材料力学性能第三章-金属在冲击载荷下的力学性能
第三章 材料在冲击载荷下的力学性能-2
落锤样坯
落锤试验过程
落锤样坯断裂形貌
3.3.6 影响韧脆转变温度的因素
(1)晶格类型的影响
(2)ky-------位错被第二相等钉扎的常数。对于BCC金属, Fe、Mo的 ky 高;Ni、Ti的 ky 低。在-Fe中,含N低碳 钢ky比C高。 ky随温度增加不明显。
(3)d-----晶粒直径/位错滑移距离。细晶冷脆转变温度。
(4)-----与应力有关的常数。对于扭转, =1;拉伸时 =0.5;缺口拉伸, 1/3。
•氮、碳等原子被吸收到Ni、Mn所造成的局部畸变 区中去,减少了它们对位错运动的钉扎作用。
•在钢中形成化合物的合金元素,如铬、钼、钛等, 是通过细化晶粒和形成第二相质点来响韧脆转变 温度的,它和热处理后的组织密切相关。Biblioteka (3)晶粒大小对TK的影响
• 晶界前塞积的位错数目较 少,有利于减少应力集中;
晶界对裂纹扩展有阻碍 作用。晶粒越细,则晶 界越多,阻碍作用越大。
晶界总面积增加,使晶界上杂质浓 度减少,避免产生沿晶脆性断裂又 提高了它的塑性和韧性。
形变强化、固溶强化、弥散强化(沉淀强化)等方法,在 提高材料强度的同时,总要降低一些塑性和韧性。
• 面心立方晶格金属塑性、韧性好,体心立方和密排六 方金属的塑性、韧性较差。
• 面心立方晶格的金属,如铜、铝、奥氏体钢,一般不 出现解理断裂而处于韧性状态,也没有韧-脆转变,其 韧性可以维持到低温。
• 体心立方晶格的金属,如铁、铬、钨和普通钢材,韧 脆转变受温度及加载速率的影响很大,因为在低温和 高加载速率下,它们易发生孪晶,也容易激发解理断 裂。
金属在冲击载荷下的力学性能
(3) 在一定条件下,用试样测得的tk,因 和实际结构工况无直接联系,不能说明该材 料构成的机件一定在该温度下脆断。
23/29
§3.4 影响韧脆转变温度的冶金因素
一、晶体结构的影响 1、bcc、hcp金属及合金存在低温脆性。 2、fcc金属及合金在常规使用温度下一般
另外,对于有缺口试样,由于缺口截面 上应力分布极不均匀,塑性变形消耗的功主 要集中在缺口附近,取平均值无意义,所以ak 是一个纯数学量。
直接用Ak更有意义。
10/29
(4) Ak 、ak不能真实反映一般零件承受上 千万次冲击载荷的能力
只有承受大能量冲击的零件,如炮弹, 装甲板等,才是一次或少数次即断裂,Ak才 可能化为材料对冲击载荷的抗力指标。但大 部分零件的工作状态还承受小能量多次重复 冲击,此时设计要用小能量多冲击试验。
缺口。 脆性材料不开缺口:陶瓷、铸铁、工具
钢等。 标准试样尺寸:10mm×10mm×55mm。
6/29
7/29
二、冲击吸收功和冲击韧度
1、冲击吸收功 Ak 为冲断试样过程中所消耗的功。
2、缺口(无缺口)试样的冲击值(冲击韧度)ak
ak
Ak F
F:试样缺口(折断处)的原始截面积。
8/29 3、讨论 (1) 通常将Ak 、ak作为衡量材料抵抗冲击
而材料的解理断裂强度却随温度的变化很小, 两者相交于tk。
图3-1 屈服强度和解理断裂强度随温度的变化
14/29
当t>tk时,σc>σs,随外力↑,先屈服,后 断裂→韧性断裂。
当t<tk时,σc<σs,外加应力先达到σc,(屈 服的同时发生断裂)为脆性断裂。
第三章金属在冲击载荷下的力学性能
第三章金属在冲击载荷下的力学性能前面我们讲述的是材料在常温、静载下的力学性能。
工程中,还有许多机件是快速加载即冲击载荷及低温条件下工作的,如:汽车在凸凹不平的道路上行驶;飞机的起飞和降落;材料的压力加工等;其性能将与常温、静载的不同。
冲击载荷与静载的主要差异:在于加载速率不同,加载速率是指载荷施加于试样或机件的速率,用单位时间内应力增加的数值表示。
因加载速率提高,形变速率也随之增加,形变速率是单位时间的变形量。
因此,用形变速率(又分绝对变形速率和相对变形速率)可以间接地反映加载速率的变化。
相对变形速率又称应变率。
不同机件的应变速率范围大约为10-6~106s-1。
静拉伸试验的应变速率为10-5~10-2s-1,冲击试验的应变速率为102~104s-1。
试验表明,应变速率在10-4~10-2s-1内,金属的力学性能没有明显变化,可按静载荷处理。
当应变速率大于10-2s-1时,力学性能将发生明显变化。
缺口冲击载荷使塑性变形得不到充分发展,更灵敏地反映材料的变脆倾向。
降低温度(脆断趋势)钢的冷脆是一种低能量断裂,一般为解理断裂,有时为准解理断裂或沿晶断裂。
冷脆的最大特点是断裂功极低,后果是灾难性的。
(原因是断裂面间距为原子间距,力的作用距离只有0.1nm数量级,即使力很大,断裂所消耗的功W=F.S也相当低)。
第一节冲击载荷下金属变形和断裂的特点1、应变率对金属材料的弹性行为及弹性模量没有影响。
因弹性变形是以声速在介质中传播的,声速在金属介质中相当大,钢中为4982 m/s,普通摆锤冲击时绝对变形速率只有5~5.5m/s冲击弹性变形总能跟上冲击力的变化。
2、金属材料在冲击载荷作用下塑性变形难于充分进行。
金属产生附加强化。
冲击载荷下塑性变形比较集中在某些区域(与静载荷下不同),说明塑性变形是极不均匀的。
3、材料塑性和应变率之间无单值依存关系。
第二节冲击弯曲和冲击韧性一、冲击韧性是指材料在冲击载荷作用下吸收(弹性变形功)塑性变形功和断裂功的能力。
第三章 金属在冲击载荷下的力学性能
(4)应变速率对材料的塑性变形、断裂及有关力学性能 有很大影响 冲击瞬时作用于位错上的应力很高 应力水平高 塑性变形难于充分进行 内部的塑性变形不均匀。
第二节 冲击弯曲和冲击韧性
一、冲击韧性及其作用 1、材料在冲击载荷作用下,吸收塑性变形功和断裂功 的大小。 用标准试样的冲击吸收功表示,Ak。单位,J 2、作用 (1)揭示冶金缺陷的影响; (2)对σs大致相同的材料,评定缺口敏感性。 (3)评定低温脆性倾向。
第三章 金属在冲击载荷下的力学性 能
冲击载荷与静载荷的主要区别在于加载速率 (相对形变速率)应变速率
έ=de/dτ (e为真应变)
单位时间内应变的变化量——应变率 静拉伸试验 冲击试验
έ=10-5~10-2 s-1 έ=102~104 s-1
一般情况下, έ=10-4~10-2 s-1,金属力学性能没有明显变化, 可按静载荷处理;
冲击吸收功-温度关பைடு நூலகம்曲线:
fcc金属(Cu、Al)材料在很低的温度下韧性仍比较高; 材料在很宽的试验温度范围内都是脆性的,如淬火高 碳马氏体钢; 材料在一定温度区间内产生低温脆性转变,如bcc金属 及其合金、某些hcp金属及其合金,许多铁素体-珠光 体钢(工程上使用的低碳钢); bcc金属的低温脆性与位错在晶体中运动的阻力对温度 变化非常敏感及迟屈服现象有关。
3、外部因素
(1)温度 钢的“蓝脆”温度(钢的氧化色为蓝色) 静载荷:230~370℃ 冲击载荷:525~550℃ C.N原子扩散速率增加,易于形成柯氏气团。 (2)加载速率 加载速率↑,脆性↑,韧脆转变温度tk ↑; (3)试样尺寸和形状 试样增厚,tk↑(表面上的拉压应力最大); 带缺口,不带缺口;脆性及tk不同。
二、 影响冲击韧性和韧脆转变温度的因素
工程材料力学性能第三章资料
1.摆锤冲断试样失去的位能 Ak=GH1—GH2, 试样变形和断裂所消耗的功,称为冲击吸收功.单 位为J。 冲击韧性:指材料在冲击载荷作用下吸收塑性变形 功和断裂功的能力,常用标准试样的冲击吸收功Ak 表示。 2.冲击吸收功Ak的大小并不能 真正反映材料的韧脆程度, 部 分功消耗于试祥扔出、机身振 动、空气阻力以及轴承与测量 机构的摩擦消耗。
三 应变速率增加,抗拉强度增加,而且应变速率的 强度关系随温度的增加而增加。
图 应变速率对铜在各种温度下抗拉强度的影响
第二节
冲击弯曲和冲击韧性
不含切口零件的冲击:冲击能为零件的整个体积均 匀地吸收,从而应力和应变也是均匀分布的; 零件 体积愈大,单位体积吸收的能量愈小,零件所受的 应力和应变也愈小。 含切口零件的冲击:切口根部单位体积将吸收更多 的能量,使局部应变和应变速率大为升高。 另一个 特点是:承载系统中各零件的刚度都会影响到冲击 过程的持续时间、冲击瞬间的速度和冲击力大小。 这些量均难以精确测定和计算。且有弹性和塑 性。 因此,在力学性能试验中,直接用能量定性地表示 材料的力学性能特征;冲击韧性即属于这一类的力 学性能。
3.对于屈服强度大致相同的材料,根据Ak值评定材料 对大能量冲击破坏的缺口敏感性。 如弹壳、防弹甲板等,具有参考价值: 4.评定低合金高强钢及其焊缝金属的应变时效敏感性。
第三节 低温脆性 一、 低温脆性 低温脆性:一些具有体心立方晶格的金属,如Fe、 Mo 和W,当温度降低到某一温度时,由于塑性降低 到零而变为脆性状态。 从现象上看,是屈服强 度随温度降低而急剧增加的结果 倘若屈服强度随温度的下降而升高较快,而断裂 强度升高较慢,则在某一温度Tc以下,σs>σc, 金属在没有塑性变形的情况下发生断裂,即表现 为脆性的; 而在Tc以上,σs<σc,金属在断裂 前发生塑性变形,故表现为塑性的。 低温脆性对压力容器\桥梁和船舶结构以及在低温 下服役的机件是非常重要的.
金属在冲击载荷下的力学性能资料
材料力学性能课后习题答案
材料力学性能课后习题答案1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.xx效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
完整版材料力学性能课后习题答案整理
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力.一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后.随时间延长产生附加弹性应变的现象称为滞弹性.也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形.卸载后再同向加载.规定残余伸长应力增加;反向加载.规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时.便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下.当外加正应力达到一定数值后.以极快速率沿一定晶体学平面产生的穿晶断裂.因与大理石断裂类似.故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内.可以是韧性断裂.也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展.多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时.冲击吸收功明显下降.断裂方式由原来的韧性断裂变为脆性断裂.这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P153、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小.但是不改变金属原子的本性和晶格类型。
第3章 材料在冲击载荷下的力学性能
材料性能学1一14周第三章金属在冲击载荷下的力学性能许多机器零件在服役时往往受到冲击载荷的作用,如火箭的发射、飞机的起飞和降落、汽车通过道路上的凹坑以及金属压力加工(铸造)等,为了评定材料传递冲击载荷的能力,揭示材料在冲击载荷下的力学行为,就需要进行相应的力学性能试验。
冲击载荷和静载荷的区别在于加载速率的不同加载速率:载荷施加于试样或机件时的速率,用单位时间内应力增加的数值表示。
形变速率:单位时间的变形量。
加载速率提高,形变速率也增加。
相对形迹速率也称为应变速率,即单位时间内应变的变化量。
冲击载荷2-104s-1 de10d静载荷10-5-10-2s-1一、冲击载荷下金属变形和断裂的特点冲击载荷下,由于载荷的能量性质使整个承载系统承受冲击能,所以机件、与机件相连物体的刚度都直接影响冲击过程的时间,从而影响加速度和惯性力的大小。
由于冲击过程持续时间短,测不准确,难于按惯性力计算机件内的应力,所以机件在冲击载荷下所受的应力,通常假定冲击能全部转换为机件内的弹性能,再按能量守恒法计算。
冲击弹性变形(弹性变形以声速传播,在金属介质中为4982m/s)能紧跟上冲击外力(5m/s)的变化,应变速率对金属材料的弹性行为及弹性模量没有影响。
应变速率对塑性变形、断裂却有显著的影响。
金属材料在冲击载荷下难以发生塑性变形。
1.1 应变速率对塑性变形的影响金属材料在冲击载荷作用下塑性变形难以充分进行,主要有以下两方面的原因:1. 由于冲击载荷下应力水平比较高,使许多位错源同时起作用,结果抑制了单晶体中易滑移阶段的产生与发展。
2. 冲击载荷增加了位错密度和滑移系数目,出现孪晶,减小了位错运动自由行程平均长度,增加了点缺陷的浓度。
纯铁的应力-应变曲线1-冲击载荷1.2 应变速率对强度的影响2-静载荷静载荷作用时:塑性变形比较均匀的分布在各个晶粒中;冲击载荷作用时:塑性变形则比较集中于某一局部区域,反映了塑性变形不均匀。
这种不均匀限制了塑性变形的发展,导致了屈服强度、抗拉强度的提高。
材料力学性能-第2版课后习题答案
第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面.6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶.8。
河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂.沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂.11。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
工程材料力学性能 第三版课后题答案(束德林)
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。
σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。
第三章 金属在冲击载荷作用下的力学性能
冲击韧度只是一种混合的韧性指标, 在设计中不能定量使用。
冲击功=(冲击弹性功+塑性功+撕裂 功)+空气阻力+机身振动+轴承与测量 机构的摩擦+试样的飞出等。
三、冲击韧度的工程意义
表示材料韧度的性能指标共有三个:冲击 韧度(第三章)、断裂韧度(第四章)、静力 韧度(第一章)分别用来评价材料在冲击载 荷、有裂纹的情况下静载荷、静拉伸载荷条件 下材料的韧度。
d / dt ,
d dl / l
dl 1 dl 1 d / dt l dt dt l l
静拉伸的应变速率在10 ~10 S ,当应变速率 大于10 S ,材料的力学性能将发生显著的变
-2 -1
-5
-2
-1
化。
冲击载荷下材料变形和断裂的特点
弹性变形阶段:应变速率对材料的弹性行为及弹性
b)
c)
塑性变形集中在局部区域,较之静载条件 极不均匀。
应变速率提高,材料塑性必定下降?
材料以正断方式断裂,塑性随应变速率的增 加而减小。 材料以切断方式断裂,塑性可能不变,也可 能提高。
应变速率对18Ni马氏体时效钢的强度和塑性的影响 (a)屈服强度和抗拉强度 (b)断面收缩率
应变速率对淬火回火35CrNiMoV钢的强度和塑性的影响 (a)屈服强度和抗拉强度 (b)延伸率和断面收缩率
物构件小,由于变形的几何约束小带来的脆化
程度也相应地小一些。
试验之前试样在所选 的低温条件下保温3045分钟,然后迅速将
焊堆长×宽×厚 64×15×4mm
其移至支座上,用落
锤对其冲击 。锤的冲 击能量是根据板材厚 度和材料的屈服强度 这两个参数决定的。 落锤试验示意图
第03章-金属在冲击载荷下的力学性能.复习进程
§3.3 低温脆性及韧脆转变温度
一、低温脆性现象 低温下,材料的脆性急剧增加。
esp.,对压力容器、桥梁、汽车、船舶的 影响较大。
实质为温度下降,屈服强度急剧增加 。
F.C.C金属,位错宽度比较大,一般 不显示低温脆性。
9
二、韧脆转变温度
判断标准 冲击能量 低阶能对应的t1-NDT(无塑性或零塑性转变
图中各条曲线对应不同裂纹尺寸的σc –t曲线。 AC线,小裂纹的的σc –T曲线,位于σs线以上; BC线,长裂纹的σc –T曲线,与σs点相交于B点-对 应的温度即为FTE(弹性断裂转变温度 )。 C点对应的坐标为σb和FTP(塑性断裂转变温度)。 因为在NDT附近有一不发生脆性破坏的最低应力, 于是得到A’点。 A’BC线-断裂终止线(CAT),表示不同应力水平 下脆性断裂扩展的终止温度。
弹性变形的速度4982m/s(>声速), 普通摆锤冲击试验的绝对变形速度5~5.5m/s。这样冲击弹性 变形总能紧跟上冲击外力的变化
2
二、影响冲击性能的微观因素
(1)位错的运动速率↑,派纳力增大,滑移临界切应力↑,金属产 生附加强化。参见图1-12.
(2)同时开动的位错源增加,增加位错密度,提高滑移系数目,塑变 极不均匀,限制了塑性变形的发展,导致屈服强度提高(多)、抗 拉强度提高(少)。参见图1-12.
•
材料塑性与 之间无单值依存关系。大多情况下,冲击时的塑性比 静拉伸的要低。高速变形时,某些金属可显示较高塑性(如密排六 方金属爆炸成型)
•
塑性和韧性随 提高而变化的特征与断裂方式有关。 如在一定加载规范和温度下,材料产生正断(因为切变抗力增加很大
)则,则随c断裂应•↗力而↗ c,变但化塑不性大可,能塑不性变随,• 也↗可而能↘。提如高材。料产生切断,
材料力学性能第三章
12/15/2014
3
第一节 冲击载荷下金属变形和断裂的特点
冲击载荷下,由于载荷的能量性质使整个承 载系统承受冲击能,所以机件、与机件相连 物体的刚度都直接影响冲击过程的时间,从 而影响加速度和惯性力的大小。 由于冲击过程持续时间短,测不准确,难于 按惯性力计算机件内的应力,所以机件在冲 击载荷下所受的应力,通常假定冲击能全部 转换为机件内的弹性能,再按能量守恒法计 算。
12/15/2014
安徽工业大学 材料科学与工程学院
10
12/15/2014
安徽工业大学 材料科学与工程学院
11
冲击吸收功Ak的大小不能真正反映材料的 韧脆程度:
这是由于缺口试样吸收的功没有完全用于试样变形 和破断, 一部分消耗于试样掷出、机身振动、空气阻力以及 轴承与测量机构中的摩擦消耗等。 通常试验时,这些功消耗可以忽略不计,但当摆锤 轴线与缺口中心线不一致时,上述功消耗较大,不 同试验机上测得的Ak值相差10-30%。
12/15/2014
安徽工业大学 材料科学与工程学院
15
第三节 低温脆性
一、低温脆性现象 定义:
体心立方晶体金属及合金或某些密排六方晶体金属及 其合金,特别是工程上常用的中、低强度结构钢(铁 素体-珠光体钢), 在试验温度低于某一温度tk时,会由韧性状态变为脆 性状态,冲击吸收功明显下降, 断裂机理由微孔聚集型变为穿晶解理,断口特征由纤 维状变为结晶状,这就是低温脆性。
12/15/2014 安徽工业大学 材料科学与工程学院
19
低温脆性是材料屈服强 度随着温度的降低急剧 增加的结果。 见右图,屈服点随着温 度的下降而升高,但材 料的解理断裂强度随着 温度的变化很小, 两线交点对应的温度就 是tk。
第三章冲击载荷下力学性能
3.1 冲击载荷下金属变形与断裂特点
3.1.1 几个概念 加载速率:指载荷施加于试样或机件时的速 率,用单位时间内应力增加的数值来表示。
dσ/dt ,单位为MPa/s。 变形速率:单位时间内的变形量。
绝对变形速率:单位时间内试件长度的增 长率V=dl/dt,单位为m/s。
相对变形速率:应变速率,ε=de/dt,单位为 s-1。
Ak 冲击功, An 净断面积。
V型缺口:冲击韧性值:aKV = AK /An 。
3.2.1 冲击试样
3.2.3 缺口冲击韧性的意义及应用
缺口试样的断裂可能经历三个阶段:裂纹
缺口试件的冲击断裂可能要吸收三部分能量:
裂纹形成能、亚临界扩展能、断裂能。
研究低温脆性的主要问题是确定韧脆-转化温度。 实验方法介绍:将试件冷却到不同的温度测定冲击
功AK,得到断口形貌特征与温度的关系曲线。然后按
一定的方法确定韧脆转化温度。
能量法:有下列几种:
(1)以V型缺口冲击试件测定的冲击功AK=15 ft 1bf(20.3N M) 对应的温度作为韧脆转化温度,并记为V15TT。
c.增加镍含量,细化晶粒,形成低碳马氏体和回火索 氏体,消除回火脆性等,将降低韧脆转化温度;
d.增加钢中镍、铜含量,有利于提高低阶能.
具体用途有:
①评定原材料的冶金质量和热加工后的半成品质量 ,通过测定冲击韧性和断口分析,可揭示原材料中 夹渣、气泡、偏析、严重分层等冶金缺陷和过热、 过烧、回火脆性等锻造以及热处理缺陷等;
②确定结构钢的冷脆倾向及韧脆转变温度;
③冲击韧性反映着材料对一次和少数次大能 量冲击断裂的抗力,因而对某些在特殊条件 下服役的零件,如弹壳、防弹甲板等,具有 参考价值:
Chapter 3 金属在冲击载荷下的力学性能
可见: 凡是使ζ c↑的因素,都使tk↓——有利 凡是使ζ s↑的因素,都使tk↑——不利
3 韧脆转变温度的确定 韧性 —— 材料塑性变形和断裂全过程吸收 能量的能力,是强度、塑性的综合表现,故 可用断裂消耗的功、断裂后塑性变形的大小、 断口形貌等确定tk 。 (1) 以低阶能定义tk,NDT (nil ductility temperature) ——无塑性或零塑性转变温度 ——低于NDT,断口由100%结晶区组成。
(3)改变零件的几何形状和尺寸
随工件尺寸的↑,Ak↓,tk↑。 原因: (1)工件尺寸↑,缺陷几率↑,脆性↑ (2)试样越大,越易从单向―三向应力 三向等拉伸最硬,故最脆。 小试样,尤薄试样,塑性区大,脆性↓。 厚试样,塑性区小,脆性↑。 大型构件或零件易发生脆性断裂
防止脆性断裂的主要措施:
(1)根据工作温度选择材料;
(2)限制缺陷尺寸和工作应力;
(三) 冲击弯曲试验用途
1、能反映原材料的冶金质量质、宏观
缺陷、显微组织敏感
2、根据冲击试验得到Ak(ak)-T曲线,测定材
料的韧脆转变温度,从而可以评定材料的低 温脆性倾向。
回火脆性
热脆现象
第三节
低温脆性
一、金属材料的典型冲击值—温度曲线 原因:单一温度下 的韧性指标并不能 准确代表完整、真 实韧性
1、温度
从系列冲击试验可得,有几个脆性区: 冷脆区、蓝脆、重结晶脆性。
蓝脆:
溶质原子(C,N)对位错的跟踪钉扎。
——注:静载荷下该温度降至300℃左右
重结晶脆性:
在 A1-A3 区内出现的脆性称重结晶脆性。 与钢处于两相混合组织区有关。
2、冲击速率
冲 击 速 率 ↑ ,
tk↑,脆性↑。
工程材料力学性能3
变速率,绝对单位为 m/s。相对形变速率是单位时间内真应变的变化量,也称为应变率,以 ε& 表
示,
ε& = de dt
单位为 s −1 ,常用的是相对形变速率。
一般地,应变率小于 10-2 s −1 金属力学性能没有明显变化,可以按静载荷处
理;应变率大于 10-2 s −1 (爆炸 104~106s-1),力学性能发生明显变化,金属材料
出现变脆趋势,此时需要考虑冲击载荷对金属力学行为和力学性能的影响。
第一节 冲击载荷下金属变形和断裂的特点 一、冲击载荷对弹性变形的影响
弹性变形在介质中以声速传播,钢中的声速约为 5×103m/s,而普通机械冲击 时的绝对形变速率在 103m/s 以下(摆锤冲击试样的速度约为 4.0~5.5 m/s),弹性 形变速率高于加载形变速率,所以对弹性性能没有影响。 二、冲击载荷对塑性变形和断裂的影响
体心立方金属及其合金存在低温脆性。 2、化学成分 (1)降低钢中的 C、P 含量;细化晶粒,热处理成低碳马氏体和回火素氏体,
可提高高阶能;
(2)增加钢中的 C、P、O 含量,Si、Al 含量超过一定值以及应变时效(需解释
应变时效的概念)等,降低高阶能; (3)钢中的 C、P、O 含量高,Si、Al 含量超过一定值,晶粒粗大,形成上贝氏
晶粒细化可以提高钢的断裂强度,降低韧脆转变温度。可以认为晶粒细化对
材料的力学性能有利而无害。 4、外部因素 (1)提高应变速率有类似降温的效果,使脆性转变温度提高; (2)试样尺寸增大,韧性下降,断口中纤维区面积减小,韧脆转变温度提高; (3)应力状态越硬,材料的塑性、韧性越低,韧脆转变温度也越高; (4)形变强化使屈服强度σ s 增大,韧脆转变温度升高;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
精选课件
§3-1 冲击载荷下金属变形和断裂的特点
1、冲击载荷下,机件、与机件相连物体的刚度 都直接影响冲击过程的时间,从而影响加速度和惯
性力的大小。
2、由于冲击过程持续时间短,测量不准确,难 于按惯性力计算机件内的应力,所以机件在冲击载
荷下所受的应力,通常假定冲击能全部转换为机件
内的弹性能,再按能量守恒法计算。
钢、淬火钢等)
12
精选课件
2、冲击试样开缺口的目的
使缺口附近造成应力集中,保证在缺口处破 断。
缺口的深度和尖锐程度对冲击吸收功影响显 著。缺口越深、越尖锐,Ak值越小,材料表现的 脆性越大。
所以,不同类型和尺寸试样的Ak值不能相互 换算和直接比较。
13
精选课件
三、冲击弯曲试验
1、冲击试验: 国家标准GB/T229-2007《金属材料 冲击试验方法》。
16
精选课件
3、冲击吸收能量K(冲击吸收功AK)并非完 全用于试样变形和破断。
冲击试验时,摆锤所消耗的总功k一部分用
于试样的变形和破断。另一部分消耗于试样的掷
出、机身振动、克服空气阻力以及轴承和测量机
构中的摩擦消耗,在摆锤试验时这部分功是忽略
不计的。当摆锤轴线与缺口中心线不一致时,上
述功耗比较大,所以不同试验机和不同人员操作
冲击载荷下屈服强度抗拉强度提高
5、材料塑性和应变速率之间无单值依存关系。
10
精选课件
6、塑性、韧性随应变率增加而变化的特征与 断裂方式有关。
如果在一定加载条件及温度下:
材料产生正断,则断裂应力变化不大,随应 变率的增加塑性减小;
如果材料产生切断,则断裂应力随着应变率
提高显著增加,塑性的变化不一定,可能不变或提
⑴冲击载荷下位错运动速率大,滑移临界切应 力增大,产生附加强化;使许多位错源同时起作用, 抑制了单晶体中易滑移阶段的产生与发展。
⑵冲击载荷增加了位错密度和滑移系数目,出 现孪晶,减小了位错运动自由行程平均长度,增加 了点缺陷的浓度。
9
精选课件
静载荷作用时:塑性 变形比较均匀的分布在各 个晶粒中;冲击载荷作用 时:塑性变形则比较集中 于某一局部区域,反映了 塑性变形不均匀。
拉伸试验的应变速率为10-5~10-2s-1,冲击试验的应
变速率为102~104s-1。试验表明,应变速率在10-4~
10-2s-1内,金属的力学性能没有明显变化,可按静载
荷处理。当应变速率大于10-2s-1时,力学性能将发生
明显变化。
4
精选课件
飞机起落架
➢断裂原因:
材料缺陷 疲劳 冲击载荷
精选课件
面均匀分布,而是主要被缺口附近的体积吸收,缺
口附近与缺口远处吸收的能量在数值上相差极大。
其二:吸收能量是体积的而不是面积,所以用
单位面积吸收的能量ak来表示材料冲击条件下的韧 性,其物理意义不够明确。
15
精选课件
2、Ak或K值相同的材料,其韧性不一定相同 因为,试样所吸收的冲击能量包括了三部分, 即弹性变形功、塑性变形功和裂纹扩展功。对不 同的材料,冲击吸收功数值可能相同,但这三部 分各占的比例确不一定相同。而真正能显示材料 韧性好坏的是后两部分,尤其是裂纹扩展功的大 小。(图)
7
精选课件
3、应变率对金属材料的弹性行为及弹性模量 没有影响。
因弹性变形是以声速在介质中传播的,声速 在金属介质中相当大,钢中为4982 m/s,普通摆 锤冲击时绝对变形速率只有5~5.5m/s,冲击弹性 变形总能跟上冲击力的变化。
8
精选课件
4、金属材料在冲击载荷作用下塑性变形难于充 分进行,原因为:
的k值相差10%~30%。
17
精选课件
五、冲击试验的应用
尽管用ak、Ak或K作为一个力学性能指标来表 示冲击韧性存在着各种不足之处,但其值的大小 对材料的组织十分敏感,能敏感地反映出材料品 质、宏观缺陷和显微组织的微小变化。同时,在 生产上的长期应用,已经积累了大量有价值的资 料和数据。常用来检验冶金、热加工质量。现在 还广泛应用在以下几个方面:
高。
11
精选课件
§3-2 冲击弯曲和冲击韧性
一、冲击韧性
是指材料在冲击载荷作用下吸收(弹性变形功)
塑性变形功和断裂功的能力。常用标准试样的冲击
吸收功AK来表示。 二、冲击试样 如图所示
1、冲击弯曲试验试样的种类:
夏比v型缺口冲击试样 缺口试样 夏比u型缺口冲击试样
无缺口冲击试样:适用于脆性材料(球铁、工具
18
精选课件
1、评定原材料的冶金缺陷和热加工后的质量
(如图所示)
检验冶金缺陷:夹渣、气泡、严重分层、偏
析以及夹杂物超级。
检验锻造和热处理缺陷:过热、过烧、回火
脆性、淬火和锻造裂纹等。
夏比摆锤
K=mg(H1-H2)
对采用u型缺口和v型缺
口的试样,其冲击吸收功分
别 用 Aku 和 Akv 来 表 示 。 试 验 前需对试验机进行校核。
旧 标 准 使 用 ak ( 冲 击 韧
性)作为性能指标。
14
精选课件
四、冲击值的意义和讨论
1、ak值没有明确的物理意义 其一:冲断试样时所消耗的能量并非沿试样截
冲击载荷与静载的主要差异:加载速率不同, 加载速率是指载荷施加于试样或机件的速率,用单 位时间内应力增加的数值表示。
3
精选课件
因加载速率提高,形变速率也随之增加,形变速
率是单位时间的变形量。因此,用形变速率(又分绝
对变形速率和相对变形速率)可以间接地反映加载速
率的变化。相对变形速率又称应变率。
不同机件的应变速率范围大约为10-6~106s-1。静
缺口 冲击载荷 降低温度
使塑性变形得不到充分发展,更 灵敏地反映材料的变脆倾向。 ( 脆断趋势)
钢的冷脆是一种低能量断裂,一般为解理断裂,
有时为准解理断裂或沿晶断裂。冷脆的断裂功极低,
后果是灾难性的。(原因是断裂面间距为原子间距,
力的作用距离只有0.1nm数量级,即使力很大,断
裂所消耗的功W=F.S也相当低)。
第三章 金属在冲击载荷下的 力学性能
江苏科技大学 材料科学与工程学院
精选课件
Titanic 号钢板和近代船用钢板的冲击试验结果
Titanic
近代船用钢板
Titanic ——含硫高的钢板,韧性很差,特别是在低温呈脆性。
精选课件
第三章 金属在冲击载荷下的力学性能
工程中,有许多机件是快速加载即冲击载荷 及低温条件下工作的,如:汽车在凸凹不平的道路 上行驶;飞机的起飞和降落;材料的压力加工等; 其性能将与常温、静载的不同。