MATLABsimulink在电机中的仿真资料

合集下载

基于MATLABSimulink机电系统动态仿真教程第一章

基于MATLABSimulink机电系统动态仿真教程第一章

二、仿真的分类
按模型分类
1、物理仿真:采用物理模型,有实物介入! 具有效果逼真,精度高等优点,但造价高或耗时长, 大多在一些特殊场合下采用(如导弹、卫星一类飞 行器的动态仿真,发电站综合调度仿真与培训系统 等),具有实时性、在线的特点。 2、数学仿真:采用数学模型 在计算机上进行,具有非实时性、离线的特点,经 济、快速、实用。
《机电系统动态仿真——基于 MATLAB/Simulink》
刘白雁教授编著 机械工业出版社
2006,8
仿真软件的简介 一、仿真的发展
1、程序编程阶段: 所有问题(如:微分方程求解、 矩阵运算、绘图等)都是用高级算法语言(如C、 FORTRAN等)来编写。 2、程序软件包阶段: 出现了“应用子程序库”。 3、交互式语言阶段(仿真语言:仿真语言可用一 条指令实现某种功能,如“系统特征值的求解”, 使用人员不必考虑什么算法,以及如何实现等低 级问题。 4、模型化图形组态阶段:符合设计人员对基于模 型图形化的描述。
三、常见的几种仿真软件
PSPICE、ORCAD:通用的电子电路仿真软件, 适合于元件级仿真。 SYSTEM VIEW:系统级的电路动态仿真软 件 MATLAB:具有强大的数值计算能力,包含 各种工具箱,其程序不能脱离MATLAB环境 而运行,所以严格讲,MATLAB不是一种计 算机语言,而是一种高级的科学分析与计算软 件。 SIMULINK:是MATLAB附带的基于模型化 图形组态的动态仿真环境。
按计算机类型分类
1、模拟仿真:采用数学模型,在模拟计算机 上进行的实验研究。50年代 2、数字仿真:采用数学模型,在数字计算机 上借助于数值计算方法所进行的仿真实验。 60年代
3、混合仿真:结合了模拟仿真与数字仿真。 4、现代计算机仿真:采用先进的微型计算机,基于 专用的仿真软件、仿真语言来实现,其数值计算 功能强大,使用方便,易学。80年代以来

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真

MATLABSIMULINK永磁同步电机矢量控制系统仿真一、本文概述随着电机控制技术的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)在工业、交通和能源等领域的应用越来越广泛。

矢量控制作为PMSM的一种高效控制策略,能够实现对电机转矩和磁链的精确控制,从而提高电机的动态性能和稳态性能。

然而,在实际应用中,矢量控制系统的设计和调试过程往往复杂且耗时。

因此,利用MATLAB/Simulink进行永磁同步电机矢量控制系统的仿真研究,对于深入理解矢量控制原理、优化控制策略以及提高系统性能具有重要意义。

本文旨在通过MATLAB/Simulink平台,建立永磁同步电机矢量控制系统的仿真模型,并对其进行仿真分析。

本文将对永磁同步电机的基本结构和数学模型进行介绍,为后续仿真模型的建立提供理论基础。

本文将详细阐述矢量控制策略的基本原理和实现方法,包括坐标变换、空间矢量脉宽调制(SVPWM)等关键技术。

在此基础上,本文将利用MATLAB/Simulink中的电机控制库和自定义模块,搭建永磁同步电机矢量控制系统的仿真模型,并对其进行仿真实验。

本文将根据仿真结果,对矢量控制系统的性能进行分析和评价,并提出优化建议。

通过本文的研究,读者可以全面了解永磁同步电机矢量控制系统的基本原理和仿真实现方法,为后续的实际应用提供有益的参考和指导。

本文的研究结果也为永磁同步电机控制技术的发展和应用提供了有益的探索和启示。

二、永磁同步电机数学模型永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高性能的电机,广泛应用于各种工业领域。

为了有效地对其进行控制,我们需要建立其精确的数学模型。

PMSM的数学模型主要包括电气方程、机械方程和磁链方程。

PMSM的电气方程描述了电机的电压、电流和磁链之间的关系。

在dq旋转坐标系下,电气方程可以表示为:V_d &= R_i I_d + \frac{d\Phi_d}{dt} - \omega_e \Phi_q \ V_q &= R_i I_q + \frac{d\Phi_q}{dt} + \omega_e \Phi_d其中,(V_d) 和 (V_q) 分别是d轴和q轴的电压;(I_d) 和 (I_q) 分别是d轴和q轴的电流;(\Phi_d) 和 (\Phi_q) 分别是d轴和q轴的磁链;(R_i) 是定子电阻;(\omega_e) 是电角速度。

基于MATLAB-SIMULINK的交流电动机调速系统仿真

基于MATLAB-SIMULINK的交流电动机调速系统仿真

基于MATLAB-SIMULINK的交流电动机调速系统仿真1 绪论课题研究背景及目的研究背景直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。

在相当长时期内,高性能的调速系统几乎都是直流调速系统。

尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展。

交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。

20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。

目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美。

与直流调速系统相比,交流调速系统具有以下特点:容量大;转速高且耐高压;交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;交流调速系统能显著的节能;从各方面看,交流调速系统最终将取代直流调速系统。

研究目的本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性。

本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境。

在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

因此,调速技术一直是研究的热点。

matlabsimulink在电机中的仿真

matlabsimulink在电机中的仿真

模块化设计
集成优化工具
Simulink的模块化设计使得电机的各个部 分可以独立建模,然后通过模块的连接来 构建完整的系统模型,便于管理和修改。
Matlab提供了多种优化工具,可以对电机 控制系统进行优化设计,提高系统的性能 。
Matlab Simulink在电机仿真中的挑战
模型复杂度
电机的数学模型通常比较复杂,涉及大 量的非线性方程,这给模型的建立和仿
电机仿真的基本方法和流程
数学建模
根据电机的物理原理, 建立电机的数学模型, 包括电路方程、磁路 方程和运动方程等。
参数识别
根据实际电机的参数, 对数学模型进行参数 识别和调整,提高仿 真的准确性。
建立仿真模型
在Matlab Simulink 中建立电机的仿真模 型,包括电机本体和 控制系统的模型。
验证设计
通过仿真可以验证电机的设计是否满足要求, 提前发现并修正设计中的问题。
性能预测
仿真可以帮助预测电机的性能,包括转速、 转矩、效率等,为实际应用提供参考。
控制系统设计
通过仿真可以验证控制系统的设计是否正确, 提高控制系统的稳定性和精度。
降低成本
仿真可以减少试验次数,降低试验成本,缩 短研发周期。
04
案例分析
直流电机仿真案例
总结词
通过Simulink对直流电机进行仿真,可以模拟电机的启动、调速和制动等过程,为实际应用提供理论依据。
详细描述
在直流电机仿真案例中,我们使用Simulink的电机模块库来构建电机的数学模型。通过设置电机的参数,如电枢 电阻、电枢电感、励磁电阻和励磁电感等,可以模拟电机的动态行为。通过改变输入电压或电流,可以模拟电机 的启动、调速和制动等过程,并观察电机的响应特性。

MATLAB_SIMULINK永磁同步电机矢量控制系统仿真

MATLAB_SIMULINK永磁同步电机矢量控制系统仿真

18
吉 林 大 学 学 报 (信 息 科 学 版 )
第 27卷
大范围调速或定位控制 , 因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注 [2 ] 。笔者在 MATLAB / SIMUL INK环境下 , 对永磁同步电机矢量控制系统进行仿真 , 为实际系统的设计与实现提供新 思路 。
目前 , 有大 量 的 界 面 友 好 、基 于 PC 机 仿 真 程 序 可 用 于 电 力 电 子 系 统 的 研 究 , 如 SIMUL INK, PSP ICE, SABEREM TP, SIMNON , ACSL等 , 但在电力电子与电力传动中 , M ath Works公司提供的基于 MATLAB 平台下的 SIMUL IK是最常用的一种 , 系统仿真使用了 MATLAB 平台下的 Sim PowerSystem s和 SimM echanics, 建模及仿真更方便和快捷 [ 3 ] 。
Lq Ld
w
r
iq
(1)
d dt
iq
=
1 Lq
vq
-
R Lq
iq
+
Ld Lq
w
r
id
- λwd
Lq
Te = 115p [λiq + (Ld - Lq ) id iq ]
(2)
其中 Lq , Ld 为 q, d轴的电感量 ; w r 为转子角速度 ; R 为定子内阻 ; iq , id 为 q, d 轴方向的电流分量 ;
g端用于控制内部三对桥路的导通情况三相输出c可直接接入电机模型的三相输入端口为直流电压输入仿真时设为300permanentmagnetsynchronousmachine是依据0坐标系下建立的永磁同步电机和直流无刷电机数学仿真模型可以处于电动和发电两种状态提供了转子转角速度定子电流和电磁转矩参数为实现永磁同步电机的矢量控制仿真实验提供了有利条件simulink环境下仿真时采样周期仿真时间0012type为fixed2stepsolver为discretcontinuousstatesperiodesamp227卷ietimeconstraint为unconstrainedfixed2stepsizefundamentalsampietimestaskingmodepe2riodicsampletime为auto1永磁同步电机仿真模型fig11simulationmodelpmsm211调节器经过多次仿真实验在速度调节中只单纯采用pi调节效果并不理想为此提出了采用分段pi速度调节的方法即根据误差量的大小分段确定参数

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电机矢量控制系统已成为现代电机控制领域的重要分支。

该系统通过精确控制异步电机的磁通和转矩,实现了对电机的高效、稳定和动态性能的优化。

Matlab/Simulink作为一种强大的仿真工具,为异步电机矢量控制系统的研究和设计提供了便捷的平台。

本文旨在探讨基于Matlab/Simulink的异步电机矢量控制系统仿真方法。

文章将简要介绍异步电机矢量控制的基本原理和关键技术,包括空间矢量脉宽调制(SVPWM)技术、转子磁链观测技术以及矢量控制策略等。

详细阐述如何利用Matlab/Simulink搭建异步电机矢量控制系统的仿真模型,包括电机模型、控制器模型以及系统仿真模型的构建过程。

文章还将探讨仿真模型的参数设置、仿真过程以及仿真结果的分析方法。

通过本文的研究,读者可以深入了解异步电机矢量控制系统的基本原理和仿真方法,掌握基于Matlab/Simulink的仿真技术,为异步电机矢量控制系统的实际设计和应用提供有益的参考和借鉴。

本文的研究也有助于推动异步电机矢量控制技术的发展和应用领域的拓展。

二、异步电机基本原理异步电机,又称感应电机,是一种广泛应用于工业领域的电动机。

其基本原理基于电磁感应和电磁力作用。

异步电机主要包括定子(静止部分)和转子(旋转部分)。

定子通常由铁芯和三相绕组构成,而转子则可能由实心铁芯、鼠笼型或绕线型结构组成。

当异步电机通电时,定子绕组中的三相电流会产生旋转磁场。

这个旋转磁场与转子中的导体相互作用,根据法拉第电磁感应定律,会在转子导体中产生感应电动势和感应电流。

这些感应电流在旋转磁场的作用下,受到电磁力的作用,从而使转子产生旋转力矩,驱动转子旋转。

异步电机的旋转速度与定子旋转磁场的旋转速度并不完全同步,这也是其被称为“异步”电机的原因。

异步电机的旋转速度通常略低于旋转磁场的同步速度,这是由于转子导体的电感和电阻导致的电磁延迟效应。

第7章基于MATLAB的交流电机仿真全篇

第7章基于MATLAB的交流电机仿真全篇
第7章基于MATLAB的交流电机仿真
7.1电力系统模块集
Simulink中可以使用电力系统仿真模块集 (SimPowerSystems)。其功能非常强大,可 以用于电路、电力电子系统、电机系统、电力 传输等过程的仿真,它提供了一种类似电路建 模的方式进行模型绘制,在仿真前将自动将其 变化成状态方程描述的系统形式,然后才能在 Simulink下进行仿真分析。 该模块集下有许多子模块集,双击每一个图标 都将打开下一级子模块集。
选择该菜单项后将得到下图所示的对话框,可以从中 填写相应的数据,控制仿真过程。
1、仿真区间设置。仿真起始、终了时间设置。 2、类型设置。步长选择:定步长、变步长。 3、仿真算法选择。
定步长算法
变步长算法
1、ode45
它是一种一步算法,对大多数仿真模型来说, 首先使用ode45来解算模型是最佳的选择,所 以在SIMULINK的算法选择中将ode45设为默认 的算法。
例1考虑如图所示的感应电机的等效电路,输入的交流 电L1=压L源2=为1.922260mVH,,50RH2=z1,.5其51它Ω,参R数3=值1为.80R31Ω=0,.4L238=Ω31,.2mH。
步骤:
1、将所需的各电路元件复制到模型编辑窗口中。(对 各元件点击左键并按住拖入即可,对重复的元件可在 编辑窗口中按右键拖动)。
>> [a,b,c,d]=power2sys('ch7ex1')%获得系统的状态方程 a= -128.8763 -844.6462 -121.3833 -896.7868 b= 267.3783 251.8325 c= 0 1.8030 d= 0
Magnitude (dB)
>> G=ss(a,b,c,d);bode(G)%绘制系统的Bode图

基于MATLABSimulink的异步电机仿真

基于MATLABSimulink的异步电机仿真
Therefore, simulation tools must be developed for induction motor experiments to serve as useful preparatory exercises before students come to the laboratory. The objective of thispaper is to present simulation models of these induction motor experiments in an effort to design a computational laboratory.The dc, no-load, and blocked-rotor simulation models are developed as stand-alone applications using MATLAB/Simulink and Power System Blockset (PSB) . For the load experiment, students are required to write a computer program usingMATLAB’s M-flle programming for the per-phase equivalent circuit of the induction motor to compute operating quantities.Such an assignment improves students’ programming skillsthat would be helpful in other classes as well.
For personal use only in study and research; not for commercial use

电机控制基于Simulink的仿真

电机控制基于Simulink的仿真
Inport和Outport用来对信号进行传递,不改 变信号的任何属性;另外,信号标签可以越过它 们进行传递。如果需要建立多输入多输出的子系 统,则需要使用多个Inport模块与Outport模块, 而且最好使用合适的名称对Inport模块与Outport 模块进行命名。
5 Simulink与Matlab的接口设计
• 例:简单系统的输入为一个正弦波信号,输出为
此正弦波信号与一个常数的乘积。要求建立系统 模型,并以图形方式输出系统运算结果。
• 已知系统的数学描述为 系统输入: u(t)=sin t , t≥0
系统输出: y(t)=au(t), a≠0
相关操作:
• 模块库
– Sine Wave来自sources; Gain来自Math Operations ;Scope来自Sinks
• 使用鼠标左键单击并拖动以改变信号连线 的路径。
• 按下Shift键的同时,在信号连线上单击鼠 标左键并拖动,可以生成新的节点。
• 在节点上使用鼠标左键单击并拖动,可以 改变信号连线路径。
信号组合
在利用Simulink进行系统仿真时,在很多 情况下,需要将系统中某些模块的输出信号(一 般为标量)组合成一个向量信号,并将得到的信 号作为另外一个模块的输入。
– 由于Simulink可以直接利用MATLAB的诸多资 源与功能,因而用户可以直接在 Simulink下完 成诸如数据分析、过程自动化、优化参数等工 作。
Simulink应用领域
2 Simulink启动及模型建立
Simulink的启动主要有以下两种方法:
– 在MATLAB的命令窗口中输入simulink,结果 是在桌面上出现一个Simulink Library Browser的窗口。

MATLAB电机控制综合仿真实验

MATLAB电机控制综合仿真实验

MATLAB电机控制综合仿真实验一、他励直流电机单闭环调速仿真实验要求:利用Simpowersystem里面自带的DC电机模块,完成他励直流电机单闭环调速仿真,速度调节用PI控制方法,要求封装PI模块,给定速度100rad/s,负载由空载到1s时跳变到20N。

调节不同的PI参数,观察仿真结果总结速度波形、转矩波形的变化规律(PI参数和超调量、稳定时间、稳态误差、振荡次数)。

另外要求将scope图中的4条曲线参数导出到工作空间,并用subplot和plot 函数画在同一个窗口中,每个子图加上对应的标题。

电机相关参数的设置图:仿真原理图:在仿真试验中需要按照实验要求对PI控制器子系统进行封装,然后更改Kp、Ki参数值的大小。

封装PI模块图如下:Plot绘图程序:>>subplot(411)>> plot(t,W,'r'),title('转速')>> subplot(412)>> plot(t,Ia,'b'),title('电枢电流')>> subplot(413)>> plot(t,Te,'g'),title('转矩')>> subplot(414)>> plot(t,If,'y'),title('励磁电流')速度调节用PI控制方法,给定速度100rad/s,负载由空载到1s 时跳变到20N,调节不同的PI参数,从PI模块封装中调节,修改不同的参数Ki 、Kp观察仿真结果。

Ki=100, Kp=5;050100w (r a d /s )00.51 1.52 2.53 3.54 4.55-2000200I a (A )-202I f (A )-1000100T e (N .m )Ki=2, Kp=1;w (r a d /s)I a (A)00.51 1.52 2.53 3.54 4.55I f (A)00.51 1.52 2.53 3.54 4.55T e (N .m )二、 他励直流电机闭环调速系统仿真实验要求:利用Simulink 基本模块搭建他励直流电机闭环调速系统直流电机子模块,根据以下电机数学模型搭建:电磁转矩公式:e M a T C I =Φ 动力学平衡方程:e L m d T T B J dtωω--=电机模块要求封装,参数20.05kg m J =⋅,0.02N m s m B =⋅⋅,165m C =,0.01Wb f Φ=,恒定负载T L =20N 点击封装模块时输入。

Matlab/Simulink仿真技术在电机实验教学中的应用

Matlab/Simulink仿真技术在电机实验教学中的应用
系统 。
难 。采 用传 统 的实验 教学 方法 已不能满 足 实验教 学 现
代 化发 展 的要求 , 切 需 要 采用 新 的教 学 方 法 和 手 段 迫
Malb是 一种 科学 计算 软件 , 门 以矩 阵 的形 式 t a 专 处 理数 据 , 它将 高性 能 的数 值 计 算 和 可视 化 集 成 在 一 起, 广泛 应 用 于 各 个 领 域 的 分 析 、 计 和 仿 真 工 作 。 设 Smuik是 在 Malb环 境 下 对 动 态 系统 进 行 建 模 、 i l n t a
Vo . No 8 Au . 2 1 1 28 . g 0 1
M t b Smui al / i lk仿真技术在 电机 实验 a n 教 学 中的应 用
李建 海 ,皮之 军 ,张晨 亮 ,王 文
( 军航 空 工程 学 院 基 础 实验 部 ,山 东 烟 台 2 4 0 ) 海 6 0 1

要 :为提 高 实 验 教 学 质 量 , 电机 实验 教 学 中 引 入 了 Malb仿 真 技 术 , 善 了 电 机 实 验 内 容 。 以直 流 电 在 t a 完
机 起 动 实 验 为 例 , 绍 了 Smuik仿 真 实 验 的 详 细 过 程 。实 验 表 明 采 用 虚 实 相 结 合 的 实 验 方 法 具 有 重 要 介 i l n
仿 真和分 析 的一个 软 件包 , 在该 软件 环境 下 , 户从 模 用
来 提高 教学 效果 。采 用专 业仿 真 软件进 行 虚拟 实验 教 学 是一个 值 得推 荐 的方 法 , 往 可 以取 得 事 半 功 倍 的 往 效果 。本 文 以 直 流 电 机 实 验 为 例 , 阐 述 Malb 来 t / a

机电系统动态仿真matlabPPT电子教案课件-第七章-SIMULINK仿真

机电系统动态仿真matlabPPT电子教案课件-第七章-SIMULINK仿真

功能
积分 微分 状态方程 传递函数 零极点 传输延时 可变传输延时
23
Simulink的基本模块
SIMULINK仿真 4.离散系统模块库
模块
Unit Delay Discrete-Time I Discrete Transf F
功能
单位延时采样保持 离散时间积分 离散传递函数
Discrete Filter Discrete Zero-Pole Discrete State-Space Zero-order Hold First-order Hold
45
仿真模型的参数设置
SIMULINK仿真
7.4.3 启动系统仿真与仿真结果分析 设置完仿真参数之后,从Simulation中选择Start菜 单项或单击模型编辑窗口中的Start Simulation命令 按钮,便可启动对当前模型的仿真。
为了观察仿真结果的变化轨迹可以采用3种方法: (1) 把输出结果送给Scope模块或者XY Graph模块。 (2) 把仿真结果送到输出端口并作为返回变量,然后使
34
仿真模型的参数设置
SIMULINK仿真 1.模块的参数设置
35
仿真模型的参数设置
SIMULINK仿真 2.模块的属性设置 ✓ 模块上按鼠标右键并在弹出的快捷菜单中选择Block properties ✓ 在模型编辑窗口的Edit菜单下选择Block properties命令,将打开模块属性对话框。
5
认识Simulink
SIMULINK仿真 7.1.2 Simulink的启动与退出 1.Simulink的启动
在MATLAB窗口的工具栏中单击 在命令窗口中输入命令:
>>simulink

基于MatlabSimulink的异步电机矢量控制系统仿真

基于MatlabSimulink的异步电机矢量控制系统仿真

基于Matlab/Simulink 的异步电机矢量控制系统仿真摘要在异步电机的数学模型分析中以及矢量控制系统的基础之上,利用Matlab/Simulink运用建立模块的思想分别组建了坐标变换模块、PI调节模块、转子磁链个观测模块、SVPWM等模块,然后将这些模块有机的结合,最后构成了异步电动机矢量控制的仿真模块,并且进行了仿真验证。

仿真结果分别显示了电机空载与负载情况下转矩、转速的动态变化曲线,验证了该方法的有效性、实用性,为电机在实际使用中打下了坚实的基础。

本文主要研究异步电机在矢量控制下的仿真。

使用Matlab/Simulink中的电气系统模块(PowerSystem Blocksets)将其重组得到新的模型并对其仿真,最后分析仿真结果得出结论。

关键词: 异步电机矢量控制 MATLAB/SIMULINK 变频调速目录摘要 (I)Abstract......................................................................................... 错误!未定义书签。

1 绪论 (1)1.1 电机及电力拖动技术的发展概况 (1)1.2 异步电动机的控制技术现状................................................. 错误!未定义书签。

1.3 仿真软件的简介及其选择..................................................... 错误!未定义书签。

1.4 论文的主要内容及结构安排................................................. 错误!未定义书签。

2 异步电动机的数学模型 (4)2.1 异步电动机的稳态数学模型 (4)2.2 异步电动机的动态数学模型 (5)2.3 本章小结 (7)3 矢量控制系统基本思路 (8)3.1 矢量控制的基本原理 (8)3.2 坐标变换 (9)3.3SVPWM调制 (21)3.3本章小结 (11)4 异步电机矢量控制系统仿真 (14)4.1矢量控制系统模型 (14)4.2仿真结果与分析 (15)4.5本章小结 (17)5结论与展望 (18)5.1结论 (18)5.2后续研究工作的展望 (19)参考文献 ....................................................................................... 错误!未定义书签。

基于MATLABSIMULINK永磁同步电动机调速系统的建模与仿真

基于MATLABSIMULINK永磁同步电动机调速系统的建模与仿真

毕业设计题目名称基于MATLAB/SIMULINK永磁同步电动机调速系统的建模与仿真系别电气信息工程系专业/班级电气工程及其自动化07102班学生学号指导教师(职称)摘要在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。

永磁同步电机(PMSM)是一个复杂耦合的非线性系统。

本文在Matlab/Simulink环境下,通过对PMSM本体、d/q坐标系向a/b/c坐标系转换等模块的建立与组合,构建了永磁同步电机控制系统仿真模型。

仿真结果证明了该系统模型的有效性。

关键词:Matlab/Simulink;永磁同步电机;电压空间矢量脉宽调制;仿真AbstractIn today’s AC s ervo system, the vector control theory and SVPWM technique make the AC motor can achieve the performance as good as DC motor when designing the AC servo system. PMSM is a nonlinear system with significant coupling. This novel method for modeling and simulink of PMSM system in Matlab is proposed. In Matlab /Simulink, the isolated blocks, such as PMSM block, coordinate transformation from d/q to a/b/c block, etc, have been modeled. The reasonability and validity have been testified by the simulate result.Key words:Matlab/Simulink; PMSM; SVPWM; simulation目录摘要 (I)Abstract (II)目录 (III)第1章绪论............................................................. - 1 - 1.1选题背景及意义...................................................... - 1 - 1.2本课题的研究现状及前景.............................................. - 1 -1.2.1相关发展....................................................... - 2 -1.2.2永磁同步电动机的运行控制方法................................... - 3 -1.2.3永磁同步电动机在现代工业中的应用............................... - 4 -1.2.4 永磁同步电动机的应用前景..................................... - 6 - 第2章永磁同步电动机系统原理.......................................... - 8 - 2.1 永磁同步电动机的基本组成............................................ - 8 -2.1.1 电动机........................................................ - 8 -2.1.2 转子位置传感器................................................ - 9 -2.1.3 逆变器........................................................ - 9 - 2.2永磁同步电动机的工作原理........................................... - 10 -2.2.1电枢反应...................................................... - 11 - 2.3 永磁同步电动机的数学模型........................................... - 14 - 第3章正弦波永磁同步电动机的调速系统.................................. - 18 -3.1正弦波永磁同步电动机的调速原理..................................... - 18 - 3.2正弦波永磁同步电动机调速系统....................................... - 20 -3.2.1主回路的组成和控制............................................ - 20 -3.2.2控制回路及系统工作原理........................................ - 23 - 第4章正弦波永磁同步电动机调速系统的建模与仿真........................ - 24 - 参考文献............................................................... - 30 - 结束语................................................................. - 31 - 致谢................................................................. - 32 -第1章绪论1.1选题背景及意义众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料

基于MATLAB_SIMULINK的异步电机矢量控制调速系统仿真优秀doc资料文章编号:100022472(2000022*******基于M AT LAB SI M U L I NK的异步电机矢量控制调速系统仿真Ξ杨洋,张桂香(湖南大学机械与汽车工程学院,湖南长沙410082摘要:从异步电机矢量控制数学模型入手,介绍一种基于M A TLAB S I M UL I N K的异步电机按转子磁场定向的矢量控制系统仿真模型Λ该模型可通用于异步笼型电机,使用时只需输入不同电机参数即可Λ通过仿真实验验证了模型的正确性Λ关键词:异步电机;矢量控制;M A TLAB S I M UL I N K;仿真中图分类号:TM921.51文献标识码: ASi m ulati on of V ector Control Inducti on M otor A djusting Syste m Based on M A TLAB S I M UL I N KYAN G Yang,ZHAN G Gui2x iang(Co llege of M echan ical and A utomo tive Engineering,H unan U n iv,Changsha 410082,Ch inaAbstract:A si m ulati on model of vecto r con tro l inducti on mo to r adjusting syste m w ith the reference fra m e fixed to the ro to r is established.T he model can beconven ien tly used by inputting p roper mo to r para m eters.Si m ulati on s show the validity of the model.Key words:inducti on mo to r;vecto r con tro l;M A TLAB S I M UL I N K;si m ulati on0引言矢量控制理论的提出使异步电机调速性能达到甚至超过直流电机调速性能成为可能,而且运用矢量控制已成为当今交流变频调速系统的主流Λ在进行复杂的系统设计时,采取计算机仿真方法来分析和研究交流调速系统性能是非常有效和必要的Λ传统的计算机仿真软件包用微分方程和差分方程建模,直观性、灵活性差,编程量大,操作不便ΛM A TLAB是一个高度集成的软件系统,集科学计算、图象处理、声音处理于一体,具有极高的编程效率ΛM A TLAB提供的S I M UL I N K是一个用来对动态系统进行建模、仿真和分析的软件包,它具有模块化、可重栽、可封装、面向结构图编程及可视化等特点,可大大提高系统仿真的效率和可靠性ΛS I M UL I N K提供有Sink s(输出方式、Source(输入源、Ξ收稿日期:2000202229作者简介:杨洋(1970-,女,湖南长沙人,湖南大学硕士生.D iscrete (离散时间环节、L inear (线性环节、N on linear (非线性环节、Connecti on s (连接与接口、Ex tra (其他环节子模型库Λ用户可以方便定制和创建自己的模型、模块Λ在多种矢量控制方法中,按转子磁场定向的矢量控制运用较为普遍,本文将结合这种矢量控制和S I M UL I N K 的特点,介绍一种异步电机按转子磁场定向的矢量控制系统的建模仿真方法Λ模型将为同类调速系统提供有效、可靠的研究分析依据Λ1异步电机矢量控制系统的仿真模型异步电机的矢量控制相当于把直流电机换向器的功能通过控制的方法来实现,从而达到磁通和转矩单独控制的目的Λ根据感应电机的坐标变换理论,在三相坐标系下的定子输入的电流通过3s 2r 交换,由三相静止坐标变换为两相垂直的静止坐标,再通过从两相静止坐标系到两相旋转坐标系M ,T 轴的变换,并且使得M 轴沿转子总磁链矢量的方向,最终获得等效成同步旋转坐标系下的直流电流i m 1,i t 1,这样异步电机通过坐标变换,变成一台由i m 1,i t 1输入的直流电机Ζ矢量控制系统的构想就是模仿直流电机的控制方法,求得直流电机的控制量,经过相应的坐标反变换,重新获得三相输入电流(或电压,就能控制异步电机了Ζ根据异步电机理论,经坐标变换后,笼型异步电机在同步旋转坐标上按转子磁场定向的电压矩阵方程(转子短路,u m 2=u t 2=0为u m 1u t 10=R 1+L s p -Ξ1L s L m p -Ξ1L m Ξ1L s R 1+L s p Ξ1L m L m p L m p 0R 2+L r p 0Ξs L m 0Ξs L r R 2i m 1i t 1i m 2i t 2(1电机转子磁链与电流的关系为L m i m 1+L r i m 2=Ω2(2L m i t 1+L r i t 2=0(3将(2代入(1中第3行中,得:i m 2=-p Ω2R 2(4再代入(2解出i m 1:i m 1=-T 2p +1L m Ω2或得:Ω2=L m T 2p +1i m 1(5由式(1第4行可得:i t 2=-L m L r i t 1(6而由式(3第4行Ξs =-R 2Ω2i 2(7可将(6代入(7,并考虑到T 2=L r R 2,则Ξs =-L m i t 1T 2Ω2(8电机的电磁转矩公式为:T e =Mp L m L r i t 1Ω2(9电机运动方程为:T e -T l =J N pd Ξ d t (10其中,R 1,R 2为定转子电阻;T 2为转子励磁时间常数,T 2=L r R 2;L m 为定转子等效绕组间15第2期杨洋等:基于M A TLAB S I M UL I N K 的异步电机矢量控制调速系统仿真的互感,L m =(3 2L m 1;U m 1,U m 2为M T 轴坐标系中M 、T 轴定子电压;L s 为定子等效绕组的自感,L s =L m +L 11;i m 1,i t 1,i m 2,i t 2为M T 轴坐标系中M 、T 轴定向转子电流;L r 为转子等效绕组的自感,L r =L m +L 11;T e 电磁转矩;Ξ1为定子转速;N p 为极对数;Ξs 为转差;J 为转动惯量;Ξ为转子转速;Ω2为转子总磁链Ζ由上述式子可知,由于M T 坐标按转子磁场定向,在定子电流的两个分量之间实现了解耦,i m 1唯一决定磁链Ω2,当磁通不变时,i t 1则只影响转矩,与直流电机中的励磁电流和电枢电流相对应Ζ式(5,(8,(9,(10就是矢量控制的基本数学模型Ζ根据这些推导的式子,可以画出异步电机变压变频矢量控制系统结构图(图1Ζ图1中异步电机矢量变换数学模型如图2Ζ图2的模型中除根据(5,(9式绘得分解成磁通和转速的直流电机模型外,由转子频率和转差频率相加,得到定子频率信号,再经积分,即获得转子磁链的相位信号5,这是坐标变换所不可缺的参数Ζ如果将式(1展开,并代入式(2,(3,我们可以写出异步电机按转子磁场定向情况下的状态变量方程X α=A (Ξ1X +B U(11式中X =i m1i t 1Ω2,A (Ξ=ZΞ1L m R 2ΡL r -Ξ1-R 1L r ΡL m Ξ1ΡR 2L mL r 0-R 2L r ,B =L r Ρ00L r Ρ00,U =u m 1u t 1,Z =R 1L 2r +R 2L 2m ΡL r ,Ρ=L s L r -L 2m 从状态方程可以看出这是一个线性时变系统,虽然S I M UL I N K 中提供有状态方程模块,但主要是针对定常系统的,所以在S I M ULI N K 中用状态方程仿真电机系统较为不便Λ如希望用状态方程仿真,可直接在M A TLAB 中用M 文件编程建立仿真系统,只不过系统模型不如S I M UL I N K 所建的直观Λ本文主要的目的是在S I M UL I N K 下建立仿真模型,图1和图2的模型,可毫不费力地利用S I M UL I N K 提供的库模块来构建,这是后一节的重点Λ图1异步电机变压变频矢量控制系统结构图A 7R 为磁通调节器,A SR 为转速调节器25湖南大学学报(自然科学版2000年图2异步电机矢量变换数学模型2异步电机矢量控制系统的SI M UL I NK 仿真模型图1中,包含了坐标转换模块(2r 3s block ,电流控制型变频器模块(CSI block ,以及异步电机矢量变换模型(I nducti on m otor block ,这些模块可以由SI M UL I NK调用库模型分别建立,然后封装成Subsyste m Λ这里的坐标变换(2 3和图2中的坐标转换(3 2互为反变换Λ而电流控制型P WM 变压变频器的模型在M AT LAB 5.2中的POW ERS Y S 库中可以找到Λ这三个主要模块构造好后,其它环节也一样可以通过SI M UL I NK 模块库调入,输入不同参数,然后如图3连接,整个仿真模型就建好了Λ图中异步电机矢量变换模块展开内部结构如图4Λ系统中还包括两个P I 调节器,对应于图1中A 7R ,ASR ,这两个调节器也是定制好Subsyste m 后再封装而成Λ图3异步电机矢量控制变压变频调速SI M U L I NK 仿真模型3仿真实验35第2期杨洋等:基于M A TLAB S I M UL I N K 的异步电机矢量控制调速系统仿真图4异步电机矢量变换仿真模块(1仿真实验1转速输入设定为一阶跃函数,初值为100rad s (角频率,1s 后跃变为300rad s Λ磁通设为一定值1.1,由电流型逆变器给电机供电,让电机空载启动运行,仿真获得的转速、电磁转矩仿真曲线如图5,图6Λ图5电机输出速度仿真曲线图6电磁转矩仿真曲线(2仿真实验输入设定转速(角速度不变,300rad s ,磁通输入仍为1.1,电机空载启动,1s 后加入额定负载T L ,经SI M UL I NK 仿真模型仿真后得出的速度、电磁转矩曲线如图7,图8Λ图7电机输入速度仿真曲线图8电机电磁转矩变化曲线45湖南大学学报(自然科学版2000年项目: 科技支撑计划课题(2021BAG12A05-08定稿日期:2021-06-28作者简介:倪强(1987-,男,湖南益阳人,硕士研究生,研究方向为电力牵引交流传动及其控制技术。

基于MATLABSIMULINK的交流电机调速系统建模仿真

基于MATLABSIMULINK的交流电机调速系统建模仿真

控制系统仿真姓名:__________________________班级:_______________________学号:____________________成绩:_________________________________ 2012年11月02日第三章直接转矩控制系统设计3.1直接转矩控制系统的组成:直接转矩控制充分利用电压型逆变器的开关特点,通过不断变化电压状态使定子磁链轨迹为六边形或近似圆形,并通过零电压矢量的穿插调节来改变转差频率,以控制电机的转矩与磁链的变化,从而控制异步电动机的磁链和转矩按要求快速变化。

直接转矩控制系统调速的主题就是在于调节电动机的磁链和转矩的变化,电动机的输出转矩完全是按照输入转矩的设定。

(1)磁链、转矩观测器:由电流、电压的采样值经过3/2变化按照电机数学模型计算出异步电机的定子磁链和转矩;(2)磁链调节器:为了控制定子磁链在给定值的附近变化,直接转矩控制系统采用两点式控制,输出磁链控制信号;(3)转矩调节器:利用转速调节器输出的给定转矩,也是采用两点式滞环控制,输出转矩控制信号,直接控制电机的转矩;(4)开关状态选择单元:根据定子磁链和转矩的控制信号以及定子磁链位置,输出合适的开关状态S abc来控制逆变器驱动电机稳定运行。

直接转矩控制系统是建立在静止定子坐标系下的,首先异步电机定子相电压、相电流的采样值经3/2坐标变换,得到:• 一一:坐标下的分量,再按照异步电机的定子磁链和转矩模型计算出实际转矩T e和定子磁链’ s的两个分量's,这样就可以计算出定子磁链幅值s i和磁链位置户n|。

将测量得到实际转速和给定转速输入到转速调节器,转速调节器根据给定转速和实际转速的差值输出给定转矩T;。

将给定转矩T;和*1*T送入转矩调节器,得到转矩控制信号F t,磁链调节器根据给定子磁链幅值p s|和转子磁链幅值卜s |的差值输出磁链控制信号F o最后开关状态选择单元根据磁链控制信号F、转矩控制信号F t和磁链位置户n I,查逆变器开关状态表,输出正确合理的开关状态来控制逆变器驱动电机正确运行。

基于Matlab_Simulink的永磁同步电机(PMSM+)矢量控制仿真(2)1

基于Matlab_Simulink的永磁同步电机(PMSM+)矢量控制仿真(2)1

基于Matlab/Simulink的永磁同步电机(PMSM)矢量控制仿真高延荣,舒志兵,耿宏涛摘要在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。

永磁同步电机(PMSM)是一个复杂耦合的非线性系统。

本文在Matlab/Simulink环境下,通过对PMSM本体、d/q坐标系向a/b/c坐标系转换等模块的建立与组合,构建了永磁同步电机控制系统仿真模型。

仿真结果证明了该系统模型的有效性。

关键词:Matlab/Simulink,永磁同步电机,电压空间矢量脉宽调制,仿真0、引言永磁同步电机(PMSM)是采用高能永磁体为转子,具有低惯性、快响应、高功率密度、低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一。

永磁同步电机构成的永磁交流伺服系统已经向数字化方向发展。

因此如何建立有效的仿真模型具有十分重要的意义。

对于在Matlab中进行永磁同步电机(PMSM)建模仿真方法的研究已经受到广泛关注。

本文介绍了电压空间矢量脉宽调制原理并给出了坐标变换模块、SVPWM模块以及整个PMSM闭环矢量控制仿真模型,给出了仿真模型结构图和仿真结果。

1、电压空间矢量脉宽调制原理1.1电压空间矢量电机输入三相正弦电压的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转矩。

直接针对这个目标,把逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制PWM电压,这样的控制方法称为“磁链跟踪控制”,磁链的轨迹是靠电压空间矢量相加得到的,所以又称“电压空间矢量PWM控制”。

空间矢量是按电压所加绕组的空间位置来定义的。

在图1中,A、B、C分别表示在空间静止不动的电机定子三相绕组的轴线,它们在空间互差120°,三相定子相电压UA、UB、UC 分别加在三相绕组上,可以定义三个电压空间矢量UA、UB、UC,它们的方向始终在各相的轴线上,而大小则随时间按正弦规律变化,时间相位互差120°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从仿真结果可以分析:转速能够在较短的时间内达到稳定,但起动电流冲 击很大,同时电磁转矩的冲击也很大。
MATLAB应用技术
例2.直流电动机分级起动


由于直流电动机直接起动电流过大,为了限制起动电流,通常在电源和电动机之 间加上起动变阻箱。 起动变阻箱由三个电阻组成,在每个电阻两端并联一个理想开关,通过设置开关 不同的导通时间,来切除电阻。起动瞬间,三个开关全部断开,此时电阻全部接 入。一定时间后,第一个开关导通,相应地第一个电阻被切除。依此类推,达到 限制电流和保证电磁转矩的目的。
MATLAB应用技术
直流电动机模型
MATLAB应用技术
F+和F-:直流电动机励磁电路控制端子,分别连接励磁电源 的正极与负极; A+和A-:直流电动机电枢回路控制端,与电机电枢绕组相连; TL:直流电动机的负载转矩信号输入端; m:直流电动机测量信号的输出端,包括转速ω(rad/s),电枢 电流Ia(A),励磁电流If(A),电磁转矩Te(N· m)。
MATLAB应用技术
例1.直流电动机直接起动


直流电动机直接起动时,起动电流很大,可达额定电流的10~20倍,由此产生很 大的冲击转矩,在实际运行中不允许直流电动机直接起动。 使用Simulink对直流电动机的起动过程建立仿真模型,通过仿真获得直接起动电 流的过程和电磁转矩的过程。
MATLAB应用技术
1.使用模块 (1)直流电动机(DC-Motor) (2)直流电压源(E、Ef) 模块取自SimPowerSystems工具箱 中的Electrical Sources库里的DC voltage source模块。直流电压E为 直流电机的电枢回路电压,直流 电压Ef直流电机的励磁电压,二 者参数(Amplitude)设置为240。
MATLAB应用技术
直流电动机的参数设置 •Armature resistance and inductanceRa (ohms) 和 La(H):电枢电阻和电感; •Field resistance and inductanceRf (ohms) 和Lf(H): 励磁回路电阻和电感 •Field-armature mutual inductanceLaf (H):电枢与 励磁回路互感; •Total inertia J (kg.m^2) :电机转动惯量(kg.m^2) ; •Viscous friction coefficient Bm (N.m.s):粘滞摩擦 系数(N.m.s); •Coulomb friction torque Tf (N.m): 静摩擦转矩 (N.m); •Initial speed (rad/s):初始速度。
MATLAB应用技术
异步电动机模型参数设置
• Rotor type:转子类型列表框,分别可以将电机 设置为绕线式(Wound)和鼠笼式(Squirrel- cage)两种类型; • Reference Frame:参考坐标列表框,可以选择 转子坐标系(Rotor)、静止坐标系(Stationary)、 同步旋转坐标系(Synchronous); • Nom.power,L-L volt,and freq: 额定功率 (VA),线电压(V),频率(赫兹); • Stator [Rs (ohm) Lls(H)]:定子电阻Rs (ohm)和漏感Lls(H); • Rotor [Rr’ (ohm) Lls’(H)]:转子电阻Rs (ohm)和漏感Lls(H); • Mutual inductance Lm(H):互感Lm(H); • Intia,friction factor and pairs of poles :转动惯 量[J(kg.m^2)],摩擦系数和极对数; • Initial conditions[s() th(deg) isa isb isc(A)]:初始 条件包括:初始转差s,电角度,定子电流幅值isa isb isc(A)和相角phas, phbs, phcs(deg)。 MATLAB应用技术
MATLAB应用技术
4.2异步电机模型
MATLAB应用技术
异步电动机模型:标幺制和国际单位制
其电气连接和功能分别为: • A、B、C:交流电机的定子电压输入/输出端子,可直接连接三相 电压; • Tm:电机负载输入端子,一般是加到电机轴上的机械负载; Tm>0,为电动机;Tm<0,为发电机。 • a、b、c:绕线式转子输出电压端子,一般短接在一起或者连接到 其它附加电路中,而鼠笼式电机无此输出端子; • m:电机信号输出端子,一般接电机测试信号分配器观测电机内 部信号,或引出反馈信号。
MATLAB应用技术
2.仿真参数设置
MATLAB应用技术
3.仿真结果
1400
1200
1000
800Leabharlann 600400200
0
0
1
2
3
4
5
6
7
8
9
10
图 电机转速波形
图 电机电枢电流波形
MATLAB应用技术
800 700 600 500 400 300 200 100 0
0
1
2
3
4
5
6
7
8
9
10
图 电磁转矩波形
图 起动变阻箱的电路模型
图 创建的子系统
MATLAB应用技术
MATLAB应用技术
1.使用模块 (1)断路器(Breaker)
断路器取自SimPowerSystems工具箱中的Elements库里的Breaker模块
MATLAB应用技术
(2)调速电阻 调速电阻选自SimPowerSystems工具箱中的Elements库里的series RLC branch模块。 (3)断路器控制信号(Step) 断路器通断控制采用阶跃信号与模块的控制端连接实现。
MATLAB应用技术
2.仿真结果
1400
40
1200
35
1000
30
800
25
600
20
400
15
200
10
0
0
1
2
3
4
5
6
7
8
9
10
5
0
1
2
3
4
5
6
7
8
9
10
图 电机转速波形
图 电机电枢电流波形
MATLAB应用技术
图 电磁转矩波形

起动电阻的阻值要根据电动机的参数和起动具体要求进行选择,阻值过大 会延长起动时间,而阻值过小又起不到限流作用。
MATLAB应用技术
清华大学出版社
王忠礼 段慧达 高玉峰编著
4.MATLAB在电机学中应用
MATLAB应用技术
4.1 直流电动机模型
4.2.1直流电动机介绍
直流电动机是一种将直流电能转换成机械能的装置。 优点:启动转矩大,调速范围宽,在轧钢机、电力机车的等方面有一定的应用。 缺点:由于其带有机械换向器,比交流电动机结构复杂,生产运行成本较高, 逐步被交流电动机所取缔。
相关文档
最新文档