配气机构文献综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述
题目 168F汽油机设计——配气机构
二级学院车辆工程学院
专业能源与动力工程
班级 112040601
学生姓名彭元平学号 ***********
指导教师屈翔职称副教授
时间 2016-3-20
摘要:
配气机构作为内燃机的重要组成部分其设计合理与否直接关系到内燃机的动力性、经济性能、排放性能及工作的可靠性、耐久性。本文综述了汽油机配气机构的发展现状,论述了对配气机构优化设计的必要性,阐述了发动机配气机构优化设计的发展方向。
关键词:配气机构、凸轮型线、配气相位、气门弹簧。
Abstract:
As important part of the internal combustion engine, valve mechanism with right design is a must, for it is directly relevant to power, economic performance, emission performance, reliability and durability of the internal combustion engine. This paper reviewed the gasoline engine valve mechanism from the aspects of the state-of-the-art and the necessities of its optimization design, and set forth the development of engine valve mechanism optimization design.
Key words:Air distribution mechanism Cam type line Gas distribution phase Valve spring
1.前言
配气机构是汽油机最重要的组成部分它的功能是实现换气过程,即根据气缸的工作次序,定时的开启和关闭进、排气门,以保证换气充分。一台汽油机的工作是否稳定可靠[1],噪声与振动是否控制在较低的水平,都与其配气机构设计合理的是密不可分的。配气机构要使各气缸都保持换气良好的状态,使充气系数尽可能的提高,按照工作的需要,科学的开启与关闭进气门和排气门。
随着人们的需求,发动机的设计趋于高速化、高功率化。人们对其性能的要求也越来越高,配气机构作为发动机的配给系统,很大程度的决定了发动机的优劣[2]。所以想要提高发动机的性能,配气机构的优化设计也是必不可少的。随着前人的不断积累,配气机构的供给能力及结构形式都发生了很多改观,下面我将介绍配气机构的发展现状及主要优化形式。
2.凸轮型线的优化
内燃机配气凸轮机构是由配气凸轮驱动的,所以配气机构的这些性能指标在很大程度上取决于配气凸轮的结构。尤其是当发动机转速提高以后,凸轮型线设计的好坏对发动机的充气性能和动力性能的影响更大[3]。最近,海马轿车有限公司的王艳芳、王少辉[4]等汽车工程师做了相应的实验,他们选择了三种不同型线的进气凸轮轴和同
种型线的排气凸轮轴在同台发动机上进行匹配,进行了仿真分析,建立了配气相位模型,得出仿真结果,并将三种不同型线进气凸轮轴先后安装到同一台发动机上进行性能试验验证通过GT-Power仿真分析及台架试验结果,发现不同的凸轮型线发动机的功率值和扭矩值等性能参数的影响很大,充分说明了凸轮型线使影响发动机配气机构的主要因素,因此,选择适当凸轮型线的进气凸轮轴,对于提高发动机的动力性有重要意义。
目前,对配气凸轮的研究已经涉及配气机构性能的各个方面[5],包括型线、挺柱的运动规律、气门振动模型、挺柱与凸轮的接触应力、摩擦应力等。国外对配气机构的振动模型、摩擦及配气相位和可变气门正时等的研究有一些报道,我国也在致力研究更精确的气门振动模型、凸轮挺柱副的动力润滑、非对称凸轮型线以及凸轮型线的拟合等间题。
上海交通大学内燃机研究所马逢峻、周振华[6]等教授,将某大型柴油机配气机构的几何凸轮改进为函数凸轮,他们通过ADAMS软件对配气机构建模并进行动力学仿真。并通过改进前后的配气机构的各参数,得出的结论是:采用函数凸轮可以增大丰满系数,减小气门最大加速度,有能力在保证气门不飞脱的前提下,进一步提高柴油机转速,从而提高输出功率。
在凸轮型线设计中,采用最优化技术以来,经历了静态优化设计、动态优化设计和系统优化设计三个阶段[7]。
在静态优化设计中,将配气机构看成绝对刚体,不考虑它在运动时的弹性变形.,用此方法设计凸轮型线主要用静态充气性能、凸轮廊面最小曲率半径指标来判别其好坏。
在动态优化设计中,考虑弹性变形,把配气机构看成弹性系统,主要由气门的动态加速度峰值、动态充气性能指标来评价其优劣。
系统优化设计就是从配气凸轮型线与配气机构动态参数(刚度与质量)统一考虑在内进行凸轮型线的优化设计配气凸轮型线凸轮转速和配气机构参数之间有一个最优化匹配。
潍坊学院刘云、肖恩忠[8]教授对三种优化技术方法进行了详细的比较,分别提出了静态优化设计、动态优化设计和系统优化设计的优缺点,他认为:(1)用静态优化设计法设计的圆弧凸轮,虽然加速度曲线不连续,配气机构惯性力有突变,但有较大的时间-断面值。对转速不高的发动机来说,它所引起的振动和噪音较小,故在较低转速的发动机上还有一定的使用价值。但随着发动机转速的提高,振动和噪音趋于严重,静态优化法就不太适用了。(2)用动态优化设计方法设计的凸轮有多项动力凸轮、正弦抛物线凸轮、n次谐波凸轮等。多项动力凸轮只从弹性变形的角度出发设计凸轮外形,动态优化设计虽然考虑了配气机构的弹性变形和振动问题,但仅局限于凸轮型线的优化。并未考虑配气机构的弹性振动,故没有从根本上解决配气系统的振动等问题。(3)统动力学优化设计是将配气凸轮型线与配气机构动态参数(刚度和质量)统一考虑在内,进行凸轮型线的优化设计。配气凸轮型线、凸轮转速和配气机构参数之间有一个最优化匹配关系,其中凸轮型线正加速度的宽度对配气机构的振动强度影响很大。因为激励的能量主要从正加速度传给整个配气机构,所以凸轮正加速度的形状和宽度对凸轮激励特性具有决定性意义,但一般系统动力学方法是将配气机构简化为单质量或多质量模型,得出系统运动质量的微分方程,但一般不能得出解的表达式,无法对解的形态和特性进行分析。