检验参考);选中Initial solution复选项,则会给出主成分载荷得公因子方差(这一栏数据分析时有用)。

在CorrelationMatrix栏中,选中Coefficients复选项,则会给出原始变量得相关系数矩阵(分析时可参考);选中Determinant复选项,则会给出相关系数矩阵得行列式,如果希望在Excel中对某些计算过程进行了解,可选此项,否则用途不大。

其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

设置完成以后,单击Continue按钮完成设置(图5)。

⒉设置Extraction选项。

打开Extraction对话框(图6).因子提取方法主要有7种,在Method栏中可以瞧到,系统默认得提取方法就是主成分(Principal ponents),因此对此栏不作变动,就就是认可了主成分分析方法。

主成分分析、因子分析实验报告 SPSS

主成分分析、因子分析实验报告  SPSS

一、实验目的及要求:1、目的用SPSS软件实现主成分分析、因子分析及其应用。

2、内容及要求用SPSS对2009年我国88个房地产上市公司做因子分析,并做出相关解释。

二、仪器用具:三、实验方法与步骤:准备工作:把实验所用数据从Word文档复制到Excel,并进一步导入到SPSS 数据文件中,以备后续分析。

四、实验结果与数据处理:在因子分析的SPSS操作中所用到的部分选项的设置如下面四个图所示,其余为软件默认的选项,因此不再列示,具体的分析如这些表之后所示。

图一图二图三图四分析结果:由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。

同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。

表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。

第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。

事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。

可以看到,总资产报酬率、成交量、流通市值、总市值的绝大部分信息可被因子解释,这些变量的信息丢失较少。

但毛利率这一变量的信息丢失相当严重(近70%),净资产收益率、应收应付比率两个变量的信息丢失较为严重(近40%)。

因此本次因子提取的总体效果并不理想。

表3展示了特征根及累积贡献率情况,按照特征根大于1的原则,选入了4个公共因子,其累积方差贡献率为72.343%,同时也可以看出,因子旋转后,累计方差比并没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使各因子更易于解释。

SPSS软件进行主成分分析资料报告地指导应用例子

SPSS软件进行主成分分析资料报告地指导应用例子

SPSS软件进行主成分分析的应用例子2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下:第一,将EXCEL中的原始数据导入到SPSS软件中;【1】“分析”|“描述统计”|“描述”。

【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。

【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。

数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。

所的结论:标准化后的所有指标数据。

注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。

factor过程对数据进行因子分析(指标之间的相关性判定略)。

【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框;【3】设置“抽取”,勾选“碎石图”复选框;【4】设置“旋转”,勾选“最大方差法”复选框;【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框;【6】查看分析结果。

【1】将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数标变量”文本框中输入“F1”,然后在数字表达式中输入“V1/SQR(λ1)”[注:λ1=1.897], 即可得到特征向量F1;【3】然后利用“转换”|“计算变量”, 打开“计算变量”对话框,在“目标变量”文本框中输入“F2”,然后在数字表达式中输入“V2/SQR(λ2)”[注:λ1=1.550], 即可得到特征向量F2;【4】最后得到特征向量矩阵(主成分表达式的系数)。

SPSS数据的主成分分析报告

SPSS数据的主成分分析报告

SPSS数据的主成分分析报告一、数据来源与背景本次分析所使用的数据来源于一项关于具体研究领域的调查。

该调查旨在探究研究目的,共收集了具体数量个样本,每个样本包含了列举主要变量等多个变量。

这些变量反映了研究对象在不同方面的特征和表现。

二、主成分分析的原理主成分分析的基本思想是将多个相关的变量转化为少数几个不相关的综合指标,即主成分。

这些主成分能够尽可能多地保留原始变量的信息,同时彼此之间相互独立。

通过这种方式,可以实现数据的降维,简化数据分析的复杂度,并突出数据的主要特征。

在数学上,主成分是通过对原始变量的线性组合得到的。

具体来说,假设我们有变量数量个原始变量X1, X2,, Xp,主成分Y1, Y2,, Yk(k <= p)可以表示为:Y1 = a11X1 + a12X2 ++ a1pXpY2 = a21X1 + a22X2 ++ a2pXpYk = ak1X1 + ak2X2 ++ akpXp其中,系数aij是通过对原始变量的协方差矩阵或相关矩阵进行特征值分解得到的。

三、SPSS 操作步骤1、打开 SPSS 软件,导入数据文件。

2、选择“分析” “降维” “因子分析”。

3、将需要进行主成分分析的变量选入“变量”框中。

4、在“描述”选项中,选择“系数”和“KMO 和巴特利特球形度检验”。

5、在“提取”选项中,选择“基于特征值”,并设定提取主成分的标准(通常为特征值大于 1)。

6、在“旋转”选项中,选择“最大方差法”。

7、点击“确定”,运行主成分分析。

四、结果解读1、 KMO 和巴特利特球形度检验KMO 检验用于评估变量之间的偏相关性,取值范围在0 到1 之间。

一般认为,KMO 值大于 06 时,数据适合进行主成分分析。

巴特利特球形度检验的原假设是变量之间不相关,显著的检验结果(p 值小于005)拒绝原假设,表明变量之间存在相关性,适合进行主成分分析。

本次分析中,KMO 值为具体数值,巴特利特球形度检验的 p 值小于 005,说明数据适合进行主成分分析。

《SPSS数据分析教程》——主成分分析

《SPSS数据分析教程》——主成分分析

《SPSS数据分析教程》——主成分分析主成分分析的原理是基于多元统计中的线性代数知识。

假设我们有一个包含p个变量的数据集,我们的目标是找到一组新的变量(即主成分),使得它们能够更好地解释原始数据的方差。

具体来说,主成分是原始变量的线性组合,通过计算协方差矩阵的特征值和特征向量来确定。

特征值表示方差的大小,特征向量表示主成分的方向。

主成分分析的步骤如下:1.数据准备:收集并导入数据到SPSS软件中,确保数据的格式正确,并删除缺失值。

2.变量标准化:主成分分析基于变量之间的协方差矩阵,为了消除不同变量之间的量纲差异,需要对数据进行标准化处理。

选择“数据”菜单下的“标准化”选项,在弹出的对话框中选择需要标准化的变量,并指定标准化的方法。

3.因子分析:选择“分析”菜单下的“降维”选项,再选择“主成分”。

在弹出的对话框中,将原始变量移入右侧的“因子”框中。

可以选择是否计算主成分得分和旋转主成分。

得分可以用于后续的回归分析或聚类分析,旋转可以使主成分更具解释性和可解释性。

4.结果解释:主成分分析后,SPSS会显示特征值和特征向量的汇总表。

特征值表示主成分解释的方差比例,特征向量表示主成分的权重。

通常,我们选择特征值大于1的主成分,因为它们能够解释原始数据的较大比例的方差。

通过观察特征向量,可以解释主成分的意义,比如一些主成分与一些变量之间的相关性。

5.结果可视化:为了更好地理解主成分分析的结果,可以使用散点图或其他图表进行可视化。

选择“图表”菜单下的“散点图”选项,将主成分得分画在散点图上,可以观察主成分之间的相关性和数据的集中程度。

上述是主成分分析的基本步骤和SPSS操作流程。

通过主成分分析,我们可以将复杂的高维数据转化为一组简单的主成分,方便我们对数据进行分析和解释。

同时,主成分分析也可以作为其他数据分析方法的前期处理步骤,如聚类分析、回归分析等。

SPSS进行主成分分析报告地步骤(图文)

SPSS进行主成分分析报告地步骤(图文)

主成分分析の操作過程原始數據如下(部分)調用因子分析模塊(Analyze―Dimension Reduction―Factor),將需要參與分析の各個原始變量放入變量框,如下圖所示:單擊Descriptives按鈕,打開Descriptives次對話框,勾選KMO and Bartlett’s test of sphericity選項(Initial solution選項為系統默認勾選の,保持默認即可),如下圖所示,然後點擊Continue按鈕,回到主對話框:其他の次對話框都保持不變(此時在Extract次對話框中,SPSS已經默認將提取公因子の方法設置為主成分分析法),在主對話框中點OK按鈕,執行因子分析,得到の主要結果如下面幾張表。

①KMO和Bartlett球形檢驗結果:KMO為0.635>0.6,說明數據適合做因子分析;Bartlett球形檢驗の顯著性P值為0.000<0.05,亦說明數據適合做因子分析。

②公因子方差表,其展示了變量の共同度,Extraction下面各個共同度の值都大於0.5,說明提取の主成分對於原始變量の解釋程度比較高。

本表在主成分分析中用處不大,此處列出來僅供參考。

③總方差分解表如下表。

由下表可以看出,提取了特征值大於1の兩個主成分,兩個主成分の方差貢獻率分別是55.449%和29.771%,累積方差貢獻率是85.220%;兩個特征值分別是 3.327和1.786。

④因子截荷矩陣如下:根據數理統計の相關知識,主成分分析の變換矩陣亦即主成分載荷矩陣U 與因子載荷矩陣A以及特征值λの數學關系如下面這個公式:ii i A U 故可以由這二者通過計算變量來求得主成分載荷矩陣U 。

新建一個SPSS 數據文件,將因子載荷矩陣中の各個載荷值複制進去,如下圖所示:計算變量(Transform-Compute Variables )の公式分別如下二張圖所示:計算變量得到の兩個特征向量U1和U2如下圖所示(U1和U2合起來就是主成分載荷矩陣):所以可以得到兩個主成分Y1和Y2の表達式如下:Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6由上面兩個表達式,可以通過計算變量來得到Y1、Y2の值。

SPSS对主成分回归实验报告

SPSS对主成分回归实验报告

《多元统计分析分析》实验报告学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。

选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。

最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:表1模型汇总b“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准文档
实验目的:原始数据中每一所高校具有20个相关性很高的变量,利用主成分分析法用较少的变量去解释原来资料中的大部分变异,将手中的众多变量转化成彼此相互独立或不相关的个数较少的变量,即所谓主成分,并用以解释资料的综合性指标,其实质的目的是降维
原始数据截屏:
操作方法:
1.描述性统计
SPSS在调用因子分析过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,然后后期的计算需得到标准化数据,则需调用“描述”过程进行计算,为了看到标准化数据,所以采用描述性统计下的描述操作获得标准化后的变量数据
标准化数据:
文案大全
因子分析操作过程:
选取变量:
X1:科研经费得分
X2:国家人文社科重点研究基地得分
X3:院士总数得分
X4:生均图书得分
X5:研究中心数得分
X6:国家重点实验室得分
X7:生均教学科研仪器设备得分X8:生均教育事业经费得分
X9:精品课程得分
X10:优秀博士生论文总分
X11:人才得分
X12:二级学科建设得分
X13:生均固定资产得分
X14:科研论文得分
X15:博导及相关合计得分
X16:教师中博士学位比重得分X17:一级学科得分
X18:高级职称比重得分
X19:师资总分
X20:SCI数量
这里分析采用相关系数矩阵,输出选择为未旋转的因子解,并选择碎石图,抽取过程选择基于特征值(特征值大于1),最大收敛迭代次数:25,点击确定。

原数据中有较多的缺失值,选择按列表排除个案,点击继续。

分析结果:
KMO越接近1,说明变量之间的相关性越强,原有变量适合做因子分析;Bartlett的球度检验值越小于显著性水平0.05,越说明变量间存在相关关系。

本数据中KMO值为0.736,sig.值为0,符合因子分析条件,可进行因子分析,并进一步进行主成分分析
累计贡献率79.119%<80%,由反映象相关矩阵中我们可以看出(如下图所示)
反映象相关矩阵中对角线上的数值应>0.5,根据次标准,数据显示生均图书得分变量不适合做因子分析,所以删去,重新做因子分析。

去除生均图书得分变量之后的因子分析结果:
累计百分比为81.466%>80%,且特征值均大于1
结论:
初始特征根:λ1=6.901,,λ2=4.846,λ3=3.732
主成分贡献率:r1=36.32%,r2=25.506%,r3=19.640%
碎石图
旋转之后的主成分载荷矩阵,可以看出:SCI数量,国家重点实验室得分,研究中心数得分,研究中心数得分,科研经费得分,二级学科建设得分,科研论文得分,优秀博士生论文得分,一级学科得分,精品课程得分与主成分1密切相关,可将其总结归纳为软实力与资源指标;师资总分,博导及相关合计得分,人才得分,院士总数得分,高级职称比重得分,教师中博士学位比重得分与主成分2密切相关,可将其归纳总结为师资结构指标;生均教学科研仪器设备得分,生均教育事业经费得分,生均固定资产得分与主成分3密切相关,可将其归纳为学生平均资产指标。

根据主成分1得分降序排列:由主成分1可以看出,清华大学,浙江大学,北京大学,华中科技大学,西安交通大学,武汉大学,上海交通大学,中南大学,四川大学,东南大学在论文发表以及国家级实验室得分方面位列前十名,其软实力雄厚;
根据主成分2得分降序排名:可以看出北京大学,中国人民大学,复旦大学等在师资结构方面排名靠前,说明其在师资力量上占据很大竞争力
根据主成分3得分降序排名:可以看出清华大学,上海交通大学等前十名大学在学校生均资产方面具有竞争力
2> 计算主成分综合得分
Z=r1*FAC1+r2*FAC2+r3*FAC3
主成分贡献率:r1=36.32%,r2=25.506%,r3=19.640%
由综合得分可以看出:清华大学,北京大学,浙江大学,复旦大学,,,,,,等十所高校位列我国高校前十名,与武书连等国内知名统计机构结果相近,也与我国现状相似。

相关文档
最新文档