球阀的设计与计算
手动球阀长度计算公式
手动球阀长度计算公式手动球阀是一种常用的流体控制阀门,它通过旋转球体来控制流体的通断和流量。
在实际工程中,为了确保阀门的正常运行,需要对手动球阀的长度进行计算。
本文将介绍手动球阀长度计算的公式和相关参数,希望能够对相关工程人员有所帮助。
手动球阀长度计算的公式如下:L = L1 + L2 + L3 + L4 + L5。
其中,L为手动球阀的总长度,L1为法兰连接的长度,L2为球阀本体长度,L3为手柄长度,L4为传动装置长度,L5为连接管道的长度。
在实际应用中,需要根据具体的工程要求和参数来确定每个参数的数值。
下面将对每个参数进行详细介绍。
1. 法兰连接的长度(L1)。
法兰连接的长度取决于阀门的连接方式和法兰的尺寸。
通常情况下,法兰连接的长度可以通过相关的标准和规范来确定,如GB/T 9113.1-2000《法兰和法兰连接尺寸》中规定了不同类型的法兰连接的长度范围。
在实际计算中,需要根据具体的法兰类型和尺寸来确定L1的数值。
2. 球阀本体长度(L2)。
球阀本体长度是指阀门本身的长度,通常情况下,可以通过阀门的产品标准或者相关的设计图纸来确定。
在实际计算中,需要根据具体的球阀型号和尺寸来确定L2的数值。
3. 手柄长度(L3)。
手柄长度是指手动球阀上用于旋转的手柄的长度,通常情况下,手柄的长度可以通过相关的标准和规范来确定,如GB/T 12222-2005《阀门术语》中规定了手柄长度的范围。
在实际计算中,需要根据具体的手柄类型和尺寸来确定L3的数值。
4. 传动装置长度(L4)。
传动装置长度是指手动球阀上用于传动的装置的长度,通常情况下,传动装置的长度可以通过相关的设计图纸或者产品标准来确定。
在实际计算中,需要根据具体的传动装置类型和尺寸来确定L4的数值。
5. 连接管道的长度(L5)。
连接管道的长度取决于阀门的安装位置和管道的布置方式。
通常情况下,连接管道的长度可以通过相关的设计图纸或者现场测量来确定。
在实际计算中,需要根据具体的管道布置和尺寸来确定L5的数值。
球阀设计计算
阀座密封面工作比压
q
阀座密封圈对球体的法向压力
N
密封圈环带面积
AMH
球体半径
R
球体中心至密封面内径的距离
l1
球体中心至密封面外径的距离
l2
固定球球阀转矩的计算 单向密封阀座
1
V形及圆环形填料
阀杆与填料间的摩擦力
FT
阀杆与填料间的摩擦系数
μt
填料圈数
z
单圈填料高度
h
阀杆与填料接触部分直径
dt
设计压力
设计给定 设计给定 设计给定 设计给定
ψ cosψ
设计给定
单位
计算结果
N N mm mm
Mpa
mm N N
Mpa
N
度
.mm²
N.mm
42481.02 37926.88
225 214 10 222.7
4554.142
3879.142 1.3
675
14.79272 60077.23
45 0.707107 4061.27
p
2 V形及圆环形填料摩擦力矩
MT
O形密封圈的摩擦力
FT
阀杆与填料接触部分直径
dt
阀杆与填料间的摩擦系数
μ0
O形密封圈截面直径
d0
设计压力
p
2 O形密封圈的摩擦力矩
MT
3 阀杆台肩与止推垫间摩擦转矩
MU
DT dt μt
4 阀杆轴承摩擦转矩
MC
固定球阀杆与球体接触部分强度计算
固定球阀杆强度验算
1
公式或说明
计算项目
符号
固定球球阀阀座密封比压的计算
单向密封球阀密封比压的计算
球阀当量长度
球阀当量长度球阀当量长度是指通过球阀时,流体对球阀的压力损失与同等长度的直管道中流体对管道的压力损失相等所需的管道长度。
它是衡量球阀性能好坏的重要指标之一。
一、球阀当量长度的计算方法1.1 球阀当量长度计算公式球阀当量长度可以用以下公式计算:Le = K * D其中,Le为球阀当量长度,K为局部阻力系数,D为管道直径。
1.2 局部阻力系数K局部阻力系数K是一个无量纲参数,它代表了流体通过某个局部装置时产生的压力损失与同等长度直管道中流体产生的压力损失之比。
不同形状和尺寸的局部装置都有不同的局部阻力系数K值。
常见局部装置的局部阻力系数K值如下:- 直通孔:0.5- 弯头:0.3~0.4- 管嘴:0.6~0.8- 球阀:30~150从上述数据可以看出,球阀在所有常见局部装置中具有最大的局部阻力系数K值,这也意味着在相同条件下,通过球阀时产生的压力损失最大。
1.3 球阀当量长度的影响因素球阀当量长度不仅与球阀本身的结构和尺寸有关,还受到管道直径、流速、介质密度、粘度等因素的影响。
1.4 球阀当量长度与流体状态球阀当量长度也与流体状态有关。
在液态介质中,球阀当量长度随着流速的增加而增加;在气态介质中,球阀当量长度随着流速的增加而减小。
二、如何降低球阀当量长度2.1 选择合适的球阀由于不同类型和尺寸的球阀局部阻力系数K值不同,因此选择合适的球阀可以降低球阀当量长度。
在选型时应根据实际情况综合考虑各种因素,如介质特性、工作条件等。
2.2 优化管道布局管道布局对球阀当量长度也有影响。
为了降低压力损失,应尽可能减少弯头、管嘴等局部装置的数量,并保证管道直径尽可能一致。
2.3 控制流速流速是影响球阀当量长度的重要因素之一。
在实际应用中,可以通过控制流量或调整管道直径来控制流速,以降低球阀当量长度。
2.4 优化介质性质介质的密度、粘度等性质也会影响球阀当量长度。
在实际应用中,可以通过选择合适的介质或调整介质温度等方式来优化介质性质,以降低球阀当量长度。
(整理)150LB球阀设计计算书1.
球阀设计计算书2″~8″Q41F-150Lb编制:审核:二○○三年五月二十三日浙江阀门制造有限公司目录1.阀体壁厚计算————————————————————12.中法兰强度计算———————————————————23.法兰螺栓拉应力验算—————————————————74.力矩计算——————————————————————85.阀杆强度校算————————————————————116.密封比压计算————————————————————137.作用在手柄上的启闭所需力——————————————15一、 阀体壁厚计算:计算公式: C P S dP t cc +-=)2.12.(5.1式中:t -阀体计算壁厚(英寸); Pc -额定压力等级(磅);Pc=150 d -公称通径(英寸);S -材料需要用的应力(磅/平方英寸)S=7000 C -附加余量(英寸)按ANSI B16.34 C=0.1英寸英寸(毫米)实际确定壁厚≥计算壁厚为合格二.中法兰强度计算: 1.中法兰的轴向应力计算:[]5.13021=≤=H ioH D fM σλδσ 式中:σH -法兰颈的轴向应力(Mpa);Mo -作用平炉钢于法兰的总轴向力矩(N ·mm); f -整体法兰颈部应力校正系数(查表); δ1-法兰颈部大端有效厚度(mm); D i -为阀体中腔内径(mm); λ-系数;[σH ]-法兰颈许用轴向应力(Mpa);M O =F D S D +F r S r +F G S G式中:F D -作用在法兰内径面积上的流体静压轴向力(N); S D -从螺栓孔中园致力FD 作用位置处的径向距离(mm);F r -总的流体静压轴向力与作用在法兰直径面积上的流体静压轴向 力之差(N);S r -从螺栓孔中心园致力于Fr 作用位置处的径向距离(mm); F G -用于窄面法兰垫片载荷(N);S G -从螺栓孔中心园致力FG 作用位置处的径向距离(mm);F D =0.785D i 2P S D =S +0.5δ112δ--=ib D D S )(785.022i G r D D P F -=21Gr S S S ++=δ 2Gb G D D S -=F G =W-F (W=Wp) Wp=F+Fp+Q F=0.785D G 2P Fp=2πbD G mPP D Q m 24π=ATe ff δδλ++=1ISi D F e δ1=IS i IS D VUA δδ2=式中:S -从螺栓孔中心园至法兰颈部与法兰背面交点的径向距离(mm); D b -法兰螺栓孔中心园直径(mm);D G -法兰垫片中径(mm );Wp -在操作情况下所需的最小螺栓负荷(N ); F -总的流体静压轴向力(N);Fp-连接接确面上的压紧负荷(N);Q-球体与阀座密封之间的密封力(N); b-垫片有效密封宽度(mm);m-垫片系数(查表);m=1.25D m-为密封面中径(mm);δf-法兰有效厚度(mm);e-系数;T-系数(查表);A-系数;F1-整体法兰形状系数;F1=1δIS-法兰颈部小端有效厚度(mm);U-系数(查表);V -整体法兰形状系数(查图);σH ≤〔σH 〕=130.5合格2.中法兰的径向应力计算:[]Mpa D M e R if f R 108)133.1(2=≤+=σλδδσ式中:σR -法兰的径向应力(Mpa ); [σR ]-法兰许用的径向应力(Mpa ); σR ≤〔σR 〕=108 合格3.中法兰的切向应力计算:[]Mpa Z D YM T R if T 1082=≤-=σσδσ式中:Y -系数(查表);Z -系数(查表);σT -法兰的切向应力(Mpa ); [σT ]-法兰材料的切向应力(Mpa );σT ≤〔σT 〕=108 合格三、.法兰螺栓拉应力验算:[]Mpa nd W L m P L 144=≤=σσ式中:σL -法兰螺栓断面积所承受的拉应力(Mpa ); d m -螺栓断面有效面积(mm2); n -螺栓数量;[σL ]-螺栓材料的拉应力(MPa )。
球阀计算公式自动生成(壁厚强度转矩等)
100
35
奥氏体 不绣钢 马氏体 不绣钢
1Cr18Ni9Ti、 1Cr18Ni12Mo2Ti
HB 140~170
150
40
注:钢和铜合金的牌号对 于铸态和堆焊均适用
2Cr13、3Cr13、 1Cr17Ni2
HB 200~300 HR 35~40
250
45
氮化钢
35CrMoAlA、38CrMoAlA
Hv 800~ 1000
密封面材料
材料硬度
密封面 间无
密封面 间有
滑动
滑动
黄铜
CuZn40Pb2, CuZn38Mn2Pb2,CuZn38
HB 80~95
80
20
CuZn16Si4
HB 95~110
100
25
青铜
CuAL10Fe3
HB≥110
80
25
CuAL10Fe3Mn2, CuAL9Fe4Ni4Mn2
HB 120~170
Z:O型圈个数
设计给定
f0:橡胶对阀杆的摩擦系数
f0=
0.3
d0:O型圈的横截面直径
设计给定 4
MMJ
阀杆台肩与止推垫间的摩擦力矩
MMJ
MMJ=∏*64*f*(DT+df)2*P
f:摩擦系数
DT:台肩外径或止推垫外径
按材料同前面规定选取 选二者中小者(mm)
18011.04 ~0.4
72596.8
0.05 45
qMF
qMF=1.2P
qMF=
1.2
P
计算压力
1.0
qMF
qMF=m*((a+c*p)/ b )
1.183799126
阀门设计自动计算公式
阀杆台肩与止推垫间的摩擦力矩
MMJ
MMJ=∏*64*f*(DT+df)2*P
f:摩擦系数
DT:台肩外径或止推垫外径
按材料同前面规定选取 选二者中小者(mm)
18011.04 ~0.472来自96.80.05 45
设计给定
4.1.2固定球阀 总转矩计算
MF MQZ MQZ MQZ1 MQZ1
MQZ2 MQZ2
dF:阀杆直径
P:计算压力
f= 设计给定 设计给定 设计给定 设计给定
0.05 10 5 40 1.0
(2)对橡胶O型 圈
M d FT=1/2*∏* F2*Z*(0.33+0.92*f0*d0*P)
Z:O型圈个数
设计给定
f0:橡胶对阀杆的摩擦系数
f0=
0.3
d0:O型圈的横截面直径
设计给定 4
MMJ
D=
160
2.1 壁厚的确定
壁厚计算公式:SB=S'B+C S'B:计算厚度,C:腐蚀余量
S’B S’B
P DN [σL] C SB
计算厚度 计算压力
内径 材料许用拉应力
腐烂余量 实际厚度
S’B=1.5P*Dn/2[σL]-P
1.685393
1.0
设计给定
100
设计给定
45
设计手册表3-3
5
设计给定
6.685393
3.1 球体与阀座之 间比压的计算
球体与阀座之间比压的计算
应该满足:qMF<q<[q]
qMF
qMF=1.2P
qMF=
1.2
P
计算压力
1.0
qMF
球阀设计计算
55.5 0.4 5.3 10
95965.73
167534.3 64
55.5 0.05 PTFE
N.mm mm
397607.8
50 0.04
257.2868 50 37
40.46512 50 129 A105
60 20Cr13
τnⅠ τnⅠ
109.6659 正方形 220.0863 长方形
正方形b WⅠ
计算项目
符号
固定球球阀阀座密封比压的计算
单向密封球阀密封比压的计算
进口端阀座对球体的压力
FQ
介质经阀座压在球体上的力
FZJ
活动套筒外径
DJH
阀座密封面内径
DMN
设计压力
P
阀座密封面外径
DMW
弹簧组压紧力
FTH
阀座密封圈对球体的预紧力
FMY
阀座预紧密封的最小比压
阀座密封圈上的0型圈与阀体孔之间的摩擦力 FMM
p
2 V形及圆环形填料摩擦力矩
MT
O形密封圈的摩擦力
FT
阀杆与填料接触部分直径
dt
阀杆与填料间的摩擦系数
μ0
O形密封圈截面直径
d0
设计压力
p
2 O形密封圈的摩擦力矩
MT
3 阀杆台肩与止推垫间摩擦转矩
MU
DT dt μt
4 阀杆轴承摩擦转矩
MC
固定球阀杆与球体接触部分强度计算
固定球阀杆强度验算
1
公式或说明
40 10
该力可以 用Байду номын сангаас校核 弹簧刚度 和压缩量
取1.3
【τn 】:145
【τ 】:123
20Cr13 20Cr13
球阀设计计算书
球阀设计计算书XXX文件号:10STQ3R59CG产品名称:固定球阀设计计算书编制:审核:批准:2014年9月目录:1.阀体壁厚验算2.阀盖壁厚验算3.密封面上的计算比压4.1.33倍中腔泄压能力的计算5.阀杆启闭扭矩的计算6.阀杆强度验算7.阀杆扭转变形的计算8.阀杆键连接强度验算9.中法兰螺栓强度验算10.流量系数计算11.吊耳的强度计算参考资料:1.API 6D管道阀门2.ASME B16.34阀门—法兰、螺纹和焊端连接的阀门3.ASME锅炉与压力规范第Ⅱ卷4.ASME锅炉与压力规范第Ⅷ卷5.API 600钢制闸阀法兰和对焊连接端,螺栓连接阀盖说明:1.以公称压力作为计算压力;2.对壳体壁厚的选取,在满足计算壁厚的前提下,按相关标准取壳体最小壁厚且圆整整数,已具裕度;3.涉及的材料许用应力值按-29~38℃时选取;4.适用介质为水、油、气等介质;5.不考虑地震载荷、风载荷等自然因数;6.瞬间压力不得超过使用温度下允许压力的1.1倍;7.管路中应安装安全装置,以防止压力超过使用下的允许压力。
型号:10STQ3R59CG序号零件名称材料牌号计算内容根据1 阀体 ASTMA105 壁厚验算ASME16.342 阀盖 ASTMA105 壁厚验算ASME16.34根据相关标准,以公称压力作为计算压力,计算阀体和阀盖的壁厚。
涉及的材料许用应力值按-29~38℃时选取,适用介质为水、油、气等介质。
瞬间压力不得超过使用温度下允许压力的1.1倍,管路中应安装安全装置,以防止压力超过使用下的允许压力。
材料牌号计算内容序号10STQ3R59CG阀盖ASTM A105壁厚验算计算数据名称符号计算压力Pc300 psi基本应力系数C7000 psi阀体标准厚度S11.2 mm公称内径Dn254 mm附加厚度m4.0 mm设计给定Max(d’d0)设计给定ASTM B16.34设计给定Dn/1.5设计给定ASTM A216 WCB材料许用应力取值常温下抗拉强度Rm/20psi常温下屈服强度Re/20psi根据ASME-Ⅱ-D,常温下抗拉强度除以3.5大于7000 psi,常温下屈服强度除以1.5大于7000 psi,取基本应力系数7000 psi,满足要求。
12″-600LB 球阀扭矩计算
12”600LB 球阀扭矩计算【球阀设计与选用】1. 参数设计压力P =10.2Mpa浮动阀座圈外径d1=330 mm 单个弹簧的预紧力Q 单=330~385 N 单边弹簧数量n1=28 球体半径R =230 mm 阀杆直径d t =70 mm 阀杆台肩外径D t =85 mm 阀座密封面内径D 1 =315 mm 阀座密封面外径D 2 =321.5 mm 轴承内径d F =120 mm 阀杆O 型圈数量n = 12. 计算公式2.1 球体与阀座密封面介质作用力的摩擦扭矩密封面介质作用力()22111π4Q P d D =− ()221π10.2330315775074Q N =××−= μT — 球体与阀座密封面间的摩擦系数(PEEK),μT =0.1 φ — 阀座密封面法向与流道中心线的夹角RD R D R ∗−∗+−∗=444cos 222212φ 72.023045.321230431523042222=×−×+−×=密封面介质作用力摩擦扭矩11(1cos )2cos T Q R M ϕμϕ∗+=∗∗ 177507230(10.72)0.12129288=2130.m 20.72M N mm N ××+=×=⋅×2.2 球体与阀座密封面弹簧作用力的摩擦扭矩密封面弹簧作用力22n1Q Q =××238522821560Q N =××=密封面弹簧作用力摩擦扭矩22(1cos )2cos T Q R M ϕμϕ∗+=∗∗ 221560230(10.72)0.1592300=592.m 20.72M N mm N ××+=×=⋅× 2.3 阀杆与O 型圈之间的摩擦扭矩阀杆与O 型圈之间的摩擦力N P d F t 6708)2.103.53.092.033.0(702)92.033.0(πd 200t =×××+×××=+=πμμ0 — 橡胶对金属的摩擦系数,μ0 =0.3d 0 — O 型圈的截面直径, d 0=5.3mm132t t M F d n=∗∗ 31670870234780235m 2M N mm N =××=⋅=⋅ 2.4 阀杆台肩与止推垫之间的摩擦扭矩阀杆台肩与止推垫之间的摩擦力22()(8570)0.110.21616t t t Fu D d P ππμ=+∗∗=×+××=4812N μt — 阀杆与止推垫金属的摩擦系数,μt =0.11422(t t D d u M F += 4185704812()186465=18622M N m m N m +=××=⋅⋅ 2.5 轴承的摩擦扭矩在介质压力作用下,轴承受到的总推力,N P d Q c 8724042.1033044221=××=∗∗=ππμc — 轴承摩擦系数,μt =0.06152c F c M Q d μ=∗∗5118724041200.063140655314022c F c M Qd N mm N m μ=∗∗=×××=⋅=⋅ 2.6 阀门启闭时各节点扭矩 ABTO: M1 + M2 + M5=2130+592+3140=5862N.m实际测量值:3600N.mARTO : M2+ M3 + M4=592+235+186=1013N.m 实际测量值:1200N.mAETO : M2+ M3 + M4=592+235+186=1013N.m 未测量 ABTC :(1).通道与阀腔压力平衡。
球阀设计计算说明书
设计计算说明书名称:O型球阀(浮动、硬密封)型号:口径:3”编制:审核:批准:日期:_ 年月日_目录1.计算项目列表2.设计参数3.阀门主要零部件的设计计算3.1端部连接和结构长度3.2球阀阀体壁厚的计算3.3球阀阀体法兰的设计3.4球阀阀杆强度的计算3.5填料压盖的强度计算3.6球阀用弹性元件的计算3.7球体直径的确定3.8球阀密封力的计算引用资料1.计算项目列表:(1)、端部连接和结构长度(2)、球阀阀体壁厚的计算(3)、球阀阀体法兰的设计(4)、球阀阀杆强度的计算(5)、填料压盖的强度计算(6)、球阀用弹性元件的计算(7)、球体直径的确定(8)、球阀密封力的计算2.设计参数工作压力:300Lb(5MPa)工作温度:-29—425工作介质:液体、气体、蒸汽公称通径:4”3.阀门主要零部件的设计计算由于工作温度在-29-425度,所以选用主体材质为ASTM A216 WCB,查资料【1】P25表2-1.13.1端部连接和结构长度端部连接,包括法兰式、对焊端、承插焊、螺纹端,查找相应标准;结构长度,包括法兰连接、螺纹、焊接,查找相应标准3.2球阀阀体壁厚的计算中低压金属球阀阀体的强度计算通常采用薄壁容器的计算方式:也可根据经验值取C=3~6mm参考资料【2】p298-299资料【2】p301,表6-7。
PN50,DN80时,壁厚选7.1mm,取9mm。
3.3球阀阀体法兰的设计3.3.1法兰螺栓的计算3.3.1.1法兰螺栓载荷的计算(1)操作情况:(2)预紧螺栓情况3.3.1.2法兰螺栓拉应力的计算3.3.1.3螺栓间距与螺栓直径之比3.3.2法兰的强度计算3.3.2.1法兰力矩计算3.3.2.2法兰应力计算(1)法兰颈的轴向应力(2)法兰盘的径向应力(3)法兰盘的切向应力3.3.2.3法兰的许用应力3.3.3法兰密封结构的设计3.4球阀阀杆强度的计算3.4.1浮动球球阀阀杆的强度计算3.4.2浮动球球阀阀杆与球体连接部分的计算3.5填料压盖的强度计算3.6球阀用弹性元件的计算3.7球体直径的确定3.8球阀密封力的计算资料【1】ASME B 16.34-2013《法兰、螺纹和焊连接的阀门》资料【2】球阀设计与选用/章华友。
球阀的设计与计算
球阀的设计与计算一、球阀的设计 1.1 设计输入即设计任务书。
应明确阀门的具体参数(公称通径、公称压力、温度、介质、驱动方式等),使用的条件和要求(如室内或室外安装、启闭频率等)及相关执行的标准(产品的设计与制造、结构长度、连接型式、产品的检验与试验等) 1.2 确定阀门的主体材料和密封圈材料 1.3 确定阀门承压件的制造工艺方法 1.4 确定阀门的总体结构型式1. 对阀门结构的确定:一般如果压力不高,DN ≤150时,可优先采用浮动式结构,其优点是:结构简单如果浮动球式结构满足不了需要时,应采用固定式结构或其它结构型式(如半球、撑开式…) 2. 对密封的材料的确定由于球阀的使用受温度的影响很大,因此,密封的材料的选定很关键:① 对使用温度≤300℃时,密封面材料可选择塑料类材料(如聚四氟乙烯、增强聚四氟乙烯、尼龙、对位聚苯)② 当使用温度超过300℃.或者介质代颗粒状时,密封面材料应选金属密封。
3.对球阀使用要求的确定主要确定,球阀是否具有防火.防静电要求 4.对阀体型式确定由于球阀公称通径适用的范围很广,其阀体型式也较为多样,一般分为以下三种: ① 整体式阀体一般用于DN ≤50的小通径阀门,此时,其材料多用棒材或厚壁管材直接加工而来,而对口径较大时,多采用二体式、三体式或全焊接结构② 二体式结构由左右不对称的二个阀体组成,多采用铸造工艺方法③ 三体式结构由主阀体和左右对称的二个阀体组成,可采用铸造或锻造工艺方法 5.阀门通道数量(直通、三通、四通…) 6.选择弹性元件的形式1.5 确定阀门的结构长度和连接尺寸 1.6 确定球体通道直径d球体通道直径应根据阀门在管道系统中的用途和性质决定,并要符合相关的设计标准或用户要求。
球体通道直径分为不缩径和缩径二种:不缩径:d 等于相关标准规定的阀体通道直径缩径:一般d=0.78相关标准规定的阀体通道直径,此时,其过渡段最好设计为锥角过渡,以确保流阻不会增大。
球阀的设计与计算
球阀的设计与计算一、球阀的设计 1.1 设计输入即设计任务书。
应明确阀门的具体参数(公称通径、公称压力、温度、介质、驱动方式等),使用的条件和要求(如室内或室外安装、启闭频率等)及相关执行的标准(产品的设计与制造、结构长度、连接型式、产品的检验与试验等) 1.2 确定阀门的主体材料和密封圈材料 1.3 确定阀门承压件的制造工艺方法 1.4 确定阀门的总体结构型式1. 对阀门结构的确定:一般如果压力不高,DN ≤150时,可优先采用浮动式结构,其优点是:结构简单如果浮动球式结构满足不了需要时,应采用固定式结构或其它结构型式(如半球、撑开式…) 2. 对密封的材料的确定由于球阀的使用受温度的影响很大,因此,密封的材料的选定很关键:① 对使用温度≤300℃时,密封面材料可选择塑料类材料(如聚四氟乙烯、增强聚四氟乙烯、尼龙、对位聚苯)② 当使用温度超过300℃.或者介质代颗粒状时,密封面材料应选金属密封。
3.对球阀使用要求的确定主要确定,球阀是否具有防火.防静电要求 4.对阀体型式确定由于球阀公称通径适用的范围很广,其阀体型式也较为多样,一般分为以下三种: ① 整体式阀体一般用于DN ≤50的小通径阀门,此时,其材料多用棒材或厚壁管材直接加工击来,而对口径较大时,多采用二体式、三体式或全焊接结构② 二体式结构由左右不对称的二个阀体组成,多采用铸造工艺方法③ 三体式结构由主阀体和左右对称的二个阀体组成,可采用铸造或锻造工艺方法 5.阀门通道数量(直通、三通、四通…) 6.选择弹性元件的形式1.5 确定阀门的结构长度和连接尺寸 1.6 确定球体通道直径d球体通道直径应根据阀门在管道系统中的用途和性质决定,并要符合相关的设计标准或用户要求。
球体通道直径分为不缩径和缩径二种:不缩径:d 等于相关标准规定的阀体通道直径缩径:一般d=0.78相关标准规定的阀体通道直径,此时,其过渡段最好设计为锥角过渡,以确保流阻不会增大。
8寸600磅 固定球球阀 设计计算书
Class600、NPS8固定球球阀设计计算书一、密封比压计算设计依据:q——实际比压qb——必须比压[q]——密封材料的许用比压PTFE材料取[q]=15MPa;但,当PTFE压入金属座圈内,并且PTFE伸出高度不超过0.6mm时,其许用比压远远大于15MPa1.必须比压的计算:m——与流体相关的数据,此处取1;a——密封面材料系数,PTFE取1.8;P——工作压力,此处取10.0Mpa;b——密封面宽度,设计给定,4mm;2.实际比压的计算:d0——阀座支撑圈外径,设计给定231mm;D——密封圈外径,设计给定229.5mm;d——密封圈内径,设计给定221.5mm;dcp——平均密封直径,结论:6.95>5.4,合格!二、轴承承压校核设计依据:q——轴承的实际压强;[q]——轴承的许用压强,钢基无油自润滑轴承[q]=250Mpa;轴承实际压强的计算:d0——阀座支撑圈外径,设计给定231mm;P——工作压力,取10.0Mpa;d——耳轴直径,设计给定100mm;h——轴承高度,设计给定20mm;结论:104.7<250,合格!三、中法兰螺栓的计算设计依据:Pc——额定压力值,取600;Ag——由密封圈外径确定的面积;Ab——螺栓抗拉应力面积;1.Ag的计算:;dg——密封圈外径,设计给定335mm;2.Ab的计算:N——螺栓数量,设计给定16;ab——单个螺栓的抗拉面积,查GB/T3098.2,M30的抗拉面积为561mm²3.中法兰螺栓强度计算结论:合格!四、扭矩的计算M1——耳轴的摩擦力矩;M2——密封圈与球体的摩擦力矩;M3——阀杆与阀杆密封件之间摩擦力矩;1.M1的计算:=418883.85*50*0.1=1047209.625N.mm=1047.2N.mF——作用在耳轴上的力:d0——阀座支撑圈外径,设计给定231mm;P——工作压力,取10.0Mpa;r——耳轴的半径,50mm;μ——摩擦系数,取0.05;2.M2的计算:F2——作用于密封圈上的力;d0——阀座支撑圈外径,设计给定231mm;P——工作压力,取10.0Mpa;Rc——球体与阀座摩擦平均半径:R——球体半径,设计给定160mm;μ——摩擦系数,取0.05;3.M3的计算;由于阀杆与阀杆密封件之间的摩擦力占阀门整个扭矩的比例极小,故,此处忽略不计,在最终的计算扭矩中乘一个安全系数代替。
V型球阀设计
4.阀体结构的设计与计算
5.确定球体的直径
根据右图选定球径R
6.阀杆尺寸设计
根据自己的数据,设计出合适的 的阀杆结构尺寸
7.密封比压的确定及校核
密封封面材料:选用聚四氟乙烯 因为聚四氟乙烯聚四氟乙烯(PTFE)以其优异的耐高低温性能和化学稳定性、很好
的电绝缘性能、非粘附性、耐候性、阻燃性和良好的自润滑性和优良的密封性
完
12.SolidWorks建模
装配体图和剖视图
13.做流道图
14划分网格
14.流体分析
将流道图导入 ,画出网格,然后保存为.msh文件,导入FLUEN中,做流体分 析计算
流体速度图
压力图
ቤተ መጻሕፍቲ ባይዱ
15.说明书
通过观模,查询资料,计算,绘图,软件分 析最终每人形成一份说明书和相应的结构图 与分析数据图。通过此次课程设计,我们了 解了球阀的结构和工作原理,学会了设计并 分析球阀。以上是我们小组此次课程设计的 设计过程。
2.设计球阀的初始条件
口径
开度
进口压力(MP)
压差
锥角
25
20 40 70 0.1
50
20 50 80 0.1
75
30 60 90 0.1
100
30 40 80 0.1
、
125
30 50 70 0.1
公称压力PN=1MPa
5000
30
10000
40
15000
45
20000
50
25000
60
3.球阀材料的选用
当 qMF q q
时合格。
qMF q q
8.中法兰的结构与选型
球阀计算公式
5
4
20
15
40
30
4.1球阀的转矩计算
4.1.1浮动球阀 总转矩计算
浮动球阀中所有载何由介质出口的阀座密封圈承受,总转矩为:
MF
MF=MQZ+MFT+MMJ
99046.80369
MQZ
球体在阀座中的摩擦力MN)2*P*R*f*(1+COSφ)/32*COSφ
dF:阀杆直径
P:计算压力
f= 设计给定 设计给定 设计给定 设计给定
0.05 10 5 40 1.0
(2)对橡胶O型 圈
M d FT=1/2*∏* F2*Z*(0.33+0.92*f0*d0*P)
Z:O型圈个数
设计给定
f0:橡胶对阀杆的摩擦系数
f0=
0.3
d0:O型圈的横截面直径
设计给定 4
MMJ
D=
160
2.1 壁厚的确定
壁厚计算公式:SB=S'B+C S'B:计算厚度,C:腐蚀余量
S’B S’B
P DN [σL] C SB
计算厚度 计算压力
内径 材料许用拉应力
腐烂余量 实际厚度
S’B=1.5P*Dn/2[σL]-P
1.685393
1.0
设计给定
100
设计给定
45
设计手册表3-3
5
设计给定
MMJ
阀杆台肩膀与止推垫间的摩擦力矩
(此项仅用上阀杆与球体分开时的结构,对整体MMJ=0)
MMJ
MMJ=∏/64*f*(DT+dF)3*P
188.4
7204.416 ~0.4
615.5028
固定球阀计算书
Mpa
7.12 键2倍剪应力 =2*τj
Mpa
7.13 阀杆应力应满足(A105材料校核): τg'<τ1
7.14 阀杆应力应满足(17-4PH): τg'<τ2
7.15 阀杆应力应满足(AISI 4140材料校核): τg'<τ3
7.16 阀杆应力应满足(A182 F51材料校核): τg'<τ4
Sf tam'
值
8 27 28 1 8 11.2 22.5 45 120 150 合格
250 725 515 450 370 167.5 485.8 345.1 301.5 247.9 134 388.6 276.1 241.2 148.7 24 22.4 合格 合格 合格 合格 合格 合格
75 118
8.5 设计壁厚应满足 tad-3>tam, tad-3>tam'
符号
bj lj dj nj hj τj σjjy
[τj] [σjjy]
σ1 σ1 σ2 σ3 σ4 Sm1 Sm2 Sm3 Sm4 Sm5 τ1 τ2 τ3 τ4 τ5 τg' τj'
da dao
da1 ta1 da2 ta2 tam tad
mm^3 Mpa Mpa Mpa
Dgs b a a/b b/r
K1 K2 K3 K4 B K1' K2' K3' K4' B' τgs
[Sm] [τ]
1 28 4 4 1 0.28571 Yes 0.9012 -0.207 1.391 0.4288 0.966
12 4140 197 157.6
2
mm
球阀计算公式自动计算
1395.699073
取:qM=0.1*P
但不少于2MPa
2
其它同前一致
由介质工作压力产生的摩擦力矩
8875.469247
MQZ2=∏*P*f*R*(DJH2-0.5*DMN2-0.5*DMW2)*(1+COSφ)/8*cosφ
MFT
填料与阀杆的摩擦力矩
(1)对聚四氟乙 烯成型填料
MFT=0.6*П*f*z*h*dF*P
26431.16369
f
球体与阀座的摩擦系数
对聚四氟乙烯 f=
0.05
对增强聚四氟乙烯 f=
0.08 ~0.15
对尼龙 f=
0.1 ~0.15
MFT
填料与阀杆的摩擦力矩
(1)对聚四氟乙 烯成型填料
MFT=0.6*П*f*z*h*dF*P
18.84
f:阀杆与填料的摩擦系数 h:单圈填料与阀杆的接触高度 Z:填料圈数
q
球阀密封比压
设计给定 42
5.202013778
7 0.743144825
3.1.1浮动球阀
q
DMW DMN
P
q=(DMW+DMN)*P/(4*(DMW-DMN))
3.5625
阀座密封面外径 mm
设计给定
122
阀座密封面内径 mm
介质工作压力
Mpa
设计给定
密封 固定球阀
为了保证球体表面能完全覆盖阀座密封面,选定球径后,须按下式校核
Dmin=
D
2 2
d2
(mm),应满足D>Dmin
式中:Dmin :球体最小计算直径(mm),D2:阀座接触面外径(mm),d:球径通道
孔直径(mm)D:球体实际直径(mm)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dmin D2 2 d 2 (mm) ,应满足 D > Dmin
球阀的设计与计算
2/15
式中: Dmin :球体最小计算直径(mm) , D2 :阀座接触面外径(mm),d:球径通道孔直径(mm) D:球体实际直径(mm) 二、球阀的计算 2.1 壁厚的确定 见闸阀相应的计算 2.2 球体与阀座之间比压的计算 应满足 qMF q [ q ] 式中:qMF:密封面上的必须比压(MPa) ① 可根据工作压力来计算,qMF =1.2P(适用于中低压通径不大场合) ② 由试验得出的经验公式计算:
式中:DJH:进口密封座导向外径 (mm) 设计给定 R: 球体半径 (mm) 设计给定 h: 密封面接触的宽度在水平方向的投影 (mm) h = l2-l1 式中 l2 ,l1:球体中心至密封面的距离(mm)见图示 ③ 其它密封球阀,略 [q]:密封面材料的许用比压[MPa] 查下表
20 40
15 30
注:钢和铜合金的牌号对于铸态和堆焊均适用。 2.3 球阀的转矩计算 2.3.1 浮动球阀总转矩计算 浮动球阀中,所有载荷由介质出口的阀座密封圈承受,总转矩由下式计算 MF = MQz + MFT + MMJ 式中:MQZ:球体在阀座中的摩擦力矩
P :流体的工作压力(MPa) ,设计给定 b :密封面在垂直于流体流动方向上的投影宽度 b= t cos (mm) t :密封面宽度(mm) ,设计给定 φ :密封面法向与流道中心线的夹角 q :球阀密封比压(MPa) ① 对浮动球阀: (见图示)
球阀的设计与计算
3/15
q
( DMW DMN ) P 4( DMW DMN )
式中:DMW :阀座密封面外径(mm)设计给定 DMN :阀座密封面内径(mm)设计给定 P :介质工作压力(MPa) ② 对进口密封的固定球阀(见图示)
进口密封固定球球阀结构
2 2 2 P ( DJH 0.6 DMN 0.4 DMW ) q 8 Rh cos
qMF m(
a cp ) b
式中:m:与流体性质有关的系数 对常温液体:m=1 对常温油品和空气、蒸汽以及高于 100℃的液体:m=1.4 对氢、氮及密封要求高的介质:m=1.8 a,c:与密封面材料有关的系数,见表所示 密封面材料 钢、硬质合金 聚四氟乙烯、尼龙 铜、铸铁 中硬橡胶 软橡胶 a 3.5 1.8 3.0 0.4 0.3 c 1 0.9 1 0.6 0.4
球阀的设计与计算4/15ຫໍສະໝຸດ 密封面材料的许用比压 [q]
[q] 密封面材料 材料硬度 密封面 间无 滑动 黄铜 CuZn40Pb2,CuZn38Mn2Pb2,CuZn38 CuZn16Si4 CuAL10Fe3 CuAL10Fe3Mn2,CuAL9Fe4Ni4Mn2 1Cr18Ni9Ti、1Cr18Ni12Mo2Ti HB 80~95 HB 95~110 HB≥110 HB 120~170 HB 140~170 HB 200~300 HR 35~40 Hv 800~1000 HR 40~45 HB 280~320 80 100 80 100 150 [MPa] 密封面 间有 滑动 20 25 25 35 40
青铜 奥氏体 不绣钢 马氏体 不绣钢 氮化钢 堆焊 合金 中硬 橡胶 F-4 尼龙
2Cr13、3Cr13、1Cr17Ni2 35CrMoAlA、38CrMoAlA TDCoCr1-x TDCr-Ni(含 Ni)
250 300 250 250 5
45 80 80 80 4
SFB-1,SFB-2,SFB-3 SFBN-1,SFBN-2,SFBN-3
球阀的设计与计算
1/15
球阀的设计与计算
一、球阀的设计 1.1 设计输入 即设计任务书。应明确阀门的具体参数(公称通径、公称压力、温度、介质、驱动方式等) ,使 用的条件和要求(如室内或室外安装、启闭频率等)及相关执行的标准(产品的设计与制造、结构 长度、连接型式、产品的检验与试验等) 1.2 确定阀门的主体材料和密封圈材料 1.3 确定阀门承压件的制造工艺方法 1.4 确定阀门的总体结构型式 1. 对阀门结构的确定: 一般如果压力不高,DN≤150 时,可优先采用浮动式结构,其优点是:结构简单 如果浮动球式结构满足不了需要时,应采用固定式结构或其它结构型式(如半球、撑开式…) 2. 对密封的材料的确定 由于球阀的使用受温度的影响很大,因此,密封的材料的选定很关键: ① 对使用温度≤300℃时,密封面材料可选择塑料类材料(如聚四氟乙烯、增强聚四氟乙烯、尼 龙、对位聚苯) ② 当使用温度超过 300℃.或者介质代颗粒状时,密封面材料应选金属密封。 3.对球阀使用要求的确定 主要确定,球阀是否具有防火.防静电要求 4.对阀体型式确定 由于球阀公称通径适用的范围很广,其阀体型式也较为多样,一般分为以下三种: ① 整体式阀体 一般用于 DN≤50 的小通径阀门,此时,其材料多用棒材或厚壁管材直接加工击来,而对 口径较大时,多采用二体式、三体式或全焊接结构 ② 二体式结构由左右不对称的二个阀体组成,多采用铸造工艺方法 ③ 三体式结构由主阀体和左右对称的二个阀体组成,可采用铸造或锻造工艺方法 5.阀门通道数量(直通、三通、四通…) 6.选择弹性元件的形式 1.5 确定阀门的结构长度和连接尺寸 1.6 确定球体通道直径 d 球体通道直径应根据阀门在管道系统中的用途和性质决定,并要符合相关的设计标准或用户要 求。 球体通道直径分为不缩径和缩径二种: 不缩径:d 等于相关标准规定的阀体通道直径 缩径:一般 d=0.78 相关标准规定的阀体通道直径,此时,其过渡段最好设计为锥角过渡,以确 保流阻不会增大。 1.7 确定球体直径 球体半径一般按 R=(0.75~0.95)d 计算 对小口径 R 取相对大值,反之取较小值 为了保证球体表面能完全覆盖阀座密封面,选定球径后,须按下式校核