2020年广东省高考数学一模试卷答案解析
2020年广东省高考数学一模试卷(理科)(附答案详解)
2020年广东省高考数学一模试卷(理科)一、单选题(本大题共12小题,共60.0分)1. 已知集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4},则满足A ∩∁U B ={1,2}的集合B 可以是( )A. {1,2,3,4}B. {1,2,7}C. {3,4,5,6}D. {1,2,3}2. 复数z =4+3i3−4i (i 为虚数单位)的虚部为( )A. −1B. 2C. 5D. 13. 若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为( )A. −7B. 3C. 5D. 74. 如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t(0<t ≤2)左侧的图形的面积为f(t),则y =f(t)的大致图象为( )A.B.C.D.5. 将函数f(x)=cos(2x −1)的图象向左平移1个单位长度,所得函数在[0,12]的零点个数是( )A. 0个B. 1个C. 2个D. 3个或以上6.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm,则石凳子的体积为()A. 1920003cm3 B. 1600003cm3 C. 160003cm3 D. 640003cm37.在某市2014年6月的高二质量检测考试中,理科学生的数学成绩服从正态分布N(98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第()名?(参考数值:P(μ−σ<X≤μ+σ)=0.6826;P(μ−2σ<X≤μ+2σ)=0.9544,P(μ−3σ<X≤μ+3σ)=0.9974)A. 1500B. 1700C. 4500D. 80008.已知(1+xm)n=a0+a1x+a2x2+⋯+a n x n,若a1=3,a2=4,则m=()A. 1B. 3C. 2D. 49.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,且∠PAQ=5π6,则该双曲线的离心率为()A. √2B. √3C. √213D. √1310.设正项数列{a n}的前n项和为S n,且满足2√S n=a n+1,则数列{a n−7}的前n项和T n的最小值为()A. −494B. −72C. 72D. −1211.已知三棱锥P−ABC满足PA=PB=PC=AB=2,AC⊥BC,则该三棱锥外接球的体积为()A. 3227√3π B. 323π C. 329√3π D. 163π12.已知f(x)是定义在(−π2,π2)上的奇函数,f(1)=0,且当x∈(0,π2)时,f(x)+f′(x)tanx>0,则不等式f(x)<0的解集为()A. (−1,0)∪(1,π2) B. (−1,0)∪(0,1)C. (−π2,−1)∪(1,π2) D. (−π2,−1)∪(0,1)二、单空题(本大题共4小题,共20.0分)13.设函数f(x)=mx2lnx,若曲线y=f(x)在点(e,f(e))处的切线与直线ex+y+2020=0平行,则m=______.14. 已知数列{a n }的前n 项和为S n ,a 1=1,a n+1=2a n ,若数列{b n }满足b n ⋅S n =1,则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10=______.15. 已知A(3,0),B(0,1),C(−1,2),若点P 满足|AP ⃗⃗⃗⃗⃗ |=1,则|OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ |最大值为______.16. 已知抛物线C :x 2=4y 的焦点为F ,直线l 过点F 且倾斜角为5π6.若直线l 与抛物线C 在第二象限的交点为A ,过点A 作AM 垂直于抛物线C 的准线,垂足为M ,则△AMF 外接圆上的点到直线√2x −y −3=0的距离的最小值为______. 三、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,内角A ,B ,C 满足√3sin(B +C)=2sin 2A2.(1)求内角A 的大小;(2)若AB =5,BC =7,求BC 边上的高.18. 如图,已知正三棱柱ABC −A 1B 1C 1,D 是AB 的中点,E 是C 1C的中点,且AB =1,AA 1=2. (1)证明:CD//平面A 1EB ; (2)求二面角B −A 1E −D 的余弦值.19. 已知椭圆C :x 24+y 22=1,A ,B 分别为椭圆长轴的左右端点,M 为直线x =2上异于点B 的任意一点,连接AM 交椭圆于P 点. (1)求证:OP⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗⃗ 为定值; (2)是否存在x 轴上的定点Q 使得以MP 为直径的圆恒通过MQ 与BP 的交点.20. 已知函数f(x)=e x +(m −e)x −mx 2.(1)当m =0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数m 的取值范围.21. 一支担负勘探任务的队伍有若干个勘探小组和两类勘探人员,甲类人员应用某种新型勘探技术的精准率为0.6,乙类人员应用这种勘探技术的精准率为a(0<a <0.4).每个勘探小组配备1名甲类人员与2名乙类人员,假设在执行任务中每位人员均有一次应用这种技术的机会且互不影响,记在执行任务中每个勘探小组能精准应用这种新型技术的人员数量为ξ.(1)证明:在ξ各个取值对应的概率中,概率P(ξ=1)的值最大.(2)在特殊的勘探任务中,每次只能派一个勘探小组出发,工作时间不超过半小时,如果半小时内无法完成任务,则重新派另一组出发.现在有三个勘探小组A i (i =1,2,3)可派出,若小组A i能完成特殊任务的概率t;t i=P(ξ=i)(i=1,2,3),且各个小组能否完成任务相互独立.试分析以怎样的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ−2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|⋅|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.|x+3|−2(k∈R).23.已知函数f(x)=|x−k|+12(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.答案和解析1.【答案】C【解析】解:∵集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4}, 要满足A ∩∁U B ={1,2}; 则1,2∉B ,故符合条件的选项为C . 故选:C .根据题意得出1,2∉B ,即可判断结论.本题考查集合了的交、并、补集的混合运算问题,是基础题.2.【答案】D【解析】解:∵z =4+3i3−4i =(4+3i)(3+4i)(3−4i)(3+4i)=25i 25=i ,∴复数z =4+3i3−4i 的虚部是1, 故选:D .利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.3.【答案】D【解析】解:画出x ,y 满足约束条件{|x −y|≤1|x|≤2,可行域如图阴影部分: 由{x =2x −y =−1,得A(2,3), 目标函数z =2x +y 可看做斜率为−2的动直线,其纵截距越大,z 越大,由图数形结合可得当动直线过点A 时,z 最大=2×2+3=7. 故选:D .先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题4.【答案】B【解析】解:当0<x<1时,函数的面积递增,且递增速度越来越快,此时,CD,不合适,当1≤x≤2时,函数的面积任然递增,且递增速度逐渐变慢,排除A,故选:B.根据面积的变换趋势与t的关系进行判断即可.本题主要考查函数图象的识别和判断,利用函数递增速度与t的关系是解决本题的关键.难度不大.5.【答案】B【解析】解;设函数f(x)=cos(2x−1)的图象向左平移1个单位长度,所得函数为g(x),∴g(x)=f(x+1)=cos(2x+1)令t=2x+1,x∈[0,12],∴t∈[1,2]由g(x)=0,所以2x+1=π2,方程只有一个解.故选:B.先根据平移法则求出平移后的图象解析式,再根据零点定义即可求出.本题主要考查函数的平移法则的应用和函数零点的求法,属于基础题.6.【答案】B【解析】解:如图,正方体AC1的棱长为40cm,则截去的一个正三棱锥的体积为13×12×20×20×20=40003cm3.又正方体的体积为V=40×40×40=64000cm3,∴石凳子的体积为64000−8×40003=1600003cm 3,故选:B .由正方体的体积减去八个正三棱锥的体积求解. 本题考查多面体体积的求法,考查计算能力,是基础题.7.【答案】A【解析】解:∵考试的成绩ξ服从正态分布N(98,100).∵μ=98,σ=10, ∴P(ξ≥108)=1−P(ξ<108)=1−Φ(108−9810)=1−Φ(1)≈0.158 7,即数学成绩优秀高于108分的学生占总人数的15.87%.∴9450×15.87%≈1500故选:A .将正态总体向标准正态总体的转化,求出概率,即可得到结论.本题考查正态总体与标准正态总体的转化,解题的关键是求出ξ≥108的概率.8.【答案】B【解析】解:二项式展开式的通项为:T k+1=1m k C nk x k. 当k =1,2时,可得{a 1=1m C n 1=3a 2=1m 2C n 2=4,解得n =9,m =3. 故选:B .根据通项求出第二、三项的系数,列方程组求出m 的值.本题考查二项展开式的通项、系数的性质,同时考查学生利用方程思想解决问题的能力和计算能力.属于基础题.9.【答案】D【解析】解:如图,设双曲线的一条渐近线方程为y =ba x ,联立{y =ba x x 2+y 2=c2,解得x P =−a ,x Q =a ,∴Q(a,b),且AP ⊥x 轴, ∵∠PAQ =5π6,∴∠F 2AQ =π3,则tan π3=b2a =√3, 则b 2=c 2−a 2=12a 2,得e 2=13,即e =√13. 故选:D .由题意画出图形,联立双曲线渐近线方程与圆的方程,可得P ,Q 的坐标,得到∠F 2AQ =π3,则tan π3=b2a =√3,结合隐含条件即可求得双曲线的离心率. 本题考查双曲线的简单性质,考查计算能力,是中档题.10.【答案】D【解析】解:2√S n =a n +1, ∴S n =(a n +12)2,S n−1=(a n−1+12)2, a n =S n −S n−1=a n 2+2a n −a n−12−2a n−14,化简得:2(a n +a n−1)=a n 2−a n−12, 正项数列{a n }中,a n −a n−1=2. n =1时,2√S 1=a 1+1, ∴a 1=1.∴数列{a n }是以1为首项,2为公差的等差数列. a n =1+2×(n −1)=2n −1. a n −7=2n −8,T n =2×1−8+2×2−8+2×3−8+⋯+2n −8=2×n(n+1)2−8n =n 2−7n =(n −72)2−494,∵n ∈N ∗,n =3或n =4时,T n 的最小值为−12. 故选:D .根据a n =S n −S n−1求得数列{a n }的通项公式,则可以推出a n −7=2n −8,通过分组求和法求得数列{a n −7}的前n 项和T n ,通过二次函数的最值求得T n 的最小值. 本题主要考查数列通项公式和前n 项和的求解,利用a n =S n −S n−1求得数列{a n }的通项公式和分组求和法是解决本题的关键.11.【答案】A【解析】解:因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,可得外接圆的半径为r=12AB=1,再由PA=PB=PC=AB=2可得PD⊥面ABC,可得PD=√PA2−AD2=√4−1=√3,可得球心O在直线PD所在的直线上,设外接球的半径为R,取OP=OA=R,在△OAD中,R2=r2+(PD−R)2,即R2=1+(√3−R)2,解得:R=2√3=2√33,所以外接球的体积V=4π3R3=32√327π,故选:A.因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,再由PA=PB=PC可得球心O在直线PD所在的直线上,设为O,然后在直角三角形中有勾股定理可得外接球的半径,进而求出外接球的体积.本题考查三棱锥的棱长与外接球的半径之间的关系,及球的体积公式,属于中档题.12.【答案】D【解析】【分析】本题考查了利用导数研究的单调性、构造法、方程与不等式的解法,等价转化方法,考查了推理能力与计算能力,属于中档题.令g(x)=f(x)sinx,g′(x)=[f(x)+f′(x)tanx]⋅cosx,当x∈(0,π2)时,根据f(x)+f′(x)tanx>0,可得函数g(x)单调递增.又g(1)=0,判断g(x)在(0,π2)上的正负情况,根据f(x)是定义在(−π2,π2)上的奇函数,可得g(x)是定义在(−π2,π2)上的偶函数.进而得出不等式f(x)<0的解集.【解答】解:令g(x)=f(x)sinx,g′(x)=f(x)cosx+f′(x)sinx=[f(x)+f′(x)tanx]⋅cosx,当x∈(0,π2)时,f(x)+f′(x)tanx>0,∴g′(x)>0,即函数g(x)单调递增.又g(1)=0,∴x∈(0,1)时,g(x)=f(x)sinx<0,又sinx>0,所以f(x)<0.x∈(1,π2)时,g(x)=f(x)sinx>0,又sinx>0,所以f(x)>0.x=0时,f(0)=0,舍去.∵f(x)是定义在(−π2,π2)上的奇函数,∴g(x)是定义在(−π2,π2)上的偶函数.则g(x)在(−π2,0)上单调递减,且g(−1)=0,故x∈(−π2,−1)时,g(x)=f(x)sinx>0,又sinx<0,所以f(x)<0.x∈(−1,0)时,g(x)=f(x)sinx<0,又sinx<0,所以f(x)>0.∴不等式f(x)<0的解集为(−π2,−1)∪(0,1).故选:D.13.【答案】−13【解析】解:f′(x)=m(2xlnx+x),又曲线y=f(x)在点(e,f(e))处的切线与直线ex+y+2020=0平行,∴f′(e)=3em=−e,解得m=−13.故答案为:−13.求出f(x)的导数,然后根据切线与直线ex+y+2020=0平行,得f′(e)=−e,列出关于m的方程,解出m的值.本题考查导数的几何意义和切线方程的求法,同时考查学生运用方程思想解题的能力和运算能力.14.【答案】2046【解析】解:数列{a n}的前n项和为S n,a1=1,a n+1=2a n,∴S n=2n−12−1=2n−1.若数列{b n}满足b n⋅S n=1,∴b n=1Sn =12n−1.∴b n +1b n =2n . 则b 1+1b 1+b 2+1b 2+⋯+b 10+1b 10=2+22+⋯ (210)2(210−1)2−1=211−2=2046.故答案为:2046.数列{a n }的前n 项和为S n ,a 1=1,a n+1=2a n ,利用求和公式:S n .由数列{b n }满足b n ⋅S n =1,可得b n =1S n.进而得出b n +1b n,再利用等比数列的求和公式即可得出.本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.15.【答案】√13+1【解析】解:由题,点P 满足|AP ⃗⃗⃗⃗⃗ |=1,说明P 点在以A(3,0)为圆心,1为半径的圆上, 设P(3+cosθ,sinθ),则OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =(2+cosθ,3+sinθ),∴∣OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ∣=√(2+cosθ)2+(3+sinθ)2=√14+2√13sin(θ+φ)(tanφ=23),根据三角函数的值域,可知|OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ |最大值为√13+1. 故答案为:√13+1.根据|AP ⃗⃗⃗⃗⃗ |=1,易知P 点在以A(3,0)为圆心,1为半径的圆上,设P(3+cosθ,sinθ),通过坐标表示出OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ,再根据模长公式求解.本题主要考查平面向量的模长公式,以及辅助角公式的最值问题,考查学生转化的思想,属于中档题.16.【答案】4√23【解析】解:由抛物线的方程可得焦点F(0,1),准线方程y =−1, 因为直线l 过点F 且倾斜角为5π6,则直线l 的方程为:y =−√33x +1,直线与抛物线联立{y =−√33x +1x 2=4y,整理可得x 2+4√33x −4=0,解得x 1=√3,x 2=√3,可得y 1=13,y 2=3, 即√33),由题意可得√3−1),可得△AMF 的外接圆的圆心N 在线段AM 的中垂线y =1上,也在线段AF 的中垂线上,而AF 的中点(−√3,2),∴线段AF 的中垂线方程为y −2=√3(x +√3),即y =√3x +5, 联立{y =1y =√3x +5解得:√31),所以圆心坐标为√31),半径r =4√33,圆心到直线√2x −y −3=0的距离d =|−√2√3√3=4√23+4√33, 所以外接圆上的点到直线√2x −y −3=0的距离的最小距离为d −r =4√23, 故答案为:4√23. 由抛物线的方程可得焦点F 的坐标,由题意求出直线l 的方程,代入抛物线的方程求出A ,B 的坐标,由题意求出M 的坐标,求出线段AF 的中垂线,及AM 的中垂线,两条直线的交点为三角形AMF 的外接圆的圆心,及半径,求出圆心到直线√2x −y −3=0的距离d ,则可得圆上的点到直线√2x −y −3=0的最小距离为d −r .本题考查抛物线的性质及直线与抛物线的综合,及求三角形外接圆的圆心和半径,属于中档题.17.【答案】解:(1)在△ABC 中,sin(B +C)=sinA ,内角A ,B ,C 满足√3sin(B +C)=2sin 2A2.所以√3sinA =1−cosA ,则:sin(A +π6)=12,由于A ∈(0,π), 所以A +π6∈(π6,7π6),则:A =2π3.(2)由于A =2π3,AB =5,BC =7,由余弦定理得:72=AC 2+52−10AC ⋅cos 2π3,解得AC =3(−8舍去).则:S △ABC =12×AB ×AC ×sin2π3=15√34. 设BC 边上的高为ℎ,所以12×BC ×ℎ=15√34,解得ℎ=15√314.【解析】(1)直接利用三角函数关系式的恒等变换和三角函数的值的应用求出结果. (2)利用余弦定理和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理、余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.18.【答案】解:(1)证明:取A 1B 的中点F ,连结EF 、DF ,∵D 、F 分别是AB ,A 1B 的中点,∴DF−//12A 1A ,∵A 1A−//C 1C ,E 是C 1C 的中点,∴DF−//EC ,∴四边形CDEF 是平行四边形,∴CD−//EF ,∵CD ⊄平面A 1EB ,EF ⊂平面A 1EB , ∴CD//平面A 1EB .(2)解:∵△ABC 是正三角形,D 是AB 的中点,∴CD ⊥AB , ∵在正三棱柱ABC −A 1B 1C 1中,A 1A ⊥平面ABC , ∴A 1A ⊥CD ,由(1)知DF//A 1A ,∴CD 、BD 、DF 两两垂直,∴以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,则D(0,0,0),B(12,0,0),E(0,√32,1),A 1(−12,0,2),∴BE ⃗⃗⃗⃗⃗ =(−12,√32,1),DE ⃗⃗⃗⃗⃗⃗ =(0,√32,1),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(12,√32,−1), 设平面A 1DE 的法向量n⃗ =(x,y,z), 则{n ⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =12x +√32y −z =0n ⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =√32y +z =0,取z =√3,得n ⃗ =(4√3,−2,√3), 设平面A 1BE 的法向量m⃗⃗⃗ =(a,b,c), 则{m ⃗⃗⃗ ⋅A 1E ⃗⃗⃗⃗⃗⃗⃗ =12a +√32b −c =0m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗ =−12a +√32b +c =0,取c =1,得m⃗⃗⃗ =(2,0,1), 设二面角B −A 1E −D 的平面角为θ, 则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=9√3355.∴二面角B −A 1E −D 的余弦值为9√3355.【解析】(1)取A 1B 的中点F ,连结EF 、DF ,推导出四边形CDEF 是平行四边形,从而CD−//EF ,由此能证明CD//平面A 1EB .(2)推导出CD 、BD 、DF 两两垂直,以D 为原点,DB 、DC 、DF 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角B −A 1E −D 的余弦值.本题考查线面平行的证明,考查二面角和余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力以及化归与转化思想,是中档题.19.【答案】解:(1)证明:由椭圆的方程可得:A(−2,0),B(2,0),设M(2,m),P(x 0,y 0),(m ≠0,x 0≠±2), 则x 024+y 022=1,得y 02=−x 02−42,又k AP =y 0x+2=k AM =m−02−(−2)=m4,k BP =y0x 0−2, 所以k AP ⋅k BP =y 02x 02−4=−12, 又m4⋅y 0x−2=−12,整理可得2x 0+my 0=4, 所以OP ⃗⃗⃗⃗⃗ ⋅OM⃗⃗⃗⃗⃗⃗⃗ =2x 0+my 0=4为定值. (2)假设存在定点Q(n,0)满足要求,设M(2,m),P(x 0,y 0),(m ≠0,x 0≠±2), 则以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ⃗⃗⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0, 所以(n −2,−m)⋅(x 0−2,y 0)=nx 0−2n −2x 0+4−my 0=0,① 由(1)得2x 0+my 0=4,②,由①②可得n(x 0−2)=0,因为x 0≠2,解得n =0,所以存在x 轴上的定点Q(0,0),使得以MP 为直径的圆恒通过MQ 与BP 的交点.【解析】(1)由椭圆的方程可得A ,B 的坐标,设M ,P 的坐标,可得AP ,AM 的斜率相等,求出数量积OP ⃗⃗⃗⃗⃗ ⋅OM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,由k AP ⋅k BP =y 02x 02−4=−12,可得M ,P 的坐标的关系,进而可得OP ⃗⃗⃗⃗⃗ ⋅OM⃗⃗⃗⃗⃗⃗⃗ 为定值. (2)假设存在Q 满足条件,因为以MP 为直径的圆恒通过MQ 与BP 的交点可得MQ ⃗⃗⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,由(1)可得整理得n(x 0−2)=0,再由x 0≠2可得n =0,本题考查椭圆的性质,及以线段的端点为直径的圆的性质,属于中档题.20.【答案】解:(1)当m =0时,f(x)=e x −ex ,f′(x)=e x −e ,又f′(x)是增函数,且f′(1)=0,∴当x >1时,f′(x)>0,当x <1时,f′(x)<0,∴f(x)在(−∞,1)上单调递减,在(1,+∞)上单调递增,∴当x=1时,f(x)取得极小值f(1)=0,无极大值;(2)f′(x)=e x−2mx+m−e,令g(x)=f′(x)=e x−2mx+m−e,则g′(x)=e x−2m,①当m=0时,f(1)=0,由(1)知f(x)在区间(0,1)上没有零点;②当m<0时,则g′(x)>0,故g(x)=f′(x)在(0,1)上单调递增,又g(0)=f′(0)=1+m−e<0,g(1)=f′(1)=−m>0,∴存在x0∈(0,1),使得g(x0)=f′(x0)=0,且当x∈(0,x0)时,f′(x)<0,f(x)是减函数,当x∈(x0,1)时,f′(x)>0,f(x)是增函数,又∵f(0)=1,f(1)=0,∴f(x)在(0,1)上存在零点;③当m>0,x∈(0,1)时,令ℎ(x)=e x−ex,则ℎ′(x)=e x−e,∵在x∈(0,1)上,ℎ′(x)<0,ℎ(x)是减函数,∴ℎ(x)>ℎ(1)=0,即e x>ex,∴f(x)=e x+(m−e)x−mx2>ex+(m−e)x−mx2=m(x−x2)>0,∴f(x)在(0,1)上没有零点;综上,要使f(x)在(0,1)上内存在零点,则m的取值范围为(−∞,0).【解析】(1)将m=0带入,求导得f′(x)=e x−e,再求出函数f(x)的单调性,进而求得极值;(2)求导得f′(x)=e x−2mx+m−e,令g(x)=f′(x),对函数g(x)求导后,分m=0,m<0及m>0讨论,m=0时容易得出结论,m<0时运用零点存在性定理可得出结论,m>0时运用放缩思想,先证明e x>ex,进而可得f(x)>0在(0,1)上恒成立,由此得出结论,以上情况综合,即可求得实数m的取值范围.本题主要考查利用导数研究函数的极值及函数的零点,考查分类讨论思想及运算求解能力,属于中档题.21.【答案】解:(1)由已知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=(1−0.6)⋅(1−a)2=0.4(1−a)2,P(ξ=1)=0.6(1−a)2+(1−0.6)⋅C21a(1−a)=0.2(1−a)(3+a),P(ξ=2)=0.6⋅C21a(1−a)+(1−0.6)a2=0.4a(3−2a),P(ξ=3)=0.6a2.∵0<a<0.4,∴P(ξ=1)−P(ξ=0)=0.2(1−a)(1+3a)>0,P(ξ=1)−P(ξ=2)=0.2(3a2−8a+3)>0,P(ξ=1)−P(ξ=3)=−0.2(4a2+2a−3)>0,∴概率P(ξ=1)的值最大.(2)由(1)可知,当0<a<0.4时,有t1=P(ξ=1)的值最大,且t2−t3=P(ξ=2)−P(ξ=3)=0.2a(6−7a)>0,∴t1>t2>t3,∴应当以A1,A2,A3的顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小,即优先派出完成任务概率大的小组可减少所需派出的小组个数的均值.证明如下:假定p1,p2,p3为t1,t2,t3(t1>t2>t3)的任意一个排列,即若三个小组A i(i=1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p1,p2,p3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,且η的分布列为∴数学期望E(η)=p1+2(1−p1)p2+3(1−p1)(1−p2)=3−2p1−p2+p1p2下面证明E(η)=3−2p1−p2+p1p2≥3−2t1−t2+t1t2成立,∵(3−2p1−p2+p1p2)−(3−2t1−t2+t1t2)=2(t1−p1)+(t2−p2)+p1p2−p1t2+p1t2−t1t2=2(t1−p1)+(t2−p2)+p1(p2−t2)+t2(p1−t1)=(2−t2)(t1−p1)+(1−p1)(t2−p2)≥(1−p1)(t1−p1)+(1−p1)(t2−p2)=(1−p1)[(t1+t2)−(p1+p2)]≥0,∴按照完成任务概率从大到小的A1,A2,A3的先后顺序派出勘探小组,可使在特殊勘探时所需派出的小组个数的均值达到最小.【解析】(1)每个勘探小组共有3名人员,故ξ的所有可能取值为0,1,2,3,再依据相互独立事件的概率求出每个ξ的取值所对应的概率,并用作差法逐一比较P(ξ=1)与P(ξ=0)、P(ξ=2)、P(ξ=3)的大小关系即可得证;(2)先根据(1)中的结论比较P(ξ=2)和P(ξ=3)的大小,可得到t1>t2>t3,故而可猜想出结论,再进行证明.证明时,设三个小组A i (i =1,2,3)按照某顺序派出,该顺序下三个小组能完成特殊任务的概率依次为p 1,p 2,p 3,记在特殊勘探时所需派出的小组个数为η,则η=1,2,3,然后求出η的分布列和数学期望,只需证明数学期望E(η)=3−2p 1−p 2+p 1p 2≥3−2t 1−t 2+t 1t 2成立即可,这一过程采用的是作差法,其中用到了因式分解的相关技巧.本题考查相互独立事件的概率、离散型随机变量的分布列和数学期望,以及期望的实际应用等,考查学生对数据的分析能力和运算能力,属于难题.22.【答案】解:(1)曲线C 1的极坐标方程为ρcosθ−2ρsinθ=1.若P 为曲线C 1上的动点,Q 是射线OP 上的一动点,且满足|OP|⋅|OQ|=2,记动点Q 的轨迹为C 2.设P(ρ1,θ),Q(ρ,θ),则:ρ1cosθ−2ρ1sinθ=1,即ρ1=1cosθ−2sinθ, 由于|OP|⋅|OQ|=2,所以ρ=2cosθ−4sinθ,整理得ρ2=2ρcosθ−4ρsinθ,转换为直角坐标方程为:(x −1)2+(y +2)2=5(原点除外).(2)曲线C 1的极坐标方程为ρcosθ−2ρsinθ=1转换为直角坐标方程为:x −2y −1=0. 曲线C 2的圆心为(1,−2),半径为√5, 所以圆心到直线C 1的距离d =√1+(−2)2=√5.所以|MN|=2√(√5)2−(√5)2=√5.由于点O 到C 1的距离d 2=√12+(−2)2=√5 所以S △OMN =12×|MN|×d 2=12√5√5=35.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)当k =1时,不等式f(x)≤1即为|x −1|+12|x +3|≤3,等价为{x ≥1x −1+12x +32≤3或{−3<x <11−x +12x +32≤3或{x ≤−31−x −12x −32≤3,解得1≤x ≤53或−1≤x <1或x ∈⌀, 则原不等式的解集为[−1,53];(2)f(x)≥x 对于任意的实数x 恒成立,即为|x −k|+12|x +3|≥x +2恒成立. 当x ≤−2时,|x −k|+12|x +3|≥0≥x +2恒成立; 当x >−2时,|x −k|+12|x +3|≥x +2恒成立等价为|x −k|+x+32≥x +2,即|x −k|≥x+12恒成立,当−2<x ≤−1时,|x −k|≥x+12恒成立;当x >−1时,|x −k|≥x+12恒成立等价为x −k ≥x+12或x −k ≤−x+12恒成立.即x ≥2k +1或x ≤23(k −12)恒成立, 则2k +1≤−1解得k ≤−1, 所以k 的取值范围是(−∞,−1].【解析】(1)由题意可得|x −1|+12|x +3|≤3,由零点分区间法和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得|x −k|+12|x +3|≥x +2恒成立.讨论x ≤−2恒成立,x >−2时,可得|x −k|≥x+12恒成立,讨论−2<x ≤−1,x >−1时,结合绝对值不等式的解法和恒成立思想,可得所求范围.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和分类讨论思想,考查化简运算能力和推理能力,属于中档题.。
2020届广东省广州市高考数学一模(文)试题(整理含标准答案解析版)
2020届广东省广州市高考数学一模(文)试题一、单选题 1.设集合,,则=( )A .B .C .D .2.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作试验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为x 1,x 2,…x n ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( ) A .x 1,x 2,…x n 的平均数 B .x 1,x 2,…x n 的标准差 C .x 1,x 2,…x n 的最大值 D .x 1,x 2,…x n 的中位数3.若复数()21a ia R i-∈+为纯虚数,则3ai -=( ) AB .13C .10D4.设等差数列{}an 的前n 项和为Sn ,若则28155a a a +=-,9S =( )A .18B .36C .45D .605.已知4cos()25πθ+=,322ππθ<<,则sin 2θ的值等于( )A.1225 B.1225-C.2425 D.2425-6.若实数x ,y 满足001x y x y ⎧⎪⎨⎪+⎩………,则2z y x =-的最小值为( ) A.2B.2-C.1D.1-7.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A.134B.866C.300D.5008.已知12121ln ,2x x e -==,3x 满足33ln xe x -=,则( )A.123x x x <<B.132x x x <<C.213x x x <<D.312x x x <<9.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A.aB.2aD.210.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是( ) A.2(23k -,42)3k +,k Z ∈ B.2(23k ππ-,42)3k ππ+,k Z ∈C.2(43k -,44)3k +,k Z ∈ D.2(43k ππ-,44)3k ππ+,k Z ∈11.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A.17(1)a r + B.17[(1)(1)]a r r r +-+ C.18(1)a r +D.18[(1)(1)]a r r r+-+ 12.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞)二、填空题13.已知向量()()3,2,,1a b m =-=.若向量()2//a b b -,则m =_____.14.已知数列{}n a 满足11a =,111(*,2)n n a a a n N n -=++⋯+∈…,则当1n …时,n a =__. 15.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.16.已知直三棱柱111ABC A B C -外接球的表面积为52π,1AB =,若ABC ∆外接圆的圆心1O 在AC 上,半径11r =,则直三棱柱111ABC A B C -的体积为_____.三、解答题17.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),⋯⋯第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分. (1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.18.在等比数列{}n a 中,公比(0,1)q ∈,且满足32a =,132435225a a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当1212n S S S n++⋯+取最大值时,求n 的值. 19.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c,且22sin 30C C -++=. (1)求角C 的大小; (2)若b =,ABC ∆sin A B ,求sin A 及c 的值. 20.如图,四棱锥P ABCD -的底面ABCD 是矩形,侧面PAB 是正三角形,2AB =,BC =PC =E 、H 分别为PA 、AB 的中点.(1)求证:PH AC ⊥; (2)求点P 到平面DEH 的距离.21.已知函数2()f x lnx mx =-,21()2g x mx x =+,m R ∈,()()()F x f x g x =+.(1)讨论函数()f x 的单调区间及极值;(2)若关于x 的不等式()1F x mx -…恒成立,求整数m 的最小值.22.在直角坐标系xOy 中,曲线C的参数方程为cos sin x y αααα⎧=⎪⎨=-⎪⎩(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为cos 26πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)求曲线C 和直线l 的直角坐标方程;(Ⅱ)直线l 与y 轴交点为P ,经过点P 的直线与曲线C 交于A ,B 两点,证明:PA PB ⋅为定值. 23.已知函数()12()f x x x m m R =-++∈. (1)若2m =时,解不等式()3f x ≤;(2)若关于x 的不等式()23f x x ≤-在[0,1]x ∈上有解,求实数m 的取值范围.2020届广东省广州市高考数学一模(文)试题1. 【答案】B【解析】试题分析:集合,故选B.【考点】集合的交集运算. 2. 【答案】B【解析】根据平均数、标准差、中位数、最值的实际意义逐一判断即可. 【详解】因为平均数、中位数、众数描述样本数据的集中趋势, 方差和标准差描述其波动大小. 所以,表示一组数据12,,...n x x x 的稳定程度的是方差或标准差.故选B . 【点睛】本题主要考查平均数、标准差、中位数的实际意义,意在考查对基础知识掌握的熟练程度,以及灵活运用所学知识解答问题的能力,属于基础题. 3. 【答案】A【解析】由题意首先求得实数a 的值,然后求解3ai -即可。
2020年广东省高考数学一模试卷答案解析
2020年广东省高考数学一模试卷答案解析一、选择题(共12题,共60分)1.已知集合A={0,1,2,3},B={x|x2﹣2x﹣3<0},则A∪B=()A.(﹣1,3)B.(﹣1,3]C.(0,3)D.(0,3]【解答】解:集合A={0,1,2,3},B={x|x2﹣2x﹣3<0}=(﹣1,3),则A∪B=(﹣1,3],故选:B.2.设z=,则z的虚部为()A.﹣1B.1C.﹣2D.2【解答】解:∵z==,∴z的虚部为1.故选:B.3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42A.25B.23C.12D.07【解答】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,依次为07,04,08,23,12,则抽取的第5个零件编号为,12,故选:C.4.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36B.32C.28D.24【解答】解:S6==3×(3+9)=36.故选:A.5.若双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),则该双曲线的离心率为()A.B.C.D.2【解答】解:∵双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),∴点(1,﹣2)在直线上,∴.则该双曲线的离心率为e=.故选:C.6.已知tanα=﹣3,则=()A.B.C.D.【解答】解:因为tanα=﹣3,则=cos2α====.故选:D.7.的展开式中x3的系数为()A.168B.84C.42D.21【解答】解:由于的展开式的通项公式为T r+1=•(﹣2)r x7﹣2r,则令7﹣2r=3,求得r=2,可得展开式中x3的系数为•4=84,故选:B.8.函数f(x)=ln|e2x﹣1|﹣x的图象大致为()A.B.C.D.【解答】解:,故排除CD;f(﹣1)=ln|e﹣2﹣1|+1=ln(1﹣e﹣2)+lne=,故排除B.故选:A.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为()A.B.32πC.36πD.48π【解答】解:根据几何体的三视图转换为几何体为三棱锥体A﹣BCD:如图所示:设外接球的半径为r,则:(2r)2=42+42+42,解得r2=12,所以:S=4π×12=48π.故选:D.10.已知动点M在以F1,F2为焦点的椭圆上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为()A.2B.4C.8D.16【解答】解:由椭圆的方程可得焦点在y轴上,a2=4,即a=2,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,当N,M,F2三点共线时取得最大值而|F2M|+|MF1|=2a=4,所以|NF2|的最大值为4,故选:B.11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O,H分别是△ABC的外心、垂心,且M为BC中点,则()A.B.C.D.【解答】解:如图所示的Rt△ABC,其中角B为直角,则垂心H与B重合,∵O为△ABC的外心,∴OA=OC,即O为斜边AC的中点,又∵M为BC中点,∴,∵M为BC中点,∴===.故选:D.12.已知定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,则正实数ω的取值个数最多为()A.4B.3C.2D.1【解答】解:∵定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,∴0<≤1,解得0<ω≤3,∴≤ωx﹣≤.①0<ω≤时,则sin(ω﹣)=,令g(ω)=sin(ω﹣)﹣,y=sin(ω﹣)在(0,]上单调递增,∵g(0)=﹣<0,g()=1﹣=>0,因此存在唯一实数ω,使得sin(ω﹣)=.②<ω≤3,sin(ωx﹣)=1,必须ω=3,x=.综上可得:正实数ω的取值个数最多为2个.故选:C.二、填空题(共4题,共20分)13.若x,y满足约束条件,则z=x﹣2y的最小值为﹣3.【解答】解:画出x,y满足约束条件,表示的平面区域,如图所示;结合图象知目标函数z=x﹣2y过A时,z取得最小值,由,解得A(1,2),所以z的最小值为z=1﹣2×2=﹣3.故答案为:﹣3.14.设数列{a n}的前n项和为S n,若S n=2a n﹣n,则a6=63.【解答】解:数列{a n}的前n项和为S n,由于S n=2a n﹣n,①所以当n≥2时,S n﹣1=2a n﹣1﹣(n﹣1)②,①﹣②得:a n=2a n﹣1+1,整理得(a n+1)=2(a n﹣1+1),所以(常数),所以数列{a n+1}是以2为首项,2为公比的等比数列.所以,整理得.所以.故答案为:6315.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为.【解答】解:基本事件的总数为,其中该验证码的首位数字是1的包括的事件个数为.∴该验证码的首位数字是1的概率==.故答案为:.16.已知点M(m,m﹣)和点N(n,n﹣)(m≠n),若线段MN上的任意一点P都满足:经过点P的所有直线中恰好有两条直线与曲线C:y=+x(﹣1≤x≤3)相切,则|m﹣n|的最大值为.【解答】解:由点M(m,m﹣)和点N(n,n﹣),可得M,N在直线y=x﹣上,联立曲线C:y=+x(﹣1≤x≤3),可得x2=﹣,无实数解,由y=+x的导数为y′=x+1,可得曲线C在x=﹣1处的切线的斜率为0,可得切线的方程为y=﹣,即有与直线y=x﹣的交点E(0,﹣),同样可得曲线C在x=3处切线的斜率为4,切线的方程为y=4x﹣,联立直线y=x﹣,可得交点F(,),此时可设M(0,﹣),N(,),则由图象可得|m﹣n|的最大值为﹣0=,故答案为:.三、解答题(共70分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2﹣c2=2S.(1)求cos C;(2)若a cos B+b sin A=c,,求b.【解答】解:(1)∵a2+b2﹣c2=2S,所以2ab cos C=ab sin C,即sin C=2cos C>0,sin2C+cos2C=1,cos C>0,解可得,cos C=,(2)∵a cos B+b sin A=c,由正弦定理可得,sin A cos B+sin B sin A=sin C=sin(A+B),故sin A cos B+sin B sin A=sin A cos B+sin B cos A,所以sin A=cos A,∵A∈(0,π),所以A=,所以sin B=sin(A+C)=sin()==,由正弦定理可得,b===3.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,点M,N分别在棱C1C,A1A上,且C1M=2MC,A1N=2NA.(1)求证:NC1∥平面BMD;(2)若A1A=3,AB=2AD=2,∠DAB=,求二面角N﹣BD﹣M的正弦值.【解答】解:(1)连接BD,AC交于E,取C1M的中点F,连接AF,ME,由C1M=2MC,A1N=2NA,故C1F=AN,以且C1F∥AN,故平行四边形C1F AN,所以C1N∥F A,根据中位线定理,ME∥AF,由ME⊂平面MDB,F A⊄平面MDB,所以F A∥平面MDB,NC1∥F A,故NC1∥平面BMD;(2)AB=2AD=2,∠DAB=,由DB2=1+4﹣2×1×2×cos=3,由AB2=AD2+DB2,得AD⊥BD,以D为原点,以DA,DB,DD₁分别为x,y,z轴建立空间直角坐标系,D(0,0,0),B(0,,0),M(﹣1,,1),N(1,0,1),=(0,,0),=(﹣1,,1),=(1,0,1),设平面MBD的一个法向量为=(x,y,z),由,令x=1,得=(1,0,1),设平面NBD的一个法向量为=(a,b,c),由,得,由cos<>=,所以二面角N﹣BD﹣M为,正弦值为1.19.已知以F为焦点的抛物线C:y2=2px(p>0)过点P(1,﹣2),直线l与C交于A,B两点,M为AB中点,且.(1)当λ=3时,求点M的坐标;(2)当=12时,求直线l的方程.【解答】解:(1)将P(1,﹣2)代入抛物线C:y2=2px方程,得p=2,所以C的方程为y2=4x,焦点F(1,0),设M(x0,y0),当λ=3时,,可得M(2,2).(2)方法一:设A(x1,y1),B(x2,y2),M(x0,y0),由.可得(x0+1,y0﹣2)=(λ,0),所以y0=2,所以直线l的斜率存在且斜率,设直线l的方程为y=x+b,联立,消去y,整理得x2+(2b﹣4)x+b2=0,△=(2b﹣4)2﹣4b2=16﹣16b>0,可得b<1,则x1+x2=4﹣2b,,,所以,解得b=﹣6,b=2(舍),所以直线l的方程为y=x﹣6.方法二:设直线l的方程为x=my+n,设A(x1,y1),B(x2,y2),M(x0,y0),联立方程组,消去x,整理得y2﹣4my﹣4n=0,△=16m2+16n>0,则y1+y2=4m,y1y2=﹣4n,则,则M(2m2+n,2m),由.得(2m2+n+1,2m﹣2)=(λ,0),所以m=1,所以直线l的方程为x=y+n,由△=16+16n>0,可得n>﹣1,由y1y2=﹣4n,得,所以,解得n=6或n=﹣2,(舍去)所以直线l的方程为y=x﹣6.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:P(K2≥k0)0.050.0250.010k0 3.841 5.024 6.635,其中n=a+b+c+d.【解答】解:(1)根据统计数据,计算平均数为=×(1×85+3×205+5×310+7×250+9×130+11×15+13×5)=5.4(天);(2)根据题意,补充完整列联表如下;潜伏期<6天潜伏期≥6天总计50岁以上(含50岁)653510050岁以下5545100总计12080200根据列联表计算K2==≈2.083<3.841,所以没有95%的把握认为潜伏期与年龄有关;(3)根据题意得,该地区每1名患者潜伏期超过6天发生的概率为=,设调查的20名患者中潜伏期超过6天的人数为X,则X~B(20,),P(X=k)=••,k=0,1,2, (20)由,得,化简得,解得≤k≤;又k∈N,所以k=8,即这20名患者中潜伏期超过6天的人数最有可能是8人.21.已知函数f(x)=e x﹣aln(x﹣1).(其中常数e=2.71828…,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;(2)若函数f(x)在区间(1,1+e﹣a)上不单调,证明:+>a.【解答】解:(1)易知,①若a≤0,则f′(x)>0,函数f(x)在(1,+∞)上单调递增,∴函数f(x)无极值点,即此时极值点个数为0;②若a>0,易知函数y=e x的图象与的图象有唯一交点M(x0,y0),∴,∴当x∈(1,x0)时,f′(x)<0,函数f(x)在(1,x0)上单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)在(x0,+∞)上单调递增,∴函数f(x)有较小值点x0,即此时函数f(x)的极值点个数为1;综上所述,当a≤0时,函数f(x)的极值点个数为0;当a>0时,函数f(x)的极值点个数为1;(2)证明:∵函数f(x)在区间(1,1+e﹣a)上不单调,∴存在为函数f(x)的极值点,由(1)可知,a>0,且,即,两边取自然对数得1﹣a+e﹣a>lna,即1+e﹣a﹣lna>a,要证+>a,不妨考虑证,又易知e x≥1+x,∴,即,又,∴,∴,即,∴,∴+>a.22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.【解答】解:(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,可得普通方程:x2+y2=4y.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△=﹣48>0,可得:sin(α+)>,或sin(α+)<﹣,由α为锐角.可得:sin(α+)>,解得:0<α<.则t1+t2=4cosα+4sinα,t1t2=12.∴|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,∴8=8|sin(α+)|,∴化为:sin(α+)=1,∴α=+2kπ,k∈Z.α满足0<α<.可得α=.∴直线C1的参数方程为:,可得普通方程:x﹣y+2=0.23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.【解答】证明:(1)=,当且仅当时,等号成立;(2)∵a,b,c为正数,且满足a+b+c=1,∴c=1﹣a﹣b,1﹣a>0,1﹣b>0,1﹣c>0,∴ac+bc+ab﹣abc=(a+b﹣ab)c+ab=(a+b﹣ab)(1﹣a﹣b)+ab=(b﹣1)(a﹣1)(a+b)=(1﹣a)(1﹣b)(1﹣c),∴ac+bc+ab﹣abc≤,当且仅当时,等号成立.。
2020年广东省广州市高考数学一模试卷和答案(文科)
2020年广东省广州市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={1,2,3,4,5,6,7},M={3,4,5},N ={1,3,6},则集合{2,7}等于()A.M∩N B.∁U(M∪N)C.∁U(M∩N)D.M∪N 2.(5分)某地区小学,初中,高中三个学段的学生人数分别为4800人,4000人,2400人.现采用分层抽样的方法调查该地区中小学生的“智慧阅读”情况,在抽取的样本中,初中学生人数为70人,则该样本中高中学生人数为()A.42人B.84人C.126 人D.196人3.(5分)直线kx﹣y+1=0与圆x2+y2+2x﹣4y+1=0的位置关系是()A.相交B.相切C.相离D.不确定4.(5分)已知函数f(x)=,则f[f()]的值为()A.4B.2C.D.5.(5分)已知向量=(2,1),=(x,﹣2),若|+|=|2﹣|,则实数x的值为()A.B.C.D.26.(5分)如图所示,给出的是计算+++…+值的程序框图,其中判断框内应填入的条件是()A.i>9B.i>10C.i>11D.i>12 7.(5分)设函数f(x)=2cos(x﹣),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值为()A.4πB.2πC.πD.8.(5分)刘徽是我国古代伟大的数学家,他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产刘徽是世界上最早提出十进小数概念的人,他正确地提出了正负数的概念及其加减运算的规则.提出了“割圆术”,并用“割圆术”求出圆周率π为3.14.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”被视为中国古代极限观念的佳作.其中“割圆术”的第一步是求圆的内接正六边形的面积,第二步是求圆的内接正十二边形的面积,依此类推.若在圆内随机取一点,则该点取自该圆内接正十二边形的概率为()A.B.C.D.9.(5分)已知sinα﹣cosα=,0<α<π,则cos2α=()A.﹣B.C.D.﹣10.(5分)已知点P(x0,y0)在曲线C:y=x3﹣x2+1上移动,曲线C在点P处的切线的斜率为k,若k∈[﹣,21],则x0的取值范围是()A.[﹣,]B.[﹣,3]C.[﹣,+∞)D.[﹣7,9] 11.(5分)已知O为坐标原点,设双曲线C:﹣=1(a>0,b >0)的左,右焦点分别为F1,F2,点P是双曲线C上位于第一象限内的点.过点F2作∠F1PF2的平分线的垂线,垂足为A,若b =|F1F2|﹣2|OA|,则双曲线C的离心率为()A.B.C.D.212.(5分)在三棱锥A﹣BCD中,△ABD与△CBD均为边长为2的等边三角形,且二面角A﹣BD﹣C的平面角为120°,则该三棱锥的外接球的表面积为()A.7πB.8πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知复数z=﹣i.则z2+z4=.14.(5分)已知函数f(x)=在区间(0,+∞)上有最小值4,则实数k=.15.(5分)已知直线a⊥平面α,直线b⊂平面β,给出下列5个命题①若α∥β,则a⊥b;②若α⊥β,则a⊥b:③若α⊥β,则a ∥b:④若a∥b,则α⊥β;⑤若a⊥b则α∥β,其中正确命题的序号是.16.(5分)如图,在平面四边形ABCD中,∠BAC=∠ADC=,∠ABC=,∠ADB=,则tan∠ACD=.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且满足a n=n﹣S n,设b n=a n﹣1.(1)求a1,a2,a3;(2)判断数列{b n}是否是等比数列,并说明理由;(3)求数列{a n}的前n项和S n.18.(12分)如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点.将△ADE沿DE折起,使得AB⊥AD,得到如图2的四棱锥A﹣BCDE,连结BD,CE,且BD与CE交于点H.(1)证明:AH上BD;(2)设点B到平面AED的距离为h1,点E到平面ABD的距离为h2,求的值.19.(12分)某种昆虫的日产卵数和时间变化有关,现收集了该昆虫第1夭到第5天的日产卵数据:第x天12345日产卵数y612254995(个)对数据初步处理后得到了如图所示的散点图和表中的统计量的值.x i x i2(lny i)(x i•lny i)155515.9454.75(1)根据散点图,利用计算机模拟出该种昆虫日产卵数y关于x 的回归方程为y=e a+bx(其中e为自然对数的底数),求实数a,b 的值(精确到0.1);(2)根据某项指标测定,若日产卵数在区间(e6,e8)上的时段为优质产卵期,利用(1)的结论,估计在第6天到第10天中任取两天,其中恰有1天为优质产卵期的概率.附:对于一组数据(v1,μ1),(v2,μ2),…,(v n,μn),其回归直线μ=α+βv的斜率和截距的最小二乘估计分别为=,=﹣•.20.(12分)已知⊙M过点A(,0),且与⊙N:(x+)2+y2=16内切,设⊙M的圆心M的轨迹为曲线C.(1)求曲线C的方程:(2)设直线l不经过点B(0,1)且与曲线C相交于P,Q两点.若直线PB与直线QB的斜率之积为﹣,判断直线l是否过定点,若过定点,求出此定点坐标;若不过定点,请说明理由.21.(12分)已知函数f(x)=(x+a)e bx(b≠0)的最大值为,且曲线y=f(x)在x=0处的切线与直线y=x﹣2平行(其中e 为自然对数的底数).(1)求实数a,b的值;(2)如果0<x1<x2,且f(x1)=f(x2),求证:3x1+x2>3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数,且θ∈(,)).(1)求C1与C2的普通方程,(2)若A,B分别为C1与C2上的动点,求|AB|的最小值.[选修4-5:不等式选讲](10分)23.已知函数f(x)=|3x﹣6|+|x+a|.(1)当a=1时,解不等式f(x)<3;(2)若不等式f(x)<11﹣4x对任意x∈[﹣4,﹣]成立,求实数a的取值范围.2020年广东省广州市高考数学一模试卷(文科)答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】由已知求出M∩N={3},M∪N={1,3,4,5,6},再求其补集,可判断结果.【解答】解:由已知:M∩N={3},M∪N={1,3,4,5,6},∴∁U(M∩N)={1,2,4,5,6,7),∁U(M∪N)={2,7}.故选:B.2.【分析】设高中抽取人数为x,根据条件,建立比例关系进行求解即可.【解答】解:设高中抽取人数为x,则,得x=42,故选:A.3.【分析】判断直线恒过的定点与圆的位置关系,即可得到结论.【解答】解:圆方程可整理为(x+1)2+(y﹣2)2=4,则圆心(﹣1,2),半径r=2,直线恒过点(0,1),因为(0,1)在圆内,故直线与圆相交,故选:A.4.【分析】根据分段函数的解析式,先求出f()的值,再求f[f()]的值.【解答】解:因为f(x)=,∴f()=ln;∴f[f()]=e=.故选:D.5.【分析】由向量和向量的坐标求出向量和向量的坐标,再利用|+|=|2﹣|,即可求出x的值.【解答】解:∵向量=(2,1),=(x,﹣2),∴=(2+x,﹣1),=(4﹣x,4),∵|+|=|2﹣|,∴,解得x=,故选:C.6.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是累加并输出s的值,模拟循环过程可得条件.【解答】解:程序运行过程中,各变量值如下表所示:s=0,n=2,i=1不满足条件,第一圈:s=0+,n=4,i=2,不满足条件,第二圈:s=+,n=6,i=3,不满足条件,第三圈:s=++,n=8,i=4,…依此类推,不满足条件,第10圈:s=+++…+,n=22,i=11,不满足条件,第11圈:s=+++…++,n=24,i=12,此时,应该满足条件,退出循环,其中判断框内应填入的条件是:i>11?.故选:C.7.【分析】由题意可知f(x1)≤f(x)≤f(x2),f(x1)是函数的最小值,f(x2)是函数的最大值,|x1﹣x2|的最小值就是半个周期.【解答】解:函数f(x)=2cos(x﹣),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),∴f(x1)是函数的最小值,f(x2)是函数的最大值,|x1﹣x2|的最小值就是函数的半周期,=×=2π;故选:B.8.【分析】设圆的半径为1,分别求出圆的面积及圆内接正十二边形的面积,由测度比是面积比得答案.【解答】解:设圆的半径为1,圆内接正十二边形的一边所对的圆心角为=30°,则圆内接正十二边形的面积为:12××1×1×sin30°=3.圆的面积为π×12=π,由测度比为面积比可得:在圆内随机取一点,则此点在圆的某一个内接正十二边形内的概率是.故选:C.9.【分析】把sinα﹣cosα=平方可得2sinαcosα的值,从而求得sinα+cosα的值,再利用二倍角的余弦公式求得cos2α=cos2α﹣sin2α=﹣(sinα﹣cosα)(sinα+cosα)的值.【解答】解:∵sinα﹣cosα=,0<α<π,∴平方可得:1﹣2sinαcosα=,2sinαcosα=>0.∴α为锐角.∴sinα+cosα═===,∴cos2α=cos2α﹣sin2α=﹣(sinα﹣cosα)(sinα+cosα)=﹣×=﹣.故选:A.10.【分析】先求出y=x3﹣x2+1的导数,然后求出曲线C在点P(x0,y0)处的切线斜率k,再根据k∈[﹣,21]求出x0的取值范围.【解答】解:由y=x3﹣x2+1,得y'=3x2﹣2x,则曲线C在点P(x0,y0)处的切线的斜率为,∵k∈[﹣,21],∴∈,∴.故选:B.11.【分析】由角平分线的性质可得延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,可得OA为△BF1F2的中位线,b=|F1F2|﹣2|OA|=2c﹣2a再由a,b,c的关系求出离心率.【解答】解:延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,连接OA,则OA为△BF1F2的中位线,所以|BF1|=2|OA|,而|BF1|=|PF1|﹣|PB|=|PF1|﹣|PF2|=2a因为b=|F1F2|﹣2|OA|=2c﹣2a,而b2=c2﹣a2所以c2﹣a2=4(c﹣a)2整理可得3c2﹣8ac+5c2=0,即3e2﹣8e+5=0,解得e=或1,再由双曲线的离心率大于1,可得e=,故选:C.12.【分析】如图,取BD中点H,连接AH,CH,则∠AHC为二面角A﹣BD﹣C的平面角,即∠AHD=120°,分别过EF作平面ABD,平面BCD的垂线,则三棱锥的外接球一定是两条垂线的交点,记为O,连接AO,HO,则由对称性可得∠OHE=60°,进而可求得R的值.【解答】解:如图,取BD中点H,连接AH,CH,因为△ABD与△CBD均为边长为2的等边三角形,所以AH⊥BD,CH⊥BD,则∠AHC为二面角A﹣BD﹣C的平面角,即∠AHD=120°,设△ABD与△CBD外接圆圆心分别为E,F,则由AH=2×=可得AE=AH=,EH=AH=,分别过EF作平面ABD,平面BCD的垂线,则三棱锥的外接球一定是两条垂线的交点,记为O,连接AO,HO,则由对称性可得∠OHE=60°,所以OE=1,则R=OA==,则三棱锥外接球的表面积4πR2=4π×=,故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.【分析】利用复数的乘方运算和加法法则即可得出.【解答】解:∵z2=(﹣i)2=﹣i﹣=﹣i,∴z4=(z2)2=(﹣i)2=﹣1,∴z2+z4=﹣1﹣i,故答案是:﹣1﹣i.14.【分析】由函数在(0,+∞)上有最小值可知,k>0,再由基本不等式即可求得k的值.【解答】解:依题意,k>0,则,则,解得k=4.故答案为:4.15.【分析】由空间中直线与直线、直线与平面、平面与平面位置关系的判定及其应用逐一核对四个命题得答案.【解答】解:对于①,由a⊥平面α,α∥β,得a⊥β,又直线b⊂平面β,∴a⊥b,故①正确;对于②,由a⊥平面α,α⊥β,得a∥β或a⊂β,而直线b⊂平面β,∴a与b的关系是平行、相交或异面,故②错误;对于③,由a⊥平面α,α⊥β,得a∥β或a⊂β,而直线b⊂平面β,∴a与b的关系是平行、相交或异面,故③错误;对于④,由a⊥平面α,a∥b,得b⊥α,又直线b⊂平面β,∴α⊥β,故④正确;对于⑤,由a⊥平面α,a⊥b,得b∥α或b⊂α,又直线b⊂平面β,∴α与β相交或平行,故⑤错误.∴其中正确命题的序号是①④.故答案为:①④.16.【分析】设∠ACD=θ,AC=1,则AD=sinθ,进一步可得,再利用正弦定理可得,通过三角恒等变换即可求得tanθ的值,进而得出答案.【解答】解:不妨设∠ACD=θ,AC=1,则AD=sinθ,在△ABD中,,∠ADB=,则,在△ABD中,由正弦定理得,即,∴,∴,∴,∴,∴.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【分析】(1)a n=n﹣S n,可得a1=1﹣a1,解得a1.a2=2﹣(a2+),解得a2.a3=3﹣(a3++),解得a3.(2)a n=n﹣S n,n≥2时,a n﹣1=n﹣1﹣S n﹣1,相减可得:a n﹣1=(a n﹣1),可得:b n=b n﹣1.即可得出结论.﹣1(3)由(2)可得:b n=﹣.可得a n=b n+1,可得S n=n﹣a n.【解答】解:(1)a n=n﹣S n,∴a1=1﹣a1,解得a1=.a2=2﹣(a2+),解得a2=.a3=3﹣(a3++),解得a3=.(2)a n=n﹣S n,n≥2时,a n﹣1=n﹣1﹣S n﹣1,相减可得:2a n=a n+1,﹣1变形为:a n﹣1=(a n﹣1﹣1),由b n=a n﹣1.可得:b n=b n﹣1.b1=a1﹣1=﹣.∴数列{b n}是等比数列,首项为﹣,公比为.(3)由(2)可得:b n=﹣×=﹣.则a n=b n+1=1﹣.∴S n=n﹣a n=n﹣1+.18.【分析】(1)在图1中,证明BD⊥AC,ED∥BC,则在图2中,有,得DH=,然后证明△BAD∽△AHD,可得∠AHD=∠BAD=90°,即AH⊥BD;(2)由V B=V E﹣ABD,得,分别求出三角形ABD与﹣AED三角形AED的面积得答案.【解答】(1)证明:在图1中,∵△ABC为等边三角形,且D为边AC的中点,∴BD⊥AC,在△BCD中,BD⊥CD,BC=2,CD=1,∴BD=,∵D、E分别为边AC、AB的中点,∴ED∥BC,在图2中,有,∴DH=.在Rt△BAD中,BD=,AD=1,在△BAD和△AHD中,∵,∠BDA=∠ADH,∴△BAD∽△AHD.∴∠AHD=∠BAD=90°,即AH⊥BD;(2)解:∵V B=V E﹣ABD,﹣AED∴,则.∵△AED是边长为1的等边三角形,∴.在Rt△ABD中,BD=,AD=1,则AB=.∴,则.19.【分析】(1)根据y=e a+bx,两边取自然对数得lny=a+bx,再利用线性回归方程求出a、b的值;(2)根据y=e1.1+0.7x,由e6<e1.1+0.7x<e8求得x的取值范围,再利用列举法求出基本事件数,计算所求的概率值.【解答】解:(1)因为y=e a+bx,两边取自然对数,得lny=a+bx,令m=x,n=lny,得n=a+bm;因为===0.693;所以b≈0.7;因为=﹣b=﹣0.7×3=1.088;所以a≈1.1;即a≈1.1,b≈0.7;(2)根据(1)得y=e1.1+0.7x,由e6<e1.1+0.7x<e8,得7<x<;所以在第6天到第10天中,第8、9天为优质产卵期;从未来第6天到第10天中任取2天的所有可能事件有:(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)共10种;其中恰有1天为优质产卵期的有:(6,8),(6,9),(7,8),(7,9),(8,10),(9,10)共6种;设从未来第6天到第10天中任取2天,其中恰有1天为优质产卵期的事件为A,则P(A)==;所以从未来第6天到第10天中任取2天,其中恰有1天为优质产卵期的概率为.20.【分析】(1)由两圆相内切的条件和椭圆的定义,可得曲线C的轨迹方程;(2)设直线BP的斜率为k(k≠0),则BP的方程为y=kx+1,联立椭圆方程,解得交点P,同理可得Q的坐标,考虑P,Q的关系,运用对称性可得定点.【解答】解:(1)设⊙M的半径为R,因为圆M过A(,0),且与圆N相切,所以R=|AM|,|MN|=4﹣R,即|MN|+|MA|=4,由|NA|<4,所以M的轨迹为以N,A为焦点的椭圆.设椭圆的方程为+=1(a>b>0),则2a=4,且c==,所以a=2,b=1,所以曲线C的方程为+y2=1;(2)由题意可得直线BP,BQ的斜率均存在且不为0,设直线BP的斜率为k(k≠0),则BP的方程为y=kx+1,联立椭圆方程x2+4y2=4,可得(1+4k2)x2+8kx=0,解得x1=0,x2=﹣,则P(﹣,),因为直线BQ的斜率为﹣,所以同理可得Q(,﹣),因为P,Q关于原点对称,(或求得直线l的方程为y=x)所以直线l过定点(0,0).21.【分析】(1)对原函数求导数,然后利用在x=0处切线的斜率为1,函数的最大值为列出关于a,b的方程组求解;(2)利用f(x1)=f(x2)找到x1,x2的关系式,然后引入t=x2﹣x1,构造关于t的函数,将3x1+x2转换成关于t的函数,求最值即可.【解答】解:(1)由已知f′(x)=(bx+ab+1)e bx.则易知f′(0)=ab+1=1,∴ab=0,又因为b≠0,故a=0.此时可得f(x)=xe bx(b≠0),f′(x)=(bx+1)e bx.①若b>0,则当x时,f′(x)<0,f(x)递减;.此时,函数f(x)有最小值,无最大值.②若b<0,则当;x.此时,解得b=﹣1.所以a=0,b=﹣1即为所求.(2)由0<x1<x2,且f(x1)=f(x2)得:.∴.设t=x2﹣x1(t>0),则e t x1﹣x1=t,可得,所以要证3x1+x2>3,即证.∵t>0,所以e t﹣1>0,所以即证(t﹣3)e t+3t+3>0.设g(t)=(t﹣3)e t+3t+3(t>0),则g′(t)=(t﹣2)e t+3.令h(t)=(t﹣2)e t+3,则h′(t)=(t﹣1)e t,当t∈(0,1)时,h′(t)<0,h(t)递减;t∈(1,+∞)时,h′(t)>0,h(t)递增.所以h(t)>h(1)=3﹣e>0,即g′(t)>0,所以g(t)在(0,+∞)上递增.所以g(t)>g(0)=0.∴3x1+x2>3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用直线和曲线的位置关系式的应用求出结果.【解答】解:(1)由题可得:C1的普通方程为2x﹣y﹣5=0又因为C2的参数方程为,两边平方可得,所以C 2的普通方程为,且.(2)由题意,设C1的平行直线2x﹣y+c=0联立消元可得:3x2+4cx+c2+3=0所以△=4c2﹣36=0,解得c=±3又因为,经检验可知c=3时与C2相切,所以.[选修4-5:不等式选讲](10分)23.【分析】(1)a=1时,f(x)=|3x﹣6|+|x+1|,讨论x的取值范围,去掉绝对值求不等式f(x)<3的解集即可;(2)f(x)=|3x﹣6|+|x+a|<11﹣4x对任意成立,等价于|x+a|<5﹣x恒成立,去绝对值,从而求出a的取值范围.【解答】解:(1)a=1时,f(x)=|3x﹣6|+|x+1|=;当x<﹣1时,由f(x)<3得﹣4x+5<3,解得x>(不合题意,舍去);当﹣1≤x≤2时,由f(x)<3得﹣2x+7<3,解得x>2(不合题意,舍去);当x>2时,由f(x)<3得4x﹣5<3,解得x<2(不合题意,舍去);所以不等式f(x)<3的解集∅;(2)由f(x)=|3x﹣6|+|x+a|<11﹣4x对任意成立,得﹣(3x﹣6)+|x+a|<11﹣4x,即|x+a|<5﹣x,所以,所以,得a>﹣5且a<5﹣2x对任意成立;即﹣5<a<8,所以a的取值范围是(﹣5,8).。
2020年广东省广州市高考数学一模试卷(理科) (含答案解析)
2020年广东省广州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设集合M={x|x<2},集合N={x|0<x<1},则M∩N=()A. {x|1<x<2}B. {x|0<x<1}C. {x|x<2}D. R2.设复数z=1−i,则z3=()A. −2+2iB. 2+2iC. −2−2iD. 2−2i3.若直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,则实数b的取值范围是()A. [−2,2]B. [−3,1]C. [−4,0]D. [−5,−1]4.条件p:|x−m|≤2,条件q:−1≤x≤n,若p是q的充要条件,则m+n=()A. 2B. 3C. 4D. 55.当0≤x≤π2时,函数f(x)=sinx+√3cosx的()A. 最大值是√3,最小值是12B. 最大值是√3,最小值是1C. 最大值是2,最小值是1D. 最大值是2,最小值是126.如图,在直三棱柱ABC−A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,,M是AA1的中点,则三棱锥A1−MBC1的体积为()A. 5B. 4C. 3D. 27.同文中学在高一年级进行“三城同创”演讲比赛,如果高一(8)班从3男1女4位同学中选派2位同学参加此次演讲比赛,那么选派的都是男生的概率是().A. 34B. 14C. 23D. 128.直线l:y=k(x−1)与抛物线C:y2=4x交于A、B两点,若线段AB的中点横坐标为3,则|AB|的值为()A. 8B. 8√3C. 6√3D. 69.若等差数列{a n}的前n项和为S n,a4=1,a8+a9=9,则S9=()A. 15B. 16C. 17D. 1810.曲线y=3x−lnx在点(1,3)处的切线方程为()A. y=−2x−1B. y=−2x+5C. y=2x+1D. y=2x−111.已知O为坐标原点,F1,F2是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,PM为∠F1PF2的角平分线,过F1作PM的垂线交PM于点M,则|OM|的长度为()A. aB. bC. a2D. b212.函数f(x)=x2−x−2的零点是()A. –2,–1B. 2,–1C. 1,2D. 1,–2二、填空题(本大题共4小题,共20.0分)13.如图,是一个几何体的三视图,其中正视图与侧视图完全相同,均为等边三角形与矩形的组合,俯视图为圆,若已知该几何体的表面积为16π,则x=______ .14.已知(2+x2)(ax+1a)6展开式中含x4项的系数为45,则正实数a的值为______.15.设单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,若(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),则实数k的值是______ .16.已知数列{a n}的前n项和S n=n3,则a6+a7+a8=______ .三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足sin(2A+B)sinA=2+2cos(A+B).(1)证明:b=2a;(2)若c=√7a,求∠C大小.18.“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)某调查人员在调查这200人时,有3张周末的马拉松训练活动体验卡要向他们发放,若被调查者为“热烈参与者”,即送其1张体验卡,否则不予送出.调查人员顺次调查完前3人后,剩余的体验卡数量为ξ,试根据统计表的数据,以200人中“热烈参与者”的频率作为概率,求ξ的分布列及期望.19.如图,三棱柱ABC−A1B1C1的所有棱长都是2,AA1⊥平面ABC,D,E分别是AC,CC1的中点.(1)求证:AE⊥平面A1BD;(2)求二面角D−BE−B1的余弦值.20.已知定点A(−3,0)、B(3,0),直线AM、BM相交于点M,且它们的斜率之积为−1,记动点M的9轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点T(1,0)的直线l与曲线C交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在请说明理由.21. 已知函数f(x)=ln(x +a)−x ,a ∈R .(1)当a =−1时,求f(x)的单调区间;(2)若x ≥1时,不等式e f(x)+a 2x 2>1恒成立,求实数a 的取值范围.22. 在平面直角坐标系xOy 中,已知直线l :{x =1+12t y =√32t(t 为参数),曲线C 1:{x =√2cosθy =sinθ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB|;(2)若Q 是曲线C 2:{x =cosαy =3+sinα(α为参数)上的一个动点,设点P 是曲线C 1上的一个动点,求|PQ|的最大值.23. 设f(x)=|x +1|−|2x −1|,(1)求不等式f(x)≤x +2的解集;(2)若不等式满足f(x)≤|x|(|a −1|+|a +1|)对任意实数x ≠0恒成立,求实数a 的取值范围.-------- 答案与解析 --------1.答案:B解析:本题考查交集的运算,属于基础题.求出集合M,N,即可求解.解:∵集合M={x|x<2},集合N={x|0<x<1},∴M∩N={x|0<x<1}.故选B.2.答案:C解析:本题考查了复数的运算法则、考查了计算能力,属于基础题.利用复数的运算法则求解即可.解:,故选C.3.答案:D解析:本题考查了直线与圆的位置关系,属于基础题.将圆的一般方程转化为标准方程,根据题意可知圆心(2,−1)到直线x−y+b=0的距离小于等于半径√2,即可求得b的取值范围.解:圆x2+y2−4x+2y+3=0转化成标准方程为(x−2)2+(y+1)2=2,圆心为(2,−1),半径为√2,因为直线y=x+b与圆x2+y2−4x+2y+3=0有公共点,≤√2,解得−5≤b≤−1,所以√1+1故选:D.4.答案:C解析:解:条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,∴m−2=−1,m+2=n,解得m=1,n=3.则m+n=4.故选:C.条件p:|x−m|≤2,解出m−2≤x≤m+2.条件q:−1≤x≤n,由p是q的充要条件,可得m−2=−1,m+2=n,解出即可得出.本题考查了不等式与方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.答案:C解析:利用辅助角公式将函数f(x)化简,根据三角函数的有界限求解即可.本题考查三角函数的图象及性质的运用,考查转化思想以及计算能力.解:函数f(x)=sinx+√3cosx=2sin(x+π3).当0≤x≤π2时,则π3≤x+π3≤5π6,那么:当x+π3=5π6时,函数f(x)取得最小值为1.当x+π3=π2时,函数f(x)取得最大值为2.故选C.6.答案:B解析:本题考查三棱柱体积的求法,属于基础题.根据题意可得sin∠MA1B=35,A1B=5,,A1M=2,即可得到S△A1MB,进而求出三棱锥A1−MBC1的体积.解:直三棱柱ABC−A1B1C1中,四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则sin∠MA1B=35,A1B=5,,A1M=2,所以S△A1MB =12·A1M·A1B·sin∠MA1B=12×2×5×35=3,所以棱锥A1−MBC1的体积为 VA1−MBC1=VC−A1MB=13×C1A1·S△A1MB=13×4×3=4.7.答案:D解析:本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.基本事件总数n=C42=6,选派的都是男生包含的基本事件个数m=C32=3,由此能求出选派的都是男生的概率.解:高二8班从3男1女4位同学中选派2位同学参加某演讲比赛,三男一女分别记为A,B,C,D,则4位同学中选派2位同学的结果有AB,AC,AD,BC,BD,CD,共6种,选派的都是男生包含的结果有AB,AC,BC,共三种,∴选派的都是男生的概率p=36=12.故选D.8.答案:A解析:本题考查抛物线的性质和应用,正确运用抛物线的定义是关键.线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知|AB|的值.解:由题设知直线l:y=k(x−1)经过抛物线C:y2=4x的焦点坐标,线段AB的中点到准线的距离为3+1=4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选:A.9.答案:B解析:本题考查等差数列的通项公式及前n 项和公式,属于基础题.由a 8+a 9=9,a 4=1联立解方程组即可求出等差数列的的公差和首项,然后代入求和公式. 解:因为{a n }是等差数列,所以可设a n =a 1+(n −1)d ,所以a 4=a 1+3d =1,a 8+a 9=2a 4+9d =9,所以d =79,a 1=−43,所以S 9=9×(−43)+9×82×79=16. 故选B . 10.答案:C解析:本题考查曲线的切线方程,考查导数的几何意义,属于基础题.求导数,确定切线的斜率,即可求出曲线y =3x −lnx 在点(1,3)处的切线方程. 解:由题意,y ′=3−1x ,所以曲线过点(1,3)处的切线斜率为k =3−1=2,所以切线方程为y −3=2(x −1),即y =2x +1,故选C . 11.答案:A解析:解:依题意如图,延长F 1M ,交PF 2于点T ,∵PM 是∠F 1PF 2的角分线.TF 1是PM 的垂线,∴PM 是TF 1的中垂线,∴|PF 1|=|PT|,∵P为双曲线x2a2−y2b2=1上一点,∴|PF1|−|PF2|=2a,∴|TF2|=2a,在三角形F1F2T中,MO是中位线,∴|OM|=a.故选:A.先画出双曲线和焦点三角形,由题意可知PM是TF1的中垂线,再利用双曲线的定义,数形结合即可得结论.本题考查了双曲线的定义的运用以及双曲线标准方程的意义,解题时要善于运用曲线定义,数形结合的思想解决问题.12.答案:B解析:本题主要考查函数零点的判定定理.由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点,也就是求函数的图象与x轴的交点的横坐标.令f(x)=0,由二次方程的解法,运用因式分解解方程即可得到所求函数的零点.解:令f(x)=0,即x2−x−2=0,即有(x−2)(x+1)=0,解得x=2或x=−1.即函数f(x)的零点为2或−1.故选B.13.答案:2√3解析:解:由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,∵正视图与侧视图完全相同,均为等边三角形与矩形的组合,∴圆锥的高是x,则半径为xtan60°=√3,母线长是xsin60°=2√3x3,则圆柱的底面半径是√3,高是1,∵该几何体的表面积为16π,∴π×(√3)2+2π×√3×1+π√3× 2√3x 3=16π,化简得,√3x 2+2x −16√3=0, 解得x =2√3或x =3舍去), 故答案为:2√3.由三视图可知此几何体是组合体:上面是圆锥、下面是圆柱,由条件和直角三角形的三角函数求出半径、圆锥母线长,利用圆柱、圆锥的表面积公式列出方程求出x 的值.本题考查了由三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力,计算能力.14.答案:√22或1解析:本题考查了二项式定理的应用以及利用二项展开式的通项公式求展开式中某项系数的问题,是综合性题目,属于基础题.根据(ax +1a )6展开式的通项公式求出展开式中含x 4与x 2,从而求出(2+x 2)(ax +1a )6展开式中含x 4项的系数,列出方程求出正实数a 的值. 解:∵(ax +1a )6展开式的通项公式为:T r+1=C 6r ⋅(ax)6−r ⋅(1a )r =C 6r⋅a 6−2r ⋅x 6−r ,令6−r =4,得r =2,∴T 2+1=C 62⋅a 2⋅x 4=15a 2x 4,令6−r =2,得r =4,∴T 4+1=C 64⋅a −2⋅x 2=15a −2x 2,∴(2+x 2)(ax +1a )6展开式中含x 4项的系数为: 2×15a 2+15a −2=45, 整理得2a 4−3a 2+1=0, 解得a 2=1或a 2=12, ∴正实数a =1或a =√22.故答案为√22或1.15.答案:54解析:本题考查了平面向量的数量积公式的应用以及向量垂直的性质;属于常规题.首先求出单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的数量积,再根据(e1⃗⃗⃗ −2e2⃗⃗⃗ )·(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,得到关于k的方程解之即可.解:因为单位向量e1⃗⃗⃗ ,e2⃗⃗⃗ 的夹角是2π3,所以e1⃗⃗⃗ ⋅e2⃗⃗⃗ =1×1×cos2π3=−12,并且(e1⃗⃗⃗ −2e2⃗⃗⃗ )⊥(k e1⃗⃗⃗ +e2⃗⃗⃗ ),所以(e1⃗⃗⃗ −2e2⃗⃗⃗ )⋅(k e1⃗⃗⃗ +e2⃗⃗⃗ )=0,展开得k e1⃗⃗⃗ 2−2e2⃗⃗⃗ 2+(1−2k)e1⃗⃗⃗ ⋅e2⃗⃗⃗ =0,即k−2−12(1−2k)=0,解得k=54.故答案为:54.16.答案:387解析:本题考查数列递推式,考查了由数列的前n项和求数列部分项的和,是基础的计算题.由已知数列的前n项和,利用a6+a7+a8=S8−S5求得结果.解:由S n=n3,得a6+a7+a8=S8−S5=83−53=387.故答案为:387.17.答案:解:(1)sin(2A+B)sinA=2+2cos(A+B).∴sin(2A+B)=2sinA+2sinAcos(A+B),∴sinAcos(A+B)+cosAsin(A+B)=2sinA+2sinAcos(A+B),∴−sinAcos(A+B)+cosAsin(A+B)=2sinA,即sinB=2sinA,故由正弦定理可得b=2a.(2)由余弦定理可得cosC =a 2+b 2−c 22ab=a 2+4a 2−7a 24a 2=−12,因为∠C 是△ABC 的内角, 故∠C =2π3.解析:(1)等式可化简为sinB =2sinA ,故由正弦定理可得b =2a ; (2)由余弦定理可得cosC =−12,∠C 是△ABC 的内角,故可得∠C =2π3.本题主要考查了余弦定理的综合应用,属于基础题.18.答案:解:(1)以200人中,“热烈参与者”的频率作为概率,则估计该市“热烈参与者”的人数约为:20000×15=4000; (2)根据题意可知,ξ~B(3,45),P(ξ=0)=C 30×(15)3=1125, P(ξ=1)=C 31×45×(15)2=12125, P(ξ=2)=C 32×(45)2×15=48125, P(ξ=3)=C 33×(45)3=64125,∴ξ的分布列为:E(ξ)=3×45=125.解析:本题考查离散型随机变量的分布列、数学期望的求法,考查二项分布的性质等基础知识,考查运算求解能力,是中档题.(1)以200人中,“热烈参与者”的频率作为概率,可估计该市“热烈参与者”的人数; (2)根据题意可知,ξ~B(3,45),由此能求出ξ的分布列和E(ξ).19.答案:证明:(1)∵AB =BC =CA ,D 是AC 的中点,∴BD ⊥AC ,∵AA 1⊥平面ABC ,AA 1⊂平面AA 1C 1C ,∴平面AA 1C 1C ⊥平面ABC ,又平面AA 1C 1C ∩平面ABC =AC ,BD ⊂平面ABC , ∴BD ⊥平面AA 1C 1C , 又AE ⊂平面AA 1C 1C , ∴BD ⊥AE .又∵在正方形AA 1C 1C 中,D ,E 分别是AC ,CC 1的中点, 根据相似三角形,易得A 1D ⊥AE . 又A 1D ∩BD =D ,A 1D 、BD ⊂平面A 1BD , ∴AE ⊥平面A 1BD .解:(2)因为BD ⊥平面AA 1C 1C ,根据题意,取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系, D(0,0,0),E(1,−1,0),B(0,0,√3),B 1(2,0,√3),DB ⃗⃗⃗⃗⃗⃗ =(0,0,√3),DE ⃗⃗⃗⃗⃗⃗ =(1,−1,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(2,0,0),EB 1⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3), 设平面DBE 的一个法向量为m⃗⃗⃗ =(x,y ,z), 则{DB ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =√3z =0DE ⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =x −y =0,令x =1,则m⃗⃗⃗ =(1,1,0), 设平面BB 1E 的一个法向量为n⃗ =(a,b ,c), 则{BB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =2a =0EB 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =a +b +√3c =0,令c =√3,则n ⃗ =(0,−3,√3) 设二面角D −BE −B 1的平面角为θ,观察可知θ为钝角, cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−√64,∴cosθ=−√64,故二面角D −BE −B 1的余弦值为−√64.解析:本题考查线面垂直的证明,考查向量法求解二面角的余弦值,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出BD ⊥AC ,从而平面AA 1C 1C ⊥平面ABC ,进而BD ⊥平面AA 1C 1C ,BD ⊥AE ,再求出A 1D ⊥AE ,由此能证明AE ⊥平面A 1BD .(2)取A 1C 1中点F ,以DF ,DA ,DB 为x ,y ,z 轴建立空间直角坐标系,利用向量法能求出二面角D −BE −B 1的余弦值.20.答案:解:(Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3), ∵k MA k MB =−19,即yx+3⋅yx−3=−19. 化简得x 29+y 2=1,由已知x ≠±3, 故曲线C 的方程为x 29+y 2=1(x ≠±3).(Ⅱ)由已知直线l 过点T(1,0), 设l 的方程为x =my +1, 则联立方程组{x =my +1x 2+9y 2=9,消去x 得 (m 2+9)y 2+2my −8=0, 设P(x 1,y 1),Q(x 2,y 2),则{y 1+y 2=−2mm 2+9y 1y 2=−8m 2+9, 直线SP 与SQ 斜率分别为k SP =y 1x 1−s =y 1my 1+1−s ,k SQ =y 2x 2−s =y2my 2+1−s ,k SP k SQ =y 1y 2(my 1+1−s)(my 2+1−s)=y 1y 2m 2y 1y 2+m(1−s)(y 1+y 2)+(1−s)2=−8(s 2−9)m 2+9(1−s)2.当s =3时,k SP k SQ =−89(1−s)2=−29; 当s =−3时,k SP k SQ =−89(1−s)2=−118.所以存在定点S(±3,0),使得直线SP 与SQ 斜率之积为定值.解析:本题考查轨迹方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力,属于较难题. (Ⅰ)设动点M(x,y),则k MA =yx+3,k MB =yx−3(x ≠±3),利用k MA k MB =−19,求出曲线C 的方程. (Ⅱ)由已知直线l 过点T(1,0),设l 的方程为x =my +1,则联立方程组{x =my +1x 2+9y 2=9,消去x 得(m 2+9)y 2+2my −8=0,设P(x 1,y 1),Q(x 2,y 2)利用韦达定理求解直线的斜率,然后化简即可推出结果.21.答案:解:(1)当a =−1时,f(x)=ln(x −1)−x ,x >1,f′(x)=1x−1−1=2−xx−1,当1<x <2时,f′(x)>0,f(x)递增, 当x >2时,f′(x)<0,f(x)递减, 故f(x)在(1,2)递增,在(2,+∞)递减;(2)由题意得:x ≥1时,x +a >0恒成立,故a >−1,①, 不等式e f(x)+a2x 2>1恒成立, 即a2x 2+x+a e x −1>0对任意的x ≥1恒成立,设g(x)=a2x 2+x+a e x−1,x ≥1,g′(x)=ae x x−x+1−ae x,a ≤0时,g(2)=a(2+1e 2)−1+2e 2<0,不合题意, a >0时,要使x ≥1时,不等式e f(x)+a2x 2>1恒成立, 只需g(1)=a(12+1e )−1+1e >0,即a >2(e−1)e+2,a >2(e−1)e+2时,ae x x −x +1−a =a(e x x −1)+1−x >2(e−1)e+2(e x x −1)+1−x ,设ℎ(x)=2(e−1)e+2(e x x −1)+1−x ,x ≥1,ℎ′(x)=2(e−1)e+2e x x +2(e−1)e+2e x −1,x ≥1,显然ℎ′(x)在(1,+∞)递增,∴ℎ′(x)>ℎ′(1)=4e 2−5e−2e+2>0,∴ℎ(x)在(1,+∞)递增,ℎ(x)>ℎ(1)=2(e−1)2e+2>0,即ae x x −x +1−a >0,②, 由①②得:a >2(e−1)e+2时,满足题意.解析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题转化为a2x 2+x+a e x−1>0对任意的x ≥1恒成立,设g(x)=a 2x 2+x+a e x−1,x ≥1,通过求导得到g(x)的单调性,从而求出a 的范围即可.本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.22.答案:解:(1)由曲线C 1:{x =√2cosθy =sinθ(θ为参数),消去参数θ,可得普通方程为x 22+y 2=1.把直线l 的参数方程代入为x 22+y 2=1,得7t 2+4t −4=0.则t 1+t 2=−47,t 1t 2=−47.∴|AB|=|t 1−t 2|=√(t 1+t 2)2−4t 1t 2=8√27; (2)设点P(x,y)是曲线C 1上的一个动点,化曲线C 2:{x =cosαy =3+sinα(α为参数)为x 2+(y −3)2=1. ∴|PC 2|=√x 2+(y −3)2=√−(y +3)2+20, ∵−1≤y ≤1, ∴|PC 2|的最大值为4, 则|PQ|的最大值为5.解析:(1)化曲线C 1的参数方程为普通方程,把直线的参数方程代入,化为关于t 的一元二次方程,利用根与系数的关系及此时t 的几何意义求解;(2)点P(x,y)是曲线C 1上的一个动点,化曲线C 2的参数方程为普通方程,由两点间的距离公式写出|PC 2|,利用二次函数求其最大值,进一步得到|PQ|的最大值.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了圆与椭圆位置关系的应用,是中档题.23.答案:解:(1)根据题意可得,当x <−1时,−x −1+2x −1≤x +2,解得−2<2,所以x <−1;…(1分) 当−1≤x ≤12时,x +1+2x −1≤x +2,解得x ≤1,所以−1≤x ≤12;…(2分) 当x >12时,x +1−2x +1≤x +2,解得x ≥0,所以x >12;…(3分) 综上,不等式f(x)≤x +2的解集为R …(5分) (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,…(6分)因为||x+1|−|2x−1||x||=||1+1x|−|2−1x||≤|1+1x+2−1x|=3,…(8分)当且仅当(1+1x )(2−1x )≤0时取等号, 因为|x+1|−|2x−1||x|≤|a −1|+|a +1|,所以|a −1|+|a +1|≥3,解得a ≤−32或a ≥32,故实数a 的取值范围为(−∞,−32]∪[32,+∞)…(10分)解析:(1)利用x 的范围去掉绝对值符号,然后求解不等式的解集即可. (2)不等式f(x)≤|x|(|a −1|+|a +1|)等价于|x+1|−|2x−1||x|≤|a −1|+|a +1|,利用绝对值不等式的几何意义求解左侧的最值,然后求解a 的范围即可.本题考查不等式恒成立,绝对值不等式的解法,考查转化思想以及分类讨论思想的应用.。
2020年广东省高考数学一模试卷(文科) (含解析)
2020年广东省高考数学一模试卷(文科)一、选择题(共12小题)1.已知集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},则满足A∩∁U B={1,2}的集合B可以是()A.{1,2,3,4}B.{1,2,7}C.{3,4,5,6}D.{1,2,3}2.复数z=4+3i3−4i(i为虚数单位)的虚部为()A.﹣1B.2C.5D.13.已知向量a→=(12,−1)向量b→满足2a→+b→=(﹣1,m),若a→⊥b→,则m=()A.﹣3B.3C.1D.24.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上、下顶点分别为A,B,若四边形AF2BF1是正方形且面积为4,则椭圆C的方程为()A.x24+y22=1B.x22+y2=1C.x23+y22=1D.x24+y23=15.如图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t≤2)左侧的图形的面积为f(t),则y=f(t)的大致图象为()A .B .C .D .6.若sin(π+α)=√23,则sin(2α−π2)的值为( )A .−19B .−59C .19D .597.甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为( )A .14B .13C .16D .1368.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( )A .1920003cm 3B .1600003cm 3C .160003cm 3D .640003cm 39.执行如图的程序框图,若输出A 的值为70169,则输入i 的值为( )A .4B .5C .6D .710.已知O 是坐标原点,双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点为F ,过点F 的直线l 与x 轴垂直,且交双曲线C 于A ,B 两点,若△ABO 是等腰直角三角形,则双曲线C 的离心率为( ) A .√5+12B .√5−12C .√5−1D .√5+111.在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,则△ABC 面积的最大值为( ) A .√3B .32√3C .2√3D .52√312.已知f (x )是定义在(−π2,π2)上的奇函数,f (1)=0,且当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,则不等式f (x )<0的解集为( ) A .(﹣1,0)∪(1,π2)B .(﹣1,0)∪(0,1)C .(−π2,﹣1)∪(1,π2) D .(−π2,﹣1)∪(0,1)二、填空题(共4小题,每小题5分,满分20分)13.设函数f (x )=mx 2lnx ,若曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,则m = .14.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为 .15.如图,已知三棱锥P ﹣ABC 满足PA =PB =PC =AB =2,AC ⊥BC ,则该三棱锥外接球的体积为 .16.函数f(x)=sinπx+a cosπx满足f(x)=f(13−x),x∈[0,32],方程f(x)﹣m=0恰有两个不等的实根,则实数m的取值范围为.三、解答题(共5小题,满分60分)17.已知{a n}为单调递增的等差数列,设其前n项和为S n,S5=﹣20,且a3,a5+1,a9成等比数列.(1)求数列{a n}的通项公式;(2)求S n的最小值及取得最小值时n的值.18.某城市2018年抽样100户居民的月均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组,得到如表频率分布表:分组频数频率[160,180)n10.04[180,200)19f1[200,220)n20.22[220,240)250.25[240,260)150.15[260,280)10f2[280,300]50.05(1)求表中n1,n2,f1,f2的值,并估计2018年该市居民月均用电量的中位数m;(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数u(单位:千瓦时)作为统计数据,如图是部分数据的折线图.由折线图看出,可用线性回归模型拟合u与年份t的关系.①为简化运算,对以上数据进行预处理,令x=t﹣2014,y=u﹣195,请你在答题卡上完成数据预处理表;②建立u关于t的线性回归方程,预测2020年该市居民月均用电量的中位数.附:回归直线y=b x+a的斜率和截距的最小二乘估计公式分别为:b=∑n i=1x i y i−nxy ∑n i=1x i2−nx2,a=y−b x.19.如图,已知正三棱柱ABC﹣A1B1C1,D是AB的中点,E是C1C的中点,且AB=1,AA1=2.(1)证明:CD∥平面A1EB;(2)求点A1到平面BDE的距离.20.动圆C与x轴交于A(x1,0),B(x2,0)两点,且x1,x2是方程x2+2mx﹣4=0的两根.(1)若线段AB是动圆C的直径,求动圆C的方程;(2)证明:当动圆C过点M(0,1)时,动圆C在y轴上截得弦长为定值.21.已知函数f(x)=e x+(m﹣e)x﹣mx2.(1)当m=0时,求函数f(x)的极值;(2)当m<0时,证明:在(0,1)上f(x)存在唯一零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.已知集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},则满足A∩∁U B={1,2}的集合B可以是()A.{1,2,3,4}B.{1,2,7}C.{3,4,5,6}D.{1,2,3}【分析】根据题意得出1,2∉B,即可判断结论.解:∵集合A,B均为全集U={1,2,3,4,5,6,7}的子集,集合A={1,2,3,4},要满足A∩∁U B={1,2};则1,2∉B,故符合条件的选项为C.故选:C.【点评】本题考查集合了的交、并、补集的混合运算问题,是基础题.2.复数z=4+3i3−4i(i为虚数单位)的虚部为()A.﹣1B.2C.5D.1【分析】利用复数的运算法则即可得出.解:∵z=4+3i3−4i=(4+3i)(3+4i)(3−4i)(3+4i)=25i25=i,∴复数z=4+3i3−4i的虚部是1,故选:D.【点评】本题考查了复数的运算法则,属于基础题.3.已知向量a→=(12,−1)向量b→满足2a→+b→=(﹣1,m),若a→⊥b→,则m=()A .﹣3B .3C .1D .2【分析】由题意利用两个向量坐标形式的运算,两个向量垂直的性质、两个向量的数量积公式,求得m 的值.解:向量a →=(12,−1),向量b →满足2a →+b →=(﹣1,m ),设b →=( x ,y ),则(1+x ,﹣2+y )=(﹣1,m ),∴1+x =﹣1,且﹣2+y =m , 求得x =﹣2,m =y ﹣2.若a →⊥b →,则a →⋅b →=x 2−y =﹣1﹣y =0,故y =﹣1,∴m =y ﹣2=﹣3, 故选:A .【点评】本题主要考查两个向量坐标形式的运算,两个向量垂直的性质、两个向量的数量积公式,属于基础题.4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别为A ,B ,若四边形AF 2BF 1是正方形且面积为4,则椭圆C 的方程为( ) A .x 24+y 22=1B .x 22+y 2=1C .x 23+y 22=1D .x 24+y 23=1【分析】由四边形AF 2BF 1是正方形且面积为4可得b ,c 的值,再由a ,b ,c 之间的关系求出a 的值,进而求出椭圆的面积. 解:由AF 2BF 1是正方形可得b =c ,再由AF 2BF 1的面积为4可得12•2c •2b =4,即bc =2,又a 2=b 2+c 2,解得:a 2=4,b 2=2,所以椭圆的方程为:x 24+y 22=1;故选:A .【点评】本题考查椭圆的性质,及正方形的面积与对角线的关系,属于中档题. 5.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (0<t ≤2)左侧的图形的面积为f (t ),则y =f (t )的大致图象为( )A .B .C .D .【分析】根据面积的变换趋势与t 的关系进行判断即可.解:当0<x <1时,函数的面积递增,且递增速度越来越快,此时,CD ,不合适, 当1≤x ≤2时,函数的面积任然递增,且递增速度逐渐变慢,排除A , 故选:B .【点评】本题主要考查函数图象的识别和判断,利用函数递增速度与t 的关系是解决本题的关键.难度不大.6.若sin(π+α)=√23,则sin(2α−π2)的值为( )A.−19B.−59C.19D.59【分析】由已知利用诱导公式可求sinα的值,进而利用诱导公式,二倍角的余弦函数公式化简所求即可求解.解:∵sin(π+α)=√23,∴可得sinα=−√23,∴sin(2α−π2)=−cos2α=2sin2α﹣1=2×(−√23)2﹣1=−59.故选:B.【点评】本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.甲、乙两人分别从4种不同的图书中任选2本阅读,则甲、乙两人选的2本恰好相同的概率为()A.14B.13C.16D.136【分析】基本事件总数n=C42=6,由此能求出甲、乙两人选的2本恰好相同的概率.解:甲、乙两人分别从4种不同的图书中任选2本阅读,基本事件总数n=C42=6,则甲、乙两人选的2本恰好相同的概率p=1 6.故选:C.【点评】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力以及化归与转化思想,是基础题.8.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm,则石凳子的体积为()A .1920003cm 3B .1600003cm 3C .160003cm 3D .640003cm 3【分析】由正方体的体积减去八个正三棱锥的体积求解. 解:如图,正方体AC 1 的棱长为40cm ,则截去的一个正三棱锥的体积为13×12×20×20×20=40003cm 3.又正方体的体积为V =40×40×40=64000cm 3,∴石凳子的体积为64000−8×40003=1600003cm 3, 故选:B .【点评】本题考查多面体体积的求法,考查计算能力,是基础题.9.执行如图的程序框图,若输出A 的值为70169,则输入i 的值为( )A.4B.5C.6D.7【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得A=12,k=1满足条件1≤i,执行循环体,A=25,k=2满足条件2≤i,执行循环体,A=512,k=3满足条件3≤i,执行循环体,A=1229,k=4满足条件4≤i,执行循环体,A=2970,k=5满足条件5≤i,执行循环体,A=70 169,k=6由题意,此时不满足条件6≤i,退出循环,输出A的值为70 169,可得输入i的值为5.故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.已知O是坐标原点,双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过点F的直线l与x轴垂直,且交双曲线C于A,B两点,若△ABO是等腰直角三角形,则双曲线C的离心率为()A.√5+12B.√5−12C.√5−1D.√5+1【分析】由双曲线的性质,结合通径以及半焦距,可得a,c的方程,运用离心率公式计算即可得到.解:由题意可知:|AF |=b 2a,双曲线C :x 2a −y 2b =1(a >0,b >0)的右焦点为F ,过点F 的直线l 与x 轴垂直,且交双曲线C 于A ,B 两点,若△ABO 是等腰直角三角形,可得c =b 2a =c 2−a 2a,e =e 2﹣1,e >1解得e =√5+12.故选:A .【点评】本题考查双曲线的定义、方程和性质,主要考查离心率的求法,同时考查勾股定理的运用,灵活运用双曲线的定义是解题的关键.11.在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,则△ABC 面积的最大值为( ) A .√3B .32√3 C .2√3D .52√3【分析】先根据向量的三角形法则得到AD →=13AB →+23AC →;对其两边平方,求出bc 的取值范围即可求得结论.解:因为在△ABC 中,已知A =60°,D 是边BC 上一点,且BD =2DC ,AD =2,;∴AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →−AB →)=13AB →+23AC →;∴AD →2=19AB →2+2×13AB →×23AC →+49AC →2;即:4=19c 2+49bc •cos60°+49b 2⇒36=c 2+2bc +4b 2≥2√c 2⋅4b 2+2bc =6bc ;∴bc ≤6,(当且仅当2b =c 时等号成立);∵S △ABC =12bc sin A ≤12×6×√32=3√32. 即△ABC 面积的最大值为:3√32.故选:B .【点评】本题考查△ABC 的面积的求法以及向量知识的综合应用,涉及到基本不等式,属于中档题目.12.已知f (x )是定义在(−π2,π2)上的奇函数,f (1)=0,且当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,则不等式f (x )<0的解集为( ) A .(﹣1,0)∪(1,π2)B .(﹣1,0)∪(0,1)C .(−π2,﹣1)∪(1,π2) D .(−π2,﹣1)∪(0,1)【分析】令g (x )=f (x )sin x ,g ′(x )=[f (x )+f ′(x )tan x ]•cos x ,当x ∈(0,π2)时,根据f (x )+f ′(x )tan x >0,可得函数g (x )单调递增.又g (1)=0,可得x ∈(0,1)时,g (x )=f (x )sin x <0,sin x <0,解得f (x )<0.x =0时,f (0)=0,舍去.根据f (x )是定义在(−π2,π2)上的奇函数,可得g (x )是定义在(−π2,π2)上的偶函数.进而得出不等式f (x )<0的解集.解:令g (x )=f (x )sin x ,g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]•cos x ,当x ∈(0,π2)时,f (x )+f ′(x )tan x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (1)=0,∴x ∈(0,1)时,g (x )=f (x )sin x <0,sin x <0,解得f (x )<0. x =0时,f (0)=0,舍去.∵f (x )是定义在(−π2,π2)上的奇函数,∴g (x )是定义在(−π2,π2)上的偶函数.∴不等式f (x )<0的解集为(﹣1,0)∪(0,1). 故选:B .【点评】本题考查了利用导数研究的单调性、构造法、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于中档题. 二、填空题(共4小题,每小题5分,满分20分)13.设函数f (x )=mx 2lnx ,若曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,则m = −13.【分析】求出f (x )的导数,然后根据切线与直线ex +y +2020=0平行,得f ′(e )=﹣e ,列出关于m 的方程,解出m 的值. 解:f ′(x )=m (2xlnx +x ),又曲线y =f (x )在点(e ,f (e ))处的切线与直线ex +y +2020=0平行,∴f ′(e )=3em =﹣e ,解得m =−13.故答案为:−13.【点评】本题考查导数的几何意义和切线方程的求法,同时考查学生运用方程思想解题的能力和运算能力.14.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为 7 .【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解:画出x ,y 满足约束条件{|x −y|≤1|x|≤2,可行域如图阴影部分由{x =2x −y =−1,得A (2,3) 目标函数z =2x +y 可看做斜率为﹣2的动直线,其纵截距越大z 越大,由图数形结合可得当动直线过点A时,z最大=2×2+3=7.故答案为:7.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.15.如图,已知三棱锥P﹣ABC满足PA=PB=PC=AB=2,AC⊥BC,则该三棱锥外接球的体积为3227√3π.【分析】因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,再由PA=PB =PC可得球心O在直线PD所在的直线上,设为O,然后在直角三角形中由勾股定理可得外接球的半径,进而求出外接球的体积.解:因为AC⊥BC,所以△ABC的外接圆的圆心为斜边AB的中点D,可得外接圆的半径为r=12AB=1,再由PA=PB=PC=AB=2可得PD⊥面ABC,可得PD=√PA2−AD2=√3,可得球心O在直线PD所在的直线上,设外接球的半径为R,取OP=OA=R,在△OAD 中,R 2=r 2+(PD ﹣R )2, 即R 2=1+(√3−R )2,解得:R =2√3=2√33, 所以外接球的体积V =4π3R 3=32√327π, 故答案为:32√327π.【点评】本题考查三棱锥的棱长与外接球的半径之间的关系,及球的体积公式,属于中档题.16.函数f (x )=sin πx +a cos πx 满足f (x )=f (13−x ),x ∈[0,32],方程f (x )﹣m =0恰有两个不等的实根,则实数m 的取值范围为 √3≤m <2或﹣2<m ≤﹣1 . 【分析】首先利用函数的对称性求出函数的关系式,进一步利用函数的图象求出函数f (x )的图象和函数y =m 的交点,进一步求出结果.解:函数f (x )=sin πx +a cos πx 满足f (x )=f (13−x ),则函数的对称轴为x =16,当x =16时,函数f (x )取得最值,即±√1+a 2=sin π6+acos π6,整理得a 2−2√3a +3=0,解得a =√3, 所以f (x )=sin πx +√3cosπx =2sin (πx +π3). 由于x ∈[0,32],所以π3≤πx +π3≤3π2+π3=11π6,根据函数的图象,当√3≤m<2或﹣2<m≤﹣1时,函数的f(x)的图象与y=m有两个交点,即方程f (x)﹣m=0恰有两个不等的实根,故答案为:√3≤m<2或﹣2<m≤﹣1.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的图象的应用,函数的零点和函数的图象的交点的关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.三、解答题(共5小题,满分60分)17.已知{a n}为单调递增的等差数列,设其前n项和为S n,S5=﹣20,且a3,a5+1,a9成等比数列.(1)求数列{a n}的通项公式;(2)求S n的最小值及取得最小值时n的值.【分析】(1)设等差数列的公差为d,d>0,由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,进而得到所求通项公式;(2)由等差数列的求和公式,结合二次函数的最值求法,注意n为正整数,可得所求最值.解:(1){a n}为单调递增的等差数列,设公差为d,d>0,由S5=﹣20,可得5a1+10d=﹣20,即a1+2d=﹣4,①由a3,a5+1,a9成等比数列,可得a3a9=(a5+1)2,即(a1+2d)(a1+8d)=(a1+4d+1)2,化为2a1d=2a1+1+8d,②由①②解得d=12,a1=﹣5,则a n=﹣5+12(n﹣1)=12(n﹣11);(2)S n=12n(﹣5+n−112)=14(n2﹣21n)=14[(n−212)2−4414],由于n为正整数,可得n=10或11时,S n取得最小值−55 2.【点评】本题考查等差数列的通项公式和求和公式的运用,以及等比中项的性质,考查方程思想和化简运算能力,属于基础题.18.某城市2018年抽样100户居民的月均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组,得到如表频率分布表:分组频数频率[160,180)n10.04[180,200)19f1[200,220)n20.22[220,240)250.25[240,260)150.15[260,280)10f2[280,300]50.05(1)求表中n1,n2,f1,f2的值,并估计2018年该市居民月均用电量的中位数m;(2)该城市最近十年的居民月均用电量逐年上升,以当年居民月均用电量的中位数u(单位:千瓦时)作为统计数据,如图是部分数据的折线图.由折线图看出,可用线性回归模型拟合u与年份t的关系.①为简化运算,对以上数据进行预处理,令x=t﹣2014,y=u﹣195,请你在答题卡上完成数据预处理表;②建立u关于t的线性回归方程,预测2020年该市居民月均用电量的中位数.附:回归直线y=b x+a的斜率和截距的最小二乘估计公式分别为:b=∑n i=1x i y i−nxy ∑n i=1x i2−nx2,a=y−b x.【分析】(1)根据频数、频率和样本容量的关系可分别求出n1,n2,f1,f2的值;设样本的中位数为a,根据中位数的性质可列出关于a的方程,解之即可得解;(2)①根据折线图中的数据和x=t﹣2014,y=u﹣195,算出每组数据对应的x和y值即可;②由①中的数据,可求出x,y,再根据a,b的参考公式,求出这两个系数后可得y关于x的线性回归方程,再把t和u代入化简即可得u关于t的线性回归方程;令t=2020,算出u的值就是所求.解:(1)n1=100×0.04=4;n2=100×0.22=22;f1=19100=0.19;f2=10100=0.1.设样本频率分布表的中位数为a,则0.04+0.19+0.22+0.25×120×(a−20)=0.5,解得a=224,由样本估计总体,可估计2018年该市居民月均用电量的中位数m为224千瓦时.(2)①数据预处理如下表:x=t﹣2014﹣4﹣2024 y=u﹣195﹣21﹣1101929②由①可知,x=0,y=−21−11+0+19+295=3.2,∴b=∑n i=1x i y i−nxy∑n i=1x i2−nx2=(−4)×(−21)+(−2)×(−11)+2×19+4×29(−4)2+(−2)2+22+42=26040=6.5,a=y−b x=3.2−6.5×0=3.2,∴y关于x的线性回归方程为y=6.5x+3.2,∵x=t﹣2014,y=u﹣195,∴u﹣195=6.5(t﹣2014)+3.2,故u关于t的线性回归方程为u=6.5t﹣12892.8,当t=2020时,u=6.5×2020﹣12892.8=237.2(千瓦时).故预测2020年该市居民月均用电量的中位数为237.2千瓦时.【点评】本题考查对频数、频率分布表的认识、线性回归方程的求法,考查学生对数据的分析与处理能力,属于基础题.19.如图,已知正三棱柱ABC﹣A1B1C1,D是AB的中点,E是C1C的中点,且AB=1,AA1=2.(1)证明:CD∥平面A1EB;(2)求点A1到平面BDE的距离.【分析】(1)取A1B的中点F,连接EF,DF,由三角形中位线定理可得DF∥A1A,DF=12A1A,再由已知得到DF∥EC,DF=EC,得四边形CDEF为平行四边形,则CD∥EF.由直线与平面平行的判定可得CD∥平面A1EB;(2)证明CD⊥平面A1ABB1,又由(1)知,CD∥EF,得到EF⊥平面A1ABB1,再证明AB⊥平面CDE,得AB⊥DE,则BD⊥DE,分别求出平面BDE与平面A1BD的体积,然后利用等体积法求点A1到平面BDE的距离.【解答】(1)证明:取A1B的中点F,连接EF,DF,∵D,F分别是AB,A1B的中点,∴DF∥A1A,DF=12A1A,∵A1A∥C1C,A1A=C1C,E是C1C的中点,∴DF∥EC,DF=EC,可得四边形CDEF为平行四边形,则CD∥EF.∵CD⊄平面A1EB,EF⊂平面A1EB,∴CD∥平面A1EB;(2)解:∵△ABC是正三角形,D是AB的中点,∴CD⊥AB,∵ABC﹣A1B1C1是直三棱柱,∴A1A⊥平面ABC,则A1A⊥CD.∵A1A∩AB=A,∴CD⊥平面A1ABB1,又由(1)知,CD∥EF,∴EF⊥平面A1ABB1,∵AB =1,AA 1=2,∴CD =√32,则S △A 1BD =12×2×12=12.∴V E−A1BD=13S △A 1BD ⋅EF =13×12×√32=√312. 在Rt △CDE 中,DE =√CD 2+CE 2=√72.∵AB ⊥CD ,AB ⊥CE ,CD ∩CE =C , ∴AB ⊥平面CDE ,得AB ⊥DE ,则BD ⊥DE .∴S △BDE =12×12×√72=√78.设点A 1到平面BDE 的距离为d ,由V A 1−BDE =V E−A 1BD ,得13S △BDE ⋅d =√312,即13×√78=√312,则d =2√217.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到平面的距离,是中档题.20.动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且x 1,x 2是方程x 2+2mx ﹣4=0的两根.(1)若线段AB 是动圆C 的直径,求动圆C 的方程;(2)证明:当动圆C 过点M (0,1)时,动圆C 在y 轴上截得弦长为定值. 【分析】(1)由韦达定理可得到x 1+x 2=﹣2m ,x 1x 2=﹣4,从而求得圆心与半径,进而求得动圆C 的方程;(2)先设出动圆C 的方程,再由题设条件解决D 、E 、F 的值,进而求出动圆C 在y 轴上截得弦长.解:(1)∵x 1,x 2是方程x 2+2mx ﹣4=0的两根,∴x 1+x 2=﹣2m ,x 1x 2=﹣4. ∵动圆C 与x 轴交于A (x 1,0),B (x 2,0)两点,且线段AB 是动圆C 的直径, ∴动圆C 的圆心C 的坐标为(﹣m ,0),半径为|AB|2=|x 2−x 1|2=√(x 1+x 2)2−4x 1x 22=√m +4.∴动圆C 的方程为(x +m )2+y 2=m 2+4;(2)证明:设动圆C 的方程为x 2+y 2+Dx +Ey +F =0,∵动圆C 与y 轴交于M (0,1),N (0,y 1),令y =0则x 2+Dx +F =0,由题意可知D =2m ,F =﹣4,又动圆C 过点M (0,1),∴1+E ﹣4=0,解得E =3.令x =0,则y 2+3y ﹣4=0,解得y =1或y =﹣4,∴y 1=﹣4.∴动圆C 在y 轴上截得弦长为|y 1﹣1|=5.故动圆C 在y 轴上截得弦长为定值.【点评】本题主要考查圆的方程及被坐标轴截得的弦长的问题,属于基础题. 21.已知函数f (x )=e x +(m ﹣e )x ﹣mx 2. (1)当m =0时,求函数f (x )的极值;(2)当m <0时,证明:在(0,1)上f (x )存在唯一零点.【分析】(1)将m =0带入,求导得f ′(x )=e x ﹣e ,再求出函数f (x )的单调性,进而求得极值;(2)求导得f ′(x )=e x ﹣2mx +m ﹣e ,令g (x )=f ′(x ),对函数g (x )求导后,可知g(x)=f′(x)在(0,1)上单调递增,而g(0)<0,g(1)>0,进而函数f (x)在(0,1)上的单调性,再运用零点存在性定理可得证.解:(1)当m=0时,f(x)=e x﹣ex,f′(x)=e x﹣e,又f′(x)是增函数,且f′(1)=0,∴当x>1时,f′(x)>0,当x<1时,f′(x)<0,∴f(x)在(﹣∞,1)上单调递减,在(1,+∞)上单调递增,∴当x=1时,f(x)取得极小值f(1)=0,无极大值;(2)证明:f′(x)=e x﹣2mx+m﹣e,令g(x)=f′(x)=e x﹣2mx+m﹣e,则g′(x)=e x﹣2m,当m<0时,则g′(x)>0,故g(x)=f′(x)在(0,1)上单调递增,又g(0)=f′(0)=1+m﹣e<0,g(1)=f′(1)=﹣m>0,∴存在x0∈(0,1),使得g(x0)=f′(x0)=0,且当x∈(0,x0)时,f′(x)<0,f(x)是减函数,当x∈(x0,1)时,f′(x)>0,f(x)是增函数,又∵f(0)=1,f(1)=0,∴f(x)在(0,1)上存在唯一零点.【点评】本题主要考查利用导数研究函数的极值及函数的零点,考查推理论证能力及运算求解能力,属于中档题.一、选择题22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q的轨迹为C2.(1)求C2的直角坐标方程;(2)若曲线C1与曲线C2交于M,N两点,求△OMN的面积.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1.若P为曲线C1上的动点,Q是射线OP上的一动点,且满足|OP|•|OQ|=2,记动点Q 的轨迹为C2.设P(ρ1,θ),Q(ρ,θ),则:ρ1cosθ﹣2ρ1sinθ=1,即ρ1=1cosθ−2sinθ,由于|OP|•|OQ|=2,所以ρ=2cosθ﹣4sinθ,整理得ρ2=2ρcosθ﹣4ρsinθ,转换为直角坐标方程为:(x﹣1)2+(y+2)2=5(原点除外).(2)曲线C1的极坐标方程为ρcosθ﹣2ρsinθ=1转换为直角坐标方程为:x﹣2y﹣1=0.曲线C2的圆心为(1,﹣2),半径为√5,所以圆心到直线C1的距离d=√1+(−2)=5.所以|MN|=2√(√5)2−(4√5)2=6√5.由于点O到C1的距离d2=|−1|√1+(−2)=1√5所以S△OMN=12×|MN|×d2=12×6√51√5=35.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.已知函数f(x)=|x−k|+12|x+3|−2(k∈R).(1)当k=1时,解不等式f(x)≤1;(2)若f(x)≥x对于任意的实数x恒成立,求实数k的取值范围.【分析】(1)由题意可得|x﹣1|+12|x+3|≤3,由零点分区间法和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得|x﹣k|+12|x+3|≥x+2恒成立.讨论x≤﹣2恒成立,x>﹣2时,可得|x﹣k|≥x+12恒成立,讨论﹣2<x≤﹣1,x>﹣1时,结合绝对值不等式的解法和恒成立思想,可得所求范围.解:(1)当k=1时,不等式f(x)≤1即为|x﹣1|+12|x+3|≤3,等价为{x≥1x−1+12x+32≤3或{−3<x<11−x+12x+32≤3或{x≤−31−x−12x−32≤3,解得1≤x≤53或﹣1≤x<1或x∈∅,则原不等式的解集为[﹣1,53 ];(2)f(x)≥x对于任意的实数x恒成立,即为|x﹣k|+12|x+3|≥x+2恒成立.当x≤﹣2时,|x﹣k|+12|x+3|≥0≥x+2恒成立;当x>﹣2时,|x﹣k|+12|x+3|≥x+2恒成立等价为|x﹣k|+x+32≥x+2,即|x﹣k|≥x+12恒成立,当﹣2<x≤﹣1时,|x﹣k|≥x+12恒成立;当x>﹣1时,|x﹣k|≥x+12恒成立等价为x﹣k≥x+12或x﹣k≤−x+12恒成立.即x≥2k+1或x≤23(k−12)恒成立,则2k+1≤﹣1解得k≤﹣1,所以k的取值范围是(﹣∞,﹣1].【点评】本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用转化思想和分类讨论思想,考查化简运算能力和推理能力,属于中档题.。
2020年广东省广州市天河区高考数学一模试卷及其答案(理科)
2020年广东省广州市天河区高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合2{|60}A x x x =--<,集合{|1}B x x =>,则()(R A B =ð )A .[3,)+∞B .(1,3]C .(1,3)D .(3,)+∞2.(5分)设复数z 满足(2)34z i i i +=-,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)设等差数列{}n a 的前n 项和为n S ,若28515a a a +=-,则9S 等于( ) A .18B .36C .45D .604.(5分)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A .若//m α,//n α,则//m n B .若αγ⊥,βγ⊥,则//αβC .若//m α,//n α,且m β⊂,n β⊂,则//αβD .若m α⊥,n β⊥,且αβ⊥,则m n ⊥ 5.(5分)2521(2)(1)x x+-的展开式的常数项是( ) A .3- B .2-C .2D .36.(5分)已知1112x n =,122x e -=,3x 满足33x e lnx -=,则下列各选项正确的是( )A .132x x x <<B .123x x x <<C .213x x x <<D .312x x x <<7.(5分)中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9数字表示两位数的个数为( )A .13B .14C .15D .168.(5分)在矩形ABCD 中,3AB =,4AD =,AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则(AEE C =) A .725B .1225C .125D .144259.(5分)函数2()(1)sin 1xf x x e =-+图象的大致形状是( )A .B .C .D .10.(5分)2位男生和3位女生共5位同学站成一排,若3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A .36B .24C .72D .14411.(5分)已知函数()sin(2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin()(x x -= )A .35-B .45-C .D .12.(5分)已知函数244()()x f x k lnx k x-=++,[4k ∈,)+∞,曲线()y f x =上总存在两点1(M x ,1)y ,2(N x ,2)y ,使曲线()y f x =在M ,N 两点处的切线互相平行,则12x x +的取值范围为( )A .8(,)5+∞B .16(,)5+∞C .8[,)5+∞D .16[,)5+∞二、填空题:本大题共4小题,每小题5分,满分20分.13.(5分)已知数列{}n a 满足11a =,111(*,2)n n a a a n N n -=++⋯+∈…,则当1n …时,n a = .14.(5分)设当x θ=时,函数()sin f x x x =+取得最大值,则tan()4πθ+= .15.(5分)已知函数322()f x x ax bx a =+++在1x =处有极小值10,则a b -= .16.(5分)在三棱锥S ABC -中,2SB SC AB BC AC =====,侧面SBC 与底面ABC 垂直,则三棱锥S ABC -外接球的表面积是 .三、解答题:共70分。
2020年广东省广州市高考数学一模试卷(理科)(附答案详解)
2020年广东省广州市高考数学一模试卷(理科)一、单选题(本大题共12小题,共60.0分)1.设集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R},则()A. M∩N=MB. M∩N=NC. M∪N=MD. M∪N=R2.若复数z满足方程z2+2=0,则z3=()A. ±2√2B. −2√2C. −2√2iD. ±2√2i3.若直线kx−y+1=0与圆x2+y2+2x−4y+1=0有公共点,则实数k的取值范围是()A. [−3,+∞)B. (−∞,−3]C. (0,+∞)D. (−∞,+∞)4.已知p:|x+1|>2,q:2<x<3,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.设函数f(x)=2cos(12x−π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1−x2|的最小值为()A. π2B. πC. 2πD. 4π6.已知直三棱柱ABC−A1B1C1的体积为V,若P,Q分别在AA1,CC1上,且AP=13AA1,CQ=13CC1,则四棱锥B−APQC的体积是()A. 16V B. 29V C. 13V D. 79V7.为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为()A. 514B. 914C. 37D. 478.已知直线l:y=x−2与x轴的交点为抛物线C:y2=2px的焦点,直线l与抛物线C交于A,B两点,则AB中点到抛物线准线的距离为()A. 8B. 6C. 5D. 49. 等差数列{a n }的前n 项和为S n ,已知a 1=13,a 2+a 5=4,若S n ≥4a n +8(n ∈N ∗),则n 的最小值为( )A. 8B. 9C. 10D. 1110. 已知点P(x 0,y 0)是曲线C :y =x 3−x 2+1上的点,曲线C 在点P 处的切线与y =8x −11平行,则( )A. x 0=2B. x 0=−43C. x 0=2或x 0=−43D. x 0=−2或x 0=4311. 已知O 为坐标原点,设双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 是双曲线C 上位于第一象限内的点.过点F 2作∠F 1PF 2的平分线的垂线,垂足为A ,若b =|F 1F 2|−2|OA|,则双曲线C 的离心率为( )A. 54B. 43C. 53D. 212. 已知函数f(x)={−x 2−x +1,x <0x 2−x +1,x ≥0,若F(x)=f(x)−sin(2020πx)−1在区间[−1,1]上有m 个零点x 1,x 2,x 3,…,x m ,则f(x 1)+f(x 2)+f(x 3)+⋯+f(x m )=( )A. 4042B. 4041C. 4040D. 4039二、单空题(本大题共3小题,共15.0分)13. 在(ax +1x )(x 2−1)5的展开式中,x 3的系数为15,则实数a =______.14. 已知单位向量e 1⃗⃗⃗ 与e 2⃗⃗⃗ 的夹角为π3,若向量e 1⃗⃗⃗ +2e 2⃗⃗⃗ 与2e 1⃗⃗⃗ +k e 2⃗⃗⃗ 的夹角为5π6,则实数k 的值为______.15. 记数列{a n }的前n 项和为S n ,已知a n +a n+1n=cosnπ2−sinnπ2(n ∈N ∗),且m +S 2019=−1009,a 1m >0,则1a 1+9m 的最小值为______.三、多空题(本大题共1小题,共5.0分)16. 如图,如果一个空间几何体的正视图与侧视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,则这个几何体的体积为 (1) ,表面积为 (2) .四、解答题(本大题共7小题,共82.0分)= 17.△ABC的内角A,B,C的对边分别为a,b,c,已知c=√3,且满足absinCasinA+bsinB−csinC √3.(1)求角C的大小;(2)求b+2a的最大值.18.随着马拉松运动在全国各地逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对参加马拉松运动的情况进行了统计调査,其中一项是调査人员从参与马拉松运动的人中随机抽取100人,对其每月参与马拉松运动训练的夭数进行统计,得到以下统计表;(1)以这100人平均每月进行训练的天数位于各区间的频率代替该市参与马拉松训练的人平均每月进行训练的天数位于该区间的概率.从该市所有参与马拉松训练的人中随机抽取4个人,求恰好有2个人是“平均每月进行训练的天数不少于20天”的概率;(2)依据统计表,用分层抽样的方法从这100个人中抽取12个,再从抽取的12个人中随机抽取3个,Y表示抽取的是“平均每月进行训练的天数不少于20天”的人数,求Y的分布列及数学期望E(Y).19.如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点,将△AED沿ED折起,使得AB⊥AD,AC⊥AE,得到如图2的四棱锥A−BCDE,连结BD,CE,且BD与CE交于点H.(1)求证:AH⊥平面BCDE;(2)求二面角B−AE−D的余弦值.20.已知⊙M过点A(√3,0),且与⊙N:(x+√3)2+y2=16内切,设⊙M的圆心M的估轨迹为C,(1)求轨迹C的方程;(2)设直线l不经过点B(2,0)且与曲线C交于点P,Q两点,若直线PB与直线QB的斜,判断直线l是否过定点,若过定点,求出此定点的坐标,若不过定点,率之积为−12请说明理由.21. 已知函数f(x)=(x −4)e x−3+x 2−6x ,g(x)=(a −13)x −1−lnx .(1)求函数f(x)在(0,+∞)上的单调区间;(2)用max{m,n}表示m ,n 中的最大值,f′(x)为f(x)的导函数,设函数ℎ(x)=max{f′(x),g(x)},若ℎ(x)≥0在(0,+∞)上恒成立,求实数a 的取值范围; (3)证明:1n +1n+1+1n+2+⋯+13n−1+13n >ln3(n ∈N ∗).22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+ty =1+2t(t 为参数),曲线C 2的参数方程为{x =√3cosθy =√3tanθ(θ为参数,且θ∈(π2,3π2)).(1)求C 1与C 2的普通方程,(2)若A ,B 分别为C 1与C 2上的动点,求|AB|的最小值.23. 已知函数f(x)=|3x −6|+|x +a|.(1)当a =1时,解不等式f(x)<3;(2)若不等式f(x)<11−4x 对任意x ∈[−4,−32]成立,求实数a 的取值范围.答案和解析1.【答案】A【解析】解:∵集合M={x|0<x<1,x∈R},N={x||x|<2,x∈R}={x|−2<x<2,x∈R},∴M∩N={x|0<x<1,x∈R}=M,M∪N={x|−2<x<2,x∈R}=N.故选:A.求出集合M,N,进而求出M∩N,M∪N,由此能求出结果.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:由z2+2=0⇒z=±√2i⇒z3=±2√2i,故选D.先求复数z,再求z3即可复数代数形式的运算,是基础题.3.【答案】D【解析】解:圆方程可整理为(x+1)2+(y−2)2=4,则圆心(−1,2),半径r=2,≤2,整理得3k2−2k+3≥0,则圆心到直线的距离d=√1+k2因为△=4−36<0,故不等式恒成立,所以k∈(−∞,+∞),故选:D.整理圆的方程得到其圆心与半径,直线与圆有交点等价于圆心到直线的距离d=≤2,解不等式即可√1+k2本题考查直线与圆的位置关系、根的判别式,不等式解集等,属于基础题.4.【答案】B【解析】解:p:|x+1|>2,解得:x>1,或x<−3.q:2<x<3,则q⇒p,但是p无法推出q.∴p是q的必要不充分条件.故选:B.解出不等式p,即可判断出关系.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.【答案】C【解析】解:函数f(x)=2cos(12x−π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),∴f(x1)是函数的最小值,f(x2)是函数的最大值,|x1−x2|的最小值就是函数的半周期,T 2=12×2π12=2π;故选:C.由题意可知f(x1)≤f(x)≤f(x2),f(x1)是函数的最小值,f(x2)是函数的最大值,|x1−x2|的最小值就是半个周期.本题是基础题,考查三角函数的周期的求法,题意的正确理解,考查分析问题解决问题的能力.6.【答案】B【解析】【分析】本题考查多面体体积的求法,训练了利用等体积法求多面体的体积,是中档题.由题意画出图形,过P作PG//AB交BB1于G,连接GQ,由等体积法可得V B−APQC=2 3V ABC−PQG,再由已知得到V ABC−PQG=13V ABC−A1B1C1,即可得出.【解答】解:如图,过P作PG//AB交BB1于G,连接GQ,在三棱柱ABC −PQG 中,由等积法可得V B−APQC =23V ABC−PQG , ∵AP =13AA 1,CQ =13CC 1,∴V ABC−PQG =13V ABC−A 1B 1C 1,∴V B−APQG =23V ABC−PQG =23×13V ABC−A 1B 1C 1=29V .故选:B .7.【答案】C【解析】解:某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾. 某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学. 现从这10位同学中选派5人到某小区进行宣传活动,基本事件总数n =C 105=252,每个宣传小组至少选派1人包含的基本事件个数:m =C 22C 21C 31C 31+C 21C 22C 31C 31+C 21C 21C 32C 31+C 21C 21C 31C 32=108,则每个宣传小组至少选派1人的概率为P =m n=108252=37.故选:C .基本事件总数n =C 105=252,每个宣传小组至少选派1人包含的基本事件个数m =C 22C 21C 31C 31+C 21C 22C 31C 31+C 21C 21C 32C 31+C 21C 21C 31C 32,由此能求出每个宣传小组至少选派1人的概率.本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.8.【答案】A【解析】解:抛物线C :y 2=2px ,可得准线方程为:x =−p2,直线l :y =x −2,经过抛物线的焦点坐标,可得P =4,抛物线方程为:y 2=8x 由题意可得:{y 2=8x y =x −2,可得x 2−12x +4=0,直线l 与抛物线C 相交于A 、B 两点,则线段AB 的中点的横坐标为:6, 则线段AB 的中点到抛物线C 的准线的距离为:6+2=8.故选:A.求出抛物线的准线方程,然后求解准线方程,求出线段AB的中点的横坐标,然后求解即可.本题考查抛物线的简单性质,直线与抛物线的位置关系的应用,考查计算能力.9.【答案】C【解析】解:等差数列{a n}的前n项和为S n,已知a1=13,a2+a5=4,可得:13+d+13+4d=4,解得d=23,所以S n=n3+n(n−1)×13=n23,a n=13+(n−1)×23=2n−13,S n≥4a n+8(n∈N∗),可得:n23≥8n−43+8,可得:n2−8n−20≥0,解得n≥10或n≤−2(舍去),所以n的最小值为10.故选:C.利用等差数列通项公式求出数列的首项与公差,然后求解通项公式以及数列的和,结合不等式求解即可.本题考查等差数列的通项公式以及前n项和,数列与不等式相结合,考查转化首项以及计算能力,是中档题.10.【答案】B【解析】解:由y=x3−x2+1,得y′=3x2−2x,则曲线C在点P(x0,y0)处的切线的斜率为k=y′|x=x=3x02−2x0,∵曲线C在点P处的切线与y=8x−11平行,∴3x02−2x0=8,∴x0=2或x=−43,∵当x0=2时,切线和y=8x−11重合,∴x=−43.故选:B.先求出y=x3−x2+1的导数,得到曲线C在点P(x0,y0)处的切线斜率k,然后根据曲线C在点P处的切线与y=8x−11平行得到关于x0的方程,解方程得到x0的值,再检验得到符合条件的x0.本题考查了利用导数研究曲线上某点切线方程,考查了方程思想,属基础题.11.【答案】C【解析】【分析】本题考查双曲线的性质及角平分线的性质,属于中档题.由角平分线的性质可得延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,可得OA为△BF1F2的中位线,b=|F1F2|−2|OA|=2c−2a再由a,b,c的关系求出离心率.【解答】解:延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,连接OA,则OA为△BF1F2的中位线,所以|BF1|=2|OA|,而|BF1|=|PF1|−|PB|=|PF1|−|PF2|=2a,因为b=|F1F2|−2|OA|=2c−2a,而b2=c2−a2所以c2−a2=4(c−a)2整理可得3c2−8ac+5a2=0,即3e2−8e+5=0,解得e=53或1,再由双曲线的离心率大于1,可得e=5,3故选:C.12.【答案】B【解析】【分析】本题考查正弦函数的图象和性质,分段函数的图象,以及中心对称的函数的性质,属于中档题.本题利用正弦函数的性质求出周期,再利用图象中心对称的性质求出函数值的和. 【解答】解:∵F(x)=f(x)−sin(2020πx)−1在区间[−1,1]上有m 个零点, ∴f(x)−1=sin(2020πx)在区间[−1,1]上有m 个根,即g(x)=f(x)−1={− x 2−x,x <0x 2−x,x ≥0与ℎ(x)=sin(2020πx)在区间[−1,1]上有m 个交点, ∵T =2πω=2π2020π=11010且ℎ(x)关于原点对称,在区间[−1,1]上ℎ(x)max =1,ℎ(x)min =−1 又∵g(x)=f(x)−1={− x 2−x,x <0x 2−x,x ≥0∴在区间[−1,1]上g(x)max =g(−12)=14,g(x)min =g(12)=−14, 且g(x)关于原点对称.∵根据g(x)和ℎ(x)函数图象特点易知在ℎ(x)一个周期内, g(x)和ℎ(x)图象有两个交点.∵T =11010∴在(0,1]内共有1010个周期, ∴g(x)和ℎ(x)图象共有2020个交点, ∵g(x)和ℎ(x)图象都关于原点对称,∴g(x)和ℎ(x)图象在[−1,0)U(0,1]共有4040个交点, 再加上(0,0)这个交点.∵g(x)关于原点对称,设x 1,x 2为关于原点对称的两个交点横坐标, ∴g(x 1)+g(x 2)=0,即f(x 1)−1+f(x 2)−1=0, 即f(x 1)+f(x 2)=2,∴f(x 1)+f(x 2)+f(x 3)+⋯+f(x m )=40402×2+f(0)=4040+1=4041.故选:B .13.【答案】5【解析】解:∵(x 2−1)5的展开式的通项公式为T r+1=C 5r (x 2)5−r⋅(−1)r =(−1)r ⋅C 5r x 10−2r ,r =0,1, (5)∴(ax +1x )(x 2−1)5的展开式中含x 3的系数为a ×(−1)4×C 54+C 53⋅(−1)3=5a −10.又∵5a −10=15,∴a =5. 故答案为:5.先求得(x 2−1)5的展开式的通项公式,再列出含x 3的系数的关于a 的方程,最后求出a . 本题主要考查二项式定理中的通项公式,属于基础题.14.【答案】−10【解析】解:单位向量e 1⃗⃗⃗ 与e 2⃗⃗⃗ 的夹角为π3, 即|e 1⃗⃗⃗ |=|e 2⃗⃗⃗ |=1,e 1⃗⃗⃗ ⋅e 2⃗⃗⃗ =1×1×cos π3=12; 又向量e 1⃗⃗⃗ +2e 2⃗⃗⃗ 与2e 1⃗⃗⃗ +k e 2⃗⃗⃗ 的夹角为5π6,所以(e 1⃗⃗⃗ +2e 2⃗⃗⃗ )⋅(2e 1⃗⃗⃗ +k e 2⃗⃗⃗ )=|e 1⃗⃗⃗ +2e 2⃗⃗⃗ |×|2e 1⃗⃗⃗ +k e 2⃗⃗⃗ |cos 5π6,即2×12+(4+k)×12+2k ×12=√12+4×12+4×12×√4×12+4k ×12+k 2×12×(−√32); 8+5k =−√21⋅√k 2+2k +4; {8+5k ≤0(8+5k)2=21(k 2+2k +4), 解得k =−10, 所以实数k 的值为−10.根据单位向量的定义与平面向量数量积的运算法则,求解即可. 本题考查了单位向量的定义与平面向量数量积的运算问题,是中档题.15.【答案】16【解析】解:由已知,a 2+a 3=−2; a 4+a 5=4; a 6+a 7=−6;⋮a 2018+a 2019=−2018;将上述等式左右分别相加,得S 2019−a 1=−2018+1008=−1010;将S 2019=a 1−1010代入等式m +S 2019=−1009, 得m +a 1=1;∵a 1m >0,故都为正数;∴1a 1+9m =(1a 1+9m )(m +a 1)=10+ma 1+9a 1m≥10+2√ma 1⋅9a 1m=16;当且仅当m =3a 1 即m =34,a 1=14时等号成立; 故答案为:16.通过递推式,可求得S 2019与a 1的关系,结合已知等式m +S 2019=−1009,即可求出结论.本题考查了利用递推式求数列前n 项的和,并探究数列的某些性质,属中档题.16.【答案】√3π33π【解析】解:由三视图还原原几何体,可知该几何体为圆锥,该几何体的体积V =13×π×12×√3=√3π3;表面积S =π×12+12×2π×1×2=3π. 故答案为:√3π3;3π.由三视图还原原几何体,可知该几何体为圆锥,圆锥的底面半径为1,高为√3.再由圆锥的体积公式及表面积公式求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.17.【答案】解:(1)由题意及正弦定理可得:abca 2+b 2−c 2=√3,由余弦定理得:a 2+b 2−c 2=2ab ⋅cosC , 所以cosC =a 2+b 2−c 22ab=12,又C 为△ABC 内角, ∴C =π3;(2)由正弦定理可得:asinA =bsinB =csinC =2, 所以a =2sinA ,b =2sinB , 又因为A +B +C =π, 所以b =2sinB =2sin(A +π3),所以b +2a =2sin(A +π3)+4sinA =sinA +√3cosA +4sinA =5sinA +√3cosA =2√7sin(A +ϕ),且tanϕ=√35, 又因为A ∈(0,2π3),所以sin(A +ϕ)max =1,所以b +2a ≤2√7,即b +2a 的最大值为2√7.【解析】(1)根据已知条件,结合正余弦定理可得cosC =12,由此即可求得C ; (2)易知b =2sinB =2sin(A +π3),再由三角恒等变换可得b +2a =2√7sin(A +Φ),结合A ∈(0,2π3),可知sin(A +ϕ)max =1,由此求得b +2a 的最大值.本题涉及了正余弦定理,三角恒等变换,三角函数的图象及性质等基础知识点,考查计算能力,属于中档题.18.【答案】解:记“平均每月进行训练的天数不少于20天”为事件A .由表可知P(x ≥20)=25100,所以P(A)=C 42(14)2(1−14)2=27128. (2)由题意得:x <20的人:12×34=9;x ≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y 表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y 的可能取值为0,1,2,3,且Y ~H(3,3,12)P(Y =0)=C 93C 123=84220,P(Y =1)=C 92C 31C 123=108220,P(Y =2)=C 91C 32C 123=27220,P(Y =3)=C 33C 123=1220,所以Y 的分布列为:Y 0 1 2 3 P84220108220272201220Y 的分布列及数学期望E(Y)=0×84220+1×108220+2×27220+3×1220=34.【解析】(1)记“平均每月进行训练的天数不少于20天”为事件A.求出P(x ≥20)=25100=14,利用独立重复实验的概率求解即可. (2)由题意得:x <20的人:12×34=9;x ≥20的人有12×14=3从抽取的12个人中随机抽取3个,Y 表示抽取的是“平均每月进行训练的天数不少于20天”的人数,Y 的可能取值为0,1,2,3,且Y ~H(3,3,12),求出概率,得到分布列,然后求解期望即可. 本题考查离散型随机变量的分布列以及期望的求法,独立重复实验的概率的求法,考查分析问题解决问题的能力,是中档题.19.【答案】(1)证明:由题意,AD =CD =1,BD =CE =√3, 又因为AB ⊥AD ,所以AB =√BD 2−AD 2=√3−1=√2=AC ,所以AC 2=AD 2+CD 2,即AD ⊥CD 又因为CD ⊥BD ,且BD ∩AD =D ,所以CD ⊥平面ABD.所以CD ⊥AH ,同理AH ⊥BE ,CD 与BE 是相交直线, 所以AH ⊥平面BCDE . (2)解:如图,过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系 所以D(0,0,0),B(√3,0,0),E(√32,−12,0),设点A(a,0,b)由AD =1,AB =√2得{a 2+b 2=1(a −√3)2+b 2=2,解得:a =√33,b =√63, 所以A(√33,0,√63),所以AE ⃗⃗⃗⃗⃗ =(√36,−12,−√63),AB ⃗⃗⃗⃗⃗ =(2√33,0,−√63),DA ⃗⃗⃗⃗⃗ =(√33,0,√63),设平面AED 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1), 所以{AE ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0DA ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0⟹{x 1=√3y 1+2√2z 1x 1+√2z 1=0,取z 1=−1,得n 1⃗⃗⃗⃗ =(√2,√6,−1), 同理可得平面AEB 的法向量n 2⃗⃗⃗⃗ =(1,−√3,√2),所以cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ ≥n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗|n 1⃗⃗⃗⃗⃗ ||n 2⃗⃗⃗⃗⃗ |=−√33, 由图可知,所求二面角为钝角,所以二面角B −AE −D 的余弦值为−√33.【解析】(1)证明AD ⊥CD ,CD ⊥BD ,即可证明CD ⊥平面ABD.推出CD ⊥AH ,同理AH ⊥BE ,即可证明AH ⊥平面BCDE .(2)过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系,求出平面AED 的法向量,平面AEB 的法向量,利用空间向量的数量积求解二面角B −AE −D 的余弦值即可.本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.20.【答案】解:(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,设两圆切点为D 所以|MD|+|MN|=|ND|=4,在⊙M 中,|MD|=|MA|所以|MA|+|MN|=4,所以M 的轨迹为椭圆,由定义可知{2a =4c =√3,所以求轨迹C 的方程为x 24+y 2=1.(2)当l 的斜率不存在的时,设P(x 0,y 0),所以Q(x 0,−y 0), 所以{k PB ⋅k QB =y0x 0−2⋅−y0x 0−2=−12x 024+y 02=1,解得{x 0=23y 0=2√23或{x 0=2y 0=0(舍), 所以l 与x 轴的交点为(23,0), 当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1消元可得(1+4k 2)x 2+8kbx +4b 2−4=0,△=(8kb)2−4(1+4k 2)(4b 2−4)=64k 2−16b 2+16>0, 所以4k 2>b 2−1,由韦达定理x 1+x 2=−8kb1+4k 2;x 1x 2=4b 2−41+4k 2, k PB ⋅k QB =y 1x 1−2⋅y 2x 2−2=(kx 1+b)(x 1−2)(kx 2+b)(x 2−2)=k 2x 1x 2+kb(x 1+x 2)+b 2x 1x 2−2(x 1+x 2)+4=k 24b2−41+4k 2−8k 2b 21+4k 2+b 24b 2−41+4k 2−2−8kb 1+4k 2+4=b 2−4k 2(4k+2b)2=(b−2k)(b+2k)4(2k+b)2,又因为2k +b ≠0,所以b−2k4(b+2k)=−12,即b =−23k , 所以b 2−1=(−23k)2−1<4k 2,所以b =−23k 成立, 所以y =kx −23k =k(x −23),当x =23时,y =0,所以l 过(23,0)综上所述l 过定点,且点坐标为(23,0).【解析】(1)由题意⊙M 过点A(√3,0),且与⊙N :(x +√3)2+y 2=16内切,推出M 的轨迹为椭圆,结合椭圆定义求轨迹C 的方程.(2)当l 的斜率不存在的时,设P(x 0,y 0),所以Q(x 0,−y 0),利用斜率乘积以及点在椭圆上,转化求解l 与x 轴的交点为(23,0),当l 的斜率存在时,设l 的方程为y =kx +b 联立{y =kx +bx 24+y 2=1,通过判别式推出4k 2>b 2−1,结合韦达定理,利用斜率的乘积推出b =−23k ,然后得到直线系方程说明结果距离.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,直线系方程的应用,考查分析问题解决问题的能力是难题.21.【答案】解:(1)因为f(x)=(x −4)e x−3+x 2−6x ,所以f′(x)=(x −3)e x−3+2x −6=(x −3)(e x−3+2), 令f′(x)=0得x =3当x >3时,f′(x)>0,f(x)单调递增 当0<x <3时,f′(x)<0,f(x)单调递减所以f(x)单调递增区间为(3,+∞);f(x)单调递减区间为(0,3).(2)由(1)知f′(x)=(x −3)(e x−3+2),当x ≥3时f’(x)≥0恒成立,故ℎ(x)≥0恒成立 当x <3时,f’(x)<0,又因为ℎ(x)=max{f’(x),g(x)}≥0恒成立, 所以g(x)≥0在(0,3)上恒成立 所以(a −13)x −1−lnx ≥0,即a −13≥1+lnx x在(0,3)上恒成立令F(x)=1+lnx x ,则a −13≥F(x)max , F’(x)=1−(lnx+1)x 2=−lnx x 2,令F’(x)=0得x=1,易得F(x)在(0,1)上单增,在[1,3)上单减,所以F(x)max=F(1)=1,所以a−13≥1,即a≥43综上可得a≥43,(3)设m(x)=e x−x−1(x>0),则m′(x)=e x−1>0,所以m(x)在(0,+∞)上单增,所以m(x)>m(0)=0,即e x>x+1所以e1n+1n+1+1n+1+⋯+13n=e 1n⋅e1n+1⋅e1n+2…e13n>n+1n⋅n+2n+1⋅n+3n+2…3n3n−1⋅3n+13n>n+1n ⋅n+2n+1⋅n+3n+2…3n3n−1=3,所以1n +1n+1+1n+2+⋯+13n−1+13n>ln3.【解析】(1)求出导函数,通过f′(x)=0得x=3然后判断函数的单调性求解函数的单调区间即可.(2)通过ℎ(x)=max{f’(x),g(x)}≥0恒成立,令F(x)=1+lnxx ,推出a−13≥F(x)max,结合函数的导数求解函数的最大值,求解即可.(3)设m(x)=e x−x−1(x>0),利用函数的导数推出e x>x+1,然后结合不等式转化求解证明即可.本题考查了导数的综合应用及恒成立问题化为最值问题的处理方法,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)由题可得:C1的普通方程为2x−y−5=0又因为C2的参数方程为{x=√3cosθy=√3tanθ,两边平方可得{x2=3cos2θy2=3sin2θcos2θ,所以C2的普通方程为x23−y23=1,且x≤−√3.(2)由题意,设C1的平行直线2x−y+c=0联立{2x−y+c=0x23−y23=1消元可得:3x2+4cx+c2+3=0所以△=4c2−36=0,解得c=±3又因为x≤−√3,经检验可知c=3时与C2相切,所以|AB|min =√22+(−1)2=8√55.【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用直线和曲线的位置关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和曲线的位置关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】解:(1)a =1时,f(x)=|3x −6|+|x +1|={−4x +5,x <−1−2x +7,−1≤x ≤24x −5,x >2;当x <−1时,由f(x)<3得−4x +5<3,解得x >12(不合题意,舍去); 当−1≤x ≤2时,由f(x)<3得−2x +7<3,解得x >2(不合题意,舍去); 当x >2时,由f(x)<3得4x −5<3,解得x <2(不合题意,舍去); 所以不等式f(x)<3的解集⌀;(2)由f(x)=|3x −6|+|x +a|<11−4x 对任意x ∈[−4,−32]成立, 得−(3x −6)+|x +a|<11−4x ,即|x +a|<5−x , 所以{|x +a|<5−x 5−x >0,所以{x −5<x +ax +a <5−x,得a >−5且a <5−2x 对任意x ∈[−4,−32]成立;即−5<a <8,所以a 的取值范围是(−5,8).【解析】(1)a =1时,f(x)=|3x −6|+|x +1|,讨论x 的取值范围,去掉绝对值求不等式f(x)<3的解集即可;(2)f(x)=|3x −6|+|x +a|<11−4x 对任意x ∈[−4,−32]成立,等价于|x +a|<5−x 恒成立,去绝对值,从而求出a 的取值范围.本题考查了不等式恒成立的应用问题,也考查了含有绝对值的不等式解法问题,是中档题.。
2020广东深圳高考一模真题+答案解析—理数
,S
ABC
1 b c sin A 2
由双曲线定义可知: 2a =| NF1 | − | NF2 |=| MN | + | MF1 | − | NF2 | ,
| MN |=| NF2 | + | OF2 | ,且| OF2 |= c , 2a = b + c , b = c − 2a ,
b2 = (c − 2a)2 = c2 − 4ac + 4a2 ,
绝密★启封并使用完毕前
试题类型:A
2020 年深圳市高三第一次调研考试
理科数学试题答案及评分参考
一、选择题
1. C
2. D
3. C
4. A
5. D
6. A
7. D
8. B
9. C
10. B
11. A
12. B
11. 解析:
曲线
y
=
f
(x) 关于点 ( 1 ,0) 4
对称,
1 4
+
=
k1π ,(k1 Z)
1 12
(k
Z)
,
令0
k 3
+
1 12
1 ,则可取
k
=Leabharlann 0,1, 2 ,x0=
1,5, 12 12
3 4
,结论②正确;
令−
π 2
+ 2kπ
3πx
+
π 4
π 2
+ 2kπ
,则
f
(
x)
的递增区间为
−
1 4
+
2 k, 1 3 12
+
2 3
k
(k Z)
2020年广东省广州市高考数学一模试卷(理科)
2020年广东省广州市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z 满足(1)2i z i +=,则||(z = ) A .2B .1C .2D .122.(5分)已知集合{0A =,1,2,3},2{|1B x x n ==-,}n A ∈,P A B =I ,则P 的子集共有( ) A .2个B .4个C .6个D .8个3.(5分)sin80cos50cos140sin10(︒︒+︒︒= ) A .3-B .3 C .12-D .124.(5分)已知命题:p x R ∀∈,210x x -+<;命题:q x R ∃∈,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝5.(5分)已知函数()f x 满足(1)(1)f x f x -=+,当1x …时,2()f x x x=-,则{|(2)1}(x f x +>= )A .{|3x x <-或0}x >B .{|0x x <或2}x >C .{|2x x <-或0}x > D .{|2x x <或4}x >6.(5分)如图,圆O 的半径为1,A ,B 是圆上的定点,OB OA ⊥,P 是圆上的动点,点P 关于直线OB 的对称点为P ',角x 的始边为射线OA ,终边为射线OP ,将||OP OP -'u u u r u u u r 表示为x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .7.(5分)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(72)π+B .(102)π+C .(1042)π+D .(112)π+8.(5分)某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为()A .1211e er R e e ++-- B .111e er R e e ++-- C .1211e er R e e-+++ D .111e er R e e-+++ 9.(5分)羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29 C .13D .4910.(5分)已知1F ,2F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若||AB =2ABF ∆的内切圆的半径为( )A B C D 11.(5分)已知函数()f x 的导函数为()f x ',记1()()f x f x =',21()()f x f x =',⋯,1()()(*)n n f x f x n N +='∈.若()sin f x x x =,则20192021()()(f x f x += )A .2cos x -B .2sin x -C .2cos xD .2sin x12.(5分)已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题: ①1EF B C ⊥;②直线FG 与直线1A D 所成角为60︒;③过E ,F ,G 三点的平面截该正方体所得的截面为六边形; ④三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量(,1)a m =r ,(2,1)b =r ,且221()2a b a b =+r r r r g ,则m = .14.(5分)某种产品的质量指标值Z 服从正态分布2(,)N μσ,且(33)0.9974P Z μσμσ-<<+=.某用户购买了10000件这种产品,则这10000件产品中质量指标值位于区间(3,3)μσμσ-+之外的产品件数为 .15.(5分)25(321)x x --的展开式中,2x 的系数是 .(用数字填写答案)16.(5分)已知ABC ∆的三个内角为A ,B ,C ,且sin A ,sin B ,sin C 成等差数列,则sin22cos B B +的最小值为 ,最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记n S 为数列{}n a 的前n 项和,112(*)2n n n S a n N --=∈.(1)求1n n a a ++;(2)令2n n n b a a +=-,证明数列{}n b 是等比数列,并求其前n 项和n T .18.(12分)如图,三棱锥P ABC -中,PA PC =,AB BC =,120APC ∠=︒,90ABC ∠=︒,3AC PB =.(1)求证:AC PB ⊥;(2)求直线AC 与平面PAB 所成角的正弦值.19.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:)mm ,得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)若从这80个零件中尺寸位于[62.5,64.5)之外的零件中随机抽取4个,设X 表示尺寸在[64.5,65]上的零件个数,求X 的分布列及数学期望EX ;(3)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品,将这80个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱100个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为99元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付500元的赔偿费用.现对一箱零件随机抽检了11个,结果有1个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.20.(12分)已知函数()x be f x alnx x =-,曲线()y f x =在点(1,f (1))处的切线方程为220x y e ---=.(1)求a ,b 的值;(2)证明函数()f x 存在唯一的极大值点0x ,且0()222f x ln <-. 21.(12分)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB =-u u u r u u u rg .(1)判断点(0,1)D 是否在直线AB 上?说明理由;(2)设点M 是PAB ∆的外接圆的圆心,点M 到x 轴的距离为d ,点(1,0)N ,求||MN d -的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线1C 的参数方程为cos (1sin x t t y t αα=⎧⎨=+⎩为参数),曲线2C 的参数方程为sinx y θθ=⎧⎪⎨=⎪⎩为参数). (1)求1C 与2C 的普通方程;(2)若1C 与2C 相交于A ,B 两点,且||AB =sin α的值. [选修4-5:不等式选讲](10分) 23.已知0a >,0b >,且1a b +=. (1)求12a b+的最小值;(2)证明:2221ab b a b +<++.2020年广东省广州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z 满足(1)2i z i +=,则||(z = )A B .1C D .12【解答】解:(1)2i z i +=Q , ∴22(1)2211(1)(1)2i i i i z i i i i -+====+++-,∴||z =故选:A .2.(5分)已知集合{0A =,1,2,3},2{|1B x x n ==-,}n A ∈,P A B =I ,则P 的子集共有( ) A .2个B .4个C .6个D .8个【解答】解:Q 集合{0A =,1,2,3},2{|1B x x n ==-,}{1n A ∈=-,0,3,8}, {0P A B ∴==I ,3},P ∴的子集共有224=个.故选:B .3.(5分)sin80cos50cos140sin10(︒︒+︒︒= )A .BC .12-D .12【解答】解:1sin80cos50cos140sin10cos10cos50sin50sin10cos(5010)cos602︒︒+︒︒=︒︒-︒︒=︒+︒=︒=. 故选:D .4.(5分)已知命题:p x R ∀∈,210x x -+<;命题:q x R ∃∈,23x x >,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【解答】解:22131()024x x x -+=-+>恒成立,故命题:p x R ∀∈,210x x -+<为假命题,当1x =-时,23x x >,成立,即命题:q x R ∃∈,23x x >,为真命题, 则p q ⌝∧为真,其余为假命题, 故选:B .5.(5分)已知函数()f x 满足(1)(1)f x f x -=+,当1x …时,2()f x x x=-,则{|(2)1}(x f x +>= )A .{|3x x <-或0}x >B .{|0x x <或2}x >C .{|2x x <-或0}x > D .{|2x x <或4}x >【解答】解:由(1)(1)f x f x -=+,得函数关于1x =对称, 当1x …时,2()f x x x=-,则()f x 为增函数,且f (2)211=-=, 由()1f x >得2x >,由对称性知当1x <时,由()1f x >得0x <, 综上()1f x >得2x >或0x <,由(2)1f x +>得22x +>或20x +<,得0x >或2x <-, 即不等式的解集为{|2x x <-或0}x >, 故选:C .6.(5分)如图,圆O 的半径为1,A ,B 是圆上的定点,OB OA ⊥,P 是圆上的动点,点P 关于直线OB 的对称点为P ',角x 的始边为射线OA ,终边为射线OP ,将||OP OP -'u u u r u u u r 表示为x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .【解答】解:设PP '的中点为M ,则||||2||OP OP P P PM '-'==u u u r u u u r u u u r u u u u r,当[0x ∈,]2π时,在Rt OMP ∆中,||1OP =,OPM POA x ∠=∠=,所以||cos ||PM x OP =,所以||cos PM x =,||2cos OP OP x -'=u u u r u u u r ,即()2cos f x x =,[0x ∈,]2π.从四个选项可知,只有选项A 正确, 故选:A .7.(5分)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722)π+B .(1022)π+C .(1042)π+D .(1142)π+【解答】解:由题意可知几何体的直观图如图:上部是圆柱,下部是圆锥, 几何体的表面积为:1442223(1042)2ππππ+⨯⨯+⨯=+.故选:C .8.(5分)某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e ,设地球半径为R ,该卫星近地点离地面的距离为r ,则该卫星远地点离地面的距离为()A .1211e er R e e ++-- B .111e er R e e ++-- C .1211e er R e e-+++ D .111e er R e e-+++ 【解答】解:椭圆的离心率:(0,1)ce a=∈,(c 为半焦距;a 为长半轴)只要求出椭圆的c 和a ,设卫星近地点,远地点离地面距离分别为m ,n ,由题意,结合图形可知,a c r R -=+,远地点离地面的距离为:n a c R =+-,m a c R =--,1r Ra e +=-, ()1r R ec e+=-, 所以远地点离地面的距离为:()121111r R e r R e en a c R R r R e e e e+++=+-=+-=+----. 故选:A .9.(5分)羽毛球混合双打比赛每队由一男一女两名运动员组成.某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29 C .13D .49【解答】解:从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,共有22339C C =,选出的4人随机分成两队进行羽毛球混合双打比赛有11224C C =, 故总的事件个数为9436⨯=种,其中1A 和1B 两人组成一队有11224C C =种, 故则1A 和1B 两人组成一队参加比赛的概率为41369=, 故选:A .10.(5分)已知1F ,2F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若||AB =2ABF ∆的内切圆的半径为( )A B C D【解答】解:由双曲线的方程可设左焦点1(,0)F c -,由题意可得22b AB a==,再由1b =,可得a 2212x y -=,所以1(F 0),2F 0),所以2121122ABF S AB F F ==V g g三角形2ABF 的周长为2211(2)(2)42C AB AF BF AB a AF a BF a AB =++=++++=+==设内切圆的半径为r ,所以三角形的面积1122S C r r ===g g g ,所以r =, 故选:B .11.(5分)已知函数()f x 的导函数为()f x ',记1()()f x f x =',21()()f x f x =',⋯,1()()(*)n n f x f x n N +='∈.若()sin f x x x =,则20192021()()(f x f x += )A .2cos x -B .2sin x -C .2cos xD .2sin x【解答】解:()sin f x x x =, 则1()()sin cos f x f x x x x ='=+,21()()cos cos sin 2cos sin f x f x x x x x x x x ='=+-=-, 32()()2sin sin cos 3sin cos f x f x x x x x x x x ='=---=-- 43()()3cos cos sin 4cos sin f x f x x x x x x x x ='=--+=-+ 54()()4sin sin cos 5sin cos f x f x x x x x x x x ='=++=+ 65()()5cos cos sin 6cos sin f x f x x x x x x x ='=+-=-, 76()()6sin sin cos 7sin cos f x f x x x x x x x x ='=---=--⋯,则13()()sin cos 3sin cos 2sin f x f x x x x x x x x +=+--=-, 35()()3sin cos 5sin cos 2sin f x f x x x x x x x x +=--++=, 57()()5sin cos 7sin cos 2sin f x f x x x x x x x x +=+--=-,即4143()()2sin n n f x f x x +++=-, 4345()()2sin n n f x f x x +++=则20192021()()2sin f x f x x +=, 故选:D .12.(5分)已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题: ①1EF B C ⊥;②直线FG 与直线1A D 所成角为60︒;③过E ,F ,G 三点的平面截该正方体所得的截面为六边形; ④三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .4【解答】解:如图;连接相关点的线段,O 为BC 的中点,连接EFO ,因为F 是中点,可知1B C OF ⊥,1EO B C ⊥,可知1B C ⊥平面EFO ,即可证明1B C EF ⊥,所以①正确;直线FG 与直线1A D 所成角就是直线1A B 与直线1A D 所成角为60︒;正确;过E ,F ,G 三点的平面截该正方体所得的截面为五边形;如图:是五边形ENFGI .所以③不正确;三棱锥B EFG -的体积为:123115(22131)232223G EBM V -+=⨯⨯-⨯⨯-⨯⨯⨯=.123115(22131)132226F EBM V -+=⨯⨯-⨯⨯-⨯⨯⨯=.所以三棱锥B EFG -的体积为56.④正确;故选:C .二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设向量(,1)a m =r ,(2,1)b =r ,且221()2a b a b =+r r r r g ,则m = 2 .【解答】解:因为向量(,1)a m =r ,(2,1)b =r ,且221()2a b a b =+r r r r g ,∴22220()0a a b b a b -+=⇒-=r r rr r r g ; ∴a b =rr;2m ∴=;故答案为:2.14.(5分)某种产品的质量指标值Z 服从正态分布2(,)N μσ,且(33)0.9974P Z μσμσ-<<+=.某用户购买了10000件这种产品,则这10000件产品中质量指标值位于区间(3,3)μσμσ-+之外的产品件数为 26 .【解答】解:因为某种产品的质量指标值Z 服从正态分布2(,)N μσ,且(33)0.9974P Z μσμσ-<<+=.所以10000件产品中质量指标值位于区间(3,3)μσμσ-+之外的产品件数为:10000(10.9974)26⨯-=;故答案为:26.15.(5分)25(321)x x --的展开式中,2x 的系数是 25 .(用数字填写答案) 【解答】解:因为:2525(321)[3(21)]x x x x --=-+;其展开式的通项公式为:2515(3)[(21)]r r r r T x x -+=-+g ð; Q 要求2x 的系数;所以:当50r -=,即5r =时,需求5[(21)]x -+的展开式的2x 项,故此时2x 的系数是:5222355(1)2140⨯-⨯⨯=痧;当51r -=,即4r =时,需求5[(21)]x -+的展开式的常数项,故此时2x 的系数是:4555553(1)115⨯⨯-⨯⨯=-痧;综上可得:2x 的系数是:401525-=. 故答案为:25.16.(5分)已知ABC ∆的三个内角为A ,B ,C ,且sin A ,sin B ,sin C 成等差数列,则sin22cos B B +的最小值为1 ,最大值为 . 【解答】解:sin A Q ,sin B ,sin C 成等差数列, 2sin sin sin B A C ∴=+,由正弦定理可得,2b a c =+,由余弦定理有,222222()2331cos 1122222a cb ac b ac b ac B ac ac ac ac +-+--===--=…(当且仅当a b c ==时取等号), 又B 为三角形ABC 内角,故(0,]3B π∈,设()sin 22cos ,(0,]3f B B B B π=+∈,则f '(B )22cos22sin 4sin 2sin 2B B B B =-=--+,令f '(B )0>,解得06B π<<,令f '(B )0<,解得63B ππ<<,故函数f (B )在(0,)6π单调递增,在(,)63ππ单调递减,∴2()()sin 2cos 1333min f B f πππ==+,()()sin 2cos 636max f B f πππ==+=.. 三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记n S 为数列{}n a 的前n 项和,112(*)2n n n S a n N --=∈. (1)求1n n a a ++;(2)令2n n n b a a +=-,证明数列{}n b 是等比数列,并求其前n 项和n T . 【解答】解:(1)由1122n n n S a --=,可得1n =时,11a S =,又1121S a -=,即11a =; 2n …时,1n n n a S S -=-,112122n n n S a ----=,又1122n n n S a --=, 两式相减可得1112n n n a a --+=-, 即有112n n n a a ++=-; (2)证明:由(1)可得112n n na a ++=-, 即有12112n n n a a ++++=-, 两式相减可得2112n n n n b a a ++=-=, 则1122122n n n n b b +++==,可得数列{}n b 是首项为14,公比为12的等比数列, 前n 项和111(1)114212212n n n T +-==--. 18.(12分)如图,三棱锥P ABC -中,PA PC =,AB BC =,120APC ∠=︒,90ABC ∠=︒,AC .(1)求证:AC PB ⊥;(2)求直线AC 与平面PAB 所成角的正弦值.【解答】解:(1)证明:取AC 中点O ,连结PO ,BO , PA PC =Q ,AB BC =,PO AC ∴⊥,BO AC ⊥, PO BO O =Q I ,AC ∴⊥平面PBO ,PB ⊂Q 平面PBO ,AC PB ∴⊥.(2)解:设23AC =,则1PO =,2PA PC PB===,3BO =,222PO BO PB ∴+=,PO BO ∴⊥,以O 为原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系, 则(0A ,3-,0),(0C ,3,0),(0P ,0,1),(3B ,0,0), (0AC =u u u r ,23,0),(0PA =u u u r ,3-,1)-,(3PB =u u u r,0,1)-,设平面PAB 的法向量(n x =r,y ,)z ,则3030n PA y z n PB x z ⎧=--=⎪⎨=-=⎪⎩u u u r r g u u u r r g ,取1x =,得(1n =r ,1-,3), 设直线AC 与平面PAB 所成角为θ, 则直线AC 与平面PAB 所成角的正弦值为: ||235sin ||||235AC n AC n θ===u u u r rg u u u r r g g .19.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了80个零件进行测量,根据所测量的零件尺寸(单位:)mm ,得到如图的频率分布直方图:(1)根据频率分布直方图,求这80个零件尺寸的中位数(结果精确到0.01);(2)若从这80个零件中尺寸位于[62.5,64.5)之外的零件中随机抽取4个,设X 表示尺寸在[64.5,65]上的零件个数,求X 的分布列及数学期望EX ;(3)已知尺寸在[63.0,64.5)上的零件为一等品,否则为二等品,将这80个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱100个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为99元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付500元的赔偿费用.现对一箱零件随机抽检了11个,结果有1个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.【解答】解:(1)由于[62.0,63.0)内的频率为(0.0750.225)0.50.15+⨯=,[63.0,63.5)内的频率为0.750.50.375⨯=,设中位数为[63.0x ∈,63.5),由0.15(63)0.750.5x +-⨯=,得63.47x ≈, 故中位数为63.47;(2)这80个零件中尺寸位于[62.5,64.5)之外的零件共有7个,其中尺寸位于[62.0,62.5)内的有3个,位于[64.5,65)共有4个,随机抽取4个, 则1X =,2,3,4,3134474(1)35C C P X C ===,22344718(2)35C C P X C ===,13344712(3)35C C P X C ===,44471(4)35C P X C ===,418121161234353535357EX =+++=g g g g ;(3)根据图象,每个零件是二等品的概率为(0.0750.2250.100)0.50.2P =++⨯=, 设余下的89个零件中二等品的个数为~(89,0.2)Y B , 由二项分布公式,890.217.8EY =⨯=,若不对余下的零件作检验,设检验费用与赔偿费用的和为S , 11995001089500S Y Y =⨯+=+,若对余下的零件作检验,则这一箱检验费用为9900元, 以整箱检验费用与赔偿费用之和的期望值作为决策依据, 则11995009989ES EY =⨯+=,因为9900ES >,所以应该对余下的零件作检验.(或者9989ES =与9900相差不大,可以不做检验都行.)20.(12分)已知函数()xbe f x alnx x =-,曲线()y f x =在点(1,f (1))处的切线方程为220x y e ---=.(1)求a ,b 的值;(2)证明函数()f x 存在唯一的极大值点0x ,且0()222f x ln <-.【解答】解:(1)函数的定义域为(0,)+∞,2()()x x a b xe e f x x x-'=-, 则f '(1)a =,f (1)be =-,故曲线()y f x =在点(1,f (1))处的切线方程为0ax y a be ---=,又曲线()y f x =在点(1,f (1))处的切线方程为220x y e ---=, 2a ∴=,1b =;(2)证明:由(1)知,()2x e f x lnx x =-,则22()x xx xe e f x x -+'=,令()2x x g x x xe e =-+,则()2x g x xe '=-,易知()g x '在(0,)+∞单调递减, 又(0)20g '=>,g '(1)20e =-<, 故存在1(0,1)x ∈,使得1()0g x '=,且当1(0,)x x ∈时,()0g x '>,()g x 单调递增,当1(x x ∈,)+∞时,()0g x '<,()g x 单调递减,由于(0)10g =>,g (1)20=>,g (2)240e =-<, 故存在0(1,2)x ∈,使得0()0g x =,且当0(0,)x x ∈时,()0g x >,()0f x '>,()f x 单调递增,当0(x x ∈,)+∞时,()0g x <,()0f x '<,()f x 单调递减,故函数存在唯一的极大值点0x ,且00000()20x x g x x x e e =-+=,即00002,(1,2)1x x e x x =∈-, 则0000002()221x e f x lnx lnx x x =-=--, 令2()2,121h x lnx x x =-<<-,则222()0(1)h x x x '=+>-, 故()h x 在(1,2)上单调递增,由于0(1,2)x ∈,故0()h x h <(2)222ln =-,即00222221lnx ln x -<--, 0()222f x ln ∴<-.21.(12分)已知点P 是抛物线21:34C y x =-的顶点,A ,B 是C 上的两个动点,且4PA PB =-u u u r u u u rg .(1)判断点(0,1)D 是否在直线AB 上?说明理由;(2)设点M 是PAB ∆的外接圆的圆心,点M 到x 轴的距离为d ,点(1,0)N ,求||MN d -的最大值.【解答】解:(1)由抛物线的方程可得顶点(0,3)P -,由题意可得直线AB 的斜率存在,设直线AB 的方程为:4y kx =+,设1(A x ,1)y ,2(B x ,2)y联立直线与抛物线的方程:24134y kx y x =+⎧⎪⎨=-⎪⎩,整理可得:244(3)0x kx b --+=,△21616(3)0k b =++>,即230k b ++>, 124x x k+=,124(3)x x b =-+,2222222121212()4(3)412y y k x x kb x x b k b k b b b k =+++=-+++=-,21212()242y y k x x b k b +=++=+, 因为1(PA PB x =u u u r u u u rg ,123)(y x +,222221212123)3()94(3)123(42)923y x x y y y y b b k k b b b +=++++=-++-+++=+-,而4PA PB =-u u u r u u u rg ,所以2234b b +-=-,解得1b =-,m 满足判别式大于0,即直线方程为1y kx =-,所以恒过(0,1)- 可得点(0,1)D 不在直线AB 上.(2)因为点M 是PAB ∆的外接圆的圆心,所以点M 是三角形PAB 三条边的中垂线的交点, 设线段PA 的中点为F ,线段PB 的中点为为E , 因为(0,3)P -,设1(A x ,1)y ,2(B x ,2)y所以1(2x F ,13)2y -,2(2x E ,23)2y -,113PA y k x +=,223PB y k x +=, 所以线段PA 的中垂线的方程为:11113()232y x xy x y --=--+,而A 在抛物线上,所以211134y x =-, 所以线段PA 的中垂线的方程为:211418x y x x =-+-, 同理可得线段PB 的中垂线的方程为:222418x y x x =-+-, 联立方程211222418418x y x x x y x x ⎧=-+-⎪⎪⎨⎪=-+-⎪⎩解得1212()32x x x x x +=-,22121288x x x x y ++-=,由(1)得124x x k +=,124(3)8x x b =-+=-,所以8432M kx k -⨯=-=,22221212122()288M x x x x x x y k +++===, 即点M 的轨迹方程为:212x y =;可得焦点1(0,)8F ,准线方程为:y =-连接NF 交抛物线于0M ,由抛物线的性质,到焦点的距离等于到准线的距离,001111165||||||(||)||188648MN d NF NM M F NF +----=+=++=…, 所以||MN d -的最大值为165+.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线1C 的参数方程为cos (1sin x t t y t αα=⎧⎨=+⎩为参数),曲线2C 的参数方程为sin 1cos 2x y θθθ=⎧⎪⎨=+⎪⎩为参数). (1)求1C 与2C 的普通方程;(2)若1C 与2C 相交于A ,B 两点,且||2AB =sin α的值.【解答】解:(1)由曲线1C 的参数方程为cos (1sin x t t y t αα=⎧⎨=+⎩为参数),消去参数t ,可得tan 1y x α=+;由曲线2C 的参数方程为sin 1cos 2x y θθθ=⎧⎪⎨=+⎪⎩为参数),消去参数θ,可得222y x =-,即第21页(共21页) 221(0)2y x y +=…. (2)把cos (1sin x t t y t αα=⎧⎨=+⎩为参数)代入2212y x +=, 得22(1cos )2sin 10t t αα++-=. ∴1222sin 1t t cos αα-+=+,12211t t cos α-=+.12||||AB t t ∴=-= 解得:2cos 1α=,即cos 1α=±,满足△0>. sin 0α∴=.[选修4-5:不等式选讲](10分)23.已知0a >,0b >,且1a b +=.(1)求12a b+的最小值; (2)证明:2221ab b a b +<++. 【解答】解:(1)12122()()333a b a b a b a b b a +=++=+++=+…当且仅当“b =”时取等号, 故12a b+的最小值为3+ (2)证明:222222222412)155ab b ab b ab b b b a b ab b a +++===++++++„,当且仅当1,2a b ==时取等号,此时1a b +≠.故2221ab b a b +<++.。
2020年广东省深圳市高考数学一模试卷(理科)(含答案解析)
2020年广东省深圳市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.集合,集合,则A. B. C. D.2.下列函数中为奇函数的是A. B. C. D.3.已知复数,则z的共轨复数A. B. C. D.4.已知是圆周率,e为自然对数的底数,则下列结论正确的是A. B.C. D.5.将直线l:绕点按逆时针方向旋转得到直线,则直线的方程为A. B.C. D.6.已知数列为等比数列,若,,则A. B. 8 C. D. 167.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A.B.C.D.8.已知过原点O的直线l与曲线C:相切,则l的斜率为A. B. C. D. e9.珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的数术记遗年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”未记数或表示零时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁其它各珠不动,则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为A. B. C. D.10.已知过抛物线焦点F的直线与抛物线交于P,Q两点,M为线段PF的中点,连接OM,则的最小面积为A. 1B.C. 2D. 411.已知定义在R上的函数在上有且仅有3个零点,其图象关于点和直线对称,给出下列结论:;函数在上有且仅有3个极值点;函数在上单调递增;函数的最小正周期是2.其中所有正确结论的编号是A. B. C. D.12.将边长为5的菱形ABCD沿对角线AC折起,顶点B移动至B处,在以点,A,C,为顶点的四面体中,棱AC、的中点分别为E、F,若,且四面体的外接球球心落在四面体内部,则线段EF长度的取值范围为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.记为等差数列的前n项和,若,则数列的公差为______.14.某地为了解居民的每日总用电量万度与气温之间的关系,收集了四天的每日总用电量和气温的数据如表:气温19139每日总用电量万度24343864经分析,可用线性回归方程拟合y与X的关系.据此预测气温为时,该地当日总用电量万度为______.15.已知等边三角形ABC的边长为3,点D,E分别在边AB,BC上,且,,则的值为______.16.已知点、分别为双曲线C:的左、右焦点,点为C的渐近线与圆的一个交点,O为坐标原点,若直线与C的右支交于点N,且,则双曲线C的离心率为______.三、解答题(本大题共7小题,共82.0分)17.函数.求函数的最小正周期;已知的内角A,B,C的对边分别为a,b,c,若,且,求的面积.18.已知三棱柱的所有棱长都相等,平面平面ABC,C.求证:平面;求二面角的余弦值.19.已知椭圆C:的短轴长为2,离心率为,左顶点为A,过点A的直线l与C交于另一个点M,且与直线交于点N.求椭圆C的方程;是否存在实数t,使得为定值?若存在,求实数t的值;若不存在,请说明理由.20.某市为提升中学生的数学素养,激发学生学习数学的兴趣,举办了一次“数学文化知识大赛”,分预赛和复赛两个环节.已知共有8000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下频率分布直方图.规定预赛成绩不低于80分为优良,若从上述样本中预赛成绩不低于60分的学生中随机地抽取2人,求恰有1人预赛成绩优良的概率;由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布,其中可近似为样本中的100名学生预赛成绩的平均值同一组数据用该组区间的中点值代替,且利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于91分的人数;预赛成绩不低于91分的学生将参加复赛,复赛规则如下:每人的复赛初始分均为100分;参赛学生可在开始答题前自行决定答题数量n,每一题都需要“花”掉即减去一定分数来获取答题资格,规定答第k题时“花”掉的分数为;每答对一题加分,答错既不加分也不减分;答完n题后参赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为,且每题答对与否都相互独立.若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为多少?参考数据:;若,则,,.21.已知函数.当时,求的导函数在上的零点个数;若关于x的不等式在上恒成立,求实数a的取值范围.22.如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,,,,,弧所在圆的圆心分别是,,曲线是弧,曲线是弧.分别写出,的极坐标方程:点E,F位于曲线上,且,求面积的取值范围.23.已知.若,求实数t的取值范围;求证:.-------- 答案与解析 --------1.答案:C解析:解:集合,集合,故选:C.求出集合A,集合B,由此能求出.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.答案:D解析:解:根据题意,依次分析选项:对于A,,其定义域为R,有,且,即函数既不是奇函数也不是偶函数,不符合题意;对于B,,其定义域为R,有,为偶函数,不符合题意;对于C,,其定义域为R,有,为偶函数,不符合题意;对于D,,有,解可得,即其定义域为,有,为奇函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性,综合即可得答案.本题考查函数奇偶性的判断,关键是函数奇偶性的定义,属于基础题.3.答案:C解析:解:,复数,的共轨复数.故选:C.直接利用复数运算化简,然后利用共轭复数的概念得答案.本题考查了复数的高次乘方运算,考查了共轭复数的概念,是基础题.4.答案:A解析:解:函数对数和在上单调递增,且,,又,,故选:A.利用对数函数的性质求解.本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.5.答案:D解析:解:直线l:绕点按逆时针方向旋转得到直线,设直线的斜率为k,则根据到角公式的应用,,解得,所以直线的方程为,整理得.故选:D.直接利用到角公式的应用和点斜式的应用求出结果.本题考查的知识要点:到角公式的应用,直线方程的确定,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.答案:A解析:解:数列为等比数列,若,所以:,由于,所以,整理得.故选:A.直接利用关系式的变换和等比性质的应用求出结果.本题考查的知识要点:等比数列的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.7.答案:D解析:解:根据几何体的三视图可得直观图为:该几何体为上面为一个半径为2的半球,下面为底面半径为2,高为3的半圆柱体.如图所示:故.故选:D.首先把三视图转换为直观图,进一步求出直观图的体积.本题考查的知识要点:三视图和直观图形之间的转换,几何体的体积和表面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.答案:B解析:解:由题意设切点为,,.,由切线过原点得,所以,所以.故选:B.设切点为,然后利用导数求出切线方程,将代入即可求出切点坐标,问题可解.本题考查导数的几何意义与切线的求法,属于基础题.9.答案:C解析:解:选定“个位档”、“十位档”、“百位档”和“千位档”,规定每档拨动一珠靠梁其它各珠不动,则在其可能表示的所有四位数中随机取一个数,基本事件总数,这个数能被3整除包含的基本事件有:5511,5115,5151,1155,1515,1551,共6个,这个数能被3整除的概率为.故选:C.基本事件总数,利用列举法求出这个数能被3整除包含的基本事件有6个,由此能求出这个数能被3整除的概率.本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.10.答案:B解析:解:设,,设P在x轴上方,由题意可得直线PQ的斜率不为0,设直线PQ的方程为,联立直线与抛物线的方程,整理可得,,,因为M为PF的中点,所以,所以,所以,故选:B.由题意可得直线PQ的斜率不为0,设直线PQ的方程,与抛物线联立球心两根之和及两根之积,可得PF的中点M的纵坐标,由,整理可得由,而为定值可得的面积的最小值本题考查直线与抛物线的综合及均值不等式的应用,属于中档题.11.答案:A解析:解:曲线关于点对称,所以:;又因为其图象关于直线对称,所以:,;由可得:即,;因为数在上有且仅有3个零点,所以,即,;由可得;,,又,;;所以易知;错误;令,则,;令,则可取,1,2;,,;正确;令;;当时,为的一个递增区间,而,在上单调递增,正确;;;错误.综上所述,其中正确的结论为;故选:A.先根据条件求得函数的解析式,再结合三角函数的性质判断选项即可.本题主要考查命题的真假判断以及三角函数的图象和性质,属于中档题目,也是易错题目.12.答案:B解析:解:如图,由已知可得,,且,平面,是AC的中点,到点A、C的距离相等的点位于平面ACF内,同理可知,到点、D的距离相等的点位于平面ACF内,球心O到点A,,C,D的距离相等,球心O位于平面与平面ACF的交线上,即直线EF上.球心O落在线段EF上不含端点E、,显然,由题意,,则,且.,,则,显然,,即.又,.故选:B.由题意画出图形,可证平面,得到球心O位于平面与平面ACF的交线上,即直线EF上,由勾股定理结合,,可得线段EF长度的取值范围.本题考查空间中点、线、面间的距离计算,考查空间想象能力与思维能力,属中档题.13.答案:解析:解:设等差数列的公差为d.,,则数列的公差.故答案为:.利用等差数列的通项公式及求和公式即可得出.本题考查了等差数列的通项公式及求和公式,考查了推理能力与计算能力,属于基础题.14.答案:32解析:解:由题意可知:,,所以,解得.线性回归方程,预测气温为时,可得.故答案为:32.求出样本中心,代入回归直线方程,求出a,然后求解该地当日总用电量.本题考查回归直线方程的求法,是基本知识的考查,基础题.15.答案:3解析:解:以B为原点,BC和垂直BC的线分别为x、y轴建立平面直角坐标系,如图所示,则,,,.故答案为:3.以B为原点,BC和垂直BC的线分别为x、y轴建立平面直角坐标系,再分别写出C、D、E三点坐标,结合平面向量数量积的坐标运算即可得解.本题考查平面向量在几何中的应用,在规则平面多边形中建立坐标系求解可事半功倍,考查学生的运算能力,属于基础题.16.答案:解析:解:如图,由题意可得,直线与圆O相切于点M,且,由双曲线的定义可知,,,且,,即,,又,联立解得,即.故答案为:.由题意画出图形,可得直线与圆O相切于点M,且,再由双曲线的定义及隐含条件列式求解双曲线的离心率.本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.17.答案:解:,函数的最小正周期;,,,,即,由正弦定理以及可得,由余弦定理可得,可得,,.解析:根据三角函数恒等变换的应用和正弦函数的性质即可求出;先求出A的值,再根据正弦定理余弦定理即可求出b的值,根据三角形的面积公式可得.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,正弦定理,余弦定理,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:解:证明:设直线与直线交于点G,连结,四边形是菱形,,,G为的中点,,,平面.解:取BC中点O为坐标原点,如图,分别以OA,OC,所在直线为x,y,z轴,建立空间直角坐标系,设棱柱的棱长为2,则1,,0,,0,,,0,,1,,2,,设平面的一个法向量y,,则,取,得,设平面的一个法向量为b,,则,取,得0,,设二面角的平面角为,则.二面角的余弦值为.解析:设直线与直线交于点G,连结,推导出,,由此能证明平面.取BC中点O为坐标原点,分别以OA,OC,所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是中档题.19.答案:解:由题意可得,即,,,解得,,则椭圆C的方程为;假设存在实数,使得为定值.由题意可得直线l的斜率存在,由,可设直线l的方程为,,联立,可得,由韦达定理可得,即,,即,将代入,可得,则,若为定值,则,解得,此时为定值,所以存在实数,使得为定值.解析:由题意可得,运用椭圆的离心率的公式和a,b,c的关系,解方程可得a,c,进而得到椭圆方程;假设存在实数,使得为定值.可设直线l的方程为,,联立椭圆的方程,运用韦达定理,求得M的坐标,将代入,求得N的坐标,再由向量的数量积的坐标表示,结合定值,可得所求值.本题以直线和椭圆为载体,其几何关系向量表达为背景,利用方程思想解决几何问题,主要考查椭圆的基本量,直线和椭圆的位置关系,向量的数量积的运算,考查逻辑推理、数学运算等数学核心素养及思维能力,属于中档题.20.答案:解:由题意得样本中成绩不低于60分的学生共有:人,其中成绩优良的人数为人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件C,则恰有1人预赛成绩优良的概率:.由题意知样本中的100名学生预赛成绩的平均值为:,则,又由,,,估计全市参加参赛的全体学生中成绩不低于91分的人数为:,即全市参赛学生中预赛成绩不低于91分的人数为182.以随机变量表示甲答对的题数,则,且,记甲答完n题所加的分数为随机变量X,则,,依题意为了获取答n题的资格,甲需要“花”掉的分数为:,设甲答完n题的分数为,则,由于,当时,取最大值105,即复赛成绩的最大值为105.若学生甲期望获得最佳复赛成绩,则他的答题量n应该是10.解析:求出样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,由此能求出恰有1人预赛成绩优良的概率.样本中的100名学生预赛成绩的平均值为:,则,由,得,从而,由此能求出估计全市参加参赛的全体学生中成绩不低于91分的人数.以随机变量表示甲答对的题数,则,且,记甲答完n题所加的分数为随机变量X,则,,为了获取答n题的资格,甲需要“花”掉的分数为:,设甲答完n题的分数为,则,由此能求出学生甲期望获得最佳复赛成绩的答题量n的值.本题考查概率、频数、数学期望的求法及应用,考查频率分布直方图、二项分布等基础知识,考查运算求解能力,是中档题.21.答案:解:易知,显然,所以是的一个零点,令,则时,,所以在单调递减,在单调递增,则的最小值为,又,且,所以在上存在唯一零点,则在上亦存在唯一零点,因为是奇函数,所以在上也存在唯一零点,综上所述,当时,的导函数在上的零点个数为3;不等式恒成立,即不等式恒成立,令,则等价于不等式恒成立,若,即时,不等式显然成立,此时,若时,不等式等价于设,当时,,令则,已知,,且,则在,上单调递减,在上单调地增,又,,所以在上恒成立,所以在上单调递减,则,显然函数为偶函数,故函数在上的最大值为1,因此,综上所述,满足题意的实数a的取值范围为.解析:易知,显然,对导函数求导得到,在单调递减,在单调地增,则可得在上存在唯一零点,所以在上亦存在唯一零点,因为是奇函数,所以在上也存在唯一零点,故共3个零点;条件等价于不等式恒成立,令,则等价于不等式恒成立,则若,即时,不等式显然成立,此时,若时,不等式等价于,构造函数,利用导数求得单调性进而可判断a的范围.本题考查函数导数的综合应用,考查利用导数判断函数零点个数,导数求函数单调性,属于难题.22.答案:解:由题意可知:的极坐标方程为.记圆弧AD所在圆的圆心易得极点O在圆弧AD上.设为上任意一点,则在中,可得所以:,的极坐标方程为和设点,点,,所以,.所以.由于,所以.故.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用三角形的面积公式和极径的应用及三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.曲线是弧,本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角形面积公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.23.答案:解:,取等号的条件为,解得,即实数t的取值范围为;证明:易知,,,,.解析:利用绝对值不等式的性质可得,解出即可;利用绝对值不等式及基本不等式即可得证.本题以绝对值不等式,均值不等式和二次不等式为载体,考查不等式的求解及证明,分类讨论思想,及数学抽象,逻辑推理等数学核心素养,难度不大.。
2020年广东省湛江市高考数学一模试卷(理科)含答案解析
2020年广东省湛江市高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.复数z满足z(1+i)=|1+i|,则z等于()A.1﹣iB.1C.﹣iD.﹣i2.有一个容量为66的样本,数据的分组及各组的数据如下:估计数据落在[31.5,43.5]的概率是()分组[11.5,15.5)[15.5,19.5)[19.5,23.5)[23.5,27.5)频数 2 4 9 18分组[27.5,31.5)[31.5,35.5)[35.5,39.5)[39.5,43.5)频数11 12 7 3 A.B.C.D.3.已知集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y∈A,x+y∈A},则B的子集个数为()A.3B.4C.7D.84.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=()A.5B.6C.7D.85.若某程序框图如图所示,则输出的P的值是()A.22B.27C.31D.566.在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.7.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.88.一个几何体的三视图如图所示,则该几何体的表面积为()A.64+8πB.48+12πC.48+8πD.48+12π9.已知sinα=,则cos(π﹣2α)=()A.﹣B.﹣C.D.10.已知a,b∈R,下列四个条件中,使>1成立的必要不充分条件是()A.a>b﹣1B.a>b+1C.|a|>|b|D.()a>()b11.已知实数a,b满足a2+b2﹣4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值为()A.1B.2C.D.312.已知函数f(x)=的图象上有两对关于坐标原点对称的点,则实数k的取值范围是()A.(0,1)B.(0,)C.(0,+∞)D.(0,e)二、填空题(共4小题,每小题5分,满分20分)13.设随机变量X满足正态分布X~N(﹣1,σ2),若P(﹣3≤x≤﹣1)=0.4,则P(﹣3≤x≤1)=.14.若直线y=2x上存在点(x,y)满足约束条件,则实数m的取值范围.15.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是.16.对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x);x∈M}=M,则称函数f(x)具有性质p,给出下列3个函数:①f(x)=sinx②f(x)=x3﹣3x③f(x)=lgx+3其中具有性质p的函数是(填入所有满足条件函数的序号)三、解答题(共5小题,满分60分)17.等比数列{a n}的各项均为正数,且2a1+3a2=1,a3=3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.18.本着健康、低碳的生活理念,湛江市区采用公共自行车的人越来越多,使用年租卡租车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).假设甲、乙两人相互独立地用年租卡每天租车一次.已知甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙两人某一天在三小时以上且不超过四小时还车的概率.(Ⅱ)记甲、乙两人一天所付的租车费用之和为ξ,求ξ的分布列及数学期望.19.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,AD=PD=2,PB=AB=6,点P在底面的正投影在DC上.(I)证明:BD⊥PA;(Ⅱ)求直线AP与平面PBC所成角的正弦值.20.如图,已知椭圆C1:+=1(a>b>0)的半焦距为c,原点O到经过两点(c、0),(0,b)的直线的距离为λc(λ∈(0,1),垂直于x轴的直线l与椭圆C1及圆C2:x2+y2=a2均有两个交点,这四个交点按其坐标从大到小分别为A、B、C、D(Ⅰ)当λ=时,求的值;(Ⅱ)设N(a,0),若存在直线l使得BO∥AN,证明:0<λ<.21.设函数f(x)=(ax+1)e﹣x(a∈R)(Ⅰ)当a>0时,求f(x)的单调递增区间;(Ⅱ)对任意x∈[0,+∞),f(x)≤x+1恒成立,求实数a的取值范围.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AE是⊙O的直径,△ABC内接于⊙O,AB=BC,AD⊥BC,垂足为D.(Ⅰ)求证:AE•AD=AC•BC;(Ⅱ)过点C作⊙O的切线交BA的延长线于F,若AF=4,CF=6,求AC的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的单位长度,以原点O为极点,以x轴正半轴为极轴)中,直线l 的方程为ρsin(θ+)=2.(Ⅰ)求圆C的极坐标方程;(Ⅱ)设圆C与直线l交于点A,B,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|(1)解不等式xf(x)+3>0;(2)对于任意的x∈(﹣3,3),不等式f(x)<m﹣|x|恒成立,求m的取值范围.2020年广东省湛江市高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.复数z满足z(1+i)=|1+i|,则z等于()A.1﹣iB.1C.﹣iD.﹣i【考点】复数求模.【分析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【解答】解:复数z满足z(1+i)=|1+i|=2,z===1﹣.故选:A.2.有一个容量为66的样本,数据的分组及各组的数据如下:估计数据落在[31.5,43.5]的概率是()分组[11.5,15.5)[15.5,19.5)[19.5,23.5)[23.5,27.5)频数 2 4 9 18分组[27.5,31.5)[31.5,35.5)[35.5,39.5)[39.5,43.5)频数11 12 7 3 A.B.C.D.【考点】频率分布直方图;列举法计算基本事件数及事件发生的概率.【分析】根据频率分布表,利用频率=,计算频率即可.【解答】解:数据落在[31.5,43.5]的频数是12+7+3=22,所以数据落在[31.5,43.5]的概率是P==.故选:B.3.已知集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y∈A,x+y∈A},则B的子集个数为()A.3B.4C.7D.8【考点】子集与真子集.【分析】先求出B={(1,1),(1,2),(2,1)},由此能求出B的子集个数.【解答】解:∵集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y∈A,x+y∈A},∴B={(1,1),(1,2),(2,1)},∴B的子集个数为:23=8个.故选:D.4.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=()A.5B.6C.7D.8【考点】等差数列的性质.【分析】由S n+2﹣S n=36,得a n+1+a n+2=36,代入等差数列的通项公式求解n.【解答】解:由S n+2﹣S n=36,得:a n+1+a n+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.5.若某程序框图如图所示,则输出的P的值是()A.22B.27C.31D.56【考点】程序框图.【分析】根据流程图,先进行判定条件,不满足条件则运行循环体,一直执行到满足条件即跳出循环体,输出结果即可.【解答】解:第一次运行得:n=0,p=1,不满足p>20,则继续运行第二次运行得:n=﹣1,p=2,不满足p>20,则继续运行第三次运行得:n=﹣2,p=6,不满足p>20,则继续运行第四次运行得:n=﹣3,p=15,不满足p>20,则继续运行第五次运行得:n=﹣4,p=31,满足p>20,则停止运行输出p=31.故选C.6.在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.【考点】解三角形;向量在几何中的应用.【分析】设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.【解答】解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A7.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8【考点】圆锥曲线的综合.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x 的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.8.一个几何体的三视图如图所示,则该几何体的表面积为()A.64+8πB.48+12πC.48+8πD.48+12π【考点】由三视图求面积、体积.【分析】该几何体为棱柱与圆柱的组合体,几何体的表面积为棱柱的表面积加上圆柱的侧面积.【解答】解:由三视图可知该几何体的下部分是底面为边长是4,高是2的四棱柱,上部分是底面直径为4,高为2的圆柱,∴S=4×4×2+4×4×2+4π×2=64+8π.故选A.9.已知sinα=,则cos(π﹣2α)=()A.﹣B.﹣C.D.【考点】二倍角的余弦;运用诱导公式化简求值.【分析】先根据诱导公式求得cos(π﹣2a)=﹣cos2a进而根据二倍角公式把sinα的值代入即可求得答案.【解答】解:∵sina=,∴cos(π﹣2a)=﹣cos2a=﹣(1﹣2sin2a)=﹣.故选B.10.已知a,b∈R,下列四个条件中,使>1成立的必要不充分条件是()A.a>b﹣1B.a>b+1C.|a|>|b|D.()a>()b【考点】必要条件、充分条件与充要条件的判断.【分析】对于>1,当b>0时,a>b>0;当b<0时,a<b<0,﹣a>﹣b>0,可得>1⇒|a|>|b|,反之不成立.即可判断出结论.【解答】解:对于>1,⇔b(a﹣b)>0.当b>0时,a>b>0;当b<0时,a<b<0,∴﹣a>﹣b>0,∴>1⇒|a|>|b|,反之不成立,例如:取a=2,b=﹣1.∴|a|>|b|是使>1成立的必要不充分条件.故选:C.11.已知实数a,b满足a2+b2﹣4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值为()A.1B.2C.D.3【考点】三角函数的最值.【分析】点(a,b)在圆(a﹣2)2+b2 =1 上,函数f(x)=asinx+bcosx+1 的最大值为φ(a,b)=+1,表示原点到点(a,b)的距离加1,求出圆上的点到原点的距离的最小值为1,从而求得φ(a,b)的最小值.【解答】解:∵实数a,b满足a2+b2﹣4a+3=0,∴(a﹣2)2+b2 =1,表示以(2,0)为圆心,以1为半径的圆.∵函数f(x)=asinx+bcosx+1 的最大值为φ(a,b)=+1,它的几何意义为原点到点(a,b)的距离加1.再由点(a,b)在圆a2+b2﹣4a+3=0上,原点到圆心(2,0)的距离等于2,故圆上的点到原点的距离的最小值为1,所以φ(a,b)的最小值为2,故选B.12.已知函数f(x)=的图象上有两对关于坐标原点对称的点,则实数k的取值范围是()A.(0,1)B.(0,)C.(0,+∞)D.(0,e)【考点】分段函数的应用.【分析】求出x>0时关于原点对称的函数g(x)=lnx,由题意可得g(x)的图象和y=kx ﹣2(x>0)的图象有两个交点.设出直线y=kx﹣2与y=g(x)相切的切点为(m,lnm),求出g(x)的导数,求得切线的斜率,解方程可得切点和k的值,由图象即可得到所求范围.【解答】解:当x<0时,f(x)=﹣ln(﹣x),由f(x)的图象关于原点对称,可得g(x)=lnx(x>0),由题意可得g(x)的图象和y=kx﹣2(x>0)的图象有两个交点.设直线y=kx﹣2与y=g(x)相切的切点为(m,lnm),由g(x)的导数为g′(x)=,即有切线的斜率为=k,又lnm=km﹣2,解得m=,k=e,由图象可得0<k<e时,有两个交点.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.设随机变量X满足正态分布X~N(﹣1,σ2),若P(﹣3≤x≤﹣1)=0.4,则P(﹣3≤x≤1)=0.8.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布曲线关于x=﹣1对称,可得P(﹣3≤x≤﹣1)=P(﹣1≤x≤1),即可得出结论.【解答】解:由正态分布曲线的对称性得:P(﹣3≤x≤﹣1)=P(﹣1≤x≤1),∴P(﹣3≤x≤1)=2P(﹣3≤x≤﹣1)=0.8.故答案为:0.8.14.若直线y=2x上存在点(x,y)满足约束条件,则实数m的取值范围(﹣∞,1].【考点】简单线性规划.【分析】先根据,确定交点坐标为(1,2)要使直线y=2x上存在点(x,y)满足约束条件,则m≤1,由此可得结论.【解答】解:由题意,由,可求得交点坐标为(1,2)要使直线y=2x上存在点(x,y)满足约束条件,如图所示.可得m≤1则实数m的取值范围(﹣∞,1].故答案为:(﹣∞,1].15.如图,半径为4的球O中有一内接圆往,则圆柱的侧面积最大值是32π.【考点】旋转体(圆柱、圆锥、圆台).【分析】设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值【解答】解:∵设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=4cosα,圆柱的高为8sinα,∴圆柱的侧面积为:32πsin2α,当且仅当α=时,sin2α=1,圆柱的侧面积最大,∴圆柱的侧面积的最大值为:32π.故答案为:32π.16.对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x);x∈M}=M,则称函数f(x)具有性质p,给出下列3个函数:①f(x)=sinx②f(x)=x3﹣3x③f(x)=lgx+3其中具有性质p的函数是②(填入所有满足条件函数的序号)【考点】函数解析式的求解及常用方法.【分析】①对于函数f(x)=sinx,根据其在[﹣,]上是单调增函数,通过分析方程sinx=x在[﹣,]上仅有一解,判断即可;②通过对已知函数求导,分析出函数的单调区间,找到极大值点和极小值点,并求出极大值b和极小值a,而求得的f(a)与f(b)在[a,b]范围内,满足性质P;③根据“性质P”的定义,函数存在“区间M”,只要举出一个符合定义的区间M即可,但要说明函数没有“区间P”,判断即可【解答】解:①对于函数f(x)=sinx,若正弦函数存在等值区间[a,b],则在区间[a,b]上有sina=a,sinb=b,由正弦函数的值域知道[a,b]⊆[﹣1,1],但在区间]⊆[﹣1,1]上仅有sin0=0,所以函数f(x)=sinx不具有性质P;②对于函数f(x)=x3﹣3x,f′(x)=3x2﹣3=3(x﹣1)(x+1).当x∈(﹣1,1)时,f′(x)0.所以函数f(x)=x3﹣3x的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1).取M=[﹣2,2],此时f(﹣2)=﹣2,f(﹣1)=2,f(1)=﹣2,f(2)=2.所以函数f(x)=x3﹣3x在M=[﹣2,2]上的值域也为[﹣2,2],则具有性质P;③对于f(x)=lgx+3,若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有,即方程lgx+3=x有两个解,这与y=lgx+3和y=x的图象相切相矛盾.故③不具有性质P.故答案为:②.三、解答题(共5小题,满分60分)17.等比数列{a n}的各项均为正数,且2a1+3a2=1,a3=3.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【考点】等比数列的前n项和;等比数列的通项公式.【分析】(Ⅰ)由等比数列通项公式列出方程组求出首项和公比,由此能求出数列{a n}的通项公式.(Ⅱ)先出S n=,从而b n==2(),由此利用裂项求和法能求出数列{b n}的前n项和.【解答】解:(Ⅰ)∵等比数列{a n}的各项均为正数,且2a1+3a2=1,a3=3,∴,解得,∴数列{a n}的通项公式.(Ⅱ)∵S n为数列{a n}的前n项和,∴=,∴b n===2(),∴数列{b n}的前n项和:T n=2(+)=2()=.18.本着健康、低碳的生活理念,湛江市区采用公共自行车的人越来越多,使用年租卡租车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).假设甲、乙两人相互独立地用年租卡每天租车一次.已知甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(Ⅰ)分别求出甲、乙两人某一天在三小时以上且不超过四小时还车的概率.(Ⅱ)记甲、乙两人一天所付的租车费用之和为ξ,求ξ的分布列及数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)根据题意,由全部基本事件的概率之和为1,利用对立事件概率计算公式求解即可.(Ⅱ)由题意ξ的可能取值为0,2,4,6,8,分别求出相应的概率,由此能求出ξ的分布列及数学期望.【解答】解:(Ⅰ)甲在三小时以上且不超过四小时还车的概率为1﹣=,乙在三小时以上且不超过四小时还车的概率为1﹣=.(Ⅱ)由已知得ξ的可能取值为0,2,4,6,8,P(ξ=0)==,P(ξ=2)==,P(ξ=4)==,P(ξ=6)=+=,P(ξ=8)=(1﹣)(1﹣)=,∴ξ的分布列为:ξ0 2 4 6 8PEξ=+8×=.19.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,AD=PD=2,PB=AB=6,点P在底面的正投影在DC上.(I)证明:BD⊥PA;(Ⅱ)求直线AP与平面PBC所成角的正弦值.【考点】直线与平面所成的角;直线与平面垂直的性质.【分析】(Ⅰ)取AP中点O,连结DO、BO,推导出PA⊥平面BDO,由此能证明BD⊥PA.(Ⅱ)过P作PE⊥平面ABCD,交DC于E,以E为原点,过E作DA的平行线为x轴,EC为y轴,EP为z轴,建立空间直角坐标系,利用向量法能求出直线AP与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AP中点O,连结DO、BO,∵AD=PD=2,PB=AB=6,∴DO⊥PA,BO⊥PA,又DO∩BO=O,∴PA⊥平面BDO,∵BD⊂平面BDO,∴BD⊥PA.解:(Ⅱ)∵底面ABCD为矩形,AD=PD=2,PB=AB=6,点P在底面的正投影在DC上∴过P作PE⊥平面ABCD,交DC于E,PC==2,∴PD2+PC2=CD2,∴PD⊥PC,∴PE==2,DE==2,CE=6﹣2=4,以E为原点,过E作DA的平行线为x轴,EC为y轴,EP为z轴,建立空间直角坐标系,∴A(2,﹣2,0),P(0,0,2),B(2,4,0),C(0,4,0),=(2,﹣2,﹣2),=(2,4,﹣2),=(0,4,﹣2),设面PBC的法向量=(x,y,z),则,取z=,得=(0,1,),设直线AP与平面PBC所成角为α,则sinα===.∴直线AP与平面PBC所成角的正弦值为.20.如图,已知椭圆C1:+=1(a>b>0)的半焦距为c,原点O到经过两点(c、0),(0,b)的直线的距离为λc(λ∈(0,1),垂直于x轴的直线l与椭圆C1及圆C2:x2+y2=a2均有两个交点,这四个交点按其坐标从大到小分别为A、B、C、D(Ⅰ)当λ=时,求的值;(Ⅱ)设N(a,0),若存在直线l使得BO∥AN,证明:0<λ<.【考点】椭圆的简单性质.【分析】(Ⅰ)求出过两点(c、0),(0,b)的直线方程,由点到直线的距离公式可得b=λa,取λ=,求得椭圆方程,然后分别联立直线x=m(﹣a<m<a)与椭圆与圆方程,求出点的坐标,则的值可求;(Ⅱ)联立直线方程和椭圆方程、直线方程和圆的方程,求出A,B的坐标,由斜率相等可得,结合﹣a<m<0即可证得0<λ<.【解答】(Ⅰ)解:过两点(c、0),(0,b)的直线方程为,即bx+cy﹣bc=0,由原点O到直线bx+cy﹣bc=0的距离为λc(λ∈(0,1),得,即b=λa,当λ=时,b=,此时椭圆方程为.设直线l的方程为x=m(﹣a<m<a),联立,解得B(m,),C(m,),联立,解得A(m,),D(m,﹣),∴=;(Ⅱ)证明:如图,由(Ⅰ)得,A(m,),联立,得B(m,λ),又N(a,0),∴,而,由BO∥AN,得,∴m=λ(m﹣a),即.∵﹣a<m<0,∴,即,解得:λ>1(舍)或,又λ∈(0,1),∴0<λ<.21.设函数f(x)=(ax+1)e﹣x(a∈R)(Ⅰ)当a>0时,求f(x)的单调递增区间;(Ⅱ)对任意x∈[0,+∞),f(x)≤x+1恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求导,当a>0时,令f′(x)>0,解得函数的单调递增区间;(Ⅱ)x∈[0,+∞),由题意可知将f(x)≤x+1恒成立,转化为a≤e x+,x∈[0,+∞)恒成立,构造辅助函数F(x)=e x+,g(x)=,求导,F(x)在x∈[0,+∞)上单调递增,由在x=0处极限,=1,可求得F(x)的最小值,求得a的取值范围;【解答】解:(Ⅰ)f(x)=(ax+1)e﹣x(a∈R)定义域为R,∴f′(x)=e﹣x(﹣ax+a﹣1),令f′(x)=0,解得:x=1﹣,f′(x)>0,解得x<1﹣,∴当a>0时,求f(x)的单调递增区间;(﹣∞,1﹣);(Ⅱ)由x∈[0,+∞),f(x)≤x+1恒成立,即(ax+1)e﹣x≤x+1,可转化为a≤e x+,x∈[0,+∞)恒成立,设F(x)=e x+,g(x)=,则g′(x)=,令h(x)=(x﹣1)e x+1,则h′(x)=e x+e x(x﹣1)=xe x,当x>0时,h′(x)=xe x>0,∴h(x)是上的增函数,∴h(x)>h(0)=0,∴g′(x)=>0,即函数g(x)是(0,+∞)上的增函数.∴F(x)在(0,+∞)上的增函数.F(x)在x=0处取最小值,即(e x+)=1+,由洛必达法则可知:=1,故F(x)的最小值为2,∴a≤2,实数a的取值范围(﹣∞,+2].[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AE是⊙O的直径,△ABC内接于⊙O,AB=BC,AD⊥BC,垂足为D.(Ⅰ)求证:AE•AD=AC•BC;(Ⅱ)过点C作⊙O的切线交BA的延长线于F,若AF=4,CF=6,求AC的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接BE,由直径所对圆周角为直角得到∠ABE=90°,由三角形相似的条件得到△ACD∽△AEB,再由相似三角形对应边成比例得AE•AD=AC•BC;(Ⅱ)由切割弦定理可得CF2=AF•BF,然后再由三角形相似求得AC的值.【解答】(Ⅰ)证明:连接BE,∵AE为圆O的直径,∴∠ABE=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,又∵∠ACD=∠AEB,∴△ACD∽△AEB,∴,又∵AB=BC,∴AE•ED=AC•BC;(Ⅱ)解:∵CF是圆O的切线,∴CF2=AF•BF,又AF=4,CF=6,∴BF=9,∴AB=BF﹣AF=5,又∵∠ACF=∠FBC,∠F为公共角,∴△AFC∽△CFB,∴,∴AC=.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的单位长度,以原点O为极点,以x轴正半轴为极轴)中,直线l 的方程为ρsin(θ+)=2.(Ⅰ)求圆C的极坐标方程;(Ⅱ)设圆C与直线l交于点A,B,求|AB|.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用cos2θ+sin2θ=1可把圆C的参数方程化为普通方程,再利用化为极坐标方程.(II)直线l的方程为ρsin(θ+)=2,展开可得直角坐标方程.求出圆心C到直线l 的距离d,利用弦长公式|AB|=2即可得出.【解答】解:(I)圆C的参数方程为(θ为参数),化为(x﹣2)2+y2=4,即x2+y2﹣4x=0,化为极坐标方程:ρ2﹣4ρcosθ=0,即ρ=4cosθ.(II)直线l的方程为ρsin(θ+)=2,展开化为:(ρsinθ+ρcosθ)=2,可得直角坐标方程:y+x﹣4=0.由(I)可知:圆C的圆心C(2,0),半径r=2.∴圆心C到直线l的距离d==,∴|AB|=2=2.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|(1)解不等式xf(x)+3>0;(2)对于任意的x∈(﹣3,3),不等式f(x)<m﹣|x|恒成立,求m的取值范围.【考点】函数恒成立问题.【分析】(1)把f(x)的解析式代入xf(x)+3>0,去绝对值后化为不等式组,求解不等式组得答案;(2)把f(x)<m﹣|x|,分离变量m后构造分段函数,求解分段函数的最大值,从而得到m的取值范围.【解答】解:(1)∵f(x)=|x﹣2|,∴xf(x)+3>0⇔x|x﹣2|+3>0⇔①或②,解①得:﹣1<x≤2,解②得x>2,∴不等式xf(x)+3>0的解集为:(﹣1,+∞);(2)f(x)<m﹣|x|⇔f(x)+|x|<m,即|x﹣2|+|x|<m,设g(x)=|x﹣2|+|x|(﹣3<x<3),则,g(x)在(﹣3,0]上单调递减,2≤g(x)<8;g(x)在(2,3)上单调递增,2<g(x)<4∴在(﹣3,3)上有2≤g(x)<8,故m≥8时不等式f(x)<m﹣|x|在(﹣3,3)上恒成立.2020年7月15日第21页(共21页)。
2020年广东省汕头市高考数学一模试卷(理科) (含答案解析)
2020年广东省汕头市高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1. 已知集合A ={x ∈N|x <3},B ={x|x 2−x ≤0},则A ∩B =( )A. (0,1]B. {1}C. [0,1]D. {0,1}2. (1+i)2=( )A. −2iB. 2iC. 2D. −23. 设变量x,y 满足约束条件{x +y −2≤0,x −y +2≥0,x ≥−1,y ≥−1,则目标函数z =−4x +y 的最大值为( )A. 2B. 3C. 5D. 64. 如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月最高C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长5. 已知f(x)是定义在R 上的偶函数,且f(x)在(−∞,0]上单调递减,则不等式f(lgx)>f(−2)的解集是( )A. (1100,100) B. (100,+∞)C. (1100,+∞)D. (0,1100)∪(100,+∞)6. 已知函数y =Asin(ωx +φ)(ω>0,|φ|<π2,x ∈R)的图象如图所示,则该函数的单调减区间是( )A. [2+16k,10+16k](k ∈Z)B. [6+16k,14+16k](k ∈Z)C. [−2+16k,6+16k](k ∈Z)D. [−6+16k,2+16k](k ∈Z)7. 如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为12√3,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A. 12πB. 14πC. 16πD. 18π8. 已知向量OA ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=3,则OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =( ) A. 9 B. 8 C. 7 D. 109. ΔABC 中,A,B,C 所对边分别为a,b,c,(a +b )(sinA −sinB )=(c −b)sinC ,若b +c =4,则a 的取值范围是( )A. (2,4)B. [2,4)C. (0,2)D. (0,4)10. 在的展开式中,x 3的系数为( ) A.B. 160C. 120D. 20011. 已知三棱锥D −ABC 中,AB =BC =1,AD =2,BD =√5,AC =√2,BC ⊥AD ,则三棱锥的外接球的表面积为( )A. √6πB. 6πC. 5πD. 8π12. 函数f(x)=√xx+1的最大值为( )A. 25B. 12C. √22D. 1二、填空题(本大题共4小题,共20.0分)13. 曲线f(x)=e x 在点A(0,f(0))处的切线方程为______.14.双曲线C:2x2−y2=1的渐近线方程是______.15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援,则甲被选中的概率为________.16.过抛物线y2=4x的焦点F的直线与抛物线交于P,Q两点,则PQ中点M的轨迹是__________.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和为S n,且a1=12,a n+1=n+12na n.(1)求{a n}的通项公式;(2)设b n=n(2−S n),,若b n≤λ,恒成立,求实数λ的取值范围.18.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠ABC=120°,△PAD为等边三角形,E为棱PC的中点.(1)证明:PB⊥平面ADE;(2)若平面PAD⊥平面ABCD,求二面角A−DE−B的余弦值.19.某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为p(0<p<1),并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:min),得到下面的频数表:以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计p的值;(2)设X表示这10000盏灯在某一时刻亮灯的数目.①求X的数学期望E(X)和方差D(X);②若随机变量Z满足Z=,则认为Z∽N(0,1).假设当4900<X≤5000时,灯光展处于最√D(X)佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率p等于亮灯时长与灯光展总时长的商;②若Z∽N(0,1),则P(μ−σ<X≤μ+σ)=0.6827,P(μ−2σ<X≤μ+2σ)=0.9545,P(μ−3σ<X≤μ+3σ)=0.9973.20. 已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)直线l 平行于直线OA ,且过点(0,t ),若直线l 与椭圆C 有公共点,求t 的取值范围.21. 设函数.(1)讨论f(x)的单调性;(2)当a <0时,证明f(x)<−34a −2.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =cosαy =1+sinα(α为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设A,B为曲线C上两点(均不与O重合),且满足∠AOB=π3,求|OA|+|OB|的最大值.23.已知函数f(x)=|ax−3|,不等式f(x)≤2的解集为{x|1≤x≤5}.(1)解不等式f(x)<2f(x+1)−1;(2)若m≥3,n≥3,f(m)+f(n)=3,求证:1m +4n≥1.【答案与解析】1.答案:D解析:本题主要考查集合的交运算,属于基础题,根据题意求出集合A与B,然后根据交集定义求解即可.解:B={x∈N|x<3}={0,1,2}B={x|x2−x≤0}={x|0≤x≤1},所以A∩B={0,1}.故选D.2.答案:B解析:本题考查复数的运算,属于基础题.解:(1+i)2=1+2i+i2=2i.故选B.3.答案:C解析:本题考查简单的线性规划知识,考查数形结合的解题思想方法,是基础题.由约束条件作出可行域,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解:由约束条件作出可行域如图:联立{x =−1x −y +2=0,解得A(−1,1),化目标函数z =−4x +y 为y =4x +z ,由图可知,当直线y =4x +z 过A 时,z 有最大值为5. 故选C .4.答案:D解析:本题考查统计问题,考查数据处理能力和应用意识,属于基础题. 根据统计图中的数据可以直接得到结论.解:2018年3月快递业务量为4397万件,2月快递业务量为2411万件,4397−2411=1986,A 正确;由图1知B 正确;对于C ,例如2月份业务量同比增长率为53%,而收入的同比增长率为30%,故C 正确; 对于D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 故选D .5.答案:D解析:本题主要考查函数奇偶性和单调性的应用,将不等式进行转化是解决本题的关键. 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可. 解:∵f(x)是定义在R 上偶函数,且在区间(−∞,0]上是单调递减, ∴在区间(0,+∞)上为增函数,则不等式f(lgx)>f(−2)等价为f(|lgx|)>f(2) 即|lgx|>2,∴lgx <−2或lgx >2,∴0<x<1100或x>100,故选D.6.答案:A解析:本题主要考查三角函数的图象和性质,根据条件求出函数的解析式,结合三角函数的单调性是解决本题的关键.根据三角函数的图象求出A,ω和φ的值,结合三角函数的单调性进行求解即可.解:由图象知A=4,T2=6−(−2)=8,即T=16=2πω,则ω=π8,则y=4sin(π8x+φ),由图象知(−2,0),(6,0)的中点为(2,0),当x=2时,y=−4,即−4sin(π8×2+φ)=−4,即sin(π4+φ)=1,即π4+φ=π2+2kπ,即φ=π4+2kπ,∵|φ|<π2,∴φ=π4,则y=4sin(π8x+π4),由2kπ+π2≤π8x+π4≤2kπ+3π2,k∈Z,即16k+2≤x≤16k+10,k∈Z,即函数的单调递减区间为[2+16k,10+16k](k∈Z),故选A.7.答案:C解析:本题考查几何体的体积的求法,几何体的内接体问题的应用,圆柱的侧面积的求法,考查计算能力. 设圆柱的底面半径为R ,求出三棱柱的底面边长为√3R ,利用棱柱的体积,求出底面半径,然后求解侧面积.解:设圆柱的底面半径为R ,底面正三角形的边长为a ,,则a =√3R .故三棱柱的底面边长为√3R ,因为三棱柱的体积为12√3,圆柱的底面直径与母线长相等, 所以√34(√3R)2⋅2R =12√3,解得R =2,S 圆柱侧=2πR ⋅2R =16π. 故选:C .8.答案:A解析:本题考查向量的数量积和向量垂直,向量加法的运用,属于简单题. 化得OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ⋅(OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ),即可求解. 解:向量OA ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=3,则OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ⋅(OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ) =OA ⃗⃗⃗⃗⃗ 2+OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =32+0=9. 故选:A .9.答案:B解析:解:∵(a +b)(sinA −sinB)=(c −b)sinC ,∴由正弦定理得:(a +b)(a −b)=(c −b)c ,即c 2+b 2−a 2=bc ,∴由余弦定理可得:cosA=c2+b2−a22bc =12,∵A∈(0,π),∴A=π3,∵b+c=4,由余弦定理可得a2=b2+c2−2bccosA=(b+c)2−2bc−bc=16−3bc,由b+c=4,b+c≥2√bc,得0<bc≤4,则4≤a2<16,即2≤a<4,即a的取值范围是:[2,4).故选:B.利用正弦定理,余弦定理可求cos A,结合A的范围求得A=π3,再由余弦定理求得a2=16−3bc,再由基本不等式,求得bc的范围,即可得到a的范围.本题考查正弦定理,余弦定理,基本不等式在解三角形中的综合运用,考查运算能力和转化思想,属于基础题.10.答案:C解析:本题主要考查二项式定理的应用,属于中档题.先把变形为(x+1)5(x−2)5,再利用二项式定理,结合展开式的通项求出结果.解:∵(x2−x−2)5=(x+1)5(x−2)5,∴x3的系数为,故x3的系数为120.故选C.11.答案:B解析:本题考查了三棱锥的外接球的表面积,关键是根据线段的数量关系判断CD是三棱锥的外接球的直径.根据勾股定理可判断AD⊥AB,AB⊥BC,从而可得CD为外接球的直径,即可求出三棱锥的外接球的表面积.解:如图:∵AD =2,AB =1,BD =√5,满足AD 2+AB 2=BD 2, ∴AD ⊥AB ,又AD ⊥BC ,BC ∩AB =B ,BC ⊂平面ABC ,AB ⊂平面ABC , ∴AD ⊥平面ABC ,∵AB =BC =1,AC =√2, ∴AB ⊥BC ,又AD ∩AB =A ,AD ⊂平面DAB ,AB ⊂平面DAB , ∴BC ⊥平面DAB ,∴CD 是三棱锥的外接球的直径, ∵AD =2,AC =√2, ∴CD =√6,∴三棱锥的外接球的表面积为4π(√62)2=6π.故选:B .12.答案:B解析:可以利用单调性求解最值,也可以利用不等式的思想来求解最值,因为f(x)=√x x+1=√x+1x,可知y =√x +√x ,因为√x >0,根据函数单调性可知有最小值2,所以f(x)有最大值12.13.答案:x −y +1=0解析:求得f(x)的导数,可得切线的斜率和切点,由点斜式方程,即可得到所求切线方程. 本题考查导数的运用:求切线的方程,考查方程思想和运算能力,属于基础题.解:f(x)=e x 的导数为f′(x)=e x , 可得在点A(0,f(0))处的切线斜率为k =1, 切点为(0,1),则曲线f(x)=e x 在点A(0,f(0))处的切线方程为y −1=1·(x −0), 即为x −y +1=0. 故答案为:x −y +1=0.14.答案:y =±√2x解析:解:∵双曲线2x 2−y 2=1的标准方程为:x 212−y 2=1∴a 2=12,b 2=1,可得a =√22,b =1 又∵双曲线x 2a2−y 2b 2=1的渐近线方程是y =±ba x∴双曲线2x 2−y 2=1的渐近线方程是y =±√2x 故答案为:y =±√2x将双曲线化成标准方程,得到a 、b 的值,再由双曲线x 2a2−y 2b 2=1的渐近线方程是y =±ba x ,即可得到所求渐近线方程.本题给出双曲线方程,求双曲线的渐近线方程,着重考查了双曲线的简单几何性质,属于基础题.15.答案:12解析:本题主要考查事件与概率,考查运算求解能力,是基础题. 某医疗团队从甲,乙,丙,丁4名医生志愿者中, 随机选取2名医生赴湖北支援,选法有甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,共6种, 其中甲被选中的情况有甲乙、甲丙、甲丁,共3种, 所以甲被选中的概率为P =12 故本题正确答案为12.16.答案:y2=2x−2解析:先根据抛物线方程求出焦点坐标,写出过焦点的直线方程,表示出焦点弦的中点即可.解:由题意知F(1,0),设过F的直线方程为x=ty+1,与抛物线方程联立得y2−4ty−4=0. 所以y1+y2=4t,x1+x2=t(y1+y2)+2=4t2+2所以,PQ中点坐标为(2t2+1,2t)消去t得y2=2x−2.故答案为y2=2x−2.17.答案:解:(1)由已知得a n+1n+1=12·a nn,其中,∴数列{a nn }是公比为12的等比数列,首项a1=12,∵a nn =12n,∴a n=n(12)n,(2)由(1)知S n=12+222+323+⋯+n2n,∴12S n=122+223+324…+n2n+1,∴12S n=12+122+123+⋯+12n−n2n+1,∵12S n=1−n+22n+1,∴S n=2−n+22n.因此b n=n(n+2)2n,b n+1−b n=(n+1)(n+3)2n+1−n(n+2)2n=−n2+32n+1,∴当n=1,b2−b1>0,即b2>b1,n≥2,b n+1−b n<0,即b n+1<b n.∴b2是最大项,b2=2,∴λ≥2.解析:本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.(1)由已知得a n+1n+1=12·a nn,其中,利用等比数列的通项公式即可得出;(2)利用“错位相减法”求出S n ,即可得b n ,通过作差法分析b n 的单调性可求出最值,即可得解.18.答案:解:(1)证明:由题知PD =DB ,取PB 的中点G ,连接EG ,AG ,DG ,又E 为PC 的中点,所以EG//BC , 又AD//BC ,所以AD//EG ,即A ,D ,E ,G 四点共面, 又PD =DB ,则DG ⊥PB ,同理PB ⊥AG , 又DG ∩AG =G ,DG ,AG ⊂平面ADE , 所以PB ⊥平面ADE;(2)解:取AD 的中点O ,连接OP ,OB ,则OP ⊥AD , 又平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,OP ⊂平面PAD , 则OP ⊥平面ABCD ,又OB ⊂平面ABCD ,则OP ⊥OB ,易知OA ⊥OB ,故以O 为坐标原点,以OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系O −xyz ,不妨设OA =1,则A(1,0,0),D(−1,0,0),B(0,√3,0),P(0,0,√3),E(−1,√32,√32),则BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),,DE⃗⃗⃗⃗⃗⃗ =(0,√32,√32), 设平面BDE 的一个法向量为m⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =0, 即{x +√3y =0,√32y +√32z =0,取y =√3,则x =−3,z =−√3, 则m ⃗⃗⃗ =(−3,√3,−√3), 由(1)知PB ⊥平面ADE ,则平面ADE 的一个法向量为BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),设向量m ⃗⃗⃗ 与BP ⃗⃗⃗⃗⃗ 所成的角为θ,则cos θ=m⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗⃗|m ⃗⃗⃗ ||BP⃗⃗⃗⃗⃗⃗ | =√3×√3−√3×√3√15×√6=−√105, 由图知,二面角A −DE −B 的平面角是锐角, 故二面角A −DE −B 的余弦值为√105.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,属于中档题.(1)取PB 的中点G ,连接EG ,AG ,DG ,推导出EG//BC ,AD//BC ,所以AD//EG ,又PD =DB ,则DG ⊥PB ,同理PB ⊥AG ,由此能证明PB ⊥平面ADE ;(2)取AD 的中点O ,以O 为原点,建立空间直角坐标系O −xyz ,利用向量法能求出二面角A −DE −B 的余弦值.19.答案:解:(1)估计p =55×10+65×20+75×40+85×20+95×102.5×60×100=12.(2)①由题意可得:X ~B(10000,12).∴E(X)=10000×12=5000,方差D(X)=10000×12×(1−12)=2500.②随机变量Z 满足Z =D(X)=150X −100,∴−2<Z ≤0.又Z ~N(0,1).∴P(−2<Z ≤0)=12×P(−2<X ≤2)=12×0.9545≈0.4773.由此估计,在一场灯光展中,处于最佳灯光亮度的时长=0.4773×150=71.595min ≈72min .解析:本题考查了平均数的计算方法、二项分布列与正态分布分布及其数学期望,考查了推理能力与计算能力,属于中档题.(1)利用平均数的计算方法可得:估计p .(2)①由题意可得:X ~B(10000,12).即可得出:E(X),D(X). ②随机变量Z 满足Z =D(X)=150X −100,可得−2<Z ≤0.又Z ~N(0,1).即可得出P(−2<Z ≤0)=12×P(−2<X ≤2).20.答案:解(1)依题设椭圆C 为x 2a 2+y 2b 2=1(a >0,b >0),且右焦点F ′(−2,0)∴{c =22a =|AF |+|AF′|=√32+02+√42+32=3+5=8,解得{c =2a =4, 又a 2=b 2+c 2,∴b 2=12, 故椭圆C 的方程为x 216+y 212=1;(2)设l 为y =32x +t ,由{y =32x +t,x 216+y 212=1消去y 得3x 2+3tx +t 2−12=0.∵Δ=(3t )2−4×3(t 2−12)≥0,解得−4√3≤t ≤4√3.解析:本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查判别式法的应用,考查计算能力,属于中档题. (1)由题意c =2,设椭圆C 为x 2a 2+y 2b 2=1(a >0,b >0),将A 代入椭圆方程,即可求得a 的值,即可求得椭圆方程;(2)设直线l 为y =32x +t ,代入椭圆方程,由韦达定理△≥0,即可求得t 的取值范围.21.答案:解:(1)解:因为f(x)=lnx +ax 2+(2a +1)x ,求导f′(x)=1x +2ax+(2a+1)=(2ax+1)(x+1)x(x>0),①当a=0时,f′(x)=1x+1>0恒成立,此时y=f(x)在(0,+∞)上单调递增;②当a>0,由于x>0,所以(2ax+1)(x+1)>0恒成立,此时y=f(x)在(0,+∞)上单调递增;③当a<0时,令f′(x)=0,解得:x=−12a.因为当x∈(0,−12a)时,f′(x)>0、当x∈(−12a,+∞)时,f′(x)<0,所以y=f(x)在(0,−12a )上单调递增、在(−12a,+∞)上单调递减.综上可知:当a≥0时f(x)在(0,+∞)上单调递增,当a<0时,f(x)在(0,−12a )上单调递增、在(−12a,+∞)上单调递减;(2)证明:由(1)可知:当a<0时f(x)在(0,−12a)上单调递增、在(−12a,+∞)上单调递减,所以当x=−12a时函数y=f(x)取最大值f(x)max=f(−12a)=−1−ln2−14a+ln(−1a).从而要证f(x)≤−34a −2,即证f(−12a)≤−34a−2,即证−1−ln2−14a +ln(−1a)≤−34a−2,即证−12(−1a)+ln(−1a)≤−1+ln2.令t=−1a ,则t>0,问题转化为证明:−12t+lnt≤−1+ln2.(∗)令g(t)=−12t+lnt,则g′(t)=−12+1t,令g′(t)=0可知t=2,则当0<t<2时g′(t)>0,当t>2时g′(t)<0,所以y=g(t)在(0,2)上单调递增、在(2,+∞)上单调递减,即g(t)≤g(2)=−12×2+ln2=−1+ln2,即(∗)式成立,所以当a<0时,f(x)≤−34a−2成立.解析:本题考查利用导数研究函数的单调性,考查分类讨论的思想,考查转化能力,考查运算求解能力,注意解题方法的积累,属于中档题. (1)题干求导可知f′(x)=(2ax+1)(x+1)x(x >0),分a =0、a >0、a <0三种情况讨论f′(x)与0的大小关系可得结论;(2)通过(1)可知f(x)max =f(−12a )=−1−ln2−14a +ln(−1a ),进而转化可知问题转化为证明:当t >0时−12t +lnt ≤−1+ln2.进而令g(t)=−12t +lnt ,利用导数求出y =g(t)的最大值即可.22.答案:解:(I)曲线C 的参数方程为{x =cosαy =1+sinα(α为参数),转换为直角坐标方程为x 2+(y −1)2=1,整理得x 2+y 2−2y =0,转换为极坐标方程为ρ=2sinθ. (II)设A(ρ1,θ),则B(ρ2,θ+π3), 故ρ1=2sinθ,ρ2=2sin(θ+π3),所以|OA|+|OB|=ρ1+ρ2=2sinθ+2sin(θ+π3)=2√3sin(θ+π6). 当θ=π3时,|OA|+|OB|的最大值为2√3.解析:(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间的转换求出结果. (Ⅱ)利用三角函数关系式的恒等变换和极径的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,极径的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:(1)解:因为不等式f(x)≤2的解集为{x|1≤x ≤5},则x =1和x =5是方程f(x)=|ax −3|=2的解,即{|a −3|=2|5a −3|=2,所以实数a 的值为1. 不等式f(x)<2f(x +1)−1可化为|x −3|<2|x −2|−1,则{x ≥3x −3<2(x −2)−1或{2≤x <3−(x −3)<2(x −2)−1或x <2−(x −3)<−2(x −2)−1, 解得x ≥3或83<x <3或x <0,所以原不等式的解集为{x|x <0或x >83}.(2)证明:因为m ≥3,n ≥3,所以f(m)+f(n)=|m −3|+|n −3|=m −3+n −3=3,即m+n=9.所以1m +4n=19(m+n)(1m+4n)=19(1+4+nm+4mn)≥19(5+2√nm⋅4mn)=1,当且仅当nm =4mn,即m=3,n=6时取等号.解析:(1)利用不等式f(x)≤2的解集为{x|1≤x≤5},说明x=1和x=5是方程f(x)=|ax−3|=2的解,求出a,然后转化不等式f(x)<2f(x+1)−1为|x−3|<2|x−2|−1,通过分类讨论转化求解即可.(2)化简f(m)+f(n)=3,得到m+n=9.利用基本不等式证明即可.本题考查解绝对值不等式和利用基本不等式证明不等式.是中档题.。
2020年广东省高考数学一模试卷(理科) (含答案解析)
2020年广东省高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则A∩(C U B)=()A. {0}B. {0,1,2,3,4}C. {0,1}D. {1}2.复数1+2i2−i的虚部是()A. iB. −iC. −1D. 13.若变量x,y满足约束条件{x+2y≥0x−y≤0x−2y+2≥0,则z=2x−y的最小值等于()A. −52B. −2 C. −32D. 24.若a>1,b<0,则函数y=a x+b的图象有可能是()A.B.C.D.5.函数f(x)=18x−cosx的零点个数为()A. 3B. 4C. 5D. 66.如果一个正四面体的体积为163√2dm3,则其表面积S的值为()A. 16dm2B. 18 dm2C. 18√3dm2D. 16√3dm27.某次数学考试中,某校学生的数学成绩服从正态分布N(100,25).估计数学成绩大于115分的学生所占的百分比为()(参考数据:P(μ−σ<X≤μ+σ)=0.6826,P(μ−2σ<X≤μ+2σ)=0.9544,P(μ−3σ<X≤μ+3σ)=0.9974)A. 0.13%B. 1.3%C. 3%D. 3.3%8.设(2−x)6=a0+a1x+a2x2+⋯+a6x6则|a1|+|a2|+⋯+|a6|的值是()A. 665B. 729C. 728D. 639.已知双曲线x2a2−y2b2=1(a>0,b>0)的左右两个焦点分别为F1,F2,A,B为其左、右两个顶点,以线段F1F2为直径的圆与双曲线的渐近线在第一象限的交点为M,且∠AMB=30°,则该双曲线的离心率为()A. √212B. √13 C. 2√3 D. √19210. 已知数列{a n }的前n 项和S n =12n(n +1),n ∈N ∗,b n =3a n +(−1)n−1a n ,则数列{b n }的前2n +1项和为( ) A. 32n+2−12+n B. 12⋅32n+2+n +12 C. 32n+2−12−n D. 12⋅32n+2−n +32 11. 已知三棱锥P −ABC 中,PA =√23,AB =3,AC =4,AB ⊥AC ,PA ⊥面ABC ,则此三棱锥的外接球的内接正方体的体积为( )A. 16B. 28C. 64D. 9612. 已知函数f(x)=x −sinx ,则不等式f(x +1)+f(2−2x)>0的解集是( ).A. (−∞,13)B. (−13,+∞)C. (−∞,3)D. (3,+∞)二、填空题(本大题共4小题,共20.0分)13. 设函数f(x)=(x +a)lnx ,若曲线y =f(x)在点(1,f(1))处的切线与直线2x −y =0平行,则实数a 的值为______.14. 已知在数列{a n }中,a 1=2,2n (a n +a n+1)=1,设T n =a 1+2a 2+⋯+2n−1a n ,b n =3T n −n−1a n ,数列{b n }的前n 项和S n =______.15. 在平面直角坐标系中,O 为坐标原点,A(0,sinα),B(cosα,0),动点C 满足|OC ⃗⃗⃗⃗⃗ |=1,则|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |的最大值是________. 16. 过抛物线C :x 2=4y 的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A点到准线的距离与B 点到准线的距离之和的最小值是____________.三、解答题(本大题共7小题,共82.0分)17. 如图,在△ABC 中,已知4sin 2A−B 2+4sinAsinB =3.(I)求角C 的大小;(Ⅱ)若AC =8,点D 在BC 边上,且BD =2,cos∠ADB =17,求边AB的长.18.如图所示,四棱锥P—ABCD中,AB⊥AD,AB//DC,PA=AB=AD=2DC=2,PB=2√2,∠PAD=120°,E为PB的中点.(1)证明:EC//平面PAD;(2)求二面角C−AE−B的余弦值.19.如图,已知椭圆x2a2+y2b2=1 (a>b>0)的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=√32,F为椭圆的左焦点,且AF⃗⃗⃗⃗⃗ ⋅FB⃗⃗⃗⃗⃗ =1.(Ⅰ)求此椭圆的方程;(Ⅱ)设P是此椭圆上异于A,B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=FQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.20.求函数f(x)=x2e−x的极值.21.在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担A,B,C,D四项不同的任务,每个同学只能承担一项任务.(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;(2)设这五位同学中承担任务A的人数为随机变量ξ,求ξ的分布列及数学期望Eξ.22.在平面直角坐标系xOy中,曲线C的参数方程为{x=−1+2cosφy=2sinφ(其中φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的极坐标方程为ρ=√2sin(θ+π4),设l1与C相交于A,B两点,AB的中点为M,过点M作l1的垂线l2交C于P,Q两点.(1)写出曲线C的普通方程与直线l1的直角坐标方程;(2)求|PQ||MP|⋅|MQ|的值.23.已知函数f(x)=|x−2|.(1)求不等式f(x)−|x|<1的解集;(2)设g(x)=|x+1|,若∀x∈R,f(x)+g(x)≥a2−2a恒成立,求a的取值范围.-------- 答案与解析 --------1.答案:D解析:本题主要考查了交、并、补集的混合运算,考查学生的计算能力,属于基础题.根据题意可得C U B ,从而即可得A ∩(C U B).解:∵全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,3,4},∴C U B ={0,1},∴A ∩(C U B)={1},故选D .2.答案:D解析:本题考查了复数运算,属于基础题.根据复数运算法则即可求解.解:令z =1+2i 2−i =(1+2i )(2+i)(2−i)(2+i)=5i5=i ,故复数z 的虚部为1,故选D .3.答案:A解析:解:由变量x ,y 满足约束条件{x +2y ≥0x −y ≤0x −2y +2≥0作出可行域如图,由图可知,最优解为A ,联立{x +2y =0x −2y +2=0,解得A(−1,12). ∴z =2x −y 的最小值为2×(−1)−12=−52.故选:A .由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.答案:A解析:本题主要考查函数图象的识别和判断,利用函数单调性以及与y轴的交点的范围是解决本题的关键.根据指数函数的单调性以及函数与y轴交点纵坐标的取值范围进行判断即可.解:当a>1时,函数为增函数,排除B,D,当x=0时,y=a0+b=1+b<1,排除C,故选:A.5.答案:C解析:解:函数f(x)=18x−cosx的零点,即函数y=18x与y=cosx图象交点的横坐标,在同一坐标系中画出函数y=18x与y=cosx的图象,如下图所示:由图可知:函数y=18x与y=cosx的图象有5个交点,故函数f(x)=18x−cosx有5个零点,故选:C将函数的零点问题转化为两个函数的交点问题,结合图象,问题容易解得.本题考察了函数的零点问题,渗透了数形结合思想,是一道基础题.6.答案:D解析:解:如果一个正四面体的棱长为a.则体积V=√212a3=163√2dm3,故a=4dm,则其表面积S=√3a2=16√3dm2,故选:Da3,求出棱长,再由棱长为a的正四面体的表面积S=√3a2,根据棱长为a的正四面体的体积V=√212可得答案.a3,表面积本题考查的知识点是正四面体的几何特征,熟练掌握棱长为a的正四面体的体积V=√212S=√3a2,是解答的关键.7.答案:A解析:本题主要考查正态分布的性质,属于基础题.解:某校学生的数学成绩服从正态分布N(100,25).P(85<μ<115)=0.9974.估计数学成绩大于×(1−0.9974)×100%=0.0013×100%=0.13%.115分的学生所占的百分比为12故选A.8.答案:A解析:本题考查了二项式定理和赋值法的应用问题,由二项式定理知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,|a0|+|a1|+|a2|+⋯+|a6|=a0−a1+a2−a3+a4−a5+a6,利用赋值法把x=−1,x=0分别代入已知式子计算即可,属基础题目.解:∵(2−x)6=a0+a1x+a2x+⋯+a6x,由二项式定理可知a0,a2,a4,a6均为正数,a1,a3,a5均为负数,令x=−1可得:∴|a0|+|a1|+|a2|+⋯+|a6|=a0−a1+a2−a3+a4−a5+a6=(2+1)6=729,x=0时,a0=26=64;∴|a1|+|a2|+⋯+|a6|=729−64=665.故选A.9.答案:B解析:本题考查双曲线的方程和性质,考查直线和圆的位置关系,考查离心率的求法,属于基础题.求出双曲线的渐近线方程和圆的方程,求出交点M,再由两点的斜率公式,得到a,b的关系,再由离心率公式即可得到所求值.解:双曲线x2a −y2b=1(a>0,b>0)的渐近线方程为y=±bax,以F1F2为直径的圆的方程为x2+y2=c2,将直线y=bax代入圆的方程,可得,x=√a2+b2=a(负的舍去),y=b,即有M(a,b),又A(−a,0),B(a,0),由于∠AMB=30°,BM⊥x轴,则tan30°=2ab =√33,即有b=2√3a,则离心率e=ca =√1+b2a2=√13.故选:B.10.答案:A解析:解:当n=1时,a1=S1=12×1×2=1;当n≥2时,a n=S n−S n−1=12n(n+1)−12(n−1)n=n.故a n=n.∴b n=3a n+(−1)n−1a n=3n+(−1)n−1n,则数列{b n}的前2n+1项和S2n+1=(31+32+⋯+32n+1)+[1−2+3−4+⋯+(2n−1)−2n+ (2n+1)]=3(1−32n+1)1−3+(n+1)=32n+2−12+n.故选:A.由数列的前n项和求出数列{a n}的通项公式,代入b n=3a n+(−1)n−1a n,整理后分组,然后利用等比数列的前n项和得答案.本题考查了数列递推式,考查了数列的分组求和,考查了等比数列的前n项和,是中档题.11.答案:C解析:解:∵三棱锥P−ABC中,PA=√23,AB=3,AC=4,AB⊥AC,PA⊥面ABC,∴以AB,AC,AP为棱构造长方体,则长方体的外接球就是三棱锥P−ABC的外接球,∴三棱锥P−ABC的外接球的半径R=√23+9+16=2√3,2设此三棱锥的外接球的内接正方体的半径为a,=2√3,解得a=4,则R=√3a2∴此三棱锥的外接球的内接正方体的体积V=a3=43=64.故选:C.以AB,AC,AP为棱构造长方体,则长方体的外接球就是三棱锥P−ABC的外接球,三棱锥P−ABC=2√3,解得的外接球的半径R=2√3,设此三棱锥的外接球的内接正方体的半径为a,则R=√3a2a=4,由此能求出此三棱锥的外接球的内接正方体的体积.本题考查三棱锥的外接球的内接正方体的体积的求法,考查三棱锥及外接球、球的内接正方体等基础知识,考查运算求解能力,是中档题.12.答案:C解析:本题考查函数的奇偶性及利用导数研究函数的单调性,属于基础题.由f(x)=x−sinx,则f′(x)=1−cosx≥0,所以f(x)是增函数,再由f(x)是奇函数,f(x+1)+f(2−2x)>0,即f(x+1)>f(2x−2),得x+1>2x−2,解得.解:由f(x)=x−sinx,则f′(x)=1−cosx≥0,所以f(x)是增函数,再由f(x)=x−sinx,f(−x)=−f(x),∴f(x)是奇函数,∴f(x+1)+f(2−2x)>0,即f(x+1)>f(2x−2),得x+1>2x−2,解得x<3.故选C.13.答案:1解析:解:函数f(x)=(x+a)lnx的导数为f′(x)=lnx+x+a,x可得曲线y =f(x)在点(1,f(1))处的切线斜率为k =1+a , 由切线与直线2x −y =0平行, 可得1+a =2, 解得a =1, 故答案为:1.求得函数f(x)的导数,可得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a 的值. 本题考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,正确求导是解题的关键,属于基础题.14.答案:2n+1−2解析:解:由题意可知因为T n =a 1+2a 2+⋯+2n−1a n ,所以2T n =2a 1+22a 2+⋯+2n a n , 两式相加3T n =a 1+2(a 1+a 2)+22(a 1+a 2)+⋯+2n−1(a n−1+a n )+2n a n=2+2×12+22×122+⋯+2n−1×12n−1+2n a n=2+(n −1)×1+2n a n =n +1+2n a n所以b n =2n , 从而S n =2(1−2n )1−2=2n+1−2.故答案为:22n+1−2.先根据条件求出数列{b n }的通项公式,再根据通项公式的特点确定求和的方法.本题考查由递推式式求数列的通项公式以及等比数列的前n 项和公式,解题的关键对条件的分组转化,难度较大.15.答案:2解析:本题主要考查向量的计算和模长的计算,属于基础题. 解:依题意,设C(cosβ,sinβ),则|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2=(cosα+cosβ)2+(sinα+sinβ)2=2+2cos(α−β), 所以当cos(α−β)=1时,|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2取得最大值4, 故|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |2的最大值是2.故答案为2.16.答案:4解析:本题主要考查的是抛物线的性质的有关知识,根据到准线的距离转化为到焦点的距离,三点共线时距离最小,进而求出最小值.解:设A(x1,x124),B(x2,x224),由x2=4y可得y=x24,∴y′=x2,所以直线PA,PB的方程分别为:y−x124=x12(x−x1)①,y−x224=x22(x−x2)②,①②方程联立可得P(x1+x22,x1x24),∵点P在准线上,∴x1x24=−1,∴x1x2=−4,设直线AB的方程为:y=kx+m,代入抛物线的方程可得:x2−4kx−4m=0,可得x1x2=−4m,所以可得m=1,即直线恒过(0,1)点,即直线恒过焦点(0,1),即直AB的方程为:y=kx+1,代入抛物线的方程:x2−4kx−4=0,x1+x2=4k,所以y1+y2=k(x1+x2)+2=4k2+2,A点到准线的距离与B点到准线的距离之和=AF+BF=y1+y2+2=4k2+4≥4,当k=0时,距离之和最小且为4,这时直线AB平行于x轴.故答案为:4.17.答案:解:(I)由4sin2A−B2+4sinAsinB=3,变形得:2[1−cos(A−B)]+4sinAsinB=3,即2−2(cosAcosB+sinAsinB)+4sinAsinB=3,整理得:2−2cos(A+B)=3,即2+2cosC=3,∴cosC=12,则C =π3;(Ⅱ)∵cos∠ADB =17,∠ADB +∠ADC =π, ∴cos∠ADC =−17,sin∠ADC =4√37,在△ADC 中,由正弦定理AD sinC =AC sin∠ADC 得:AD =ACsinCsin∠ADC =8×√324√37=7,由余弦定理得:AB 2=DA 2+DB 2−2DA ·DB ·cos∠ADB =49+4−4=49, 则AB =7.解析:(I)已知等式利用二倍角的余弦函数公式化简,再利用两角和与差的余弦函数公式化简,求出cos C 的值,即可确定出角C 的大小;(Ⅱ)由cos∠ADB 的值求出cos∠ADC 的值,进而求出sin∠ADC 的值,再由sin C 与AC 的长,利用正弦定理求出AD 的长,再利用余弦定理求出AB 的长即可.此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.18.答案:解:(1)取PA 中点F ,连接EF ,DF ,因为E 为PB 中点, 所以EF//AB ,EF =12AB . 又因为AB//DC ,AB =2DC , 所以EF//DC ,EF =DC . 所以四边形DCEF 为平行四边形, 所以EC//DF . 又DF ⊂平面PAD ,平面PAD ,所以EC//平面PAD .(2)因为由题可知AP =AB =2,PB =2√2, 所以AP 2+AB 2=PB 2, 所以AB ⊥AP ,又因为AB ⊥AD ,AP ∩AD =A ,AP ,AD ⊂平面PAD . 所以AB ⊥平面PAD .所以以A 为坐标原点,AP ,AB 所在直线为x ,y 轴,在面PAD 内过点A 与AP 垂直的直线为z 轴, 建立空间直角坐标系,A(0,0,0),E(1,1,0),C(−1,1,√3), 设平面AEC 的法向量为n ⃗ =(x,y ,x), 所以{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =0,n⃗ ⋅AC ⃗⃗⃗⃗⃗ =0即{x =−y2y =−√3z, 令y =√3,得x =−√3,z =−2. 所以n ⃗ =(−√3√3,−2),易知平面AEB 的一个法向量为m ⃗⃗⃗ =(0,0,1), 所以|cos(n ⃗ ,m ⃗⃗⃗ )|=|n ⃗⃗ ⋅m ⃗⃗⃗|n ⃗⃗ |⋅|m ⃗⃗⃗⃗⃗ || =|√3,√3,−2)⋅(0,0,1)√10|=√105, 因为二面角C −AE −B 为锐角, 所以二面角C −AE −B 的余弦值为√105.解析:本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题.(1)取PA 中点F ,在接EF ,DF ,推导出四边形DCEF 为平行四边形,证得EC//DF ,由此能证明EC //平面PAD ;(2)A 为坐标原点,AP ,AB 所在直线为x ,y 轴,在面PAD 内过点A 与AP 垂直的直线为z 轴,建立空间直角坐标系,求出平面AEC 与平面AEB 的法向量,进而求得结果.19.答案:解:(Ⅰ)由题得{e =ca =√32(a −c)(a +c)=1,解得{a 2=4c 2=3 则b 2=a 2−c 2=1 则椭圆方程为x 24+y 2=1.(Ⅱ)QN 与以AB 为直径的圆O 相切,证明如下:设P(x P ,y P )(|x P |<2,0<|y P |≤1),则Q(x P ,2y P )又因为点A 坐标为(−2,0) 所以直线AQ 的斜率k AQ =2y Px P +2则直线AQ 的方程为y =2y Px P+2(x +2),当x =2时,y =8y PxP +2则M 点坐标为(2,8y PxP+2),又因为B(2,0),则N(2,4y PxP +2)则直线QN 的斜率为k QN =−2x P y P(2+xP )(2−x P )则直线QN 的方程为:2x P yP 4−x P2x +y −8yP4−x P2=0则点O(0,0)到直线QN 的距离为d =8y P4−x P2×√(4−x P2)24x P 2y P 2+(4−x P2)又因为y P 2=1−x P24则d =8y P4−x P2×√(4−x P2)24x P 2y P2+(4−x P2)=84−x P2×√4−x P22×√(4−x P2)24x P 2(1−x P 24)+(4−x P 2)2=2则QN 与以AB 为直径的圆O 相切.解析:(Ⅰ)由题得{e =c a=√32(a −c)(a +c)=1,及其b 2=a 2−c 2=1,即可得出.(Ⅱ)QN 与以AB 为直径的圆O 相切,分析如下:设P(x P ,y P )(|x P |<2,0<|y P |≤1),则Q(x P ,2y P ).又因为点A 坐标为(−2,0),可得直线AQ 的方程为y =2y Px P+2(x +2),可得M 点坐标为(2,8y PxP +2),又因为B(2,0),则N(2,4y PxP +2).直线QN 的方程为:2x P yP 4−x P 2x +y −8yP 4−x P 2=0.又y P 2=1−x P 24,可得点O(0,0)到直线QN 的距离为d =2,即可证明QN 与以AB 为直径的圆O 相切.本题考查了椭圆与圆的标准方程及其性质、直线与圆相切的性质、直线方程,考查了推理能力与计算能力,属于难题.20.答案:解:f′(x)=2xe x −x 2e x(e x )2=−x(x−2)e x,令f′(x)=0,得x =0或2, 得出f(x)与f′(x)的表格,所以当x =0时,函数有极小值,且f(0)=0. 当x =2时,函数有极大值,且f(2)=4e 2.解析:本题考查了利用导数研究函数的极值,先求导,列表即可得出极值.21.答案:解:(1)设甲、乙两人同时承担同一项任务为事件M ,则P(M)=A 44C 52A 44=110,所以甲、乙两人不同时承担同一项任务的概率是P(M)=1−P(M)=910, 答:甲、乙两人不同时承担同一项任务的概率是910; (2)ξ的可能取值为ξ=0,1,2,3,4,5, P(ξ=0)=3545=(34)5,P(ξ=1)=C 51⋅3445=5⋅3445, P(ξ=2)=C 52⋅3345=10⋅3345, P(ξ=3)=C 53⋅3245=10⋅3245,P(ξ=4)=C 54⋅3145=1545, P(ξ=5)=C 55⋅3045=145,ξ的分布列为:所以E (ξ)=∑i ⋅P i 5i=0=54.解析:本题考查离散型随机变量的期望的求解及古典概型.(1)利用古典概型求出甲、乙两人同时承担同一项任务的概型,然后利用对立事件的概率公式求解即可;(2)分析ξ的取值,求出各自的概率,得出分布列,再求期望.22.答案:解:(1)由曲线C 的参数方程{x =−1+2cosφy =2sinφ,消去参数φ,得曲线C 的普通方程为(x +1)2+y 2=4.由曲线l 1的极坐标方程ρsin (θ−π4)=√22,得ρsin θ+ρcos θ=1,将x =ρcos θ,y =ρsin θ代入,得l 1的直角坐标方程为x +y −1=0; (2)由l 1⊥l 2,得直线l 2的斜率k l 2=−1k l 1=1,所以l 2的倾斜角为π4,又l 2过圆心(−1,0),所以l 2的方程为y =x +1,与x +y −1=0联立,得AB 的中点M(0,1),故l 2的参数方程为{x =tcos π4y =1+tsin π4,(t 为参数),即{x =√22t y =1+√22t ,(t 为参数),代入(x +1)2+y 2=4中,化简、整理得t 2+2√2t −2=0, 设P ,Q 对应的参数分别为t 1,t 2,则由韦达定理得t 1·t 2=−2, 又线段PQ 为圆的直径,所以|PQ|=4, 所以|PQ||MP|⋅|MQ|=4|−2|=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型. (1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次方程根和系数关系式的应用求出结果.23.答案:解:(1)不等式f(x)−|x|<1,即为|x −2|−|x|<1,当x >2时,x −2−x <1,即x >2; 当x <0时,2−x +x <1,即x ∈⌀;当0≤x ≤2时,2−x −x <1,解得x >12,即有12<x ≤2, 综上可得不等式的解集为(12,+∞); (2)∀x ∈R ,f(x)+g(x)≥a 2−2a 恒成立,即为|x−2|+|x+1|≥a2−2a恒成立,由|x−2|+|x+1|≥|x−2−x−1|=3,当且仅当−1≤x≤2时,取得最小值3,可得a2−2a≤3,解得−1≤a≤3.解析:(1)由题意可得|x−2|−|x|<1,讨论x的范围,去绝对值,解不等式,求并集即可得到所求解集;(2)由题意可得|x−2|+|x+1|≥a2−2a恒成立,运用绝对值不等式的性质可得不等式左边的最小值,解a的不等式,即可得到所求范围.本题考查绝对值不等式的解法和绝对值不等式的性质:求最值,考查不等式恒成立问题解法,注意运用转化思想,考查运算能力,属于中档题.。
2020年广东省高考数学一模试卷(文科)
高考数学一模试卷(文科)题号一二三总分得分一、选择题(本大题共12 小题,共 60.0 分)1. 已知会合 A={ x|x-1< 2} , B={ x|1< 2 x< 16} ,则 A∩B=()A. (-∞,8)B. (-∞,3)C. (0,8)D. (0,3)2. 复数 z= ( i 为虚数单位)的虚部为()A. B. C. D.3. 双曲线 9x2-16y2=1 的焦点坐标为()A. (±,0)B. (0,)C. (±5,0)D. (0,±5)4. 若sin)=,则cos2 α=)((A. B. C. D.5. 已知函数f x)在(-∞ +∞x [-2,1] f x =x2-2x-4,则(,)上单一递减,且当∈时,()对于 x 的不等式 f( x)< -1 的解集为()A. (-∞,-1)B. (-∞,3)C. (-1,3)D. (-1,+∞)6.某几何体的三视图以下图,则该几何体的体积为()A.3πB.4πC.6πD.8π7.履行如图的程序框图,挨次输入 x1=17 ,x2=19 ,x3=20 ,x4=21 ,x5=23,则输出的 S 值及其统计意义分别是()A. S=4,即5个数据的方差为 4B. S=4,即5个数据的标准差为 4C. S=20,即5个数据的方差为20D. S=20,即5个数据的标准差为208.△ABC 的内角 A, B, C 所对的边分别是 a, b,c,已知 cosC+ cosA=1,则 cosB 的取值范围为()A. ()B.[ )C. (,1)D. [,1)9. 已知 A, B, C 三点不共线,且点O知足 16 -12 -3 = ,则()A. =12 +3B. =12 -3C. =-12 +3D. =-12 -310. 古希腊数学家欧多克索斯在深入研究比率理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段 AC, CB,使得此中较长的一段AC 是全长 AB与另一段 CB 的比率中项,即知足==≈ .后代把这个数称为黄金切割数,把点 C 称为线段 AB 的黄金切割点 .在△ABC 中,若点 P,Q 为线段 BC 的两个黄金切割点,在△ABC 内任取一点 M,则点 M 落在△APQ 内的概率为()A. B. -2 C. D.11. 已知 F 为抛物线 C:x2=4y 的焦点,直线y= x+1 与曲线 C 订交于 A,B 两点, O 为坐标原点,则S△OAB=()A. B. C. D. 212. 函数 f ( x) =( kx-2) lnx, g( x) =2ln x-x,若 f( x)< g( x)在( 1, +∞)上的解集中恰有两个整数,则k 的取值范围为()A. [1- , - )B. (1- , - ]C.[ - , 2- )D.(- , 2- ]二、填空题(本大题共 4 小题,共 20.0 分)13.f x)= f f 2 =______.已知函数(,则(())14. 设 x,y 知足拘束条件,则 z=2x+y 的最大值为 ______.15. 在三棱锥 P- ABC 中, AP,AB,AC 两两垂直,且 AP=AB=AC= ,则三棱锥 P-ABC的内切球的表面积为______.16.已知函数 f( x) =sin(ωx+ ) + (ω> 0),点 P, Q, R 是直线 y=m( m> 0)与函数 f( x)的图象自左至右的某三个相邻交点,且2|PQ|=|QR|=,则ω+m=______.三、解答题(本大题共7 小题,共82.0 分)17.设数列 { a n} 的前 n 项和为 S n, S n=1- a n( n∈N* ).( 1)求数列 { a n} 的通项公式;( 2)设 b n=log 2a n,求数列 {} 的前 n 项和 T n.18.在五面体 ABCDEF 中,四边形 CDEF 为矩形,CD=2DE =2AD =2AB=4 , AC=2,∠EAD=30°.(1)证明: AB⊥平面 ADE;(2)求该五面体的体积.19.某城市的公交企业为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x 与乘客等待人数 y 之间的关系,经过检查获得以下数据:间隔时间 /11 12 13 14 1510分等待人数 y/25 26 29 28 3123人检查小组先从这 6 组数据中选用 4 组数据求线性回归方程,再用剩下的 2 组数据进行查验.查验方法以下:先用求得的线性回归方程计算间隔时间对应的等待人数,再求与实质等待人数y 的差,若差值的绝对值都不超出1,则称所求方程是“恰当回归方程”.( 1)从这 6 组数据中随机选用 4 组数据后,求剩下的 2 组数据的间隔时间不相邻的概率;( 2)若选用的是后边 4 组数据,求 y 对于 x 的线性回归方程= x+,并判断此方程是不是“适合回归方程”;(3)为了使等待的乘客不超出 35 人,试用( 2)中方程预计间隔时间最多能够设置为多少(精准到整数)分钟.附:对于一组数据(x1,y1),( x2,y2),,( x n,y n),其回归直线= x+ 的斜率和截距的最小二乘预计分别为:==,=.20.已知点(1,),()都在椭圆C:=1(a> b> 0)上.(1)求椭圆 C 的方程;(2)过点 M(0,1)的直线 l 与椭圆 C 交于不一样两点 P,Q(异于极点),记椭圆与 y 轴的两个交点分别为 A1,A2,若直线 A1P 与 A2Q 交于点 S,证明:点 S 恒在直线 y=4 上.x21. 已知函数 f( x) =e -2ax( a∈R)( 1)若曲线 y=f ( x)在 x=0 处的切线与直线x+2y-2=0 垂直,求该切线方程;( 2)当 a> 0 时,证明 f( x)≥-4a 2+4a22. 在平面直角坐标系xOy中,曲线C1的参数方程为θ,(为参数)已知点Q( 4, 0),点 P 是曲线 C l上随意一点,点M 为 PQ 的中点,以坐标原点为极点,x轴正半轴为极轴成立极坐标系.( 1)求点 M 的轨迹 C2的极坐标方程;( 2)已知直线l :y=kx 与曲线 C2交于 A, B 两点,若=3,求k的值.23.已知函数 f( x) =|x+a|+2|x-1|(a> 0).(1)求 f( x)的最小值;(2)若不等式 f (x) -5< 0 的解集为( m, n),且 n-m= ,求 a 的值.第4页,共 15页答案和分析1.【答案】Dx【分析】解:∵会合 A={ x|x-1< 2}= ( -∞, 3), B={ x|1< 2 < 16}= (0, 4)应选: D.由 A 与 B,求出两会合的交集即可.本题考察了交集及其运算,娴熟掌握交集的定义是解本题的重点.2.【答案】B【分析】解:∵z= =,∴z=的虚部为.应选: B.直接利用复数代数形式的乘除运算化简得答案.本题考察复数代数形式的乘除运算,考察复数的基本观点,是基础题.3.【答案】A【分析】解:双曲线9x2-16y2=1 的标准方程为:,可得 a= ,b= , c= = ,因此双曲线的焦点坐标为(±,0).应选: A.直接利用双曲线的方程求解a, b, c 获得焦点坐标即可.本题考察双曲线的简单性质的应用,是基本知识的考察.4.【答案】B【分析】【剖析】本题主要考察利用引诱公式、二倍角公式进行化简三角函数式,属于基础题.利用引诱公式求得cosα的值,再利用二倍角公式求得cos2α的值.【解答】2解: sin()=-cosα=,则cos2α=2cosα-1=-,应选: B.5.【答案】D【分析】【剖析】本题考察减函数的定义,已知函数求值的方法,依据函数单一性解不等式的方法.依据条件可得出f( -1)=-1,依据 f( x)在( -∞,+∞)上单一递减,即可由f( x)< -1 得出f (x)< f( -1),进而获得x> -1,即得出原不等式的解集.【解答】解:∵x∈[-2, 1]时, f( x)=x2-2x-4;∴f(-1) =-1;∵f(x)在( -∞, +∞)上单一递减;∴由 f( x)< -1 得, f( x)< f (-1);∴x> -1;∴不等式 f( x)< -1 的解集为( -1, +∞).应选: D.6.【答案】A【分析】解:由三视图知,几何体是一个简单组合体,左边是一个半圆柱,底面的半径是 1,高为: 4,右边是一个半圆柱,底面半径为1,高是 2,∴组合体的体积是:=3 π,应选: A.几何体是一个简单组合体,左边是一个半圆柱,底面的半径是1,高为: 4,右边是一个半圆柱,底面半径为1,高是 2,依据体积公式获得结果.本题考察由三视图求几何体的体积,考察由三视图复原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.7.【答案】A【分析】解:依据程序框图,输出的 S 是 x1=17,x2=19 ,x3=20 ,x4=21 ,x5=23 这 5 个数据的方差,∵ = ( 17+19+20+21+23 ) =20 ,∴由方差的公式S= [( 17-20)2+( 19-20)2+( 20-20)2+( 21-20)2+(23-20)2]=4.应选: A.依据程序框图,输出的S 是 x1=17 ,x2=19,x3=20 ,x4=21 ,x5=23 这 5 个数据的方差,先求这 5 个数的均值,而后辈入方差公式计算即可.本题经过程序框图考察了均值和方差,解决问题的重点是经过程序框图能得出这是一个求数据方差的问题,属于基础题.8.【答案】D【分析】解:∵cosC+ cosA=1,∴由余弦定理可得: ? + ? =1 ,化简可得: b2=ac,由余弦定理可得; cosB= = ≥= ,∴≤ cosB< 1,即: cosB∈[ , 1).应选: D.由余弦定理化简已知等式可得b2=ac,由余弦定理,基本不等式可求cosB≥,联合余弦函数的性质即可得解.本题考察了余弦定理、基本不等式以及余弦函数的性质的综合应用,考察了推理能力和计算能力,属于基础题.9.【答案】A【分析】解:由题意,可知:对于A:==,整理上式,可得:16 -12 -3 =,这与题干中条件相切合,应选: A.本题可将四个选项中的式子进行转变为与题干中式子邻近,再比较,同样的那项即为答案.本题主要考察向量加减、数乘的运算,属基础题.10.【答案】B【分析】【剖析】本题考察了阅读能力及几何概型中的面积型,属中档题.先阅读题意,理解“黄金切割”,再联合几何概型中的面积型可得: BQ=,CP=,因此PQ=BQ+CP-BC=()a,S△APQ: S△ABC=PQ: BC=(-2)a: a= -2,则在△ABC 内任取一点M,则点 M 落在△APQ 内的概率为=,得解.【解答】解:设 BC=a,由点 P, Q 为线段 BC 的两个黄金切割点,因此 BQ=,CP=,因此 PQ=BQ+CP-BC=()a,S△APQ: S△ABC =PQ: BC=(-2) a: a= -2,由几何概型中的面积型可得:在△ABC 内任取一点M,则点 M 落在△APQ 内的概率为=,应选 B.11.【答案】C【分析】解:抛物线C:x2=4y 的焦点( 0, 1),设 A( x1, y1), B( x2, y2),由,整理得: x2-2x-4=0 ,由韦达定理可知:x1+x2=2,y1+y2=3由抛物线的性质可知:|AB|=p+y1+y2=2+3=5 ,点 O 到直线 y= x+1 的距离 d, d= .∴则△OAB 的面积 S, S= ?|AB|?d=.应选: C.依据抛物线的方程求得焦点坐标,依据直线的倾斜角求得直线方程,代入抛物线方程,利用韦达定理求得x1 +x2,由抛物线的性质可知|AB|=p+y1+y2,利用点到直线的距离公式求得O到直线y= x+1的距离d,依据三角形的面积公式S=?|AB| d OAB? ,即可求得则△的面积.本题考察抛物线的性质,直线与抛物线的地点关系,考察韦达定理,点到直线的距离公式及三角形的面积公式,考察计算能力,属于中档题.12.【答案】A【分析】【剖析】本题主要考察函数与方程的应用,利用转变法转变为两个函数图象交点问题,能够数形联合求出对应两点的坐标和斜率是解决本题的重点.将不等式f( x)<g( x)转变为 kx< 4- ,设 h( x)=4- ,求函数的导数,研究函数的极值和图象,利用数形联合确立使(f x)< g( x)在( 1,+∞)上的解集中恰有两个整数为2, 3,而后求出对应点的坐标和对应直线y=kx的斜率,利用数形联合进行求解即可.【解答】解:当 x>1 时, lnx> 0,由 f( x)< g(x)得( kx-2)ln x< 2ln x-x,即 kx-2< 2- ,即 kx< 4- ,设 h( x)=4- ,则 h'(x) =- =-,由 h'(x)> 0 得 -( lnx-1)> 0 得 ln x<1,得 1<x< e,此时 h( x)为增函数,由 h'(x)< 0 得 -( lnx-1)< 0 得 ln x>1,得 x> e,此时 h(x)为减函数,即当 x=e 时, h( x)获得极大值h( e) =4- =4-e,作出函数h( x)的图象,如图,当 x→1时, h( x)→ -∞,h( 3) =4-,h(4)=4-=4-,即A(3,4-),B(4,4-),当直线 y=kx 过 A, B 点时对应的斜率k A== -,k B==1-,要使 f( x)< g( x)在( 1, +∞)上的解集中恰有两个整数,则对应的整数为 x=2,和 x=3,即直线 y=kx 的斜率 k 知足 k B≤k<k A,即 1- ≤k< - ,即实数 k 的取值范围是 [1-,-),应选: A.13.【答案】2【分析】解: f( 2) =ln2 ,∴f( f( 2)) =f( ln2 ) =e ln2=2.故答案为: 2.利用分段函数的定义、对数的恒等式即可得出.本题考察了分段函数的定义、对数的恒等式,属于基础题.14.【答案】7【分析】解:画出x, y 知足拘束条件表示的平面地区,以下图,由,解得点A( 3, 1),联合图形知,直线2x+y-z=0 过点 A 时,z=2x+y 获得最大值为2×3+1=7.故答案为: 7.画出拘束条件表示的平面地区,联合图形找出最优解,求出z 的最大值.本题考察了线性规划的简单应用问题,是基础题.15.【答案】【分析】解:如图,由 AP, AB, AC 两两垂直,且AP=AB=AC=,得,∴,设三棱锥P-ABC 的内切球的半径为r ,利用等体积可得:,解得 r=.∴三棱锥 P-ABC 的内切球的表面积为S=.故答案为:.由题意画出图形,利用等体积法求出多面体内切球的半径,则球的表面积可求.本题考察多面体内切球表面积的求法,训练了利用等积法求多面体内切球的半径,是中档题.16.【答案】3【分析】解:函数f( x) =sin(ωx+ ) + (ω> 0),由 2|PQ|=|QR|=,解得|PQ|=,∴T=|PQ|+|QR|= π,∴ω= =2 ,设 P(x0,m),则 Q( -x0, m), R( T+x0, m),∴|PQ |= -2x0, |QR|= +2x0,∴2( -2x0)= +2 x0,解得 x0= = ,∴m=sin( 2×)+ = + =1,∴ω+m=2+1=3 .故答案为: 3.依据题意求出函数 f( x)的最小正周期 T,得出ω的值,再求出 m 的值,即可求出ω+m 的值.本题考察了正弦函数的图象与性质的应用问题,是中档题.17.【答案】解:(1)数列{ a n}的前n项和为S n,S n=1- a n(n∈N*)①.当 n=1 时,解得:,当 n≥2时, S n-1 =1-a n-1.②① -②得: 2a n=a n -1,因此:(常数),故:数列 { a n} 是以为首项,为公比的等比数列.则:(首项切合通项),因此:.( 2)因为:,则: b n=log 2a n=-n.因此: b n+1=-( n+1),则:,故:=.【分析】( 1)直接利用递推关系式求出数列的通项公式.( 2)利用( 1)的结论,进一步利用裂项相消法求出数列的和.本题考察的知识重点:数列的通项公式的求法及应用,裂项相消法在数列乞降中的应因此 AD⊥CD ,又四边形CDEF 为矩形,因此 CD ⊥DE ,因此 CD ⊥面 ADE,因此 EF⊥面 ADE ,由线面平行的性质定理得:AB∥EF,因此 AB⊥面 ADE( 2)几何体补形为三棱柱,DE=2, AD=2,AB=2,∠EAD =30°.可得 E 究竟面 ABCD的距离为: 2sin60 °=,该五面体的体积为棱柱的体积减去三棱锥 F -BCH 的体积,可得=4 = .【分析】( 1)证明 AD ⊥CD,CD ⊥DE,推出 CD ⊥面 ADE ,而后证明AB⊥平面 ADE ;(2)转变几何体的体积为棱柱的体积,减去三棱锥的体积,即可求该五面体的体积.本题考察直线与平面垂直的判断定理的应用,几何体的体积的求法,考察转变思想以及计算能力.19.【答案】解:(1)设“从这6组数据中随机选用 4 组数据后,剩下的 2 组数据不相邻”为事件 A,记这六组数据分别为1, 2,3, 4 ,5, 6,剩下的两组数据的基本领件有12 ,13, 14, 15 , 16 , 23,24, 25,26, 34,35, 36,45, 46,56,共 15 种,此中相邻的有12,23, 34,45,56 ,共 5 种,因此.( 2)后边 4 组数据是:间隔时间( x 分钟)12 13 14 15等待人数( y 人)26 29 28 31因为,,因此,,因此.当 x=10 时,,因此求出的线性回归方程是“适合回归方程”.( 3)由 1.4x+9.6 ≤35,得,故间隔时间最多可设置为18 分钟.【分析】( 1)由题意联合古典概型计算公式确立概率值即可;(2)第一求得回归方程,而后确立其能否为“适合回归方程”即可;(3)联合( 2)中求得的结论获得不等式,求解不等式即可确立间隔时间.本题主要考察古典概型计算公式,线性回归方程及其应用等知识,属于中等题.20.【答案】解:(1)由题意可得,解得 a2=4, b2=2,故椭圆 C 的方程为+ =1.证明:( 2)易知直线l 的斜率存在且不为0,设过点 M( 0, 1)的直线 l 方程为 y=kx+1,( k≠0), P( x1, y1), Q( x2, y2),由2 2,消 y 可得( k +2 ) x +2kx-3=0 ,∴x1+x2=-,x1x2=-,∵A1( 0, 2), A2( 0,-2),∴直线 A1P 的方程为 y=x+2=?x+2=( k- ) x+2,则直线 A2Q 的方程为y=x-2= ( k+)-2,由,消 x 可得=,整理可得y= = = +4= +4=4,直线 A1P 与 A2Q 交于点 S,则点 S恒在直线y=4 上【分析】( 1)由题意可得,解得a2=4,b2=2得椭圆方程,( 2)先设出直线l 的方程,再分别求出直线A1P的方程,直线A2Q的方程,联立,消x整理可得 y= ,依据韦达定理化简整理可得直线y=4本题考察了椭圆方程的求法,直线和椭圆的地点关系,直线方程的求法,考察了运算求垂直,∴f′( 0) =2即 f′( 0)=1-2a=2,解得: a=- ,x∴f(x) =e +x,则 f( 0) =1.∴切线方程为y=2x+1 ;(2)证明: f′( x) =e x-2a,由 f′( x) =e x-2a=0,解得 x=ln2 a.∴当 x∈( -∞, ln2 a)时, f′( x)< 0,当 x∈( ln2 a, +∞)时, f′( x)> 0.∴f(x)在( -∞, ln2a)上单一递减,在(ln2 a, +∞)上单一递加.∴f(x)min=f(ln2 a)=e ln2a-2aln2a=2a-2aln2 a.令 g( a)=2a-2aln2a+4a2-4a=4 a2-2a-2aln2a=2a(2a-1-la2a)( a>0).要证 g( a)≥0,即证 2a-1-ln2a≥0,令 h( a)=2a-1-ln2 a,则 h′( a) =2- =,当 a∈( 0,)时, h′( a)< 0,当 a∈(, +∞)时, h′( a)> 0,∴h( a)≥h() =0 ,即 2a-1-ln2 a≥0.∴f(x)≥-4a2 +4a.【分析】( 1 )求出函数的导数,计算f′( 0),获得对于 a 的方程,求得 a,获得函数分析式,求得 f( 0),再由直线方程点斜式得答案;( 2)把证明 f( x)≥-4a2+4a 转变为证 f( x)的最小值大于等于-4a2 +4a,即证 a-1-ln2 a≥0,令 h( a)=a-1-ln2 a,求其最小值大于等于0 即可.本题考察利用导数研究过曲线上某点处的切线方程,考察利用导数求函数的最值,是中档题.22.【答案】解:(1)消去θ得曲线2 2设 M( x, y)则 P( 2x-4, 2y)在曲线C1上,因此( 2x-4)2+( 2y)2=4,即( x-2)2+y2=1,即 x2+y2-4x+3=0,C2轨迹的极坐标方程为:2ρ-4ρ cos θ +3=0.( 2)当 k> 0 时,如图:取AB 的中点 M,连 CM,CA,2 2在直角三角形CMA 中, CM =CA -( AB)2=1- AB2,①在直角三角形 CMO 中,CM 2=OC2-OM 2=4-( AB)2=4- AB 2,②由①②得AB= ,∴OM= , CM=,k= = =.当 k< 0 时,同理可得k=-.综上得 k=±.【分析】( 1)消去θ得曲线 C1的一般方程为: x2+y2 =4;设出 M 的坐标后利用中点公式获得 P 的坐标后辈入 C1德轨迹 C2的直角坐标方程,再化成极坐标方程;( 2)如图:取AB 的中点 M,连 CM ,CA,在两个直角三角形中,依据勾股定理解得CM , OM 后可得斜率.本题考察了参数方程化成一般方程,属中档题.23.【答案】解:(1)f(x)=,∴x=1时, f( x)的最小值为 a +1 .( 2)以下图:当 a+1 < 5< 2a+2 即<a< 4 时, f( x) -5< 0 的解集为( a-3, - ),∴- -a+3= - = ,∴a=3 切合,当 2a+2≤5即0< a≤时, f( x)的解集为(- -1, - ),∴- + +1= ≠.综上可得 a=3 .【分析】( 1)去绝对值变为分段函数可求得最小;(2)联合分段函数的图象,依据两种状况议论可得.本题考察了绝对值不等式的解法,属中档题.。
2020年广东省惠州市高考数学一模试卷(理科) (含答案解析)
2020年广东省惠州市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={2,−3},B={1,2,5,9},则A∪B=()A. {2}B. {2,−3}C. {1,2,5,9}D. {−3,1,2,5,9}2.已知i为虚数单位,下列各式的运算结果为纯虚数的是()A. i(1+i)B. i(1−i)2C. i2(1+i)2D. i+i2+i3+i43.已知等差数列{a n}的前n项和为S n,a5+a7=14,则S11=()A. 140B. 70C. 154D. 774.已知角α的顶点在坐标原点,始边为x轴非负半轴,终边过点P(2,−1),则cos2α等于()A. −35B. −45C. 35D. 455.函数y=xa x|x|(a>1)的图象的大致形状是()A. B.C. D.6.下列命题:①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.其中正确的命题个数为()A. 2B. 3C. 4D. 57.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若m⊥α,m//n,n//β,则α⊥βB. 若α//β,m⊂α,n⊂β,则m//nC. 若m ⊥n ,n ⊂α,n ⊂β,则α⊥βD. 若α⊥β,m ⊂α,n ⊂β,则m ⊥n8. “学习强国”学习平台是由中宣部主管,以深入学习宣传习近平新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门APP.该款软件主要设有“阅读文章”“视听学习”两个学习板块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题板块.某人在学习过程中,“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有A. 192种B. 240种C. 432种D. 528种 9. 设F 是双曲线C:x 216−y 29=1的右焦点,P 是双曲线C 左支上的点,已知A(1,3),则△PAF 周长的最小值是( ) A. 3√5B. 3√5+13C. 2√5+13D. 2√5 10. 已知函数的最小正周期为6π,且其图象向右平移2π3个单位后得到函数的图象,则φ等于( )A. 4π9B. 2π9C. π6D. π3 11. 已知△ABC 中,|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |=4,AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =−8,△ABC 所在平面上一动点P 满足|PA⃗⃗⃗⃗⃗ |=1,则PB ⃗⃗⃗⃗⃗ ⋅PC⃗⃗⃗⃗⃗ 的取值范围是( ) A. [−11,−3] B. [−11,1] C. [−12,− 3] D. [−12,1]12. 若定义在R 上的偶函数f(x)满足f(x +2)=f(x),且x ∈[0,1]时,f(x)=x ,则函数ℎ(x)=f(x)−log 5|x|的零点个数是( )A. 6个B. 8个C. 2个D. 4个二、填空题(本大题共4小题,共20.0分)13. 若直线y =3x −2是曲线y =x 3−2a 的一条切线,则实数a 的值为______ .14. 如果数据x 1,x 2...x n 的方差为8,则的方差为______.15. 已知数列{a n }满足a 1=3且a n+1=4a n +3(n ∈N +),则数列{a n }的通项公式为______ .16. 在平面上给定相异两点A ,B ,设P 点在同一平面上且满足|PA||PB|=λ,当λ>0且λ≠1时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有椭圆x2a2+y2b2=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点.动点P满足|PA||PB|=2.△PAB面积最大值为163,△PCD面积最小值为23,则椭圆离心率为________.三、解答题(本大题共7小题,共82.0分)17.已知:△ABC中,内角A,B,C所对的边分别为a,b,c,A为锐角,且√3b=2asinB.(Ⅰ)求:角A的大小;(Ⅱ)若a=7,b2+c2=89,求△ABC的面积.18.在矩形ABCD中,AB=1,AD=2,E为线段AD的中点,如图1,沿BE将△ABE折起至△PBE,使BP⊥CE,如图2所示.(1)求证:平面PBE⊥平面BCDE;(2)求二面角C−PD−E的余弦值.19.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,单价为20元/kg .方案2:分类卖出,分类后的水果售价如下:从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望E(X).20. 在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A,B 两点.(1)如果直线l 的方程为y =x −1,求弦AB 的长;(2)如果直线l 过抛物线的焦点,求OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 的值.21.已知函数f(x)=xe x+x2−x.(1)求f(x)在x=1处的切线方程;(2)若对任意x∈(0,+∞)都有f(x)≥ln x+x2+(a−2)x+1恒成立,求实数a的取值范围.22.在平面直角坐标系xOy中,曲线C1的参数方程为{x=3cosα,y=√3sinα(α为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ,射线l:θ=π4(ρ≥0)与曲线C1交于点A.(1)求曲线C1的极坐标方程;(2)若点B在曲线C2上,且OA⊥OB,求|AB|.23.已知f(x)=|x−3|.(1)求不等式f(x)−f(3x)<1的解集;(2)已知a>0,b>0,函数g(x)=f(x)+f(x+4)的最小值为t,a+2b=tab,求2a+b的最小值.-------- 答案与解析 --------1.答案:D解析:本题考查了集合的并集运算,根据条件中集合A,B,即可得到其并集的结果.解:∵A={2,−3},B={1,2,5,9},∴A∪B={1,2,−3,5,9}.故选D.2.答案:C解析:本题考查复数代数形式的乘法运算,考查复数的基本概念,是基础题.利用复数代数形式的乘法运算化简逐一化简四个选项得答案.解:对于A,i(1+i)=−1+i,不是纯虚数;对于B,i(1−i)2=−2i2=2,不是纯虚数;对于C,i2(1+i)2=−2i,是纯虚数;对于D,i+i2+i3+i4=i−1−i+1=0,不是纯虚数.故选:C.3.答案:D解析:本题考查等差数列的性质和求和公式,属基础题.由等差数列的性质可得a1+a11=a5+a7=14,代入求和公式可得答案.解:由等差数列的性质可得a1+a11=a5+a7=14,由求和公式可得S11=11(a1+a11)2=11×142=77,故选D.4.答案:C解析:由题意利用任意角的三角函数的定义,求得cosα的值,可得的值.本题主要考查任意角的三角函数的定义,二倍角的余弦公式,属于基础题.解:已知角α的顶点在坐标原点,始边为x 轴非负半轴,终边过点P (2,−1),则x =2,y =−1,r =|OP|=√5,cosα=x r =√5,故选:C .5.答案:C解析:本题考查了分段函数,指数函数的图象与性质的应用.根据题意,得到f(x)是分段函数,根据x 的正负写出分段函数的解析式,结合指数函数的性质,得到函数图象.解:f(x)是分段函数,根据x 的正负写出分段函数的解析式,f(x)={a x (x >0)−a x (x <0),(a >1), ∴x >0时,图象与y =a x 在第一象限的图象一样,x <0时,图象与y =a x 的图象关于x 轴对称.故选C .6.答案:B解析:两个变量不一定是相关关系,也可能是确定性关系,故①错误;圆的周长与该圆的半径具有函数关系,故②错误;③④⑤都正确.故选B .7.答案:A解析:本题考查空间直线与直线、直线与平面,平面与平面的位置关系,考查学生分析解决问题的能力,属于中档题.对四个选项分别进行判断,即可得出结论.解:A ,若m ⊥α,m//n ,则n ⊥α,因为n//β,所以 α⊥β,正确;B ,α//β,m ⊂α,n ⊂β,m ,n 共面时,m//n ,不正确;。
2020年广东省高考数学一模试卷(文科) (含答案解析)
2020年广东省高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则A∩(C U B)=()A. {0}B. {0,1,2,3,4}C. {0,1}D. {1}2.设i是虚数单位,复数7+4i1+2i=()A. 3+2iB. 3−2iC. 2+3iD. 2−3i3.设向量a⃗=(1,2),b⃗ =(m+1,−m),a⃗⊥b⃗ ,则实数m的值为()A. −1B. 1C. −13D. −234.如图,F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为√3的正三角形,则b2的值为()A. √6B. 2√3C. 12D. 15.若a>1,b<0,则函数y=a x+b的图象有可能是()A.B.C.D.6.已知sin(α+π3)=13,则sin(2α−5π6)的值是()A. −13B. 13C. −79D. 797.甲、乙两人掷骰子,若甲掷出的点数记为a,乙掷出的点数记为b,则|a−b|≤1的概率为()A. 49B. 718C. 29D. 198.如果一个正四面体的体积为163√2dm3,则其表面积S的值为()A. 16dm2B. 18 dm2C. 18√3dm2D. 16√3dm29.执行如图所示的程序,则输入的i的值为()A. −1B. 0C. −1或2D. 210. 双曲线C :y 2a 2−x 2b 2=1(a,b >0)的上焦点为F ,存在直线x =t 与双曲线C 交于A ,B 两点,使得△ABF 为等腰直角三角形,则该双曲线离心率e =( )A. √2B. 2C. √2+1D. √5+111. 在△ABC 中,点D 为边AB 上一点,若BC ⊥CD ,AC =3√2,AD =√3,sin∠ABC =√33,则△ABC 的面积是( )A. 6√2B. 15√22 C. 9√22D. 12√212. 已知函数f(x)=x −sinx ,则不等式f(x +1)+f(2−2x)>0的解集是( ).A. (−∞,13)B. (−13,+∞)C. (−∞,3)D. (3,+∞)二、填空题(本大题共4小题,共20.0分)13. 设曲线y =lnx −12x 2在点(1,−12)处的切线与直线ax +y +1=0平行,则a = ______ . 14. 设x ,y 满足约束条件{x +2y ≤12x +y ≥−1x −y ≤0,则z =3x −2y 的最小值为________. 15. 已知三棱锥S −ABC 中,SA ⊥BC ,AB =BC =SA =√22BS =√22AC =2,则三棱锥S −ABC 外接球的体积为______.16. 已知x ∈(0,π],关于x 的方程2sin(x +π3)=a 有两个不同的实数解,则实数a 的取值范围为________.三、解答题(本大题共7小题,共82.0分)17. 设等比数列{a n }的前n 项和为S n ,公比q >0,a 1+a 2=4,a 3−a 2=6.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若ka n ,S n ,−1成等差数列对于n ∈N +都成立,求实数k 的值.18. 某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份2002 2004 2006 2008 2010需求量(万吨) 236 246 257 276 286(1)利用所给数据求年需求量与年份之间的回归直线方程y ̂=b ̂x +a ̂;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.(附:线性回归方程y ̂=b ̂x +a ̂中,b̂=i=1∑n (x i −x)(y i −y)n ∑i=1(x i −x)2,a ̂=y −b̂x)19. 如图,直三棱柱ABC −A 1B 1C 1中,∠BAC =90°,AB =AC =2,D ,E 分别为AA 1、B 1C 的中点. (1)证明:DE//平面ABC ;(2)若AE ⊥平面BDC ,求C 1到平面BCD 的距离.20.已知点A(1,1),B(−1,3).(1)求以AB为直径的圆C的方程;(2)若直线x−my+1=0被圆C截得的弦长为√6,求m值.21.已知函数f(x)=(x2−2x−5)e2x−1,求函数f(x)的极值.22.在平面直角坐标系xOy中,曲线C的参数方程为{x=1+cosθy=1+sinθ(θ为参数),在以坐标原点为)+√2=0,P为直线极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+π4l上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;。
2020年广东省深圳市高考数学一模试卷1(含答案解析)
2020年⼴东省深圳市⾼考数学⼀模试卷1(含答案解析)2020年⼴东省深圳市⾼考数学⼀模试卷1⼀、选择题(本⼤题共12⼩题,共60.0分)1.已知集合A={x∈N|x<4},B={x|x≥?1},则A∩B=()A. {x|0≤x<4}B. {1,2,3}C. {0,1,2,3,4}D. {0,1,2,3}2.已知复数z=3+2i,则|2?3iz|=()A. 1B. √13C. √1313D. 133.已知⾓α的顶点与原点O重合,始边与x轴的⾮负半轴重合,它的终边过点P(?35,45 ),则sin(α+π)=()A. ?35B. 35C. ?45D. 454.设x,y满⾜约束条件{x+y?2≤0x?2y+1≤02x?y+2≥0,则z=3x+y的最⼤值为()A. ?3B. 4C. 2D. 55.函数f(x)是R上的偶函数且在(?∞,0)上是增函数,⼜f(3)=1,则不等式f(x?1)<1的解集为()A. {x|x<2}B. {x|?2C. {x|x4}D. {x|x>3}6.如图所⽰,⽹络纸上⼩正⽅形的边长为1,粗线画出的是某四棱锥的三视图,则该⼏何体的体积为()A. 2B. 83C. 6D. 87.已知圆锥的母线长为5,⾼为4,则圆锥的表⾯积为()A. 30πB. 18πC. 24πD. 27π8.如图,三棱锥A?BCD中,AB⊥底⾯BCD,BC⊥CD,且AB=BC=1,CD=2,点E为CD的中点,则AE的长为()A. √2B. √3C. 2D. √59.关于函数f(x)=2sin(2x+π6),下列说法正确的是()A. 若x1,x2是函数f(x)的零点,则x1?x2是π的整数倍B. 函数f(x)的图象关于直线x=?π12对称C. 函数f(x)的图象与函数y=2cos(2x?π3)的图象相同D. 函数f(x)的图象可由函数y=2sin2x的图象向左平移π6个单位长度得到10.在长⽅体ABCD?A1B1C1D1中,AB=BC=2,AA1=√2,则异⾯直线AD1与DB1所成⾓的余弦值为()A. √36B. √1515C. ?√1515D. ?√3611.已知F1,F2是椭圆与x2a2+y2b2=1(a>b>0)的左、右焦点,过左焦点F1的直线与椭圆交于A,B两点,且满⾜|AF1|=2|BF1|,|AB|=|BF2|,则该椭圆的离⼼率是()A. 12B. √33C. √32D. √5312.函数f(x)=2ln x?x的最⼤值为()A. ?1B. 2ln2?2C. 1D. 4ln2?4⼆、填空题(本⼤题共4⼩题,共20.0分)13.曲线y=xe x?1在点(1,1)处切线的斜率等于__________.14.已知向量a?,b? 满⾜|a?+b? |=|a??b? |,则a??b? =_______.15.已知F1,F2是双曲线C:x2a2?y2b2=1(a>0,b>0)的左右焦点,A,B是双曲线的左右顶点,M是以F1,F2为直径的圆与双曲线的渐近线的⼀个交点,若∠AMB=45°,则该双曲线的离⼼率是______.16.在△ABC中,D为边BC上⼀点,BD=12DC,∠ADB=120°,AD=2,若△ADC的⾯积为3?√3,则∠BAC=_______.三、解答题(本⼤题共7⼩题,共82.0分)17.等差数列{a n}中,a3=1,a11=9,(1)求该等差数列的通项公式a n(2)求该等差数列的前n项和S n18.某产品的三个质量指标分别为x,y,z,⽤综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为⼀等品.先从⼀批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利⽤上表提供的样本数据估计该批产品的⼀等品率.(2)在该样本的⼀等品中,随机抽取2件产品,①⽤产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发⽣的概率.19.如图,四棱锥P?ABCD的底⾯ABCD是平⾏四边形,PA⊥底⾯ABCD,∠PCD=90°,PA=AB=AC=2(I)求证:AC⊥CD;(Ⅱ)点E在棱PC的中点,求点B到平⾯EAD的距离.20.已知抛物线C:y2=2px(p>0),直线y=x?1与C交于A,B两点,且|AB|=8.(1)求p的值;(2)如图,过原点O的直线l与抛物线C交于点M,与直线x=?1交于点H,过点H作y轴的垂线交抛物线C于点N,证明:直线MN过定点.21. 已知函数f(x)=e x ?1?x ?ax 2,当x ≥0时,f(x)≥0恒成⽴,求实数a 的取值范围.22. 在直⾓坐标系xOy 中,直线l 的参数⽅程为{x =2?3ty =√3t,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建⽴极坐标系,曲线C 1的极坐标⽅程为ρ=4cosθ.(1)求l 的极坐标⽅程和C 1的直⾓坐标⽅程;(2)若曲线C 2的极坐标⽅程为θ=π6,C 2与l 的交点为A ,与C 1异于极点的交点为B ,求|AB|.23. 设f(x)=|2x ?1|+|x +1|.(1)解不等式f(x)≤3;(2)若不等式m|x|≤f(x)恒成⽴,求m 的取值范围.-------- 答案与解析 --------1.答案:D解析:【分析】可解出集合A ,然后进⾏交集的运算即可.考查描述法、列举法的定义,以及交集的运算.【解答】解:A ={0,1,2,3};∴A ∩B ={0,1,2,3}.故选D .2.答案:A解析:【分析】把复数z =3+2i 代⼊|2?3i z|,再由商的模等于模的商求解.本题考查复数模的求法,是基础的计算题.【解答】解:∵z =3+2i ,∴|2?3i z|=|2?3i 3+2i |=|2?3i||3+2i|=1.故选:A .3.答案:C解析:【分析】本题考查三⾓函数的定义,求出⾓的终边上的点到原点的距离,利⽤任意⾓的三⾓函数公式求出α的三⾓函数值.【解答】解:∵α的顶点在原点,始边与x 轴的⾮负半轴重合,⼜终边过点(?35,45),∴|OP|=√(?35)2+(45)2=1,,,故选C .4.答案:B解析:【分析】本题考查简单的线性规划,考查了数形结合的解题思想⽅法,是基础题.由约束条件作出可⾏域,化⽬标函数为直线⽅程的斜截式,数形结合得到最优解,代⼊最优解的坐标得答案.【解答】解:由约束条件{x +y ?2≤0x ?2y +1≤02x ?y +2≥0作出可⾏域如图,由{x +y ?2=0x ?2y +1=0,解得{x =1y =1,即B(1,1),化⽬标函数z =3x +y 为y =?3x +z ,由图可知,当直线y =?3x +z 过B(1,1)时,直线在y 轴上的截距最⼤,此时z 有最⼤值为3×1+1=4.故选:B .5.答案:C解析:解:函数f(x)是R 上的偶函数且在(?∞,0)上是增函数,可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数,不等式f(x ?1)<1=f(3),即为f(|x ?1|)3,即为x ?1>3或x ?1解得x>4或x即解集为{x|x>4或x故选:C.由题意可得f(x)=f(|x|),且f(x)在(0,+∞)上是减函数,不等式f(x?1)<1=f(3),可得|x?1|> 3,解不等式即可得到所求解集.本题考查函数的奇偶性和单调性的判断和运⽤:解不等式,运⽤偶函数的性质:f(x)=f(|x|),以及转化思想是解题的关键,属于中档题.6.答案:A解析:【分析】本题主要考查空间⼏何体的三视图及四棱锥体积的计算,难度⼀般,属于中档题.将三视图还原成⼏何体,再根据三棱锥体积公式计算即可.【解答】解:由三视图可知:该四棱锥的底⾯为上底和下底分别为1和2且⾼为2的直⾓梯形,有⼀条棱和底⾯垂直,⼏何体的⾼为2,故体积为V=13×(1+2)×22×2=2,故选:A.7.答案:C解析:【分析】本题考查的知识点是圆锥的表⾯积,熟练掌握圆锥的⼏何特征是解答的关键.由题意得到圆锥的底⾯半径为3,代⼊圆锥的表⾯积公式求解.解:由题意知圆锥的底⾯半径为3,则圆锥的表⾯积为π×3×5+π×32=24π.8.答案:B解析:|AE|2=|AC|2+|CE|2=|AB|2+|BC|2+|CE|2=1+1+1=3,故|AE|=√3.9.答案:C解析:本题考查三⾓函数的图像与性质,属中档题.【解答】解:由题意知函数y =f (x )的图象与x 轴的相邻两交点间的距离为π2,故A 错误;函数y =f (x )的图象关于点(?π12,0)对称,故B 错误;函数f (x )=2sin (2x +π6)=2sin [(2x ?π3)+π2]=2cos (2x ?π3),故C 正确;函数f (x )的图象可由函数y =2sin2x 的图象向左平移π12个单位长度得到,故D 错误,故选C .10.答案:B解析:【分析】本题考查异⾯直线所成⾓的余弦值的求法,考查空间中线线位置关系等基础知识,考查运算求解能⼒,属于基础题.以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建⽴空间直⾓坐标系,利⽤向量法能求出异⾯直线AD 1与DB 1所成⾓的余弦值.【解答】解:在长⽅体ABCD ?A 1B 1C 1D 1中,AB =BC =2,AA 1=√2,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建⽴空间直⾓坐标系,则A(2,0,0),D 1(0,0,√2),D(0,0,0),B 1(2,2,√2), AD 1 =(?2,0,√2),DB 1 =(2,2,√2),设异⾯直线AD 1与DB 1所成⾓为θ,则cosθ=|AD1???????? ?DB 1???????? ||AD 1|?|DB 1|=√6?√10=√1515.∴异⾯直线AD 1与DB 1所成⾓的余弦值为√1515.故选:B .11.答案:B本题考查椭圆的简单性质的应⽤,考查数形结合以及转化思想的应⽤,属于中档题利⽤已知条件,画出图形,通过三⾓形的边长关系,结合余弦定理,求解椭圆的离⼼率即可.【解答】解:作出图形,如下:由题意可得:|F1B|+|BF2|=2a,|AB|=|BF2|,可得|AF1|=a,|AF2|=a,|AB|=|BF2|=32a,|F1F2|=2c,在△ABF2中,由余弦定理得cos∠BAF2=94a2+a2?94a22×32a×a=13,在△AF1F2中,由余弦定理得cos∠BAF2=a2+a2?4c22×a×a =1?2(ca)2,所以13=1?2(ca)2,所以e=ca=√33.故选:B.12.答案:B解析:【分析】本题考查利⽤导数研究函数的单调性,利⽤导数求函数的最值,依题意,f′,(x)=2x ?1=2?xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,即可求得结果.【解答】解:f′,(x)=2x ?1=2?xx,(x>0),所以x∈(0,2)时,f′(x)>0,函数f(x)递增,x∈(2,+∞)时,f′(x)<0,函数f(x)递减,所以函数f(x)=2ln x?x的最⼤值为f(2)=2ln2?2,故选B.13.答案:2解析:由y =xe x?1可得:y′=&e x?1+xe x?1,所以y′|x=1=e 0+e0=2,所以曲线y =xe x?1在点(1,1)处切线的斜率k =2.14.答案:0解析:【分析】本题考查了向量的模、向量的数量积.只需对模两边平⽅即可.【解答】解:由|a ? +b ? |=|a ? ?b ? |,得a ? 2+b ? 2+2a ? ?b ? =a ? 2+b ? 22a b ,∴a ? ?b ? =0.故答案为0.15.答案:√5解析:解:双曲线C :x 2a 2y 2b 2=1(a >0,b >0)的⼀条渐近线⽅程为:bx ?ay =0,以F 1,F 2为直径的圆:x 2+y 2=c 2,可得{bx ?ay =0x 2+y 2=c 2,不妨设M(a,b),可知MB ⊥x 轴.∠AMB =45°,所以∠MAB =45°,∴k MA =b?0a?(?a)=1,可得b =2a ,可得c 2?a 2=4a 2,解得e =√5.故答案为:√5.利⽤双曲线的渐近线与圆联⽴⽅程,求出M 的坐标,通过∠AMB =45°,得到直线的斜率关系,转化求解双曲线的离⼼率即可.本题考查双曲线的简单性质的应⽤,考查计算能⼒转化思想的应⽤.16.答案:60°解析:【分析】本题主要考查解三⾓形中的边⾓关系及其⾯积等基础知识与技能,分析问题解决问题的能⼒以及相应的运算能⼒.先根据三⾓形的⾯积公式利⽤△ADC 的⾯积求得DC ,进⽽根据三⾓形ABC 的⾯积求得BD 和BC ,进⽽根据余弦定理求得AB.最后在三⾓形ABC 中利⽤余弦定理求得cos∠BAC ,求得∠BAC 的值.【解答】解:由△ADC 的⾯积为3?√3可得S △ADC =12?AD ?DC ?sin60°=√32DC =3?√3 S △ABC=32(3?√3)=12AB ?AC ?sin∠BAC 解得DC =2√3?2,则BD =√3?1,BC =3√3?3.AB 2=AD 2+BD 2?2AD ?BD ?cos120°=4+(√3?1)2+2(√3?1)=6, AB =√6,AC 2=AD 2+CD 2?2AD ?CD ?cos60°=4+4(√3?1)2?4(√3?1)=24?12√3AC=√6(√3?1)则cos∠BAC =BA 2+AC 2?BC 22AB?AC=√3?9(4?2√3)26?6(3?1)=√3?612(3?1)=12.故∠BAC =60°.故答案为60°.17.答案:解:(1)∵a 11=a 3+8d ,∴d =1∴a n =a 3+(n ?3)d =n ?2, (2)∵a n =n ?2,∴a 1=?1,∴S n =(a 1+a n )n2=n (n?3)2.解析:本题考查等差数列: (1)考查等差数列的通项公式; (2)考查等差数列的前n 项和.18.答案:解:(1)计算10件产品的综合指标S ,如下表:其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的⼀等品率为610,从⽽可估计该批产品的⼀等品率为0.6.(2)?①在该样本的⼀等品中,随机抽取2件产品的所有可能结果为: {A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4}{,A 2,A 5},{A 2,A 7},{A 2,A 9}, {A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的⼀等品中,综合指标S等于4的产品编号分别为:A1,A2,A5,A7,则事件B发⽣的可能结果为:{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=615=25.解析:本题考查了随机事件,考查了古典概型及其概率计算公式,是基础题.(1)⽤综合指标S=x+y+z计算出10件产品的综合指标并列表表⽰,则样本的⼀等品率可求;(2)①直接⽤列举法列出在该样品的⼀等品中,随机抽取2件产品的所有等可能结果;②列出在取出的2件产品中,每件产品的综合指标S都等于4的所有情况,然后利⽤古典概型概率计算公式求解.19.答案:(Ⅰ)证明:因为PA⊥底⾯ABCD,所以PA⊥CD,因为∠PCD=90°,所以PC⊥CD,所以CD⊥平⾯PAC,所以CD⊥AC.…(4分)(Ⅱ)解:因为PA=AB=AC=2,E为PC的中点,所以AE⊥PC,AE=√2.由(Ⅰ)知AE⊥CD,所以AE⊥平⾯PCD.作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平⾯EAD.因为BC//AD,所以点B与点C到平⾯EAD的距离相等,CF即为点C到平⾯EAD的距离.…(8分)在Rt△ECD中,CF=CE×CDDE =2√33.所以,点B到平⾯EAD的距离为2√3.…(12分)解析:(I)证明CD⊥平⾯PAC,可得AC⊥CD;(Ⅱ)作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平⾯EAD.因为BC//AD,所以点B与点C到平⾯EAD的距离相等,CF即为点C到平⾯EAD的距离,利⽤等⾯积可得结论.本题考查线⾯垂直的性质与判定,考查点B到平⾯EAD的距离,考查学⽣分析解决问题的能⼒,属于中档题.20.答案:(1)解:由{y 2=2pxy=x?1,消x可得y2?2py?2p=0,设A(x1,y1),B(x2,y2),∴y1+y2=2p,y1y2=?2p,∴弦长|AB|=√12+12√(y1+y2)2?4y1y2 =√2√4p2+8p=8,解得p=2或p=?4(舍去),∴p=2;(2)证明:由(1)可得y2=4x,设M(14y02,y0),∴直线OM的⽅程y=4y0x,当x=?1时,y H=?4y,则y H=y N=?4y,代⼊抛物线⽅程y2=4x,可得x N=4y,∴N(4y02,?4y0),∴直线MN的斜率k=y0+4y04y02=4y0y02?4,直线MN的⽅程为y?y0=4y0y02?4(x?14y02),整理可得y=4y0y02?4(x?1),故直线MN过点(1,0).解析:本题考查抛物线的标准⽅程和直线与抛物线的位置关系,属中档题.(1)根据弦长公式即可求出p的值;(2)由(1)可得y2=4x,设M(14y02,y0),根据题意求出点N的坐标,即可表⽰出直线MN的⽅程,即可求直线过定点.21.答案:解:f′(x)=e x?1?2ax,令?(x)=e x?1?2ax,则?′(x)=e x?2a.1)当2a≤1时,在[0,+∞)上,?′(x)≥0,?(x)递增,?(x)≥?(0),即f′(x)≥f′(0)=0,∴f(x)在[0,+∞)为增函数,∴f(x)≥f(0)=0,∴a ≤12时满⾜条件; 2)当2a >1时,令?′(x)=0,解得x =ln2a ,当x ∈[0,ln2a)上,?′(x)<0,?(x)单调递减,∴x ∈(0,ln2a)时,有?(x)∴f(x)在区间(0,ln2a)为减函数,∴f(x)2].解析:本题考查了函数的单调性、最值问题,考查导数的应⽤以及分类讨论思想,转化思想,属难题.求出函数的导数,通过讨论a 的范围,求出函数的单调区间,进⽽得出实数a 的取值范围.22.答案:解:(1)直线l 的参数⽅程为{x =2?3t,(t 为参数),转换为直⾓坐标⽅程为:x +√3y ?2=0.设代⼊x +√3y ?2=0,整理得直线l 的极坐标⽅程为,曲线C 1的极坐标⽅程为ρ=4cosθ.转换为直⾓坐标⽅程为:(x ?2)2+y 2=4,(2)曲线C 2的极坐标⽅程为θ=π6,曲线C 2与l 的交点为A ,则:ρA cos π6+√3ρA sin π6?2=0,解得:ρA =2√33,与C 1异于极点的交点为B ,所以:ρB =4cos π6=2√3,则:|AB|=|ρA ?ρB |=4√33.解析:本题考查的知识要点:参数⽅程直⾓坐标⽅程和极坐标⽅程之间的转换,三⾓函数关系式的恒等变换,直线⽅程的求法及应⽤,主要考查学⽣的运算能⼒和转化能⼒.属于基础题型. (1)直接利⽤转换关系,把参数⽅程直⾓坐标⽅程和极坐标⽅程之间进⾏转换,(2)利⽤线的关系建⽴⽅程组,求出极径,进⼀步求出结果.23.答案:解:(1)当x当?1≤x≤12时,f(x)=?(2x?1)+(x+1)=?x+2≤3,解得x≥?1,故?1≤x≤12;当x>12时,f(x)=(2x?1)+(x+1)=3x≤3,解得x≤1,故12综上所述,满⾜f(x)≤3的解集为{x|?1≤x≤1}.(2)当x=0时,可知对于?m∈R,不等式均成⽴;当x≠0时,由已知可得:m≤f(x)|x|=|2x?1|+|x+1||x|=|2?1x|+|1+1x|≤|(2?1x)+(1+1x)|=3,当x≤?1或x≥12时,等号成⽴,综上所述,使得不等式恒成⽴的m的取值范围为m≤3.解析:(1)通过讨论x的范围,求出各个区间上的不等式的解集,取并集即可;(2)问题转化为m≤f(x)|x|,再根据绝对值的性质求出m的范围即可.本题考查了解绝对值不等式问题,考查绝对值的性质,以及分类讨论思想,是⼀道中档题.。
2020年广东省广州市高考数学一模试卷(文科)含答案解析
5.如果函数 (ω>0)的相邻两个零点之间的距离为 ,则ω的值为( )
A.3B.6C.12D.24
【考点】y=Asin(ωx+φ)中参数的物理意义.
【分析】根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值.
【解答】解:函数 (ω>0)的相邻两个零点之间的距离为 ,
∴T=2× = ,
A. B.﹣ C. D.
9.如果P1,P2,…,Pn是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=10,则|P1F|+|P2F|+…+|PnF|=( )
A.n+10B.n+20C.2n+10D.2n+20
10.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )
15.已知双曲线C: (a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且 ,则双曲线C的离心率为.
16.在△ABC中,点D在边AB上,CD⊥BC, ,CD=5,BD=2AD,则AD的长为.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.已知数列{an}是等比数列,a2=4,a3+2是a2和a4的等差中项.
A.1B.2C.3D.4
12.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( )
A.8+8 +4 B.8+8 +2 C.2+2 + D. + +
二.填空题:本大题共4小题,每小题5分.
13.函数f(x)=x3﹣3x的极小值为.
广东省2020年高考一模 数学(理)试卷 (解析版)
2020年高考数学一模试卷(理科)一、选择题(共12小题)1.已知集合A ,B 均为全集U ={1,2,3,4,5,6,7}的子集,集合A ={1,2,3,4},则满足A ∩∁U B ={1,2}的集合B 可以是( )A .{1,2,3,4}B .{1,2,7}C .{3,4,5,6}D .{1,2,3} 2.复数z =4+3i 3−4i(i 为虚数单位)的虚部为( ) A .﹣1 B .2 C .5 D .13.若x ,y 满足约束条件{|x −y|≤1|x|≤2,则z =2x +y 的最大值为( ) A .﹣7 B .3 C .5 D .74.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (0<t ≤2)左侧的图形的面积为f (t ),则y =f (t )的大致图象为( )A .B .C .D .5.将函数f (x )=cos (2x ﹣1)的图象向左平移1个单位长度,所得函数在[0,12]的零点个数是( )A .0个B .1个C .2个D .3个或以上 6.某广场设置了一些石凳子供大家休息,这些石凳子是由正方体沿各棱的中点截去八个一样的正三棱锥后得到的.如果被截正方体的棱长为40cm ,则石凳子的体积为( ) A .1920003cm 3 B .1600003cm 3 C .160003cm 3 D .640003cm 37.在某市2020年1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100),已知参加本次考试的全市理科学生约有9450人,如果某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第( )附:若X ~N (μ,σ2),则P (μ﹣σ<X <μ+σ)=0.6826,P (μ﹣2σ<X <μ+2σ)=0.9544A .1500名B .1700名C .4500名D .8000名 8.已知(1+x m )n =a 0+a 1x +a 2x 2+⋯+a n x n ,若a 1=3,a 2=4,则m =( )A .1B .3C .2D .49.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左右焦点分别为F 1,F 2,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,且∠PAQ =5π6,则该双曲线的离心率为( )A .√2B .√3C .√213D .√1310.设正项数列{a n }的前n 项和为S n ,且满足2√S n =a n +1,则数列{a n ﹣7}的前n 项和T n 的最小值为( )A .−494B .−72C .72D .﹣12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省高考数学一模试卷答案解析一、选择题(共12题,共60分)1.已知集合A={0,1,2,3},B={x|x2﹣2x﹣3<0},则A∪B=()A.(﹣1,3)B.(﹣1,3]C.(0,3)D.(0,3]【解答】解:集合A={0,1,2,3},B={x|x2﹣2x﹣3<0}=(﹣1,3),则A∪B=(﹣1,3],故选:B.2.设z=,则z的虚部为()A.﹣1B.1C.﹣2D.2【解答】解:∵z==,∴z的虚部为1.故选:B.3.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 8632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42A.25B.23C.12D.07【解答】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,依次为07,04,08,23,12,则抽取的第5个零件编号为,12,故选:C.4.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36B.32C.28D.24【解答】解:S6==3×(3+9)=36.故选:A.5.若双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),则该双曲线的离心率为()A.B.C.D.2【解答】解:∵双曲线(a>0,b>0)的一条渐近线经过点(1,﹣2),∴点(1,﹣2)在直线上,∴.则该双曲线的离心率为e=.故选:C.6.已知tanα=﹣3,则=()A.B.C.D.【解答】解:因为tanα=﹣3,则=cos2α====.故选:D.7.的展开式中x3的系数为()A.168B.84C.42D.21【解答】解:由于的展开式的通项公式为T r+1=•(﹣2)r x7﹣2r,则令7﹣2r=3,求得r=2,可得展开式中x3的系数为•4=84,故选:B.8.函数f(x)=ln|e2x﹣1|﹣x的图象大致为()A.B.C.D.【解答】解:,故排除CD;f(﹣1)=ln|e﹣2﹣1|+1=ln(1﹣e﹣2)+lne=,故排除B.故选:A.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为()A.B.32πC.36πD.48π【解答】解:根据几何体的三视图转换为几何体为三棱锥体A﹣BCD:如图所示:设外接球的半径为r,则:(2r)2=42+42+42,解得r2=12,所以:S=4π×12=48π.故选:D.10.已知动点M在以F1,F2为焦点的椭圆上,动点N在以M为圆心,半径长为|MF1|的圆上,则|NF2|的最大值为()A.2B.4C.8D.16【解答】解:由椭圆的方程可得焦点在y轴上,a2=4,即a=2,由题意可得|NF2|≤|F2M|+|MN|=|F2M|+|MF1|,当N,M,F2三点共线时取得最大值而|F2M|+|MF1|=2a=4,所以|NF2|的最大值为4,故选:B.11.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O,H分别是△ABC的外心、垂心,且M为BC中点,则()A.B.C.D.【解答】解:如图所示的Rt△ABC,其中角B为直角,则垂心H与B重合,∵O为△ABC的外心,∴OA=OC,即O为斜边AC的中点,又∵M为BC中点,∴,∵M为BC中点,∴===.故选:D.12.已知定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,则正实数ω的取值个数最多为()A.4B.3C.2D.1【解答】解:∵定义在[0,]上的函数f(x)=sin(ωx﹣)(ω>0)的最大值为,∴0<≤1,解得0<ω≤3,∴≤ωx﹣≤.①0<ω≤时,则sin(ω﹣)=,令g(ω)=sin(ω﹣)﹣,y=sin(ω﹣)在(0,]上单调递增,∵g(0)=﹣<0,g()=1﹣=>0,因此存在唯一实数ω,使得sin(ω﹣)=.②<ω≤3,sin(ωx﹣)=1,必须ω=3,x=.综上可得:正实数ω的取值个数最多为2个.故选:C.二、填空题(共4题,共20分)13.若x,y满足约束条件,则z=x﹣2y的最小值为﹣3.【解答】解:画出x,y满足约束条件,表示的平面区域,如图所示;结合图象知目标函数z=x﹣2y过A时,z取得最小值,由,解得A(1,2),所以z的最小值为z=1﹣2×2=﹣3.故答案为:﹣3.14.设数列{a n}的前n项和为S n,若S n=2a n﹣n,则a6=63.【解答】解:数列{a n}的前n项和为S n,由于S n=2a n﹣n,①所以当n≥2时,S n﹣1=2a n﹣1﹣(n﹣1)②,①﹣②得:a n=2a n﹣1+1,整理得(a n+1)=2(a n﹣1+1),所以(常数),所以数列{a n+1}是以2为首项,2为公比的等比数列.所以,整理得.所以.故答案为:6315.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由0,1,2,…,9中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如0123),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是1的概率为.【解答】解:基本事件的总数为,其中该验证码的首位数字是1的包括的事件个数为.∴该验证码的首位数字是1的概率==.故答案为:.16.已知点M(m,m﹣)和点N(n,n﹣)(m≠n),若线段MN上的任意一点P都满足:经过点P的所有直线中恰好有两条直线与曲线C:y=+x(﹣1≤x≤3)相切,则|m﹣n|的最大值为.【解答】解:由点M(m,m﹣)和点N(n,n﹣),可得M,N在直线y=x﹣上,联立曲线C:y=+x(﹣1≤x≤3),可得x2=﹣,无实数解,由y=+x的导数为y′=x+1,可得曲线C在x=﹣1处的切线的斜率为0,可得切线的方程为y=﹣,即有与直线y=x﹣的交点E(0,﹣),同样可得曲线C在x=3处切线的斜率为4,切线的方程为y=4x﹣,联立直线y=x﹣,可得交点F(,),此时可设M(0,﹣),N(,),则由图象可得|m﹣n|的最大值为﹣0=,故答案为:.三、解答题(共70分)17.已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2﹣c2=2S.(1)求cos C;(2)若a cos B+b sin A=c,,求b.【解答】解:(1)∵a2+b2﹣c2=2S,所以2ab cos C=ab sin C,即sin C=2cos C>0,sin2C+cos2C=1,cos C>0,解可得,cos C=,(2)∵a cos B+b sin A=c,由正弦定理可得,sin A cos B+sin B sin A=sin C=sin(A+B),故sin A cos B+sin B sin A=sin A cos B+sin B cos A,所以sin A=cos A,∵A∈(0,π),所以A=,所以sin B=sin(A+C)=sin()==,由正弦定理可得,b===3.18.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,点M,N分别在棱C1C,A1A上,且C1M=2MC,A1N=2NA.(1)求证:NC1∥平面BMD;(2)若A1A=3,AB=2AD=2,∠DAB=,求二面角N﹣BD﹣M的正弦值.【解答】解:(1)连接BD,AC交于E,取C1M的中点F,连接AF,ME,由C1M=2MC,A1N=2NA,故C1F=AN,以且C1F∥AN,故平行四边形C1F AN,所以C1N∥F A,根据中位线定理,ME∥AF,由ME⊂平面MDB,F A⊄平面MDB,所以F A∥平面MDB,NC1∥F A,故NC1∥平面BMD;(2)AB=2AD=2,∠DAB=,由DB2=1+4﹣2×1×2×cos=3,由AB2=AD2+DB2,得AD⊥BD,以D为原点,以DA,DB,DD₁分别为x,y,z轴建立空间直角坐标系,D(0,0,0),B(0,,0),M(﹣1,,1),N(1,0,1),=(0,,0),=(﹣1,,1),=(1,0,1),设平面MBD的一个法向量为=(x,y,z),由,令x=1,得=(1,0,1),设平面NBD的一个法向量为=(a,b,c),由,得,由cos<>=,所以二面角N﹣BD﹣M为,正弦值为1.19.已知以F为焦点的抛物线C:y2=2px(p>0)过点P(1,﹣2),直线l与C交于A,B两点,M为AB中点,且.(1)当λ=3时,求点M的坐标;(2)当=12时,求直线l的方程.【解答】解:(1)将P(1,﹣2)代入抛物线C:y2=2px方程,得p=2,所以C的方程为y2=4x,焦点F(1,0),设M(x0,y0),当λ=3时,,可得M(2,2).(2)方法一:设A(x1,y1),B(x2,y2),M(x0,y0),由.可得(x0+1,y0﹣2)=(λ,0),所以y0=2,所以直线l的斜率存在且斜率,设直线l的方程为y=x+b,联立,消去y,整理得x2+(2b﹣4)x+b2=0,△=(2b﹣4)2﹣4b2=16﹣16b>0,可得b<1,则x1+x2=4﹣2b,,,所以,解得b=﹣6,b=2(舍),所以直线l的方程为y=x﹣6.方法二:设直线l的方程为x=my+n,设A(x1,y1),B(x2,y2),M(x0,y0),联立方程组,消去x,整理得y2﹣4my﹣4n=0,△=16m2+16n>0,则y1+y2=4m,y1y2=﹣4n,则,则M(2m2+n,2m),由.得(2m2+n+1,2m﹣2)=(λ,0),所以m=1,所以直线l的方程为x=y+n,由△=16+16n>0,可得n>﹣1,由y1y2=﹣4n,得,所以,解得n=6或n=﹣2,(舍去)所以直线l的方程为y=x﹣6.20.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期(单位:天)[0,2](2,4](4,6](6,8](8,10](10,12](12,14]人数85205310250130155(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?附:P(K2≥k0)0.050.0250.010k0 3.841 5.024 6.635,其中n=a+b+c+d.【解答】解:(1)根据统计数据,计算平均数为=×(1×85+3×205+5×310+7×250+9×130+11×15+13×5)=5.4(天);(2)根据题意,补充完整列联表如下;潜伏期<6天潜伏期≥6天总计50岁以上(含50岁)653510050岁以下5545100总计12080200根据列联表计算K2==≈2.083<3.841,所以没有95%的把握认为潜伏期与年龄有关;(3)根据题意得,该地区每1名患者潜伏期超过6天发生的概率为=,设调查的20名患者中潜伏期超过6天的人数为X,则X~B(20,),P(X=k)=••,k=0,1,2, (20)由,得,化简得,解得≤k≤;又k∈N,所以k=8,即这20名患者中潜伏期超过6天的人数最有可能是8人.21.已知函数f(x)=e x﹣aln(x﹣1).(其中常数e=2.71828…,是自然对数的底数)(1)若a∈R,求函数f(x)的极值点个数;(2)若函数f(x)在区间(1,1+e﹣a)上不单调,证明:+>a.【解答】解:(1)易知,①若a≤0,则f′(x)>0,函数f(x)在(1,+∞)上单调递增,∴函数f(x)无极值点,即此时极值点个数为0;②若a>0,易知函数y=e x的图象与的图象有唯一交点M(x0,y0),∴,∴当x∈(1,x0)时,f′(x)<0,函数f(x)在(1,x0)上单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)在(x0,+∞)上单调递增,∴函数f(x)有较小值点x0,即此时函数f(x)的极值点个数为1;综上所述,当a≤0时,函数f(x)的极值点个数为0;当a>0时,函数f(x)的极值点个数为1;(2)证明:∵函数f(x)在区间(1,1+e﹣a)上不单调,∴存在为函数f(x)的极值点,由(1)可知,a>0,且,即,两边取自然对数得1﹣a+e﹣a>lna,即1+e﹣a﹣lna>a,要证+>a,不妨考虑证,又易知e x≥1+x,∴,即,又,∴,∴,即,∴,∴+>a.22.在直角坐标系xOy中,直线C1的参数方程为(t为参数,α为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C2的直角坐标方程;(2)直线C1与C2相交于E,F两个不同的点,点P的极坐标为,若2|EF|=|PE|+|PF|,求直线C1的普通方程.【解答】解:(1)曲线C2的极坐标方程为ρ=4sinθ.即ρ2=4ρsinθ,可得普通方程:x2+y2=4y.(2)点P的极坐标为,可得直角坐标为(﹣2,0).把直线C1的参数方程为(t为参数,α为倾斜角),代入C2方程可得:t2﹣(4cosα+4sinα)t+12=0,△=﹣48>0,可得:sin(α+)>,或sin(α+)<﹣,由α为锐角.可得:sin(α+)>,解得:0<α<.则t1+t2=4cosα+4sinα,t1t2=12.∴|EF|==4,|PE|+|PF|=|t1|+|t2|=|t1+t2|=8|sin(α+)|,∴8=8|sin(α+)|,∴化为:sin(α+)=1,∴α=+2kπ,k∈Z.α满足0<α<.可得α=.∴直线C1的参数方程为:,可得普通方程:x﹣y+2=0.23.已知a,b,c为正数,且满足a+b+c=1.证明:(1)≥9;(2)ac+bc+ab﹣abc≤.【解答】证明:(1)=,当且仅当时,等号成立;(2)∵a,b,c为正数,且满足a+b+c=1,∴c=1﹣a﹣b,1﹣a>0,1﹣b>0,1﹣c>0,∴ac+bc+ab﹣abc=(a+b﹣ab)c+ab=(a+b﹣ab)(1﹣a﹣b)+ab=(b﹣1)(a﹣1)(a+b)=(1﹣a)(1﹣b)(1﹣c),∴ac+bc+ab﹣abc≤,当且仅当时,等号成立.。