公路缓和曲线段原理及缓和曲线计算公式
缓和曲线的计算方法(三种)
2 s
0
距离:用曲线长l来代替弦长。放样出第1点后, 放样第2点时,用偏角和距离l交会得到。
(2)当点位于圆曲线上 方法:架仪HY (或YH),后视ZH(或HZ),拨角b0,即找
到了切线方向,再按单圆曲线偏角法进行。
b0 2 0
ls 3R
此外还有极坐标法、弦线支距法、长弦偏角 法。
3 ls 10 .00 m x0 l s 2 40 R 2 ls y 0 .17 m 0 6R
TH ( R p )tg
L H R ( 2 0 )
180
2l s 41 .96 m
E H ( R p ) sec
(2)当点位于圆曲线上,有:
x R sin q y R (1 cos ) p
2、偏角法(整桩距、短弦偏角法) 要注意:点是位于缓和曲线,还是位于圆曲线。
位于圆曲线
位于缓和曲线
2、偏角法(整桩距、短弦偏角法)
(1)当点位于缓和曲线上,有:
总偏角 (常量 ) 0 ls 6R
(3)缓和曲线的参数方程:
(4)圆曲线终点的坐标:
二.主点(major point)的测设
1、测设元素的计算
(1)内移距p 和切线增长q的计算:
24 R ls l s3 q 2 240 R 2
p
l s2
2、主点的测设
(1)里程的计算
ZH=JD-TH;HY=ZH+ls;
QZ=ZH+LH/2;HZ=ZH+LH;YH=HZ-ls
三、带有缓和曲线的圆曲线详细测设 1、切线支距法 (tangent off-set method)
缓和曲线、竖曲线、圆曲线、匝道(计算公式)
一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。
公路曲线要素计算公式
公路曲线要素计算公式
公路基本型曲线(回旋缓和曲线)要素及计算公式(FYL)缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。
缓和曲线的主要曲线元素有ZH、HY、QZ、YH、HZ 5个主点。
圆曲线内移值P:()m R L P S 242=切线增长值q:)(240223m R L L q S S-=缓和曲线切线长:q P R q T T h++=+=2tan)(α缓和曲线外矢距:R P R E h-+=2sec)(α缓和曲线中曲线总长:s h L R L 2180)2(0+-=πβα缓和曲线中圆曲线长度:180)2(0R L yπβα-=缓和曲线与圆曲线区别:1.因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P产生)2.缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q;3.由于有缓和曲线的存在,因此有缓和曲线角0β:R L S 2/0=β(弧度)=RL Sπ90(度)S L-缓和曲线两端各自的缓和曲线长。
R-缓和曲线中的主圆曲线半径α-偏转角缓和曲线主点桩号:ZH桩号=JD桩号-h THY桩号=ZH桩号+S LQZ桩号=HY 桩号+2yLYH桩号=QZ桩号+2yLHZ桩号=ZH桩号+h L另外、QZ桩号、YH桩号、HZ桩号还可以用以下方式推导:QZ桩号=ZH桩号+2h。
缓和曲线坐标计算
二、公式推导1 、实例数据河北省沿海高速公路一缓和曲线(如图): AB 段为缓和曲线段, A 为 ZH 点, B 为 HY 点, R B=800m ; A 点里程为 NK0+080 ,切线方位角为θA=100 ° 00 ′ 24.1 ″,坐标为X A=4355189.493,Y A=476976.267 ; B 点里程为 NK0+158.125 ,切线方位角为θB=102 ° 48 ′ 15.6 ″,坐标为 X B=4355174.669 ,Y B=477052.964 ,推求此曲线段内任意点坐标。
2 、公式推导及实例计算方法一:弦线偏角法1 )公式推导由坐标增量的计算方法我们不难理解,求一点坐标可以根据其所在直线的方位角以及直线上另一点的坐标和距待求点的距离。
所以我们可以利用 ZH 点,只要知道待求点距 ZH 点的距离(弦长 S )和此弦与 ZH 点切线方位角的夹角(转角 a ),即可求出该点坐标。
根据回旋线方程 C=RL ,用 B 点数据推导出回旋线参数:C=RL S=800*78.125=62500 ( L S为 B 点至 ZH 点的距离)设待求点距 ZH 点距离为 L因回旋线上任意点的偏角β0=L2/2RL S, 且转角 a=β0/3 ,可得该点转角 a 。
(曲线左转时 a 代负值)。
根据缓和曲线上的弧弦关系 S=L-L5/90R2L S2,可以求出待求点至 ZH 点的弦长。
然后我们利用坐标增量计算公式可以推导出缓和曲线任意点坐标计算公式:X=X A+S*cos (θA+a ) =4355189.493+ ( L-L5/90R2L S2) *cos (θA+L 2/6RLS)Y=Y A+S*sin (θA+a ) =476976.267+ ( L-L5/90R2L S2) * sin (θA+L 2/6RLS)式中θA=100 ° 0 ′ 24.1 ″2 )实例计算现在我们利用此公式计算桩号为 NK0+140 的坐标第一步,求出 L=140-80=60 米第二步,求出 a=180L2/6 π RL S=0 ° 33 ′ 00.14 ″第三步,求出 S=L-L5/90R2L S2=60-605/ ( 90*8002*78.1252) =59.998 第四步:将 a , S 值代入缓和曲线计算公式,可求出桩号为 NK0+160 点的坐标为:X=4355178.501 , Y=477035.249 。
公路缓和曲线段原理及缓和曲线计算公式
公路缓和曲线段原理及缓和曲线计算公式一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则 l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
缓和曲线计算原理
1.2道路线形的基本介绍道路运输在整个国民经济生活中起着重要作用。
道路的新建和改建,测量工作必须先行,所以公路施工测量所承担的任务也是非常大的,为了更好的进行道路施工工作,下面就道路线形进行一下简单的介绍。
一般所说的路线,是指道路中线的空间位置。
中线在水平面上的投影称作路线的平面;沿中线竖直剖切再行展开则是路线的纵断面;中线上任一点法向切面是道路在该点的横断面。
无论是铁路、公路还是地铁隧道和轻轨,由于受到地形、地物、地质及其他因素的限制,经常要改变线路前进的方向。
当线路方向改变时,在转向处需用曲线将两直线连接起来。
因此,线路工程总是由直线和曲线所组成。
曲线按其线形可分为:圆曲线、缓和曲线、复曲线和竖曲线等。
公路中线应满足的几何条件是:线形连续平滑;线形曲率连续(中线上任一点不出现两个曲率值);线形曲率变化率连续(中线上任一点不出现两个曲率变化值)。
考虑上述几何条件,顾及计算与敷设方便,现代公路平面线形要素由直线、圆曲线和缓和曲线构成,称之为平面线形三要素。
其中缓和曲线的曲率半径是从∞逐渐变到圆曲线半径R 的变量。
在与直线连接处半径为∞,与圆曲线连接处半径为R ,曲线上任一点的曲率半径与该点至起点的曲线长成反比。
目前公路线形设计已开始使用非对称线形(成为非对称平曲线)设计,特别是在互通立交匝道和山区高速高速公路线形设计中,这种线形设计使用得较多。
非对称线形分为完全非对称线形和非对称非完整线形两种,所谓“完全非对称曲线”的含义就是第一缓和曲线和第二缓和曲线起点处(ZH 或HZ )的半径为∞,圆半径为R ,第一缓和曲线长1s l ,第二缓和曲线长为2s l ,12s s l l ≠。
所谓“非完整”的含义是第一缓和曲线和第二缓和曲线的半径不是∞,而是1R 、2R 。
而坐标法成为高速公路放样的主要方法,坐标法放样线路中线的这个操作过程中,最重要的一部就是计算线路放样点的坐标。
2 路线中桩坐标计算原理在实际工程中,线路的设计由专门的设计方完成,在线路完成设计得到审批后设计方便把所设计线路的线路要素(或者称为曲线要素)提供给施工方。
公路缓和曲线计算公式讲解
公路缓和曲线计算公式讲解公路缓和曲线是指在设计公路线形时为了使车辆在曲线上能够顺利转弯而采用的一种曲线形式。
在公路设计中,缓和曲线的设计是非常重要的,因为它直接关系到车辆在曲线上的安全行驶和舒适性。
在本文中,我们将对公路缓和曲线的计算公式进行详细的讲解,希望能够帮助大家更好地理解和应用这一知识。
一、缓和曲线的类型。
在公路设计中,常见的缓和曲线类型有三种,分别是圆曲线、过渡曲线和螺旋曲线。
圆曲线是一种由圆弧组成的曲线形式,它的曲率是恒定的。
过渡曲线是一种由直线段和圆弧段组成的曲线形式,它的曲率是逐渐变化的。
螺旋曲线是一种由圆弧和直线段交替组成的曲线形式,它的曲率也是逐渐变化的。
在实际的公路设计中,我们需要根据具体的情况选择合适的缓和曲线类型,以确保车辆在曲线上的安全行驶和舒适性。
二、缓和曲线的计算公式。
1. 圆曲线的计算公式。
在公路设计中,圆曲线的计算是非常常见的。
圆曲线的计算公式如下:L = (V^2) / (127R)。
其中,L表示圆曲线的长度(单位,米),V表示车辆的设计速度(单位,公里/小时),R表示圆曲线的半径(单位,米)。
根据这个公式,我们可以计算出圆曲线的长度,从而确定圆曲线的位置和形状。
2. 过渡曲线的计算公式。
过渡曲线是一种由直线段和圆弧段组成的曲线形式,它的计算公式如下:L = (V^2) / (a)。
其中,L表示过渡曲线的长度(单位,米),V表示车辆的设计速度(单位,公里/小时),a表示过渡曲线的加速度(单位,米/秒^2)。
根据这个公式,我们可以计算出过渡曲线的长度,从而确定过渡曲线的位置和形状。
3. 螺旋曲线的计算公式。
螺旋曲线是一种由圆弧和直线段交替组成的曲线形式,它的计算公式比较复杂。
螺旋曲线的计算需要考虑曲线的曲率变化和车辆的行驶轨迹,因此通常需要借助计算机软件来进行精确计算。
三、缓和曲线的设计原则。
在公路设计中,缓和曲线的设计需要遵循一些基本原则,以确保车辆在曲线上的安全行驶和舒适性。
缓和曲线半径计算公式
缓和曲线半径计算公式缓和曲线是指将两条直线或曲线段平滑地连接起来的过渡曲线。
在道路设计、铁路设计等领域中广泛应用。
计算缓和曲线半径的公式基于几何学原理和交通工程的需求。
在计算缓和曲线半径之前,首先需要了解以下几个关键参数:1.设计速度(Vd):即车辆在缓和曲线上行驶的目标速度。
2.过渡长度(L):即缓和曲线的总长度。
3.动摩擦因数(f):即车辆行驶过程中的轮胎与路面之间的摩擦系数。
4.允许超高(e):在垂直方向上,车辆离开水平线的最大允许值。
基于以上参数,可以通过以下公式计算缓和曲线半径:R=Vd^2/(127*f*e)其中,R表示缓和曲线半径。
需要注意的几点是:1.这个公式是根据欧拉公式推导得来的,适用于大多数情况。
但对于特定道路设计,如复杂弯道或高速公路等,可能需要采用更复杂的公式进行计算。
2.设计速度需要根据具体路段的要求进行选择。
一般来说,缓和曲线的设计速度应与前后道路的设计速度相匹配,以确保平稳过渡。
3.允许超高是指驶过缓和曲线过程中,车辆会偏离水平线的程度。
允许超高的值应根据实际需要进行确定。
4.确定缓和曲线总长度的计算需要根据具体情况进行。
一般来说,它被设定为车辆达到设计速度所需的时间内行驶的距离。
5.动摩擦因数是一个经验值,根据道路状况、车辆类型等因素进行选择。
一般来说,可以参考交通工程相关规范或手册中的推荐值。
需要注意的是,以上计算仅为基本公式,实际应用中还会受到其他因素的影响,如地形、道路条件、车辆特性等。
因此,在进行具体的设计和计算时,建议参考相关的交通工程规范和设计手册,确保计算结果符合实际需求。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
缓和曲线)计算公式
高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y ②待求点的切线方位角:αT计算过程:。
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)--(转载)
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲...首次分享者:伊丽莎白已被分享1次评论(0)复制链接分享转载删除高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)--(转载)春春[ft=,+0,]一、缓和曲线上的点坐标计算[ft=,+0,]已知:①缓和曲线上任一点离ZH点的长度:l[ft=,+0,]②圆曲线的半径:R[ft=,+0,][ft=,+0,]③缓和曲线的长度:l0[ft=,+0,]④转向角系数:K(1或-1)[ft=,+0,]⑤过ZH点的切线方位角:α[ft=,+0,][ft=,+0,]⑥点ZH的坐标:xZ,yZ[ft=,+0,]计算过程:[ft=,+0,][ft=,+0,]说明:当曲线为左转向时,K=1,为右转向时,K=-1,[ft=,+0,]公式中n的取值如下:[ft=,+0,][ft=,+0,]当计算第二缓和曲线上的点坐标时,则:[ft=,+0,]l为到点HZ的长度[ft=,+0,]α为过点HZ的切线方位角再加上180°[ft=,+0,]K值与计算第一缓和曲线时相反[ft=,+0,]xZ,yZ为点HZ的坐标[ft=,+0,][ft=,+0,]切线角计算公式:[ft=,+0,]二、圆曲线上的点坐标计算[ft=,+0,]已知:①圆曲线上任一点离ZH点的长度:l[ft=,+0,]②圆曲线的半径:R[ft=,+0,][ft=,+0,]③缓和曲线的长度:l0[ft=,+0,]④转向角系数:K(1或-1)[ft=,+0,]⑤过ZH点的切线方位角:α[ft=,+0,][ft=,+0,]⑥点ZH的坐标:xZ,yZ[ft=,+0,]计算过程:[ft=,+0,][ft=,+0,]说明:当曲线为左转向时,K=1,为右转向时,K=-1,[ft=,+0,]公式中n的取值如下:[ft=,+0,][ft=,+0,]当只知道HZ点的坐标时,则:[ft=,+0,]l为到点HZ的长度[ft=,+0,]α为过点HZ的切线方位角再加上180°[ft=,+0,]K值与知道ZH点坐标时相反[ft=,+0,]xZ,yZ为点HZ的坐标[ft=,+0,][ft=,+0,][ft=,+0,]三、曲线要素计算公式[ft=,+0,][ft=,+0,]公式中各符号说明:[ft=,+0,]l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)[ft=,+0,]l1——第一缓和曲线长度[ft=,+0,]l2——第二缓和曲线长度[ft=,+0,]l0——对应的缓和曲线长度[ft=,+0,]R——圆曲线半径[ft=,+0,]R1——曲线起点处的半径[ft=,+0,]R2——曲线终点处的半径[ft=,+0,]P1——曲线起点处的曲率[ft=,+0,]P2——曲线终点处的曲率[ft=,+0,]α——曲线转角值[ft=,+0,][ft=,+0,]四、竖曲线上高程计算[ft=,+0,]已知:①第一坡度:i1(上坡为“+”,下坡为“-”)[ft=,+0,]②第二坡度:i2(上坡为“+”,下坡为“-”)[ft=,+0,][ft=,+0,]③变坡点桩号:SZ [ft=,+0,][ft=,+0,]④变坡点高程:HZ [ft=,+0,]⑤竖曲线的切线长度:T[ft=,+0,]⑥待求点桩号:S[ft=,+0,][ft=,+0,]计算过程:[ft=,+0,][ft=,+0,]五、超高缓和过渡段的横坡计算[ft=,+0,][ft=,+0,]已知:如图,[ft=,+0,][ft=,+0,]第一横坡:i1[ft=,+0,][ft=,+0,]第二横坡:i2[ft=,+0,]过渡段长度:L[ft=,+0,]待求处离第二横坡点(过渡段终点)的距离:x[ft=,+0,]求:待求处的横坡:i[ft=,+0,]解:d=x/L[ft=,+0,][ft=,+0,]i=(i2-i1)(1-3d2+2d3)+i1[ft=,+0,][ft=,+0,]六、匝道坐标计算[ft=,+0,]已知:①待求点桩号:K[ft=,+0,][ft=,+0,]②曲线起点桩号:K0[ft=,+0,][ft=,+0,]③曲线终点桩号:K1[ft=,+0,][ft=,+0,]④曲线起点坐标:x0,y0[ft=,+0,][ft=,+0,]⑤曲线起点切线方位角:α0[ft=,+0,]⑥曲线起点处曲率:P0(左转为“-”,右转为“+”) [ft=,+0,]⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) [ft=,+0,]求:①线路匝道上点的坐标:x,y[ft=,+0,][ft=,+0,]②待求点的切线方位角:αT[ft=,+0,]计算过程:[ft=,+0,][ft=,+0,][ft=,+0,]注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析
公路工程测量放线圆曲线、缓和曲线(包括完整缓和曲线、非完整缓和曲线)计算解析例:某道路桥梁中,A匝道线路。
已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。
SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。
由上面“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;1 / 11K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。
求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。
解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。
那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。
下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。
2 / 113 / 11y 轴。
过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。
缓和曲线长度计算公式
缓和曲线长度计算公式
1缓和曲线(Horizontal Curve)
缓和曲线(Horizontal Curve)是指在道路曲线设计中,既要满足视距要求,又要满足最小转弯半径等安全要求的曲线。
它包括各种圆弧和椭圆曲线。
曲线体系是构成道路设计、规划和施工的重要一环,它能减少驾驶员的视距,同时能增加可用轨道宽度。
2缓和曲线长度计算
缓和曲线长度的计算可以用三种椭圆曲线公式来完成,即Purvisky贴合曲线(Purvisky tangent Curve)、Stull抛物线(Stull Parabolic Curve)和Camelback立体线(Camelback Vertical Curve)。
缓和曲线长度的计算并不是一个十分复杂的过程,可以按照以下几个步骤简单地计算:
(1)计算曲线横坡。
主要参数含义分别为曲线中心角、曲线中心距、曲线转角以及曲线上两端的交叉距离;
(2)根据横坡、曲线中心角和交叉距离,通过上述三种不同的椭圆公式来计算曲线长度。
(3)计算曲线长度时,若范围较大,需要将曲线分成多段,重复(2)步骤对每一段曲线分别计算,最后累加结果和得出最终的缓和曲线长度。
3总结
缓和曲线(Horizontal Curve)是道路曲线设计中重要的一环,能达到视距要求和最小转弯半径安全要求,它包括各种圆弧和椭圆曲线。
由于椭圆曲线的复杂性,缓和曲线长度的计算并不是一个复杂的过程,通常应该按照横坡、曲线中心角和交叉距离等参数来进行,再通过Purvisky贴合曲线、Stull抛物线和Camelback立体线三种不同的椭圆公式来实现。
曲线及缓和曲线计算公式
《坐标计算》一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。
缓和曲线的概念
缓和曲线的概念一、引言缓和曲线是道路工程中的基本概念之一,其作用是使道路在水平和垂直方向上的曲率变化平滑,从而提高行车舒适性和安全性。
本文将从定义、分类、设计原则、计算方法以及实际应用等方面进行详细阐述。
二、定义缓和曲线是指在两条直线或两条曲线相接处,为了使车辆行驶方便、安全而设计的一段过渡曲线。
其作用是通过逐渐增加或减少曲率的方式,将两段不同半径或不同方向的道路连接起来。
缓和曲线可以分为水平缓和曲线和垂直缓和曲线两种类型。
三、分类1. 水平缓和曲线:指在水平方向上连接两条不同半径的圆弧或直线段之间的过渡段。
2. 垂直缓和曲线:指在垂直方向上连接两条不同坡度的道路之间的过渡段。
根据坡度变化形式可分为三种类型:圆形垂直缓和曲线、抛物线垂直缓和曲线以及倒梯形垂直缓和曲线。
四、设计原则缓和曲线的设计应遵循以下原则:1. 平滑性原则:缓和曲线应该是平滑的,不应有急转弯或急变坡,以确保行车舒适性和安全性。
2. 安全性原则:缓和曲线的半径应根据车速、车型、路况等因素确定,以确保行车安全。
3. 经济性原则:缓和曲线的设计应当考虑工程成本,尽可能节约材料和人力资源。
4. 美观性原则:缓和曲线的设计应当符合美学要求,与周围环境相协调,营造出美观的道路景观。
五、计算方法1. 水平缓和曲线计算方法:(1)根据道路设计速度确定水平曲率半径;(2)计算过渡长度L=K*R,其中K为过渡曲率系数,一般取0.06~0.08;(3)计算过渡段两端点处的切线方向角,并将其与前后道路段的方向角相比较,确定过渡段两端点处的转角;(4)根据转角大小确定过渡段内部各点处的切线方向角。
2. 垂直缓和曲线计算方法:(1)根据前后道路的坡度及设计速度确定过渡段长度L;(2)根据过渡段长度L和坡度变化形式,确定垂直曲率半径R;(3)计算出过渡段两端点处的高程值,并将其与前后道路段的高程值相比较,确定过渡段两端点处的转角;(4)根据转角大小确定过渡段内部各点处的高程值。
高速公路线路缓和曲线竖曲线圆曲线匝道坐标计算公式
高速公路线路缓和曲线、竖曲线、圆曲线、匝道坐标计算公式_★★高速公路的一些线路坐标、高程计算公式缓和曲线、竖曲线、圆曲线、匝道一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K1或-1⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K1或-1⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度或缓曲上任意点到缓曲起点的长度l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1上坡为“+”,下坡为“-”②第二坡度:i2上坡为“+”,下坡为“-”③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点过渡段终点的距离:x求:待求处的横坡:i解:d=x/Li=i2-i11-3d2+2d3+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0左转为“-”,右转为“+”⑦曲线终点处曲率:P1左转为“-”,右转为“+”求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgnx函数是取符号函数,当x<0时sgnx=-1,当x>0时sgnx=1,当x=0时sgnx=0;在计算器中若无此函数可编一个小子程序代替;转载自:。
高速公路计算公式
高速公路的一些线路计算一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH 点的长度:l②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程:yy x x αy αx ααy x xy αl 3456R l l 40R l y R336l l 6Rl l x Z1Z 1111101202000449202533730⑼y ⑻x Ssin ⑺Scos ⑹90α⑸⑷S 180n arctg ⑶l⑵)K (⑴+=+===+=+=+=+==说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n 的取值如下:=<<=><=<>=>>1n 001n 002n 000n 00yx yx yx yx 0000000当计算第二缓和曲线上的点坐标时,则: l 为到点HZ 的长度α为过点HZ 的切线方位角再加上180° K 值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ 的坐标切线角计算公式:2Rl l β02=二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH 点的长度:l②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程:yy x x αy αx ααy x xy αy x 34560R l 240R l l2688Rlll -90(2l Z1Z 1111101202000045233420⑿y ⑾x Ssin ⑽Scos ⑼90α⑻⑺S 180n arctg ⑹mRsinα'⑸p]K )cosα'[R(1⑷2⑶m 24R ⑵p Rπ)⑴α'+=+===+=+=+=+=+=+===说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n 的取值如下:⎪⎩⎪⎨⎧=<<⎪⎩⎪⎨⎧=><⎪⎩⎪⎨⎧=<>⎪⎩⎪⎨⎧=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当只知道HZ 点的坐标时,则:l 为到点HZ 的长度α为过点HZ 的切线方位角再加上180° K 值与知道ZH 点坐标时相反 x Z ,y Z 为点HZ 的坐标三、曲线要素计算公式β+∆=+=+=+-=++=++++-=++++-=-=-=+-=+-===+=+==D l l :βR R R2R P P 2β⒀曲线段长度:l )l l (21RαL ⑿圆曲线长度)l l (21Rα⑾曲线全长度:L m 2α2R)tg p p (212α2tgp p T ⑽第二切线长:m 2α2R)tg p p (212α2tgp p T ⑼第一切线长:2688R l 24R l p ⑻第二曲线平移量:2688R l 24R l p ⑺第一曲线平移量:34560R l 240R l 2l m ⑹第二曲线顺移量:34560R l 240R l 2l m ⑸第一曲线顺移量:2Rl β:⑷第二缓曲段总转角值2R l β:⑶第一缓曲段总转角值)lP P (21l R R 2RR :β⑵曲线段任意点转角值2Rl l :β⑴缓曲段任意点转角值212121210212212121211213422223412114522322245123111221121212102的边缘曲线长度⒁偏离缓曲:D 公式中各符号说明:l ——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度) l 1——第一缓和曲线长度 l 2——第二缓和曲线长度 l 0——对应的缓和曲线长度R ——圆曲线半径 R 1——曲线起点处的半径 R 2——曲线终点处的半径 P 1——曲线起点处的曲率 P 2——曲线终点处的曲率 α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i 1(上坡为“+”,下坡为“-”)②第二坡度:i 2(上坡为“+”,下坡为“-”) ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S计算过程:)i i T(412R T E ⑷i Ri 212R )i i R(21l H ⑶H i i 2T⑵R (带有符号)S S l ⑴122021212Z 12Z -==-⎥⎦⎤⎢⎣⎡+++=-=-=五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:αααy y x x 42240C l l 336C l l l l 3456C ll 40C l l l (l A l αT l S(l αP P ll l P /(P P Nl l K K l P SGN(P N P P αα)/P cosα(cosαy y )/P sinα(sinαx x αSP αP P ααSsinαy y Scosαx x P P K-K S 1T00511011370733490925520011S 01S1S111T11111110T100 Bcos NAsinT BsinT NAcosT 6C B ) /2C N )/2/C C SN ) ) 时:⑶当 0时:⑵当 0时:⑴当+=====+======+=+==+=+==++++=+=+====≠≠T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序使用说明Fx9750、9860系列程序包含内容介绍:程序共有24个,分别是:1、0XZJSCX2、1QXJSFY3、2GCJSFY4、3ZDJSFY5、4ZDGCJS6、5SPJSFY7、5ZDSPFY8、5ZXSPFY9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX17、PQX-FS 18、PQX-ZS 19、ZD-FS 20、ZD-PQX21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK其中,程序2-14为主程序,程序15-24为子程序。
每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。
刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。
程序1为调度2-8程序;程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序;程序3为主线路中边桩高程计算及路基抄平程序;程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序;程序5为匝道线路中边桩高程计算及路基抄平程序;程序6为任意线型开口线及填筑边线计算放样程序;程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量;程序9为桥台锥坡计算放样程序;程序10为计算两点间的坐标正反算程序;程序11为距离后方交会计算测站坐标程序;程序12为任意多边形面积周长计算程序;程序13为导线近似平差计算程序;程序14为水准近似平差计算程序;程序2-8所用数据库采用的串列,匝道用的File 1;主线用的File 2。
第一步:先用Excel按照文字说明输入完整条线路对应数据;第二步:保存为CSV格式,然后设置单元格格式、数字格式、科学计数、小数位数设置10位以上并保存;第三步:用FA-124导入,匝道数据列表文件选择“File 1”,主线数据列表文件选择“File 2”。
第四步:输出保存对应列表文件名称备用。
联系QQ:409241460 (诚信第一,非诚勿扰)一、缓和曲线缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。
1.缓和曲线的作用1)便于驾驶员操纵方向盘2)乘客的舒适与稳定,减小离心力变化3)满足超高、加宽缓和段的过渡,利于平稳行车4)与圆曲线配合得当,增加线形美观2.缓和曲线的性质为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。
S=A2/ρ(A:与汽车有关的参数)ρ=C/sC=A2由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。
3.回旋线基本方程即用回旋线作为缓和曲线的数学模型。
令:ρ=R,l h=s 则l h=A2/R4.缓和曲线最小长度缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。
缓和曲线的最小长度应按发挥其作用的要求来确定:1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。
a1=0,a2=v2/ρ,a s=Δa/t≤0.62)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s)3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。
4)从视觉上应有平顺感的要求计算缓和曲线最小长度缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。
《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。
5.直角坐标及要素计算1)回旋线切线角(1)缓和曲线上任意点的切线角缓和曲线上任一点的切线与该缓和曲线起点的切线所成夹角。
βx=s2/2Rl h(2)缓和曲线的总切线角β=l h/2R.180/л2)缓和曲线直角坐标任意一点P处取一微分弧段ds,其所对应的中心角为dβxdx=dscosβxdy=dssinβx3)缓和曲线常数(1)主曲线的内移值p及切线增长值q内移值:p=Y h-R(1-cosβh)=l h2/24R切线增长值:q=X h-Rsinβh=l h/2-lh3/240R2(2)缓和曲线的总偏角及总弦长总偏角:βh=l h/2R总弦长:C h=l h-l h3/90R2O为圆曲线的圆心,圆曲线所对圆心角(等于公路偏角)。
当插入缓和曲线后,可以看作是原来半径为R+△R的圆曲线向内移动了△R距离,因此设置缓和曲线后的圆曲线半径为R。
当设置缓和曲线后,圆曲线所对圆心角也相应减小,减小后的圆心角等于,因而设置缓和曲线的可能条件为:,当时,两条缓和曲线在弯道中央直接相接,没有圆曲线段,形成了一条连续的缓和曲线。
当时,则不能设置所规定的缓和曲线,这时必须缩短缓和曲线长度或增大圆曲线半径。
4)缓和曲线要素计算《公路工程技术标准》规定,当R<R免时,必须设置缓和曲线。
切线长外距曲线长圆曲线长切线差平曲线五个基本桩号:ZH——HY——QZ——YH——HZ二、超高缓和段1.超高缓和段的过渡形式从直线上的双向路拱横坡,过渡到圆曲线上具有超高横坡度的单向坡断面,这一变化段称为超高缓和段。
1)无中央分隔带的公路(1)绕路面内边缘旋转先将外侧车道绕路中线旋转,待达到与内侧撤到构成单向横坡后,整个断面再绕未加宽前的内侧车道边缘旋转,直至超高横坡值。
适用:一般用于新建工程及以路肩边缘为设计高程的改建公路。
(2)绕路面中心线旋转先将外侧车道绕路中线旋转,待达到与内侧车道构成单向横坡,整个断面一同绕路中线旋转,直至超高横坡值。
适用:一般用于改建工程,尤其是以路中心标高作为设计标高的情况。
(3)绕路面外侧边缘旋转整个断面再绕未加宽前的外侧车道边缘旋转,直至超高横坡值。
适用:一般用于挖方的工程。
2)有中央分隔带的公路(1)绕中间带的中心线旋转先将外侧车道绕中间带的中心线旋转,待达到与内侧行车道构成单向横坡后,整个断面一同绕中心线旋转,直至超高横坡值。
此时中央分隔带呈倾斜状。
(2)绕中央分隔带两侧边缘旋转将两侧行车道分别绕中央分隔带边缘旋转,使之各自成为独立的单向超高断面。
中央分隔带形状保持不变。
(3)绕各自行车道中线旋转将两侧行车道分别绕各自的中线旋转,使之各自成为独立的单向超高断面。
此时中央分隔带两边缘分别升高与降低而成为倾斜断面。
2.超高缓和段的构成路面在缓和段上要经过准备阶段、双坡阶段和旋转阶段等三个阶段,才能从正常路过渡到圆曲线上的全超高断面。
(1)准备阶段准备阶段也叫做提肩。
在进入超高缓和段之前的L0=1~2m范围内,把路肩横坡抬高到与路面相同的横坡,即使路基顶面变成简单的双向横坡。
(2)双坡阶段先保持路面内侧不动,外侧绕路中线向上旋转到与内侧同坡,这一过程成为双坡阶段。
其所需要的长度即为双坡阶段长度L1。
(3)旋转阶段当外侧路面变成与内侧相同的单向倾横坡后,路面保持内侧边缘线不动,整个路面绕内边缘线向上旋转,直到缓和段终点。
其所需要的长度即为旋转阶段长度L2。
3.全超高断面全超高值的计算超高值就是指设置超高后路中线、路面边缘及路肩边缘对路基设计高程的高差。
路基设计高程一般是指路肩边缘的高程,在设置超高、加宽路段,为未超高、加宽前的路肩边缘的高程。
直线段及不设超高、加宽的平曲线上的标准横断面中,路中线与设计高程的高差为h中:绕路面内边缘旋转的超高值计算:圆曲线段的全超高断面圆曲线上任一点相应的超高值都相等。
4.超高缓和段长度超高缓和段必须有一定的长度。
超高渐变率:在超高缓和段上由于路基抬高,外侧路缘纵坡较原设计纵坡增加了一个附加纵坡。
绕路面内边缘旋转:路面外缘最大抬高值h=bi b L c=h/p=bi b/p5.超高缓和段上超高值的计算超高缓和段的渐变是按路面外边缘线相对与设计高程的高差值随离开缓和段起点的距离成正比例增加的规律进行的,而路中线及路面内边缘线随之也做相应地变化。
由于超高渐变过程是经过三个阶段完成的。
(1)起始断面经过提肩,路肩与路面相同横坡度的双坡断面。
(2)双坡断面(x≤L1)双坡断面就是指双坡阶段内任一点的断面,即从超高缓和起点至路面外侧变成与内侧相同坡度这一阶段内的断面。
则在双坡阶段中,路中线是保持不变:路面内侧的横坡保持不变,但当路面设置加宽时,路面及路肩边缘则随路面加宽值的渐变而作相应地变化。
(3)旋转断面(x≥L1)设旋转阶段中任一点离开缓和曲线起点地距离为x(x>L1),其路面横坡度为I x,在超高缓和段上,超高坡度是由零按直线比例增加到设计超高坡度I b值的,故可得旋转阶段上的超高值计算公式如下:三、加宽缓和段1.加宽缓和段长度计算路面在圆曲线上设置加宽时,其宽度比直线段上大。
为避免路面宽度从直线段上的正常宽度到圆曲线段的加宽断面的突变,在直线和圆曲线之间应设置一段路面宽度的渐变段。
(1)路线设置缓和曲线或超高缓和段时,加宽缓和段长度采用与缓和曲线或超高缓和段长度相同的值,,以尽量减少公路几何形状的变更次数。
(2)不设缓和曲线或超高缓和段时。
加宽缓和段长度应按渐变率为1:15且长度不小于20m的要求设置,且取5米的整数倍。
2.加宽值的计算(1)二、三、四级公路的加宽缓和段加宽缓和段上任一点的加宽值b jx,与该点到加宽缓和段起点的距离L x,同加宽缓和段全长L j的比值成正比,即B jx=L x/L j.b j(2)高等级公路加宽缓和高速公路、一级公路以及对路容有要求的二级公路,设置加宽缓和段时,为使路面加宽后的边缘圆滑、适顺,采用高次抛物线的形式过渡;B jx=(4K3-3K4)*b j(3)一、二级公路的近郊的路段、桥梁、高架桥、挡土墙、隧道及设置各种安全防护设施的路段,也可采用插入回旋线的方法。