霍尔效应及磁场的测定

合集下载

霍尔效应实验和霍尔法测量磁场

霍尔效应实验和霍尔法测量磁场

DH-MF-SJ 组合式磁场综合实验仪使用说明书一、概述DH-MF-SJ组合式磁场综合实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场 , 可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。

二、主要技术性能1、环境适应性:工作温度10 ~ 35℃;相对湿度 25 ~ 75%。

2、通用磁学测试仪2.1可调电压源: 0~15.00V、 10mA;2.2可调恒流源: 0~5.000mA 和 0~9.999mA可变量程,为霍尔器件提供工作电流,对于此实验系统默认为0-5.000mA 恒流源功能;2.3电压源和电流源通过电子开关选择设置,实现单独的电压源和电流源功能;2.4电流电压调节均采用数字编码开关;2.5数字电压表: 200mV、2V 和 20V 三档,4 位半数显,自动量程转换。

3、通用直流电源3.1 直流电源,电压0~30.00V 可调;电流 0~1.000A 可调;3.2 电流电压准确度: 0.5%±2 个字;3.3 电压粗调和细调,电流粗调和细调均采用数字编码开关。

4、测试架4.1底板尺寸: 780*160mm;4.2载物台尺寸: 320*150mm,用于放置螺线管和双线圈测试样品;4.3螺线管:线圈匝数 1800 匝左右 , 有效长度 181mm,等效半径 21mm;4.4双线圈:线圈匝数1400 匝( 单个 ) ,有效直径 72mm,二线圈中心间距 52mm;下表为电流与磁感应强度对应表( 双个线圈通电 ) :电流值( A)0.10.20.30.40.5中心磁感应强度( mT) 2.25 4.50 6.759.0011.254.5移动导轨机构:水平方向 0~60cm可调;垂直方向 0~36cm可调,最小分辨率 1mm;5、供电电源: AC 220V± 10%,总功耗: 60VA。

三、仪器构成及使用说明DH-MF-SJ组合式磁场综合实验仪由实验测试台、双线圈、螺线管、通用磁学测试仪、通用直流电源以及测试线等组成。

利用霍尔效应测磁场

利用霍尔效应测磁场

(5)
即 = ,测出 值即可求 。
3.霍尔效应与材料性能的关系
根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移
率高、电阻率亦较高)的材料。因
,就金属导体而言,迁移率和电阻率
均很低,而不良导体电阻率虽高,但迁移率极小,因而这两种材料的霍尔系数
都很小,不能用来制造霍尔器件。半导体迁移率高,电阻率适中,是制造霍尔
相等,样品两侧电荷的积累就达 到动态平衡,故有
(1)
(a)
(b)
设试样的宽为b,厚度为d,
图1 霍尔效应实验原理示意图
载流子浓度为n ,则
(a)载流子为电子(N型);(b)载流子为空穴(P型)
(2)
由(1)、(2)两式可得:
(3)
比例系数 RH
1 ne
称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
只要测出 (伏)以及知道 (安)、(高斯)和 (厘米)可按下式计算
(厘米3/库仑):
(4)
2.霍尔系数与其它参数间的关系
根据 可进一步确定以下参数:
(1)由 的符号(或霍尔电压的正负)判断样品的导电类型。判别的
方法是按图1所示的 和 的方向,若测得的
即 点电位高于
点的电位,则 为负,样品属N型;反之则为P型。
1
(2)由RH求载流子浓度n。即 n RH e 。应该指出,这个关系式是假定 所有载流子都具有相同的漂移速度得到的,严格一点,如果考虑载流子
的速度统计分布,需引入 3 的修正因子(可参阅黄昆、谢希德著《半
导体物理学》)。
8
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 n以及迁移率 之间有如下关系:
【实验目的】

霍尔效应测磁场实验报告(完整资料).doc

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室二、 实验项目名称:霍尔效应法测磁场三、实验学时:四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。

如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。

如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。

霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。

因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。

如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HH KI U B =(3)算出磁感应强度B 。

图 1霍耳效应示意图图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。

当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。

在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。

当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebdI v H -=(5)将式(5)代人式(4)可得 nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。

霍尔效应法测量磁场

霍尔效应法测量磁场

实验3.7 霍尔效应法测量磁场随着电子技术的不断发展,霍尔器件越来越得到广泛的应用。

霍尔效应不但是测定半导体材料电学参数的主要手段,而且,随着实验电子技术的进展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量电测、自动控制和信息处理等方面。

置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年在研究载流导体载磁场中受力性质时发现的一种电磁现象,后被称为霍尔效应。

【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。

2.掌握测试霍尔元件的工作特性的方法。

3.学习用霍尔效应测量磁场的方法。

4.学习用“对称测量法”消除副效应的影响。

5.描绘霍尔元件试样的V H− I S和V H− I M曲线。

6.学习用霍尔元件测绘长直螺线管的轴向磁场分布,描绘B - X曲线。

【实验原理】1.霍尔效应法测量磁场原理霍尔效应从本质上讲是指运动的带电粒子在磁场中受洛伦兹力作用而引起偏转的现象。

当带电粒子(电子或空穴)被约束在固定材料中时,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。

对于图3-20所示的半导体试样,若在X方向通以电流I S ,在Z方向加磁场B,则在Y方向即试样A、A' 方向电极两侧就开始聚积异号电荷而产生相应的附加电场—霍尔电场,电场的指向取决于试样的导电类型。

图3-20 霍尔效应法测量磁场原理显然,该电场阻止载流子继续向侧面偏移,当载流子所受到的横向电场力eE H与洛伦兹力相等时,样品两侧电荷的积累就达到平衡,故有eE H (3-44)v eB其中H E 为霍尔电场,v 是载流子在电场方向上的平均漂移速度。

设试样的宽度为b ,厚度为d ,载流子浓度为n ,则bd v ne I S = (3-45)由式(3-44)和式(3-45)可得dB I R d BI ne b E V S H S H H ===1(3-46) 即霍尔电压V H (A 、A ′电极之间的电压)与I S B 乘积成正比,与试样厚度d 成反比。

霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告一、实验目的1、了解霍尔效应的基本原理。

2、学习用霍尔效应法测量磁场的原理和方法。

3、掌握霍尔元件的特性和使用方法。

二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生一个横向电位差,这种现象称为霍尔效应。

这个横向电位差称为霍尔电压,用$U_H$ 表示。

霍尔电压的大小与电流$I$、磁感应强度$B$ 以及薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_H IB$其中,$K_H$ 称为霍尔系数,它与半导体材料的性质有关。

2、用霍尔效应法测磁场若已知霍尔元件的灵敏度$K_H$ ,通过测量霍尔电压$U_H$ 和电流$I$ ,就可以计算出磁感应强度$B$ :$B =\frac{U_H}{K_H I}$三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。

四、实验步骤1、仪器连接(1)将霍尔效应实验仪的各个部件按照说明书正确连接。

(2)将直流电源、毫安表、伏特表等仪器与实验仪连接好。

2、调节仪器(1)调节直流电源的输出电压,使通过霍尔元件的电流达到预定值。

(2)调节特斯拉计,使其归零。

3、测量霍尔电压(1)在不同的磁场强度下,测量霍尔元件两端的电压。

(2)改变电流的方向,再次测量霍尔电压。

4、数据记录将测量得到的数据记录在表格中,包括电流、磁场强度、霍尔电压等。

五、实验数据及处理1、实验数据记录|电流(mA)|磁场强度(T)|霍尔电压(mV)(正电流)|霍尔电压(mV)(负电流)|||||||50|01|256|-258||50|02|512|-515||50|03|768|-771||100|01|512|-515||100|02|1024|-1028||100|03|1536|-1542|2、数据处理(1)计算每个测量点的平均霍尔电压:$U_{H平均} =\frac{U_{H正} + U_{H负}}{2}$(2)根据霍尔系数$K_H$ 和平均霍尔电压、电流计算磁场强度:$B =\frac{U_{H平均}}{K_H I}$3、绘制曲线以磁场强度为横坐标,霍尔电压为纵坐标,绘制霍尔电压与磁场强度的关系曲线。

霍尔效应法测磁场的实验报告

霍尔效应法测磁场的实验报告

霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量不同磁场强度下的霍尔电压,并计算出磁场的大小。

二、实验原理1. 霍尔效应当导体中有电流流过时,如果将另一个垂直于电流方向和导体面的磁场施加在导体上,则会产生一种称为霍尔效应的现象。

该效应表明,在垂直于电流方向和导体面的方向上,将会产生一个电势差,这个电势差就叫做霍尔电压。

2. 磁场大小计算公式根据霍尔效应原理,可以得到计算磁场大小的公式为:B = (VH/IR)×1/K其中,B表示磁场强度;VH表示测得的霍尔电压;I表示通过样品的电流;R表示样品材料的电阻率;K表示霍尔系数。

三、实验器材1. 万用表2. 稳压直流电源3. 磁铁4. 霍尔元件四、实验步骤及数据处理1. 将稳压直流电源接入到霍尔元件上,并设置合适的输出电压和输出电流。

2. 将磁铁放置在霍尔元件的两侧,使磁场垂直于霍尔元件的平面。

3. 测量不同磁场强度下的电压值,并记录数据。

4. 计算出每个电压值对应的磁场大小,并绘制磁场强度与电压之间的关系曲线。

5. 根据实验数据计算出样品材料的电阻率和霍尔系数,并进行比较分析。

五、实验结果分析通过实验测量得到了不同磁场强度下的霍尔电压,根据计算公式可以得到相应的磁场大小。

绘制出了磁场强度与电压之间的关系曲线,可以看出二者呈现线性关系。

通过计算得到样品材料的电阻率和霍尔系数,可以发现不同样品材料具有不同的电阻率和霍尔系数,这也说明了不同材料对于磁场强度的响应程度是不同的。

六、实验结论本次实验通过测量霍尔效应法测量了不同磁场强度下的霍尔电压,并计算出了相应的磁场大小。

通过数据处理得到了样品材料的电阻率和霍尔系数,并进行了比较分析。

实验结果表明,不同材料对于磁场强度的响应程度是不同的,这也为磁场探测提供了一定的参考依据。

霍尔效应及磁场的测量

霍尔效应及磁场的测量
C.每个点都应用对称测量法消除霍尔元件的副效应.
实验操作要求
IM(mA) V1(mV) V2(mV) V3(mV) V4(mV) VH(mV)
IM-VH 关系 (位置在0mm处)
0 50 100 150 200 400 800 850 900 950 1000
IM-VH 关系曲线
IM/mA
500 400 300 200 100
霍尔电势差的产生和确定
B• + + + + + +
I
v
FE
b
H
FB
------
VH
FBFE
evB eVH b
IHnevbd
VH e1ndIHB
VHKHIHB
KH称为霍尔元件的灵敏度,是一个常数,单位为 mV/(m•AT)
VHKHIHB
由上式可看出,若已知霍尔片的灵敏度KH,只需分 别测出霍尔电流IH及霍尔电势差VH就可以算出磁场B
C. 每个点都应用对称测量法消除霍尔元件的 副效应。
实验操作要求
磁场沿水平方向的B~X分布 (IM=600mA)
x (mm) 0 4 8 12 13 14 15 16 17 18 19 20 V1(mV) V2(mV) V3(mV) V4(mV) VH(mV)
B(T)
电磁铁气隙磁场沿水平方向的分布B-X图
I
v
FE
b
H
F
- - - -B - -
V H
B
- - - - - -
IH
v
FB
FE
++++++
VH
VH>0
VH<0

利用霍尔效应测磁场

利用霍尔效应测磁场

实验6.17 利用霍尔效应测磁场1. 实验目的(1) 了解用霍尔器件测磁场的原理;(2) 掌握用霍尔器件测量长直螺线管内部磁场的方法;(3) 掌握检测一对共轴线圈耦合程度的方法。

2. 实验仪器HCC-1型霍尔效应测磁仪,HCC-1型交直流电源,长直螺线管和亥姆霍兹共轴线圈对。

3. 仪器简介HCC-1型霍尔效应测磁仪由下面五个分离部件组合而成:(1)霍尔测磁传感器霍尔测磁传感器又称为霍尔探杆。

探杆直径为6.0mm, 长度(含手柄)为520.0mm, 其前面400.0mm有毫米刻度, 可以方便地确定探杆前端(探头)在磁场中的位置。

探头内安装有HZ-2 型霍尔器件, 作为测磁传感器。

每个霍尔器件的灵敏度K H已标在霍尔探杆的手柄上。

(2)HCC-1 型霍尔效应测磁仪该仪器又称为霍尔电压测量仪。

它的前面板如图6.17-1所示。

将“调零与测量”开关拨至“× 1”档, 可以测量0 ~ 0.75mV的霍尔电压。

HCC-1型霍尔效应测磁仪还可以给霍尔器件提供0 ~ 20mA的控制电流。

图6.17-1 HCC-1型霍尔效应测磁仪的前面板图(3)HCC-1型交直流电源该电源可以提供交流4.0V、8.0V或直流0.0 ~ l0.0V、最大电流为2.0A的激磁电流。

它的前面板如图6.17-2所示。

(4)长直螺线管它是用线径Ф=1.0rnrn的漆包线在有效长度L =30.0cm的骨架上按n =36 ·匝cm-1 密度绕成直径为24.0mm的螺线管,两端口总长32.0cm。

(5)共轴线圈对它是装在一个带毫米刻度尺座架上的一对线圈, 其中一个线圈可以在座架上移动, 以改变两个线圈中心之间的距离。

线圈的线径Ф= 0.9mm, 每个线圈的匝数N =360匝, 直径D =13.6cm 。

4. 实验原理(1)用霍尔器件测磁场的原理如图6.17-3所示, 把一金属薄片放在磁场中, 磁感应强度B 垂直于薄片向上, 当在MN方向通入电流(称为控制电流)I 时, 在P 、Q 两侧面之间就会产生一定的电势差。

利用霍尔效应测量磁场的原理

利用霍尔效应测量磁场的原理

利用霍尔效应测量磁场的原理一、引言霍尔效应是一种用于测量磁场的重要原理,它利用了材料中的载流子在磁场中受到洛伦兹力的作用而产生的电势差来进行测量。

本文将详细介绍利用霍尔效应测量磁场的原理。

二、霍尔效应基础知识1. 霍尔效应定义霍尔效应是指当把一个导体置于外加磁场中时,在导体内部会形成一定大小和方向的电势差,这种现象称为霍尔效应。

2. 霍尔电压公式在一个宽度为w、长度为l、厚度为t的导体内,当通过该导体沿着x 轴方向有电流I流过时,如果该导体放置在磁感强度B垂直于x轴方向的外加磁场中,则在y轴方向会出现一个电势差VH。

其中,VH与I、B以及l、w和t之间存在如下关系:VH = RHB * I * B其中RHB称为霍尔系数或霍尔常数,它与材料有关。

3. 霍尔系数公式对于n型半导体材料而言,其霍尔系数RHB可表示为:RHB = 1/ne其中,n为半导体中的载流子浓度,e为电子电荷。

4. 霍尔效应的应用霍尔效应广泛应用于磁场测量、传感器、电子元件等领域。

其中,利用霍尔效应进行磁场测量是其最重要的应用之一。

三、利用霍尔效应测量磁场的原理1. 测量原理利用霍尔效应进行磁场测量的原理基于以下两个方面:(1)材料中载流子在磁场中受到洛伦兹力的作用而产生电势差;(2)在材料内部形成沿着磁场方向的电势差,在外部形成垂直于磁场方向的电势差。

根据这两个方面,可以通过将一个材料放置在外加磁场中,并通过测量该材料内部沿着磁场方向和垂直于磁场方向的电势差来确定外加磁场强度大小和方向。

2. 测量步骤利用霍尔效应进行磁场测量需要按以下步骤进行:(1)选择合适的半导体材料:选择具有良好霍尔效应的半导体材料,如InSb、InAs等。

(2)制备霍尔元件:将半导体材料制成一定尺寸的薄片,然后在薄片上制作电极。

(3)放置在磁场中:将霍尔元件放置在外加磁场中,并通过电流源给霍尔元件提供一定大小的电流。

(4)测量电势差:通过两个电极间的电势差来测量沿着磁场方向和垂直于磁场方向的电势差,从而确定外加磁场强度大小和方向。

实验5霍尔效应实验和霍尔法测量磁场

实验5霍尔效应实验和霍尔法测量磁场

实验19 霍尔效应实验和霍尔法测量磁场霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。

1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。

后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。

随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。

在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。

近年来,霍尔效应实验不断有新发现。

1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。

目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。

在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。

[实验目的]1、霍尔效应原理及霍尔元件有关参数的含义和作用2、测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流I s、磁感应强度B及励磁电流I M之间的关系。

3、学习利用霍尔效应测量磁感应强度B及磁场分布。

4、学习用“对称交换测量法”消除负效应产生的系统误差。

[实验仪器]DH4512系列霍尔效应实验仪[实验原理]霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如图2-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载图2-1流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。

用霍尔效应法测定磁场

用霍尔效应法测定磁场

注意 1.开机(或关机)前应将IS、IM旋钮逆时针旋到底。仪器接 通电源后,预热数分钟即可进行实验。 2.在调节IS、IM两旋钮时一定要注意切换“测量选择”,不可 过大。
实验思考
霍尔电压是怎么产生的?如何判断材料的导电 类型?
实验中为什么要采用对称测量法?
霍尔效应特性研究试验中,提供的磁感觉强度 大小和方向如何确定?
用霍尔效应法测定磁场
实验目的
了解产生霍尔效应的机理 掌握用霍尔元件测量磁场的基本方法
实验仪器
HL-1型螺线管磁场测定组合仪
实验原理 实验内容
实验思考
实验原理
1. 霍尔效应:在磁场中,载流导体或半导体上 出现横向电势差的现象
1879年美国物理 学家霍尔发现
2.霍尔电压:霍尔效应中产生的电势差 上图中导体上下两端面出现电势差
B
VH fL f
m
B
电荷受电力 Fe qEH
fe Fe
I
v
b
当qEH qB 时
电势差为
VH EH b
E E d
Bb
4.霍尔系数 霍尔电阻 由电流强度的定义有
I nqdb
I nqdb
IB VH Bb nqd
n 单位体积中的粒子数
B
B
VH
fL f
实验思考 答案
然后求
、 、 和

代数平均值
V1 V2 V3 V4 VH 4
实验内容与步骤
霍尔输出特性测量
测绘元件的UH—IS曲线
测绘元件的UH—IM曲线 测出螺线管轴线的磁感觉强度的分布UH—x 曲线。
霍尔效应实验仪
IS是给霍尔片加电流的换向开关,IM是励磁电流的换向开关。

实验十二用霍尔效应测磁场

实验十二用霍尔效应测磁场

实验十二 用霍尔效应测磁场实验目的 1.了解霍尔效应的基本原理。

.了解霍尔效应的基本原理。

2.学习用霍尔效应测量磁场。

.学习用霍尔效应测量磁场。

实验仪器HL —4霍尔效应仪,稳流电源,稳压电源,安培表,毫安表,功率函数发生器,特斯拉计,数字万用表,电阻箱等。

功率函数发生器,特斯拉计,数字万用表,电阻箱等。

实验原理1.霍尔效应.霍尔效应若将通有电流的导体置于磁场B 之中,磁场B (沿z 轴)垂直于电流I H (沿x 轴)的方向,如图4-14-1所示,则在导体中垂直于B 和I H 的方向上出现一个横向电位差U H ,这个现象称为霍尔效应。

效应。

这一效应对金属来说并不显著,但对半导体非常显著。

霍尔效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。

还可以用霍尔效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。

用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。

大。

用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。

霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛沦兹力,垂直磁场对运动电荷产生一个洛沦兹力)(B v F ´=q B (4-14-1)式中q 为电子电荷。

洛沦兹力使电荷产生横向的偏转,洛沦兹力使电荷产生横向的偏转,由于样品有边界,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =q E 与磁场作用的洛沦兹力相抵消为止,即作用的洛沦兹力相抵消为止,即E B v q q =´)( (4-14-2)这时电荷在样品中流动时将不再偏转,霍尔电势差就是由这个电场建立起来的。

这时电荷在样品中流动时将不再偏转,霍尔电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。

霍尔效应测磁场.

霍尔效应测磁场.

图14—1 半导体中的霍尔效应(a )N 型半导体 (b )P 型半导体实验十四 用霍尔效应法测磁场分布测量磁场有许多方法,如霍尔效应法、感应法、冲击法和核磁共振法等。

选用什么方法取决于被测磁场的类型和强弱。

本实验主要介绍霍尔效应法。

它具有测量原理和方法简单、探头体积小、测量敏捷,并能直接连续读数等优点。

利用霍尔效应还可制成测量磁场的特斯拉计(又称高斯计),可测量半导体材料参数等。

[实验目的]1. 了解利用霍尔效应法测量磁场的原理以及有关霍尔器件对材料要求的知识。

2. 学习用“对称测量法”消除副效应的影响,测试霍尔器件的S H I V -和M H I V -曲线。

3. 测试螺线管内部的B —X (水平磁场分布)曲线。

[实验原理]1.霍尔效应将通有电流的半导体薄片置于匀强磁场中,如图14—1所示。

如果电流I 沿X 方向,磁场B 沿Z 方向,则在y 方向上的两截面(M ,N )间就会有电位差出现,这种现象是霍尔在1879年发现的,故称霍尔效应。

横向电位差V H 称为霍尔电压。

该半导体薄片称为霍尔元件。

霍尔效应是运动载流子(电子或空穴)在磁场中受到洛仑兹力的作用而产生的。

2.霍尔电压V H 与外磁场B 的关系(特斯拉计原理)若霍尔元件为宽l ,厚h 的N 型半导体,如图14—1(a )所示。

设电子的电荷为e ,速度为v ,它在磁场中受到的洛仑兹力F m = – e v ×B ,并指向M 面,造成电子流发生偏转,而有部分电子聚积于M 面上,使M ,N 之间建立了电场E ,该电场又对电子具有反方向的静电力F e =e E ,随着电子向M 侧继续积累,该电场也逐渐增强。

直到F e = – F m ,达到平衡,在M ,N 间形成稳定的霍尔电场E H 。

于是在霍尔片M ,N 间产生一稳定的电位差V H ,此即为霍尔电压。

这时:– e E H = F e = – F m = e v ×B E H = –v ×B当三者互相垂直时,霍尔电场为 E H = v B 并指向y 轴负向。

霍尔效应与磁场测量实验报告

霍尔效应与磁场测量实验报告

霍尔效应与磁场测量实验报告霍尔效应与磁场测量实验报告
霍尔效应是一种被广泛使用的物理现象,它通过测量电流电压之间的关系来计算磁场的强度。

本报告的目的是通过实验来计算用铁磁体产生的磁场的强度,最后通过实验结果验证霍尔效应的有效性。

实验步骤:首先准备好所需的实验仪器,包括铁磁体、变压器、导线和AC电压表。

使用铁磁体将2个导线搭接,并在两端形成一个铁氧体磁场。

然后给变压器输入AC电压,测量导线的交流电压大小。

最后,根据物理公式计算磁场的强度。

实验结果:从实验室结果来看,在输入AC电压为120V时,测得的导线两端的电压分别为2V和3V。

根据霍尔效应,磁场的强度可以计算为0.5A/m。

重复实验结果:为了确认实验结果的准确性,重复了试验,得到的实验结果基本一致,磁场强度也基本保持在0.5A/m左右。

结论:从实验结果来看,霍尔效应能有效地测量由铁氧体产生的磁场强度,结果基本一致,可靠性较高。

霍尔效应及磁场的测定

霍尔效应及磁场的测定

霍尔效应及磁场的测定近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。

本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。

【实验目的与要求】1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法;2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。

【实验原理】 一、霍尔效应图8-1 霍尔效应原理图把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。

如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。

(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。

假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。

由于洛伦兹力B v e F m ⨯-=的作用,电子向一侧偏转,在半导体薄片的横向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。

电子在霍尔电场H E 中所受的电场力为H H E e F -=,当电场力与磁场力达到平衡时,有()()0=⨯-+-B v e E e HB v E H ⨯-=若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压U H =wE H =wvB (1)根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2)式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。

由式(1)和式(2)可得IB K IB d R end IB U H H H =⎪⎭⎫ ⎝⎛== (3)即IK U B H H = (4)式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔元件的灵敏度。

用霍尔效应测量磁场

用霍尔效应测量磁场

R0 是两等位面间的电阻,由此可见,在 R0 确定的情况下,
U0 与 Is的大小成正比,且其正负随 Is的方向而改变。
当元件 X 方向通以工作电流 IS,Z 方向加磁场 B 时,由于霍尔片内的载流子
速度服从统计分布,有快有慢。在到达动态平衡时,在磁场的作用下慢速快 速的载流子将在洛仑兹力和霍耳电场的共同作用下,沿 y 轴分别向相反的两 侧偏转,这些载流子的动能将转化为热能,使两侧的温升不同,因而造成 y
与磁感强度 B 值就可以从仪器上直接读出来了。这样的测磁仪器称特斯拉计
(原称高斯计),特斯拉和高斯都是磁感强度 B 的单位,以上所述,就是用 霍尔元件测量磁场的原理。
实验误差及其消除
由于制作时,两个霍尔电势不可能绝对对称的焊在霍尔片两侧(图 2-1)、霍 尔片电阻率不均匀、控制电流极的端面接触不良(图 2-2)都可能造成 P,Q两极 不处在同一等位面上,此时虽未加磁场,但 P,Q 间存在电势差 U0,此称不等位电势, U0=IsR0
如 3)所述霍尔元件在 x 方向有温度梯度 dxdT ,引起载流子沿梯度方向扩散而有热电流 Q 通过元 件,在此过程中载流子受 Z 方向的磁场 B 作用下,在 y 方向引起类似爱廷豪森效应的温差 TA-TB, 由此产生的电势差 UR∝QB,其符号与 B 的方向有关,与 Is的方向无关。为了减少和消除以上效应 的附加电势差,利用这些附加电势差与霍尔元件工作电流 IS,磁场 B(即相应的励磁电流 IM)的 关系,采用对称(交换)测量法进行测量。 当+IS,+IM时 UAB1 =+UH+U0+UE+UN+UR 当+IS,-IM时 UAB2 =-UH+U0-UE+UN+UR
2)对于半无限长螺丝管端或有限长螺线管两端口磁场为
B≈uonl/2

霍尔效应测磁场实验报告(共7篇)

霍尔效应测磁场实验报告(共7篇)

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

霍尔效应及磁场的测定实验报告

霍尔效应及磁场的测定实验报告

霍尔效应及磁场的测定实验报告霍尔效应及磁场的测定实验报告实验目的:1.了解霍尔效应的概念及其表现形式;2.掌握霍尔元件的使用和原理;3.探究磁场对于霍尔效应的影响及其测定方法。

实验原理:霍尔效应是指在垂直于导体芯片的方向上,当导体内部流动电荷受外磁场力作用弯曲轨迹时,在芯片两端被电极接收时所产生的电势差的现象。

霍尔效应是一种利用磁场和电流来测量电学参数的重要方法。

常用的霍尔元件由具有导电性的半导体材料经特殊处理后制成,通过对霍尔电压和磁场的测量,可以确定材料中载流子的类型、浓度、迁移率等参数。

实验装置:霍尔元件、恒流源、电子万用表、多用万用表、直流稳压电源、磁铁。

实验过程:1.连接实验电路:将霍尔元件放在磁场中心,使用恒流源连接霍尔元件的两端,同时使用电子万用表测量霍尔电势差;2.调整磁场:将磁铁放置在霍尔元件下方,并调整磁铁的位置,使得磁场与芯片法向垂直;3.测量数据:固定电流值,分别测量不同磁场下的霍尔电势差,并记录测量数据。

实验结果:1.横向霍尔电势差随着磁场的增加呈线性增长关系;2.随着电流的增大,横向霍尔电势差的值也增大;3.改变磁场方向,横向电势差的正负号随之改变。

实验分析:在固定电流的情况下,横向霍尔电势差的大小与磁场的大小呈线性关系,符合霍尔效应的理论预测。

横向电势差的正负号与磁场的方向有关,这是因为电子在磁场力的作用下,被弯曲侧向流动,而侧向电场的方向随之方向改变。

此外,仪器误差也会对测量结果造成影响。

实验结论:通过对横向霍尔电势差与磁场的关系的测量,初步探究了霍尔效应的表现形式,并明确了磁场方向对霍尔电势差的影响。

通过对测量数据的处理和分析,了解了霍尔元件的使用及其参数的测量方法,为今后在电学和材料科学领域的实际应用提供了基础。

霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告

竭诚为您提供优质文档/双击可除霍尔效应法测磁场实验报告篇一:物理实验报告3_利用霍尔效应测磁场实验名称:利用霍耳效应测磁场实验目的:a.了解产生霍耳效应的物理过程;b.学习用霍尔器件测量长直螺线管的轴向磁场分布;c.学习用“对称测量法”消除负效应的影响,测量试样的Vh?Is和Vh?Im曲线;d.确定试样的导电类型、载流子浓度以及迁移率。

实验仪器:Th-h型霍尔效应实验组合仪等。

实验原理和方法:1.用霍尔器件测量磁场的工作原理如下图所示,一块切成矩形的半导体薄片长为l、宽为b、厚为d,置于磁场中。

磁场b垂直于薄片平面。

若沿着薄片长的方向有电流I通过,则在侧面A和b间产生电位差Vh?VA?Vb。

此电位差称为霍尔电压。

半导体片中的电子都处于一定的能带之中,但能参与导电的只是导带中的电子和价带中的空穴,它们被称为载流子。

对于n型半导体片来说,多数载流子为电子;在p型半导体中,多数载流子被称为空穴。

再研究半导体的特性时,有事可以忽略少数载流子的影响。

霍尔效应是由运动电荷在磁场中收到洛仑兹力的作用而产生的。

以n型半导体构成的霍尔元件为例,多数载流子为电子,设电子的运动速度为v,则它在磁场中收到的磁场力即洛仑兹力为Fm??ev?bF的方向垂直于v和b构成的平面,并遵守右手螺旋法则,上式表明洛仑兹力F的方向与电荷的正负有关。

自由电子在磁场作用下发生定向便宜,薄片两侧面分别出现了正负电荷的积聚,以两个侧面有了电位差。

同时,由于两侧面之间的电位差的存在,由此而产生静电场,若其电场强度为ex,则电子又受到一个静电力作用,其大小为Fe?eex电子所受的静电力与洛仑兹力相反。

当两个力的大小相等时,达到一种平衡即霍尔电势不再变化,电子也不再偏转,此时,ex?bV两个侧面的电位差Vh?exb由I?nevbd及以上两式得Vh?[1/(ned)]Ib其中:n为单位体积内的电子数;e为电子电量;d为薄片厚度。

令霍尔器件灵敏度系数则Vh?IsVh?KhIb若常数Kh已知,并测定了霍尔电动势Vh和电流I就可由上式求出磁感应强度b的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍尔效应及磁场的测定近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。

本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。

【实验目的与要求】1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法;2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。

【实验原理】 一、霍尔效应图8-1 霍尔效应原理图把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。

如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。

(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。

假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。

由于洛伦兹力Bv e F m⨯-=的作用,电子向一侧偏转,在半导体薄片的横向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。

电子在霍尔电场H E 中所受的电场力为HHEe F -=,当电场力与磁场力达到平衡时,有()()0=⨯-+-B v e E e HBv E H ⨯-=若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压U H =wE H =wvB (1)根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2)式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。

由式(1)和式(2)可得IB K IB d R end IBUH H H=⎪⎭⎫⎝⎛==(3)即IK UB H H=(4)式中enR H1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔元件的灵敏度。

在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。

对于一定的霍尔元件,K H 是一常数,可用实验方法测定。

图8-2 SS95A 型集成霍尔传感器结构图虽然从理论上讲霍尔元件在无磁场作用(B =0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。

随着科技的发展,新的集成化(IC)器件不断被研制成功,本实验采用SS95A 型集成霍尔传感器(结构示意图如图8-2所示)是一种高灵敏度传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。

其特点是输出信号大,并且已消除剩余电压的影响。

SS95A 型集成霍尔传感器有三根引线,分别是:“V +”、“V -”、“V out ”。

其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。

由于SS95A 型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。

在实验时,只要在磁感应强度为零(B =0)条件下,“V out ”和“V -”之间的电压为2.500V ,则传感器就处于标准工作状态之下。

当螺线管内有磁场且集成霍尔传感器在标准工作电流时,传感器所在处磁场强度为:()KU KUB '=-=500.2式中U 为传感器补偿前的输出电压,K 为该传感器的灵敏度,U '为经2.500V 外接电压补偿后传感器的输出电压。

二、载流密绕螺线管的磁感应强度的分布若长为l 、半径为R 的载流密绕直螺线管的总匝数为N ,通有励磁电流I m ,当l>>R 时,则在螺线管中部附近轴线上的磁场均匀,磁感应强度mI l N Bμ=,μ0=4π×10-7T ·m/A为真空磁导率。

端口的磁感应强度B 0为中部磁感应强度B 的一半,由于存在漏磁现象,实际测量出的BB 210<。

【实验仪器】图8-3 螺线管磁场测量电路示意图图8-3为螺线管磁场测量电路示意图,它的主要部件有集成霍尔传感器探测棒、螺线管、传感器工作电源和补偿电源、数字电压表、励磁电源、安培表、滑线变阻器等组成。

1.SS95A 型集成霍尔传感器工作电压:5.00V(DC);磁场测量范围:-67mT~+67mT ; 在B =0时,零点电压:2.500±0.075V ;该传感器内含激光修正的薄膜电阻,提供精确的灵敏度和温度补偿,不必考虑剩余电压的影响。

2.螺线管长度:26.0cm ,管内径Φ2.5cm ,外径Φ4.5cm 。

螺线管层数:10层,螺线管匝数:3000±20匝。

螺线管中央均匀磁场长度:>10.0cm 。

3.电源组和数字电压表:传感器工作电源可在4.750V~5.250V 作精细微调,传感器补偿电源可在2.400V~2.600V 作精细微调。

四位半数字电压表:有0~19.999V 和0~1999.9mV 两档。

【实验内容】 一、必做内容 (一)电路补偿调节1.按图8-3接好电路。

螺线管通过双刀换向开关K 2与励磁电流电路相接。

集成霍尔传感器的“V +”和“V -”分别与4.8V~5.2V 可调直流电源输出端的正负相接(正负极请勿接错)。

“V out ”和“V -”与数字电压表政府相接。

2.断开开关K 2(当K 2处于中间位置时断开),是霍尔传感器处于零磁场条件下,把开关K 1指向1,调节传感器工作电源输出电压(4.8V~5.2V 电源),使数字电压显示的“V out ”和“V -”的电压指示值为2.500V ,这时集成霍尔元件便达到了标准化工作状态,即集成霍尔传感通过电流达到规定的数值,且剩余电压恰好达到补偿,U 0=0V 。

3.仍断开开关K 2,在保持“V +”和“V -”电压不变的情况下,把开关K 1指向2,调节传感器补偿电源输出电压(2.4V~2.6V 电源),使数字电压表指示值为0(这时应将数字电压表量程开关拨向mV 档),也就是用一外接2.500V 的电位差与传感器输出2.500V 电位差进行补偿,这样数字电压表读出电压就是集成霍尔传感器霍尔电压U ' (二)测定霍尔传感器的灵敏度K1.改变输入螺线管的直流电流I m ,将传感器处于螺线管的中央位置(即X =13.0cm 左右),测量U '———I m 关系,记录10组数据,I m 范围在0——500mA ,可每隔50mA 测一次。

2.用最小二乘法求U '———I m 相关方程和相关系数r 。

并求出直线的斜率mI U K ∆'∆='。

3.长直螺线管理论公式为mI l N Bμ=,但实验中所用螺线管不是无限长,因此公式:m I DL N B 22+=μ计算出磁感应强度B ,式中L =26.0cm 为螺线管长度,=D 3.5cm 为螺线管的平均直径,N =3000匝是线圈匝数,则集成霍尔传感器的灵敏度为:K NDL I U NDL BU K m'+=∆'∆+=∆'∆=022022μμ(三)测量通电螺线管中的磁场分布1.当螺线管通恒定电流(如I m =250mA)时,测量U '———x 关系。

x 范围为0~26.0cm ,螺线管端口附近的测量点应比中央部位的测量点密一些。

2.利用上面所得的传感器灵敏度K 计算B~x 关系,并作出B~x 的分布图。

二、选做内容设计一个实验,用SS95A 型霍尔传感器测量地磁场水平分量。

【实验数据记录】表1 霍尔传感器灵敏度的测定霍尔传感器位置X =13.00cm 序号 1 2 3 4 5 6 7 8 9 10 励磁电流I m /mA 50 100 150 200 250 300 350 400 450 500 U '/mV27487091113135158179201223表2 螺线管磁场轴线的分布的测量励磁电流I m =250mA 序号 1 2 3 4 5 6 7 8 9 10 X /cm 0.0 0.5 1.0 1.5 2.0 5.0 7.0 9.0 11.0 13.0 U '/mV 64 80 90 98 103 112 114 114 114 114 B /10-3T2.112.632.963.223.393.683.753.753.753.75【数据处理与分析】1.用最小二乘法求出U '———I m 相关方程和相关系数r (要写出计算过程)。

并求出直线的斜率K '。

由Excel 可得:*线性相关方程为:4.4437.0+='m I U表1 霍尔传感器灵敏度的测定霍尔传感器位置X =13.00cm 序号 1 2 3 4 5 6 7 8 9 10 励磁电流I m /mA 50 100 150 200 250 300 350 400 450 500 U '/mV27487091113135158179201223则:mA 275=m ImV 5.124='U 22mA96250=m I22mV3.19434='UmV mA 5.34237⋅='⋅U I m mV mA 43245⋅='⋅U I m*相关系数:()()='-'-'⋅-'⋅=2222U U I IU I U I r mmm m 0.999*直线斜率:Ω='437.0K2.计算霍尔传感器的灵敏度K NDL I U NDL BU Km'+=∆'∆+=∆'∆=022022μμV/T4.30022022='+=∆'∆+=∆'∆=K NDL I U NDL BU K mμμ3.计算B~x 关系列表表示,并用坐标纸作出整个螺线管的B~x 分布图。

表2 螺线管磁场轴线的分布的测量励磁电流I m =250mA 序号 1 2 3 4 5 6 7 8 9 10 X /cm 0.0 0.5 1.0 1.5 2.0 5.0 7.0 9.0 11.0 13.0 U '/mV 64 80 90 98 103 112 114 114 114 114 B /10-3T 2.112.632.963.223.393.683.753.753.753.75【注意事项】1.集成霍尔元件的“V +”和“V -”不能接反,否则将损坏元件。

相关文档
最新文档