(全国Ⅰ卷)2021届高三数学高频错题卷 文

合集下载

第7题 导数的几何意义及应用-2021年高考数学真题逐题揭秘与以例及类(新高考全国Ⅰ卷)(解析版)

第7题 导数的几何意义及应用-2021年高考数学真题逐题揭秘与以例及类(新高考全国Ⅰ卷)(解析版)

第7题 导数的几何意义及应用一、原题呈现【原题】若过点(),a b 可以作曲线e x y =的两条切线,则( ) A. e b a < B. e a b < C. 0e b a << D. 0e a b <<【答案】D 【解析】解法一:设过点(),a b 的切线与曲线e x y =切于(),e tP t ,对函数e x y =求导得e x y '=,所以曲线e x y =在点P 处的切线方程为()e e t t y x t -=-,即()e 1e t t y x t =+-,由题意可知,点(),a b 在直线()e 1et ty x t =+-上,所以()()e 1e 1e tttb a t a t =+-=+-,过点(),a b 可以作曲线e x y =的两条切线,则方程()1etb a t =+-有两个不同实根,令()()1e t f t a t =+-,则()()e tf t a t '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,且()0f t >,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max e af t f a ==,如图所示,当直线y b =与曲线()y f t =的图象有两个交点时,当0e a b <<时,直线y b =与曲线()y f t =的图象有两个交点.故选D.解法二:画出函数曲线e x y =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0e a b <<.故选D.【就题论题】本题主要考查利用导数的几何意义研究确定的切线,注意等价转化思想的应用:切线有两条→切点(),ett 有2个t −−−−−−→整理出关于的方程关于t 的方程()1e t b a t =+-有2个不同实根→直线y b =与()()1e t f t a t =+-有2个交点.另外由解法二可知:点(),a b 在曲线下方且在x 轴上方时符合条件的切线有2条;点(),a b 在曲线上或在x 轴上或在x 轴下方时符合条件的切线有1条;点(),a b 在曲线上方时符合条件的切线不存在;若把题中的切线换成3y x =,点(),a b 位置与切线条数有何关系,有兴趣的同学可以探讨一下.二、考题揭秘【命题意图】本题考查导数几何意义的应用,考查直观想象与逻辑推理的核心素养.难度:中等.【考情分析】导数的几何意义是高考的一个高频考点,考查热点主要有:求曲线在某点处的切线;求两条曲线的公切线;确定满足条件的曲线的条数. 【得分秘籍】(1) 导数的几何意义是研究曲线的切线的基石,函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是()0f x '.求以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2) 研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使这两个方程表示同一条直线. (3) 求曲线切线的条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线条数问题转化为关于t 的方程的实根个数问题. 【易错警示】(1) 求导出错,如一下几个函数的导数比较容易出错:()211cos sin ,x x x x ''⎛⎫'==-=- ⎪⎝⎭; (2)混淆在某点处的切线与过某点的切线,注意求曲线过某点的切线,一般是设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程. (3)对曲线的切线理解失误,如误认为曲线的切线与曲线只有1个公共点,又如误认为0x =不是曲线3y x =在0x =处的切线方程.三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷) 单选题1.(2021广东省肇庆市高三二模)曲线()1ln f x x x=-在()()1,1f 处的切线方程为( ) A .230x y --= B .210x y --= C .230x y +-=D .210x y +-=【答案】A 【解析】()211x f x x=+',()11f =-,()12f '=,故切线方程为()()121y x --=-,即230x y --=. 故选A.2.(2021湖南省部分学校高三下学期联考)函数32()71f x x x =-+的图象在点(4,(4))f 处的切线斜率为( ) A .8- B .7- C .6- D .5-【答案】A【解析】因为()2314f x x x '=-,所以所求切线的斜率为()43161448f '=⨯-⨯=-.故选A3.(2021山东省滨州市高三二模)设曲线2ax y e =(e =2.718…为自然对数的底数)在点()0,1处的切线及直线210x y --=和两坐标轴的正半轴所围成的四边形有外接圆,则a =( )A .1-B .14-C .14D .1【答案】B【解析】由题意,函数()2axf x e=,可得()22axf x ae'=,则()02f a '=,即曲线2ax y e =在点()0,1处的切线的斜率为2k a =,所以切线方程为12y ax -=,即21y ax =+,要使得切线与直线210x y --=和两坐标轴的正半轴所围成的四边形有外接圆,则满足两直线垂直,即221a ⨯=-,解得14a =-.故选B. 4.(2021江苏省盐城市高三5月第三次模拟)韦达是法国杰出的数学家,其贡献之一是发现了多项式方程根与系数的关系,如:设一元三次方程)(3200ax bx cx d a +++=≠的3个实数根为1x ,2x ,3x ,则123b x x x a ++=-,122331c x x x x x x a++=,123d x x x a =-.已知函数)(321f x x x =-+,直线l 与)(f x 的图象相切于点)()(11,P x f x ,且交)(f x 的图象于另一点)()(22,Q x f x ,则( ) A .1220x x -= B .12210x x --= C .12210x x ++= D .1220x x +=【答案】D【解析】)(261f x x ='-,211()61k f x x '∴==-,又直线过点)()(22,Q x f x ,332221211221212121()()222()1f x f x x x x x k x x x x x x x x --+-∴===++---222212112()161x x x x x ∴++-=-,化简得22212120x x x x +-=,即2121(2)()0x x x x +-=,12x x ≠,2120x x ∴+=,故选D5.(2021湖南省永州市高三下学期二模)曲线()2ln f x x =在x t =处的切线l 过原点,则l 的方程是( ) A .20x ey -= B .20x ey += C .20ex y -= D .20ex y +=【答案】A【解析】曲线()2ln f x x =,2()f x x'=,切点为(),2ln t t ,所以切线l 的斜率(2)k f t t '==,又直线l 过原点,所以0220lnt k t t -==-,得1lnt =,t e =.所以2k e=,故切线l 的方程为()22y x e e -=-即20x ey -=.故选A .6.(2021广东省肇庆市高三下学期5月模拟)函数1()cos f x x x=-的图像的切线斜率可能为( ) A .13-B .2-C .53-D .4-【答案】A【解析】由1()cos f x x x=-,得'21()sin f x x x =-+,因为210x >,sin [1,1]x ∈-,所以'()1f x >-,所以函数1()cos f x x x=-的图像的切线斜率大于1-,故选A7.(2021河北省衡水中学高三第一次联考)已知M 为抛物线2:4C x y =上一点,C 在点M 处的切线11:2l y x a =+交C 的准线于点P ,过点P 向C 再作另一条切线2l ,则2l 的方程为( ) A .1124y x =-- B .122y x =-+ C .24y x =-+ D .24y x =--【答案】D【解析】设()00,M x y ,由题意知,214y x =,则12y x '=,C 在点M 处的切线11:2l y x a =+,所以001122x x y x =='=,所以01x = ,则11,4M ⎛⎫ ⎪⎝⎭,将11,4M ⎛⎫⎪⎝⎭代入11:2l y x a =+的方程可得14a =-,即111:24l y x =-,抛物线2:4C x y =的准线方程为:1y =- ,则3,12P ⎛⎫-- ⎪⎝⎭.设2l 与曲线C 的切点为()00,N x y ,则20000011(1)433222x x y x x +--==⎛⎫+-- ⎪⎝⎭,解得04x =-或01x =(舍去), 则(4,4)N -,所以2l 的方程为24y x =--.故选D8.(2021湖南省衡阳市高三下学期联考)若函数()()210f x ax a =->与()1ln g x x =-的图象存在公切线,则实数a 的最小值为( ) A .12eB .21eC .2eD .1【解析】法一:设公切线与()f x ,()g x 图象分别切于点()()1122,,A B x y x y ,, 则()f x 图象在A 处的切线方程为:()()211112y ax ax x x --=--,即21121y ax x ax =-++,同理:()g x 图象在B 处的切线方程为:()()22211ln y x x x x --=--, 即2212ln y x x x =-+-,由上述两直线重合,122121212ln ax x ax x⎧=⎪⎨⎪+=-⎩消元1x 可得,()22211ln 4x x a =-,令()()()21ln 0h x x x x =->,则()()12ln h x x '=-,当(x ∈时,()0h x '>,当)x ∈+∞时,()0h x '<,所以()h x 在(单调递增,在)+∞单调递减,则()max 142e h x h a≤==,解得12a e≥, 方法二:在同一坐标系中作出()f x ,()g x 的图象如图所示:由图象知:()f x ,()g x 分别为上凸和下凸函数,要使()f x ,()g x 存在公切线, 只须()()f x g x ≤在()0,∞+上恒成立即可,即2ln xa x≥在()0,∞+上恒成立 令()2ln x h x x =,求导得()312ln xh x x-'=,当(x ∈时,()0h x '>,当)x ∈+∞时,()0h x '<,所以当x =,()h x 取得最大值为12e ,所以12a e≥故选A 9.(2021江苏省南通等七市2021届高三下学期2月调研)已知曲线ln y x =在()11,A x y ,()22,B x y ,两点处的切线分别与曲线x y e =相切于()33,C x y ,()44,D x y ,则1234x x y y +的值为( )A .1B .2C .52D .174【答案】B【解析】由题设有33111311ln 1x x e x x e x x x ⎧=⎪⎪⎨-⎪=⎪-⎩,化简可得111311ln 1x x x x x -=-即31111ln ln x x x x x =+-=-, 整理得到1111ln 1x x x +=-,同理2221ln 1x x x +=-,不妨设12x x <,令12ln ln 111x y x x x x +=-=----,因为当()0,1x ∈时,2ln ,1y x y x ==--均为增函数,故1ln 1x y x x +=--为增函数, 同理当()1,x ∈+∞时,故1ln 1x y x x +=--为增函数,故12,x x 分别为1ln 1x y x x +=--在()0,1、()1,+∞上的唯一解,又1111111111lnln ,111x x x x x x ++=-=---,故111111ln 11x x x +=-, 故11x 为1ln 1x y x x +=--在()1,+∞的解,故211x x =即121=x x . 所以34123412121212x x x x y y x x ex x x x ++=+=+=,故选B. 10.(2021江苏省苏州市常熟市高三抽测)已知两曲线()2sin f x x =,()cos g x a x =,0,2x π⎛⎫∈ ⎪⎝⎭相交于点P ,若两曲线在点P 处的切线互相垂直,则实数a 的值为( ) A .2 BC .2± D.±【答案】B【解析】设切点(P m ,)(0)2n m π<<,由()2sin f x x =的导数()2cos f x x '=,()cos g x a x =的导数()sin g x a x '=-, 可得2cos (sin )1m a m ⋅-=-,所以1sin cos 2m m a=, 又2sin cos m a m =, 即sin tan (0)cos 2m am a m ==>,则2222sin cos tan 12sin cos 1214a m m m m m a sin m cos m tan m a====+++,即为2314a =,解得3a =,故选B11.(2021山东省高考考前热身押题)若x ,y R ∈,0x >,求()()2224ln 21x y x x y -+---的最小值为( ) ABC .165D【答案】C【解析】问题可以转化为:()2,4ln A x x x-是函数24ln y x x =-图象上的点,(),21B y y +是函数21y x =+上的点,()()22224ln 21AB x y x x y =-+---.当与直线21y x =+平行且与()f x 的图象相切时,切点到直线21y x =+的距离为AB 的最小值.()2422,20,1f x x x x x x=-=+-==',舍去负值, 又()11f =-,所以()1,1M -到直线21y x =+的距离即为AB 的最小值.min AB =,2min 165AB =.故选C.12.(2021河北省邢台市高考模拟)若曲线()11xmy xe x x =+<-+存在两条垂直于y 轴的切线,则m 的取值范围为( ) A .427,0e ⎛⎫-⎪⎝⎭B .427,0e -⎡⎫⎪⎢⎣⎭C .427,e ⎛⎫-+∞ ⎪⎝⎭D .4271,e ⎛⎫--⎪⎝⎭【答案】A【解析】∵曲线()11xmy xe x x =+<-+存在两条垂直于y 轴的切线, ∴函数()11xmy xe x x =+<-+的导函数存在两个不同的零点, 又()()'2101x my x e x =+-=+,即()31xm x e =+在(),1-∞-上有两个不同的解,设()()()311x f x x e x =+<-,()()()2'14xf x x e x =++,当4x <-时,()'0fx <;当41x -≤<-时,()'0f x >,所以()()4min 274f x f e =-=-, 又当x →-∞时,()0f x →,当1x →-时,()0f x →, 故427,0m e ⎛⎫∈-⎪⎝⎭.故选A. 13.(2021福建省龙岩市高三三模)若直线y kx b =+是曲线2x y e -=的切线,也是曲线1x y e =-的切线,则k b +=( )A .ln22- B .1ln22- C .ln212- D .ln22【答案】D【解析】设曲线2x y e -=上的点11(,)P x y ,2x y e -'=,121x k e -=; 曲线1x y e =-上的点22(,)Q x y ,e x y '=,22xk e =;11122211x x x l y e x e x e ---∴=+-:,222221x x x l y e x e x e ∴=+--:121122222121x x x x x x e e e x e e x e ---⎧=∴⎨-=--⎩,2ln 2x ∴=-, 2222111ln 21(ln 2)2222x x x k b e e x e ∴+=+-+=+--=.故选D . 二、多选题14.(2021广东省深圳市高三下学期二模)设函数()xf x e ex =-和()()()21ln 122g x x kx k x k =-+-+∈R ,其中e 是自然对数的底数()2.71828e =,则下列结论正确的为( )A .()f x 的图象与x 轴相切B .存在实数0k <,使得()g x 的图象与x 轴相切C .若12k =,则方程()()f x g x =有唯一实数解 D .若()g x 有两个零点,则k 的取值范围为10,2⎛⎫ ⎪⎝⎭【答案】ACD【解析】()x f x e e '=-,若()f x 的图象与x 轴相切,则()01xf x e e x '=-=⇒=,又(1)0f =,则切点坐标为(1,0),满足条件,故A 正确;()()212(12)1(1)(12)212kx k x x kx g x kx k x x x-+-++-'=-+-==,()0x >, 当0k <时,易知()0g x '>恒成立,不存在为0的解,故不存在实数0k <,使得()g x 的图象与x 轴相切,B 错误; 由上所述,()f x 在(0,1)x ∈上单减,(1,)x ∈+∞上单增,则()(1)0f x f ≥=; 若12k =,()211ln 22g x x x =-+,()(1)(1)x x g x x+-'=,()g x 在(0,1)x ∈上单增,(1,)x ∈+∞上单减,()(1)0g x g ≤=,故方程()()f x g x =有唯一实数解1x =,故C 正确;()(1)(12)x kx g x x+-'=,()0x >,当0k ≤时,()0g x '>恒成立,()g x 单增,不存在2个零点,故舍去; 当0k >时,()g x 在1(0,)2k 上单增,在1(,)2k+∞上单减,且0x →时,()g x →-∞,x →+∞时,()g x →-∞,故若()g x 有两个零点,则应使最大值102g k ⎛⎫>⎪⎝⎭, 即()21111111ln ()12ln 202222242g k k k k k k k k ⎛⎫=-+-+=-->⎪⎝⎭, 令11()ln 242h k k k =--,易知()h k 单调递减,且1()02h =, 因此()0h k >的解集为1(0,)2k ∈,D 正确;故选ACD15.(2021河北省邯郸市高三三模)英国数学家牛顿在17世纪给出了一种求方程近似根的方法——牛顿迭代平法,做法如下:如图,设r 是()0f x =的根,选取0x 作为r 的初始近似值,过点()()00,x f x 作曲线()y f x =的切线()()()000:'l y f x f x x x -=-,则l 与x 轴的交点的横坐标()()()()01000'0'f x x x f x f x =-≠,称1x 是r的一次近似值;过点()()11,x f x 作曲线()y f x =的切线,则该切线与x 轴的交点的横坐标为x 2,称x 2是r 的二次近似值;重复以上过程,得r 的近似值序列,其中()()()()1'0'n n n n n f x x x f x f x +=-≠,称1n x +是r 的n +1次近似值,这种求方程()0f x =近似解的方法称为牛顿迭代法.若使用该方法求方程22x =的近似解,则( )A .若取初始近似值为1,则该方程解的二次近似值为1712 B .若取初始近似值为2,则该方程解的二次近似值为1712C .()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =----D .()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =-+-+【答案】ABC【解析】构造函数2()2f x x =-,则'()2f x x =,取初始近似值01x =,则()()01001231'212f x x x f x -=-=-=⨯,()()12119231743'21222f x x x f x -=-=-=⨯,则A 正确;取初始近似值02x =,则()()0100423222'2f x x x f x -=-=-=⨯,()()12119231743'21222f x x x f x -=-=-=⨯,则B 正确;根据题意,可知()()0100'f x x x f x =-,()()1211'f x x x f x =-,()()2322'f x x x f x =-,()()3433'f x x x f x =-,上述四式相加,得()()()()()()()()0123400123''''f x f x f x f x x x f x f x f x f x =----,则D 不正确,C 正确,故选ABC.16.(2021河北省唐山市高三下学期第二次模拟)若直线y ax =与曲线()x f x e =相交于不同两点()11,A x y ,()22,B x y ,曲线()x f x e =在A ,B 点处切线交于点()00,M x y ,则( )A .a e >B .1201x x x +-=C .2AM BM AB k k k +>D .存在a ,使得135AMB ∠=︒【答案】ABC【解析】对于A :当0a ≤时,直线y ax =与曲线()x f x e =没有两个不同交点,所以>0a ,如图1所示, 当直线y ax =与曲线()x f x e =相切时,设切点为()(),P t f t ,则'()x f x e =,所以切线方程为:()t ty e e x t -=-,代入点()00,解得1t =,此时a e =,所以直线y ex =与曲线()x f x e =相切,所以当a e >时直线y ax =与曲线()x f x e =有两个不同的交点, 当0a e <<时,直线y ax =与曲线()x f x e =没有交点,故A 正确; 对于B :由已知得11x ax e =,22xax e =,不妨设12x x <,则1201x x <<<,又()x f x e =在点A 处的切线方程为:()111+xxy e x x e =-,在点B 处的切线方程为()222+x xy ex x e =-,两式相减得()()121212+1+0x xx x e e x x ex e --=,将11x ax e =,22x ax e =代入得()()()()121122+1+0x x ax ax x x x a a --⋅⋅=,因为()120a x x -≠,所以121x x x +-=,即1201x x x +-=,故B 正确;对于C :要证2AM BM AB k k k +>,即证12+>2x x e e a ,即证12+>2a ax x a ,因为>a e ,所以需证12+>2x x .令xax e =,则x e a x =,令()x e g x x =,则点A 、B 是y a =与e xy x=的两个交点,令()()()()201G x g x g x x =--<<,所以()()()2'2212x x e x x x e G x -⎛⎫=-- ⎝-⎪⎪⎭,令()()2>0x e x h x x =,则()()'32x e x h x x -=,所以当()0,2x ∈时,()'0h x <,()h x 单调递减,而01x <<,0122x x <<<-<,所以 ()()>2h x h x -,所以01x <<时,()'0G x <,所以()G x 单调递减,所以()()>10G x G =,即()()112>0g x g x --,又()()12g x g x a ==,所以()()21>2g x g x -, 而()()2'1x x g e xx -=,所以当>1x 时,()'>0g x ,()g x 单调递增,又2>1x ,12>1x -,所以21>2x x -,即12+>2x x ,故C 正确;对于D :设直线AM 交x 轴于C ,直线BM 交x 轴于点D ,作ME x ⊥轴于点E .若135AMB ∠=︒,则45AMD ∠=,即45MDE MCD ∠-∠=,所以()tan tan tan 11tan tan 1BM AM AM BMk k MDE MCDMDE MCD +MDE MCD +k k -∠-∠∠-∠===∠⨯∠⨯,化简得1BM AM AM BM k k +k k -=⨯,即21121211x x x x x +x e e e e ++e -=⨯=,所以21121ax ax +ax ax -=⨯,即()21121a x x x x --=,令2112m x x x x =--,则()()211212111m x x x x x x ++=--=--,又1201x x <<<,所以()()2112121111m x x x x x x ++>=--=--,而a e >,所以方程()21121a x x x x --=无解,所以不存在a ,使得135AMB ∠=︒,故D 不正确, 故选ABC .三、填空题17.(2021山东省百所名校高三下学期4份联考)已知函数()3xf x e mx =-,曲线()y f x =在不同的三点()()11,x f x ,()()22,x f x ,()()33,x f x 处的切线均平行于x 轴,则m 的取值范围是______.【答案】2e ,12⎛⎫+∞ ⎪⎝⎭【解析】因为函数()3xf x e mx =-,所以()23xf x e mx '=-,又曲线()y f x =在不同的三点()()11,x f x ,()()22,x f x ,()()33,x f x 处的切线均平行于x 轴,所以230xe mx -=有3个不同的解,即23xe m x=,令()2xe g x x =,则()()32x e x g x x-'=,当()0g x '>时,0x <或2x >;当()0g x '<时,02x <<,所以()g x 在2x =时有极小值为()24xe g =,结合函数()2x e g x x =图象可知,234e m >,即212e m >.18.(2021江苏省南京市高三下学期5月第三次模拟)已知直线y kx b =+与曲线2cos y x x =+相切,则2k b π+的最大值为______. 【答案】24π 【解析】由2cos y x x =+得:2sin y x x '=-,设直线y kx b =+与曲线2cos y x x =+相切与点()2000,cos x x x +,则002sin k x x =-,又2000cos x x kx b +=+,则20000cos sin b x x x x =-+,()20000002sin cos sin 22k b x x x x x x ππ∴+=-+-+200000sin cos 2x x x x x ππ⎛⎫=+-+- ⎪⎝⎭,令()2sin cos 2f x x x x x x ππ⎛⎫=+-+- ⎪⎝⎭,()sin cos sin 22cos 22f x x x x x x x x x ππππ⎛⎫⎛⎫'∴=++---=-+- ⎪ ⎪⎝⎭⎝⎭()cos 22x x π⎛⎫=-- ⎪⎝⎭,1cos 1x -≤≤,cos 20x ∴-<,∴当,2x π⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>;当,2x π⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x ∴在,2π⎛⎫-∞ ⎪⎝⎭上单调递增,在,2π⎛⎫+∞ ⎪⎝⎭上单调递减,()222maxcos 22244f x f πππππ⎛⎫∴==+-=⎪⎝⎭,即2k b π+的最大值为24π. 四、解答题18.(2021广东省惠州市高三调研)已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点11(,())P x f x 、22(,())Q x f x (12x x <)处的切线分别为12l l ,,且12l l ,在y 轴上的截距分别为1b 、2b .若12l l //,求12b b -的取值范围. 【解析】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<, 20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.(2)1x =是()f x 的极值点,()10f '∴=,即()()210a a +-=, 解得:1a =或2a =-(舍), 此时()2ln f x x x x =++, ()2211f x x x'=-++.1l ∴方程为:()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭, 令0x =,得:1114ln 1b x x =+-; 同理可得:2224ln 1b x x =+-. 12//l l ,221122212111x x x x ∴-++=-++, 整理得:()12122x x x x =+,12122x x x ∴=-, 又12010x x <<<,则1112102x x x <<-, 解得:1542x <<, ()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++.令12x t x =, 则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭, 设()()21ln 1t g t t t-=++, ()()()()222141011t g t t t t t -'∴=-+=>++, ()g t ∴在1,14⎛⎫ ⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=- ⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭.。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

语言运用之修辞+补写+句子赏析—2021年高考高频、高危题型强化训练卷(新高考版)(解析版)

语言运用之修辞+补写+句子赏析—2021年高考高频、高危题型强化训练卷(新高考版)(解析版)

备战2021年高考二轮冲刺高频、高危题型强化训练卷第2题语言运用之补写+修辞+句子赏析一、阅读下面的文字,完成1-3题。

就是在这一天,①,也走向记忆深处的童年……初夏时分在村子里闲逛,逮一种叫“苞米虫”的昆虫,用秸秆插进它肩胛骨的位置,就得到了一只生物电扇,小伙伴们会不胜其烦地用它吹去额头上的汗珠。

跑去菜园看浇水,抽水机嗡嗡作响,清冽的地下水便喷涌而出,不疾不徐地跳过垄沟。

正式的夏天是从吃豆角的那天开始的,豆角炖猪肉,因为用铁锅,汤会发黑,却也吃得大快朵颐。

盛夏,烈日当空,黄瓜不那么好吃了,可是西红柿却正好,它的藤枝用布条绑在架子上,西红柿裂开了,就像花朵。

秋天,它们悄悄地把籽洒落在地上,以为自然界无为而治,大有来年生根发芽的机会。

白菜长成比较大棵的时候,热力减弱,宇宙间满是浓白的秋光,云朵淡淡,霜雪已在孕育……梦醒了,②,耳畔仍回响着遥远的抽水机黑胶皮水管中流淌的汩汩歌声,不绝如缕。

有着悠久岁月的张村,就是座纪念馆,对我充满了无穷魅力。

1.文中使用了哪些修辞手法?下列判断正确的一项是()A.拟人、比喻、夸张B.拟人、比喻、通感C.对偶、借代、通感D.对偶、借代、夸张2.文中画线的句子可改写成:“西红柿正好,裂开了,就像花朵,它的藤枝用布条绑在架子上,可是黄瓜却不那么好吃了。

”从语义上看二者基本相同,但原文表达效果更好,为什么?3.请在文中画横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密,每处不超过15个字。

【答案】1.B2.“可是”表示转折,说明后边是强调的重点,如果“可是黄瓜却不那么好吃了”放在后边,强调的就是不好的一面,与整篇文章的意境不相符。

“它的藤枝用布条绑在架子上”,放在前边,符合事理顺序。

3.①我在梦中迈开步子走向故乡张村②可梦境的一切仍历历在目【分析】1.“西红柿裂开了,就像花朵”是比喻,把“;裂开的西红柿比作花朵;“清冽的地下水便喷涌而出,不疾不徐地跳过垄沟”是拟人,把“地下水”人格化;“耳畔仍回响着遥远的抽水机黑胶皮水管中流淌的汩汩歌声,不绝如缕”是通感,用视觉写听觉。

(全国Ⅰ卷)高三数学高频错题卷 理

(全国Ⅰ卷)高三数学高频错题卷 理

(全国Ⅰ卷)2021届高三数学高频错题卷 理满分:150分时间:120分钟姓名:班级:考号:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12题,每小题5分,共60分)1.【2021年河南省名校试题】【年级得分率:0.5556】已知集合A ={x |x 2+2x -15≤0},B ={x |x =2n -1,n ∈N },则A∩B=( ) A .{-1,1,3} B .{-1,1} C .{-5,-3,-1,1,3} D .{-3,-1,1} 2.【2021年安徽省名校试题】【年级得分率:0.5556】 已知复数z 满足(3)13z i i -=-,则z =( )A .3i --B .3i -+C .6i --D .6i +3.【2021年山东省名校试题】【年级得分率:0.3889】已知向量(3,1)b =,问量a 为单位向量,且1a b ⋅=,则2a b -与2a 的夹角余弦值为( ) A .12B 3C .12-D .34.【2021年安徽省名校试题】【年级得分率:0.2778】已知等差数列{}n a 的前n 项和为n S ,422S =,330n S =,4176n S -=,则n =( ) A .14 B .15 C .16D .175.【2021年安徽省名校试题】【年级得分率:0.2501】已知函数()x x f x e e -=-(e 为自然对数的底数),若0.50.7a -=,0.5log 0.7b =,0.7log 5c =,则( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f a f b f c <<6.【2021年广东省名校试题】【年级得分率:0.6667】已知函数()2cos 3f x x πω⎛⎫ ⎪⎝⎭=-(ω>0)在[-3π,2π]上单调递增,则ω的取值范围是( )A .[23,2] B .(0,23] C .[23,1] D .(0,2]7.【2021年湖南省名校试题】【年级得分率:0.6296】 已知是定义在R 上的偶函数,且在(-∞,0]c=,则a ,b ,c 的大小关系是( )A.c<b< aB. a <b<c C a <c<.b D.c< a <b 8.【2021年湖北省名校试题】【年级得分率:0.4632】 在平面五边形中,∠=60°==6⊥⊥且=沿对角线折起,使平面与平面所成的二面角为120°,则沿对角线BE 折起后所得几何体的外接球的表面积为( )9.【2021年河南省名校试题】【年级得分率:0.5185】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量α=(a ,cosB),β=(cosA ,-b),若α⊥β,则△ABC 一定是( ) A .锐角三角形 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形 10.【2021年安徽省名校试题】【年级得分率:0.3333】已知()(ln 1)(ln 1)f x ax x x x =++++与2()g x x =的图像至少有三个不同的公共点,则实数a 的取值范围是( )A .12,22⎛- ⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .22⎛⎫⎪ ⎪⎝⎭D .2)11.【2021年河北省名校试题】【年级得分率:0.1944】平面直角坐标系xOy 中,若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与单位圆O 交于点00(,)P x y ,且(,0)2π∈-α,3cos()65+=πα,则0x 的值为( ) A 334- B 433- C 334± D 433± 12.【2021年安徽省名校试题】【年级得分率:0.0556】 最新函数()ln(1)ln(3)f x x x =+--有下述四个结论: ① ()f x 在(1,3)-单调递增②()y f x =的图像最新直线1x =对称 ③()y f x =的图像最新点(1,0)对称④()f x 的值域为R其中正确结论的个数是( ) A .0 B .1 C .2 D .3第II 卷(非选择题)二、填空题(本题共4题,每小题5分,共20分)13.【2021年福建省名校试题】【年级得分率:0.5833】曲线2()cos2f x x x =-在点(0,(0))f 处的切线方程为___________. 14.【2021年安徽省名校试题】【年级得分率:0.1944】n S 是等比数列{}n a 的前n 项和,32a =,2106a a =,则6S =____________.15.【2021年江西省名校试题】【年级得分率:0.5830】函数()4sin 3cos f x x x =-,且对任意实数x 都有()(2)()f x f x R =-∈αα,则cos 2=α________.16.【2021年河南省名校试题】【年级得分率:0.3704】 规定[t ]为不超过t 的最大整数,如[3.1]=3,[-2.9]=-3.若函数f(x)=[x ]2-[x ](x ∈R ),则方程f 2(x)-f(x)=2的解集是__________.三、解答题(第17题10分,第18-22题每题12分,共70分) 17.【2021年河北省名校试题】【年级得分率:0.5278】已知a ,b ,c 分别是△ABC 的角A ,B ,C 的对边,且c =2,a 2+b 2-4=a b . (1)求角C ;(2)若sin 2B -sin 2A =sinC(2sin2A -sinC),求△ABC 的面积.18.【2021年河南省名校试题】【年级得分率:0.1111】已知数列{n a }满足1a =0,2a =1,2n a +=12n n a a λ+1+(n N *∈,λ∈R ).(1)若n b =n a +1+n a ,试问是否存在实数λ,使得数列{n b }是等比数列?若存在,求出λ的值;若不存在,请说明理由;(2)在(1)的条件下,求数列{n a }的通项公式.19.【2021年湖南省名校试题】【年级得分率:0.4969】如图,底面ABCD是等腰梯形,AD∥BC,AD=2AB=2BC=4,点E为AD的中点,以BE为边作正方形BEFG,且平面BEFG⊥平面ABCD.(1)证明:平面ACF⊥平面BEFG.(2)求二面角A-BF-D的正弦值.20.【2021年福建省名校试题】【年级得分率:0.4198】某市交通局为了有效改善市区道路交通拥堵状况出台了一系列的措施,将市区公交站点的重新布局和建设作为重点项目.市交通局根据交通拥堵情况制订了“市区公交站点重新布局方案”,现准备对该方案进行调查,并根据调查结果决定是否启用该方案.调查人员分别在市区的各公交站点随机抽取若干市民对该方案进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,低于60分认为不满意,不低于60分认定为满意(其中[60,70)内认定为基本满意,[70,80)内认定为满意,不低于80分认定为非常满意);③市民对公交站点布局的满意率不低于70%即可启用该方案;④用样本的频率代替概率.(1)从该市100万市民中随机抽取4人,求至少有3人满意该方案的概率,并根据所学统计学知识判断该市是否可启用该方案,说明理由.(2)现采用分层抽样从评分在[50,60)与[80,90)内的市民中共抽取7人,并从中抽取3人担任群众督查员,记X为群众督查员中评定为满意的人数,求随机变量X的分布列及其数学期望EX.21.【2021年河北省名校试题】【年级得分率:0.3272】已知椭圆C:22221x ya b+=(a>b>0)的离心率为32,且椭圆C上的点到直线y=2的最长距离为22+.(1)求椭圆C的方程.(2)过点Q(2,0)的直线l与椭圆C交于A,B两点,试问在直线y=2上是否存在点P,使直线PA与直线PB的斜率之和是直线PQ的斜率的2倍?若存在,求出点P的坐标;若不存在,请说明理由.22.【2021年河南省名校试题】【年级得分率:0.4037】 已知函数)(x f =252ln x x x -+.(1)求)(x f 的极值;(2)若)(1x f =)(2x f =)(3x f ,且321x x x <<,证明:313<-x x参考答案1.【答案】A【解析】因为{}A={x|-5x 3},B {x |x2n 1,n N}1,1,3,5,≤≤==-∈=-⋯所以{}3,1,1-=B A .2.【答案】D【解析】由题意得,1333iz i i--==--,所以6z i =+,故选D . 3.【答案】A【解析】记OA a =,2OC a =,OB b =,由||1a =,||2b =,且1a b ⋅=知60AOB ︒∠=,∴2a b BC -=,||||2OC OB ==,60BOC ︒∠=,∴OBC ∆为正三角形,OBC ∆,∴2,260a b a ︒<->=,选A .4.【答案】B【解析】∵123422a a a a +++=,4123154n n n n n n S S a a a a -----=+++= ∴14()176n a a +=,∴144n a a += ∴由1()2n n n a a S +=得443302n ⨯=,∴15n =,故选:B . 5.【答案】D【解析】因为0.50.71a -=>,01b <<,0c <,∴a b c >> 又()f x 在R 上是单调递减函数,故()()()f a f b f c <<,选D . 6.【答案】B.【解析】因为x y cos =在[]0,π-上单调递增,所以wx y cos =在⎥⎦⎤⎢⎣⎡-0,w π上单调递增,所以)0)(3cos(2)(>-w wx x f π=在⎥⎦⎤⎢⎣⎡-w w 3,32ππ上单调递增,则⎥⎦⎤⎢⎣⎡-⊆⎥⎦⎤⎢⎣⎡-w w 3,322,3ππππ,解得203ω<≤. 7.【答案】A【解析】由题意可知在(,0]-∞上是增函数,在(0,)+∞0.30.30.8888100102log log 4log 1,1log 0.125log 0.2log 1093-=<<=--=<<=1.122>所以 1.180.8|log 0.2||log 4||2|,c b a <<<<故. 8.【答案】C【解析】设的中心为1,矩形的中心为2, 过1作垂直于平面的直线1,过2作垂直于平面的直线2, 则由球的性质可知,直线1与2的交点即几何体外接球的球心. 取的中点(图略),连接12由条件得1212. 连接因为12,从而1.连接 则为所得几何体外接球的半径,又1则2+1263, 故所得几何体外接球的表面积等于252π. 9.【答案】D【解析】因⊥a cos A-bcos B=0,所以bcos B=a cos A ,由正弦定理可知sin Bcos B= sin Acos A.所以sin 2A=sin2B.又A ,B ∈(0,π),且A+ B ∈(0,),所以2A=2B.或2A+2B= π.所以A= B ,或A+B=,则△ABC 是等腰三角形或直角三角形,故选D . 10.【答案】B【解析】方程ln 1ln 1()()()(1)1x x f x g x a x x++=⇔++=至少有三个不等的实根 令ln 1()x t x x +=得2()(1)1(1)10a t t t a t a ++=⇔+++-=① 冈为2ln ()x t x x -'=,所以ln 1()x t x x+=在(0,1)上单调递增,在(1,)+∞上单调递减且()t x 的最大值(1)1t =,x 轴是()t x 的渐近线.所以方程①的两个根1t ,2t 的情况是:(ⅰ)若12,(0,1)t t ∈且12t t ≠,则()f x 与()g x 的图像有四个不同的公共点则12121212000(1)(1)0(1)(1)0t t t t t t t t ∆>⎧⎪+>⎪⎪>⎨⎪-+-<⎪-->⎪⎩a ⇔无解 (ⅱ)若1(0,1)t ∈且21t =或20t =,则()f x 与()g x 的图像有三个不同的公共点,则a 无解(ⅲ)若1(0,1)t ∈且20t <,则()f x 与()g x 的图像有三个不同的公共点令2()(1)1h t t a t a =+++-则(0)01011(1)02102h a a h a ⎧<-<⎧⇔⇔-<<⎨⎨>+>⎩⎩.11.【答案】A【解析】因为(,0)2π∈-α,3cos()65+=πα,所以(,)636+∈-πππα, 若(0,)66+∈ππα,33cos()625+>>πα,所以不符合,所以(,0)63+∈-ππα,4sin()65+=-πα所以03341334cos cos ()66525210x -⎡⎤==+-=⨯-⨯=⎢⎥⎣⎦ππαα. 12.【答案】D【解析】()f x 的定义域是(1,3)-,1()ln3x f x x +=-,令:14()1(0,)33x t x x x +-==-∈+∞-- 所以()t x 在(1,3)-单调递增,()ln ()f x t x =在(1,3)-单调递增,且值域为R又因为2(1)ln 2x f x x ++=-,2(1)ln 2xf x x--=+所以(1)(1)f x f x +=--,(1)(1)f x f x +≠-所以①③④正确,②是错误的. 13.【答案】1y =-【解析】()22sin 2f x x x '=+,∴(0)0f '=,又(0)1f =- 故()f x 在(0,(0))f 处的切线方程为1y =-. 14.【答案】632【解析】因为{}n a 为等比数列,所以2106a a =,即73226333()==q q a q a a ⋅⋅⋅∴3==2a q ,又132=a a q ,∴112a =,∴66161(1)63(1)12a q S a q q -==-=-. 15.【答案】725-【解析】依题意α为()f x 极值点,()0f '=α,∴4cos 3sin 0+=αα∴4tan 3=-α,∴221tan 7cos 21tan 25-==-+ααα. 16.【答案】[-1.0)[2.3)【解析】由f 2(x)-f (x )=2,得[f(x)-2][f(x)+1]=0,解得f (x )=2或f (x )=-1. 当f (x )=2时,-[x]=2,解得[x]2=2或[x]=-1.当[x]=2时,解得x [2.3); 当[x]=-1时,解得x [-1,0);当f (x )=-1时,-[x]=-1.无解.综上,方程f 2(x)-f(x)=2的解集是[-1.0)[2,3). 17.【答案】(1)3π;(2)233【解析】(1)由余弦定理,得cos C= 2221222a b c ab ab ab +-==又C (0,),所以C= 3π(2)2222222222sin sin sin (2sin 2sin ),sin 2sin sin 2sin 2sin sin sin sin 4sin cos sin 4cos 2cos 4cos 2cos 0B AC A C B C A A C B C A A A Cb c a a A b A a A b a A -=-+-=+-=+-====由得得再有正弦定理得,所以所以或222222422cos4.,33311223,,222233b a a b ab a b a c B ac ππ=+-====+=∆=⋅⨯=当时,因为联立可得所以b 所以所以ABC 的面积S=① 当cos A=0时,因A (0,)π∈,所以A= 2π,所以b= 223tan 3π=,所以△AC 的面积S= 12 bc= 12223⋅⋅= 233 综上,△ACB 的面积为23318.【答案】(1)存在,=-;(2)【解析】(1)由= ,得=(+1)()-(,因为,所以=(+1)-(要使数列{}是等比数列,需使-(=0对任意nN 恒成立,所以-(=- 此时.且首项=0+1=1 所以存在=-,使得数列{ (2)由(1)知,=1, 所以=2令,得=2,即,所以,=-2() 因为,所以=2=-, 所以数列{}是以为首项,-2为公比的等比数列; 所以.即2"所以即19.【答案】(1)见解析;(2)【解析】(1)证明:因为点E 为AD 的中点AD=2BC ,所以AE=BC ,因为AD//BC ,所AE ∥BC ,所以四边形ABCE 是平行四边形.因为AB=BC ,所以平行四边形ABCE 是菱形,所以BE AC ⊥. 因为平面BEFG 平面ABCD , 且平面BEFG 平面ABCD=BE.所以AC ⊥平面BEFG ,因为AC ⊆平面ACF , 所以平面ACF ⊥平面BEFG.(2)记AC ,BE 的交点为O ,再取FG 的中点P .由题意可知OP BE AC ,,两两垂直,故以O 为坐标原点,以射线OP OC OB ,,分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系xyz O -.因为底面ABCD 是等腰梯形,422,===∥BC AB AD BC AD ,所以四边形ABCE 是菱形,且︒∠60=BAD ,所以)2,0,1(),0,3,2(),0,0,1(),0,0,1(),0,3,0(----F D E B A 则1,3,02,0,2(3,3,0)AB BF BD --=(,), =(), =. 设平面ABF 的法向量为)=(111,,z y x m , 则{111130,220,m AB x y m BF x z ⋅+⋅-+====不妨取11-=y ,则),,=(313-m . 设平面DBF 的法向量为)=(222,,z y x n , 则{2222330,220,m BD x y m BF x z ⋅-+⋅-+====不妨取12=x ,则),=(1,3,1n 故.35105573,cos ===⨯⋅><n m n m n m 记二面角D BF A --的大小为θ, 故.357043531sin ==-θ 20.【答案】(1)启用该方案,见解析;(2)分布列见解析,【解析】(1)由题意可得被调查者不满意的频率是5110)15.005.0(=⨯+,则满意的频率为54,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人满意该方案的概率为54,记事件A 为“抽取的4人至少有3人满意该方案”,则.62551251)54()54()(334444==C C A P + 分角度1:根据题意,60分或以上被认定为满意,在频率分布直方图中.评分在[60,100]的频率为7.05410)004.002.0032.0024.0(>⨯+++=,故根据相关规则该市应启用该方案.角度2:由平均分为709.7004.0952.08532.07524.06515.05505.045>⨯+⨯+⨯+⨯+⨯+⨯=,故根据相关规则该市应启用该方案.(2)因为评分在[50,60)与评分在[80,90)的频率之比为3:4.所以从评分在[50,60)内的市民中抽取3人.评分在[80,90)内的市民中抽取4人,则随机变量X 的所有可能取值为0,1,2,3.,354)3(,3518)2(,3512)1(,351)0(37343724133711233733============C C X P C C C X P C C C X P C C X P ⋅⋅则X X 0 1 2 3 P351 3512 3518 354X 的数学期望.712354335182351213510==⨯+⨯+⨯+⨯EX 21.【答案】(1).12822=y x +;(2)存在,点)2,4(P【解析】(1)由题意可设椭圆的半焦距为c ,由题意可得22222232b c a a b c ⎧++⎪⎪⎨⎪+⎪⎩===解得,故椭园c 的方程为.12822=y x + (2)(i )当直线l 的斜率存在时,设直线l 的方程为)2,(),,(),,(),2(02211x P y x B y x A x k y ===-,则22,2,20202101-----x k x x y k x x y k PQ PB PA ===.联立整理得,=081616)14(2222-+-+k x k x k 则.14816141622212221+-⋅⋅++k k x x k k x x ==故,)(2))(22()44(2222222102120212100202101202101x x x x x x x kx x x k kx x k x x kx k x x kx k x x y x x y k k PB PA ++-++++-+--++--+--+--+===整理得.248244)4(42160202200020--+-+-+-+x x k x x k x k x k k PB PA =)()(= 因为220-x k PQ =,所以.248)2(44)4(4)2(160202200020--+-+-+-x x k x x k x k x = 整理得0)4(2)2)(4(000=x k x x -+--,即[]02)2()4(00=---k x x ,解得.40=x (ii)当直线l l 的斜率不存在时,经检验)2,4(P 也满足条件,故存在点)2,4(P , 使得。

语言运用之情境补写—2021年高考高频、高危题型强化训练卷(全国通用)(原卷版)

语言运用之情境补写—2021年高考高频、高危题型强化训练卷(全国通用)(原卷版)

备战2021年高考二轮冲刺高频、高危题型强化训练卷第3题语言运用之情境补写1.在下面文段的横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。

每处不超过15字。

①__________。

广义的电子商务定义为,使用各种电子工具从事商务活动;狭义电子商务定义为,②__________。

无论是广义还是狭义的电子商务的概念,电子商务都涵盖了两个方面:一是离不开互联网这个平台,没有了网络,就称不上为电子商务;③__________。

2.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密,每处不超过15 个字。

流传至今的数百段传统相声具有相声的精气神,是几代相声艺人集体智慧的结晶。

反观当下的一些相声作品,①_______________。

究其原因,一方面,相声的门槛似乎降低了。

这给当下的年轻人造成了一种错觉:不看重表演者的知识储备和艺术修养,只要不怯场、敢张口,穿上大褂似乎就是说相声的了。

其实,这是对相声艺术的误解。

试想,②_______________,这样的人怎么能说好相声?难怪他们被称作是相声的门外汉。

另一方面,对于传统相声缺乏足够的辨析能力。

人们喜欢一厢情愿地将规矩、行话等当作不可或缺的相声传统,却有意无意地忽略了对传统相声的深层认知。

今天的从业者要③______________,并将其运用到新相声的创演中。

3.在下面一段文字横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密。

每处不超过12个字。

众所周知,酒精杀灭细菌主要靠侵入菌体细胞,改变细茵蛋白质的分子结构,引起蛋白质变性凝固,从而杀灭细菌。

用于杀茵的酒精浓度是否越高越好?不是。

过高浓度的酒精对细菌表面蛋白质脱水过于迅速,使表面蛋白质首先变性凝固,形成一种保护膜,①_______,难以将细茵彻底杀死。

而酒精浓度过低,虽可进入细胞内部,②____________,同样也不能将细菌彻底杀死。

所以临床上一般选择75%浓度的酒精作为消毒剂来使用。

2021年全国新高考Ⅰ卷高考数学中真题试卷及答案解析【完整版】

2021年全国新高考Ⅰ卷高考数学中真题试卷及答案解析【完整版】

2021年全国统一高考数学试卷(新高考Ⅰ)一、选择题(共8小题,每小题5分,共40分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4} 2.已知z=2﹣i,则z(+i)=()A.6﹣2i B.4﹣2i C.6+2i D.4+2i3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.44.下列区间中,函数f(x)=7sin(x﹣)单调递增的区间是()A.(0,)B.(,π)C.(π,)D.(,2π)5.已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|•|MF2|的最大值为()A.13B.12C.9D.66.若tanθ=﹣2,则=()A.﹣B.﹣C.D.7.若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,﹣sinβ),P3(cos(α+β),sin (α+β)),A(1,0),则()A.||=||B.||=||C.•=•D.•=•11.已知点P在圆(x﹣5)2+(y﹣5)2=16上,点A(4,0),B(0,2),则()A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3D.当∠PBA最大时,|PB|=312.在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三、填空题:本题共4小题,每小题5分,共20分。

数学一轮复习高频考点集中练概率统计含解析

数学一轮复习高频考点集中练概率统计含解析

高频考点集中练概率统计1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0。

45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0。

3B.0。

4C。

0。

6D。

0.7【解析】选B.方法一:画Venn图,如图设只用非现金支付(不用现金支付)的概率为x,则0。

45+0.15+x=1,解得x=0。

4,所以不用现金支付的概率为0。

4.方法二:记“用现金支付”为事件A,“用非现金支付”为事件B,则“只用非现金支付(不用现金支付)”为事件B—(A∩B),由已知,P(A)=0.45+0。

15=0。

6,P(A∩B)=0。

15,又P(A∪B)=P(A)+P(B)—P(A∩B)=0。

6+P(B)-0。

15=1,所以P(B)=0。

55,P(B—(A∩B))=P(B)—P(A∩B)=0.55—0.15=0。

4。

【真题拾贝】解决此类问题:①判断事件的基本关系利用概率的计算公式计算;②若事件为互斥事件的和,则由公式P(A∪B)=P(A)+P(B)+P(AB)计算可得;③若事件为独立事件的积,则由公式P(AB)=P(A)P(B)计算可得。

2。

(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是()A。

中位数B。

平均数 C.方差 D.极差【命题思维分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【解析】选A.由于去掉1个最高分、1个最低分,不影响中间的数值,故中位数不变。

【真题拾贝】本题旨在考查学生对中位数、平均数、方差、极差本质的理解。

理解概念即可.3。

(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2。

2024高中数学高考高频考点经典题型模拟卷 (228)

2024高中数学高考高频考点经典题型模拟卷 (228)

一、单选题1. 在中,若,则下列等式中一定成立的是A.B.C.D.2. 我国古代发明了求函数近似值的内插法,当时称为招差术.如公元一世纪的《九章算术》中所说的“盈不足术”,即相当于一次差内插法,后来经过不断完善和改进,相继发明了二次差和三次差内插法.此方法广泛应用于现代建设工程费用估算.某工程费用利用一次差内插法近似计算公式如下:,其中为计费额的区间,为对应于的收费基价,x为某区间内的插入值,为对应于x的收费基价.若计费额处于区间500万元(收费基价为16万元)与1000万元(收费基价为30万元)之间,则对应于600万元计费额的收费基价估计为()A.16.8万元B.17.8万元C.18.8万元D.19.8万元3. 已知函数是上的奇函数,且,且当时,,则的值为()A.B.C.D.4. 以意大利数学家莱昂纳多·斐波那契命名的数列满足:,,设其前n项和为,则().A.B.C.D.5. 若复数表示的点在第三象限,则的取值范围为()A.B.C.D.6. 已知函数同时满足性质:①;②当时,,则函数可能为()A.B.C.D.7. 已知,且,则=()A.B.C.D.8. 密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若,则角可取的值用密位制表示的是()错误A.12-50B.2-50C.13-50D.32-509. 设是定义域为,最小正周期为的函数,且在区间上的表达式为,则()A.B.C.D.10. 已知双曲线:的左、右焦点分别是,,是双曲线上的一点,且,,,则双曲线的离心率是()A.B.C.D.11. 已知两条直线,两个平面.给出下面四个命题:①;②;二、多选题③; ④.其中正确的命题序号为( )A .①②B .②③C .①④D .②④12. 已知点O 是原点,点F 是双曲线C :的右焦点,过双曲线C 的右顶点且垂直于x 轴的直线与双曲线C 的一条渐近线相交于点A ,若,则双曲线C 的渐近线为( )A.B.C.D.13.已知函数,若所有点构成一个正方形区域,则( )A.B.C.D.14. 已知,是非零向量且满足,,则与的夹角是( )A.B.C.D.15.如图,平面四边形中,,,点在对角线上,,,则的值为( ).A .17B .13C .5D .116. 如图,在同一平面内,A ,B 为两个不同的定点,圆A 和圆B 的半径都为r ,射线AB 交圆A 于点P ,过P 作圆A 的切线l ,当r ()变化时,l 与圆B的公共点的轨迹是A .圆B .椭圆C .双曲线的一支D .抛物线17. 正方体的棱长为2,,,分别为,,的中点,则( )A .直线与直线垂直B.平面截正方体所得的截面面积为C .三棱锥的体积为2D .点与点G到平面的距离相等18. 如图是电灯挂在圆形桌面正中央上方的示意图,电灯在点O 处,桌面直径为2m ,点M 是桌面边缘上一点,电灯与M 之间的光线与桌面所成角为,电灯与M 之间的距离为l .根据光学原理,M 点处的照度I满足关系式:(为常数,).则下列说法正确的是( )三、填空题A .记时的照度为,时的照度为,则B .I 随l 的增大而减小C .I先随的增大而增大,后随的增大而减小D .当时,I 取得最大值19. 已知函数,则( )A .函数在区间上单调递增B .直线是函数图象的一条对称轴C .函数的值域为D .方程最多有8个根,且这些根之和为20.已知函数,若,则( )A .为偶函数B .在上为增函数C.D.21. 设z 1,z 2,z 3为复数,z 1≠0.下列命题中正确的是( )A .若|z 2|=|z 3|,则z 2=±z 3B .若z 1z 2=z 1z 3,则z 2=z 3C .若,则|z 1z 2|=|z 1z 3|D .若z 1z 2=|z 1|2,则z 1=z 222.在正方体中,点为线段上的动点,直线为平面与平面的交线,则()A .存在点,使得面B .存在点,使得面C .当点不是的中点时,都有面D .当点不是的中点时,都有面23. 设直线系,下列命题中的真命题有( )A .中所有直线均经过一个定点B .存在定点不在中的任一条直线上C .对于任意整数,存在正边形,其所有边均在中的直线上D .中的直线所能围成的正三角形面积都相等24.若函数为函数的导函数,且对于任意实数,函数值,,均为递增的等差数列,则( )A.函数可能为奇函数B .函数存在最大值C.函数存在最小值D .函数有且仅有一个零点25. 祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个四、解答题截面的面积总相等,那么这两个几何体的体积相等.有一个球形瓷碗,它可以看成半球的一部分,若瓷碗的直径为8,高为2,利用祖暅原理可求得该球形瓷碗的体积为______.26.设函数的图象关于y 轴对称,当时,,则的值为______.27. 如图,已知直线,垂足为,在中,,,,该直角三角形在空间做符合以下条件的自由运动:①,②则、两点间的最大距离为______.28.已知向量,若,则__________.29. 如图,已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠PAQ =45°,则的最小值为________.30.在的展开式中,的系数是________.31. 刘徽是我国古代著名数学家,他对《九章算术》中的各个图形面积计算公式的正确性进行验证,树立了中国数学史上对数学命题进行逻辑证明的典范.刘徽认为圆可以看成一簇半径连续增大的同心圆叠合而成,那么这些同心圆的周长也可以叠成一个等腰三角形(如图1),该圆的面积与等腰三角形的面积相等.即.运用这种积线成面的面积观,圆环面积也和一个等腰梯形的面积相等.若某圆环的内圆周长为,外圆周长为,半径差为d (如图2),则该圆环的面积________(用,,d表示).32. 函数满足:(1)定义域为;(2)偶函数;(3)在上单调递增.则满足上述三个条件的一个函数式为_________.(答案不唯一,正确即可.)33.化简:.五、解答题34. (1)化简;(2)计算.35. 已知数列是公比为2的等比数列,数列是等差数列,.(1)求数列的通项公式;(2)设,求数列的前项和.36. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.37. 已知函数.(1)求f (x )的最小正周期和在的单调递增区间;(2)已知,先化简后计算求值:38. 已知圆.(1)证明:圆C 过定点;(2)当时,点P 为直线上的动点,过P 作圆C 的两条切线,切点分别为A ,B,求四边形面积最小值,并写出此时直线AB 的方程.39. 某学校进行体检,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于到之间),现将抽取结果按如下方式分成八组:第一组,第二组,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第六组和第七组人数的比为.(1)补全频率分布直方图,并估计这50位男生身高的中位数;(2)用分层抽样的方法在身高为内抽取一个容量为6的样本,从样本中任意抽取2位男生,求这两位男生身高不在同一组的概率.40. 2021年1至4月,教育部先后印发五个专门通知,对中小学生手机、睡眠、读物、作业、体质管理作出规定.“五项管理”是“双减”工作的一项具体抓手,是促进学生身心健康、解决群众急难愁盼问题的重要举措.为了在“控量”的同时力求“增效”,提高作业质量,某学校计划设计差异化作业,因此该校对初三年级的400名学生每天完成作业所用时间进行统计,部分数据如下表:男生女生合计90分钟以上80x18090分钟以下y z220合计160240400(1)求x、y、z的值,并根据题中的列联表,判断是否有95%的把握认为完成作业所需时间在90分钟以上与性别有关;(2)学校从完成作业所需时间在90分钟以上的学生中用分层抽样的方法抽取9人了解情况,甲老师再从这9人中选取3人进行访谈,求甲老师选取的3人中男生人数大于女生人数的概率.附:0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.82841. 为了调查某中学高三学生的身高情况,在该中学高三学生中随机抽取了名同学作为样本,测得他们的身高后,画出频率分布直方图如下:(I)估计该校高三学生的平均身高;(II)从身高在(含)以上的样本中随机抽取人,记身高在之间的人数为,求的分布列和数学期望.42. 在某市的一次数学测试中,为了解学生的测试情况,从中随机抽取100名学生的测试成绩,被抽取成绩全部介于40分到100分之间(满分100分),将统计结果按如下方式分成六组:第一组,第二组,,第六组,画出频率分布直方图如图所示.(1)求第三组的频率;(2)估计该市学生这次测试成绩的平均值(同一组中的数据用该组区间的中点值为代表)和第25百分位数.43. 画出函数的图象,并写出该函数的单调区间与值域六、解答题44. 强基计划主要选拔培养有志于服务国家重大战略需求且综合素质或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域,由有关高校结合自身办学特色,合理安排招生.强基计划的校考由试点高校自主命题,校考过程中通过笔试才能进入面试环节.(1)某研究机构为了更好地服务于高三学生,随机抽取了某校5名高三学生,对其记忆力测试指标和分析判断力测试指标进行统计分析,得到下表数据:7910111334567请用线性相关系数判断该组数据中与之间的关系是否可用线性回归模型进行拟合;(精确到)(2)现有甲、乙两所高校的笔试环节都设有三门考试科目,某考生参加每门科目考试是否通过相互独立.若该考生报考甲高校,每门笔试科目通过的概率均为;该考生报考乙高校,每门笔试科目通过的概率依次为,其中.若该考生只能报考甲、乙两所高校中的一所,以笔试中通过的科目数的数学期望为依据作出决策,得知该考生更有希望通过乙大学的笔试,求的取值范围.参考数据:,,;参考公式:线性相关系数:.一般地,时,认为两个变量之间存在较强的线性相关关系.45. 已知函数,.(1)讨论零点的个数;(2)当时,若存在,使得,求证:.46.如图,四棱锥中,底面是矩形,,.为上的点,且平面;(1)求证:平面;(2)求二面角的正弦值.47. 已知=(cosx +sinx ,sinx),=(cosx -sinx ,2cosx),(Ⅰ)求证:向量与向量不可能平行;(Ⅱ)若f(x)=·,且x∈时,求函数f(x)的最大值及最小值48. 已知函数.(1)讨论的单调性;(2)证明:当时,.49.已知函数,函数.(1)当时,求的单调区间;(2)已知,,求证:;(3)已知n为正整数,求证:.七、解答题50. 已知数列、的前项和分别为和,数列满足,,,等差数列满足,.(1)求数列和的通项公式;(2)若数列满足,求证:,其中.51. 3月14日为国际数学日,也称为节,为庆祝该节日,某中学举办了数学文化节活动,其中一项活动是“数学知识竞赛”,初赛采用“两轮制”方式进行,要求每个班级派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.高三(7)班派出甲、乙两个小组参赛,在初赛中,若甲、乙两组通过第一轮比赛的概率分别是,通过第二轮比赛的概率分别是,且各个小组所有轮次比赛的结果互不影响.(1)若三(7)获得决赛资格的小组个数为X ,求X 的数学期望;(2)已知甲、乙两个小组在决赛中相遇.决赛以三道抢答题形式进行,抢到并答对一题得10分,答错一题扣10分,得分高的获胜:假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,且甲、乙两个小组抢到该题的可能性分别是,假设每道题抢与答的结果均互不影响,求乙已在第一道题中得10分的情况下甲获胜的概率.52. 甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:测试指标[85,90)[90,95)[95,100)[100,105)[105,110)甲机床81240328乙机床71840296(1)试分别估计甲机床、乙机床生产的零件为优品的概率;(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.53. 某农场2021年在3000亩大山里投放一大批鸡苗,鸡苗成年后又自行繁育,今年为了估计山里成年鸡的数量,从山里随机捕获400只成年鸡,并给这些鸡做上标识,然后再放养到大山里,过一段时间后,从大山里捕获1000只成年鸡,表示捕获的有标识的成年鸡的数目.(1)若,求的数学期望;(2)已知捕获的1000只成年鸡中有20只有标识,试求的估计值(以使得最大的的值作为的估计值).54. 为贯彻中共中央、国务院2023年一号文件,某单位在当地定点帮扶某村种植一种草莓,并把这种露天种植的草莓搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的草莓的箱数(单位:箱)与成本(单位:千元)的关系如下:1346756.577.58与可用回归方程(其中为常数)进行模拟.(1)若农户卖出的该草莓的价格为150元/箱,试预测该水果100箱的利润是多少元.(利润=售价-成本)(2)据统计,1月份的连续16天中农户每天为甲地可配送的该水果的箱数的频率分布直方图如图,用这16天的情况来估计相应的概率.一个运输户拟购置辆小货车专门运输农户为甲地配送的该水果,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40箱该水果,满载发车,否则不发车.若发车,则每辆车每趟可获利500元;若未发车,则每辆车每天平均亏损200元.试比较和时,此项业务每天的利润平均值的大小.参考数据与公式:设,则0.54 6.8 1.530.45线性回归直线中,.55. 已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃)对某种鸡的时段产蛋量(单位:t)和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.17.4082.30 3.61409.72935.135.0其中.(1)根据散点图判断,与哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给出判断即可,不必说明理由)(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;(3)已知时段投入成本与的关系为,当时段控制温度为℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计公式分别为.②0.080.47 2.7220.091096.6356. 每年七月份,我国J地区有25天左右的降雨时间,如图是J地区S镇2000-2018年降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:八、解答题(1)假设每年的降雨天气相互独立,求S 镇未来三年里至少有两年的降雨量超过350mm 的概率;(2)在S 镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元.而乙品种水果的亩产量m (kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01×m (元/kg ),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润ξ(万元)的期望更大?(需说明理由);降雨量[100,200)[200,300)[300,400)[400,500)亩产量50070060040057. 已知焦点在轴上的椭圆C 1:=1经过A (1,0)点,且离心率为.(1)求椭圆C 1的方程;(2)过抛物线C 2:(h ∈R)上P 点的切线与椭圆C 1交于两点M 、N ,记线段MN 与PA 的中点分别为G 、H ,当GH 与轴平行时,求h 的最小值.58. 1.已知函数.(1)若是的极值点,求t 的值,并讨论的单调性;(2)证明:当时,.59.已知数列满足,(),其中为的前n 项和.(Ⅰ)求;(Ⅱ)若数列满足,设,求的值.60. 设是椭圆的四个顶点,菱形的面积与其内切圆面积分别为,.椭圆的内接的重心(三条中线的交点)为坐标原点.(1)求椭圆的方程;(2)的面积是否为定值?若是,求出该定值,若不是,请说明理由.61. 山东省教育厅颁布的《山东省普通中小学办学基本规范》中提到,保证学生在校期间每天校园体育活动时间不少于 1 小时,小明为了响应号召,缓解学习压力,计划每天利用课间进行3次体育锻炼,每次锻炼项目为跑步、跳绳、踢毽子三个项目之一,已知小明每次锻炼项目只与前一次锻炼项目有关,在前一次锻炼某项目的情况下,本次锻炼各项目的概率如下表:前一次本次跑步跳绳踢毽子跑步0.50.20.3跳绳0.30.10.6踢毽子0.30.60.1(1)已知小明在第1次锻炼时选择了跳绳,则他在第3次锻炼时选择哪个项目的可能性最大?2024高中数学高考高频考点经典题型模拟卷(2)已知小明选择各锻炼项目每次运动时间如下表:锻炼项目跑步跳绳踢毽子锻炼时间(分钟/次)648若当天小明除了3次体育锻炼和一节45分钟的体育课(户外运动)外,无其他校园体育活动时间.已知小明在第1次锻炼时选择了跳绳,求小明当天课间三次体育锻炼总时间的分布列和当天总运动时间的期望,并根据运算结果说明小明当天的运动时间是否符合《山东省普通中小学办学基本规范》的要求.62. 已知椭圆()经过点,离心率为,动点().Array(1)求椭圆的标准方程;(2)求以OM(O 为坐标原点)为直径且被直线截得的弦长为的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.2024高中数学高考高频考点经典题型模拟卷。

期中题型专练其二:高频易错判断30题[真题精选]-五年级数学上册(原卷版)人教版

期中题型专练其二:高频易错判断30题[真题精选]-五年级数学上册(原卷版)人教版

2023-2024学年五年级数学上册典型例题系列期中题型专练其二:高频易错判断30题[真题精选]二、判断题。

1.在同一个图上,数对(2,7)和(7,2)表示同一个位置。

( ) 2.小数乘法时,应把因数中的小数点对齐。

( ) 3.已知A×1.1=B×0.9(A 、B 都大于0),所以A >B 。

( ) 4.简算1.28×2.5×4时,要用到的运算定律是乘法分配律。

( ) 5.任意翻阅2021年的日历,翻到星期一的可能性比翻到10号的可能性大。

( )6.抛一枚硬币,正面朝上的可能性和反面朝上的可能性是一样的。

( )7. 6.240.6÷,除数扩大到原来的10倍,被除数扩大到原来的100倍,商不变。

( )8.王冬妈妈买了14个苹果共重3.2千克,如果买这样的苹果13千克,大约有60个。

( )9.一个非0的数除以大于1的数,商一定比原数大。

( ) 10.0.305是一个循环小数,它的小数部分第2021位上的数字是5。

( )11.5.23÷0.6=523÷60=8……43。

( ) 12.两数相除的商是1.52,被除数和除数的小数点都向右移动一位,商变成15.2。

( )13.循环小数一定是无限小数,无限小数却不一定是循环小数。

( )14.0.1212是循环小数。

( ) 15.若数对()7,n 和(),8m 表示的位置在同一排,则8n =。

( ) 16.1.25×(8-0.8)=1.25×8-0.8=9.2。

( ) 17.两个因数的积保留两位小数是7.38,它的准确值可能是7.384。

( )18.箱子里装有大小相同的10个红球、6个黄球和6个黑球,任意摸出1个,摸到红球的可能性最大,摸到黑球的可能性最小。

( )19.一个数乘0.5,积一定比这个数小。

( )20.从一个不透明的盒子里每次随意摸出一个球(除颜色不同外其他都相同),摸了5次,摸到的都是红球,那么可以推断盒子里都是红球。

2021年高三第三次联考数学(文)试题 含解析

2021年高三第三次联考数学(文)试题 含解析

n = n+1= m+1是a 输出ma n 否= = 1秘密★考试结束前 【考试时间:5月 15日15:00—17:00 】2021年高三第三次联考数学(文)试题 含解析命制:凯里一中高三数学备课组第Ⅰ卷(选择题 60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合中最小元素为 . . . . 2.已知复数为纯虚数,则 . . . .3.在一次贵州省八所中学联合考试后,汇总了 3217名文科考生的数学成绩,用 表示,我们将不低于120的考分叫“红分”,将这些数据按右图的程序框图进行信息 处理,则输出的数据为这3217名考生的 .平均分 .“红分”人数.“红分”率 .“红分”人数与非“红分”人数的比值 4.等差数列的前项和为,若,则下列结论中正确的是 . . . .5.某几何体的三视图如图所示,则该几何体的体积是 . .. .6.已知直线和的倾斜角依次为,则下列结论中正确的是....7.已知,其中在第二象限,则....8.已知实数满足条件,则不等式成立的概率为....9.正方体的棱长为,为正方形的中心,则四棱锥的外接球的表面积为....10.已知:和点,、是圆上两个动点,则的最大值为....11.记,其中为自然对数的底数,则这三个数的大小关系是....12.过抛物线:焦点的直线交抛物线于、两点,,过线段的中点作轴的垂线,垂足为,则....第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分.13.双曲线的离心率为.14.数列中,,,则.15.已知向量,且,则实数.16.函数的定义域,值域为,当时,实数的取值范围是.三.解答题:本大题共6小题. 解答须写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知三角形中,角、、所对的边分别为、、,且.(Ⅰ)求角;(Ⅱ)在数列,中,,,AB C数列的前项和为.证明:.18.(本小题满分12分)如图,已知三棱锥的三条侧棱、、两两垂直,且,.(Ⅰ)求点到平面的距离;(Ⅱ)设、、依次为线段、、内的点.证明:是锐角三角形.19.(本小题满分12分)在一次高三数学考试中,第22、23、24题为选做题,规定每位考生必须且只须在其中选做一题.按照以往考试的统计,考生、、中,、从23、24随机选作一题,从22、23、24题随机选作一题,他们在考试中都按规定选作了其中一道试题.(Ⅰ)求考生、、恰有1人选做第23题的概率;(Ⅱ)求考生、、最多有1人选做第23题的概率.20.(本小题满分12分)已知函数.(Ⅰ)求的最小值.(Ⅱ)证明:对任意正整数,.21.(本小题满分12分)已知椭圆:左、右焦点为、,、、、是它的四个顶点(其相应位置如图所示).且,.(Ⅰ)求椭圆的方程;(Ⅱ)过且斜率为的直线与椭圆交于、两点, 为坐标原点,,求.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,圆、的半径分别为、,两圆外切于点, 它们的一条外公切线与这两圆分别切于、两点. (Ⅰ)当时,证明:; (Ⅱ)当,时,求.23.(本小题满分10分)选修4—4:坐标系与参数方程已知坐标系中的极点与直角坐标系中的坐标原点重合,极轴与轴的正半轴重合,且两个坐标系选用相同的单位长度.曲线的极坐标方程为. (Ⅰ)写出曲线的直角坐标方程,并指明它是什么曲线;(Ⅱ)已知直线的参数方程为(为参数,),当直线与相切(即与只有一个交点)时,求.24.(本小题满分10分)选修4—5:不等式证明选讲已知中,角、、所对的边长依次为、、. (Ⅰ)当时,证明:; (Ⅱ)证明:.俯视图n = n+1= m+1是结束输出a n 否= 1秘密★考试结束前 【考试时间:5月 15日15:00—17:00 】贵州省八校联盟xx 届高三第三次联考试卷理科数学命制:凯里一中高三数学备课组第Ⅰ卷(选择题 60分)二.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合中最小元素为. . . . 解:.,,依题意得答案选. 2.已知复数纯虚数,则. . . . 解:.设,3.在一次贵州省八所中学联合考试后,汇总了3766名理科考生的数学成绩,用表示,我们将不低于120的考分叫“红分”,将这些数据按右图的程序框图进行信息处理,则输出的数据为这3766名 考生的.平均分 .“红分”人数.“红分”率 .“红分”人数与非“红分”人数的比值 解:.依题意,输出的为红分人数,为红分率. 4.等差数列的前项和为,若,则下列结论中正确的是 . . . . 解:.令得.5.某几何体的三视图如图所示,则该几何体的体积是 . .. .解:.由三视图易知该几何体是一个底半径为高为的圆柱挖去一个底面是边长为的正方形,高为的四棱锥得到的几何体,其体积为.故答案选. 6.已知直线和的倾斜角依次为,则下列结论中正确的是 . . . .1A解:.,为锐角,为钝角,由倾斜角的定义知答案选.7.已知,其中在第二象限,则....解:.2137sin cos sin cos,(sin cos)284θθθθθθ+=⇒=--=,在第二象限,,故22sin cos sin cos sin cos(cos sin)16θθθθθθθθ-=-=-8.已知实数满足条件,则不等式成立的概率为....解:.如图,观察发现直线和在区间上的唯一交点为,则使条件成立的区域为图中阴影部分,由定积分和几何概型的知识得到答案.9.如图,直线与圆:交于、两点,并依次与轴的负半轴和轴的正半轴交于、两点,当时,....解:.解:的中点为,依题意为线段的中点,则有,故原点到直线的距离,半径,则.10.记,,则这三个数的大小关系是....解:.由比较法不难得出,构造函数,知此函数在区间上为减函数,从而得到即11.正方体的棱长为,半径为的圆在平面内,其圆心为正方形的中心,为圆上有一个动点,则多面体的外接球的表面积为....解:.设多面体的外接球的半径为,依题意得,故其外接球的表面积为.故答案选12.过抛物线:焦点的直线交抛物线于、两点,,为轴上的动点,则的最小值为....解:.设的中点为,由抛物线的性质知到轴的距离为,故,由余弦定理得:,22||16||8||cosPB PC PC BCP=+-∠⇒222||||322||321850PA PB PC +=+≥+=(当时等号成立).第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分. 13.双曲线的离心率为 . 解:2..14.数列中,,,则 . 解:2.由已知条件得15.已知向量,且,则实数 .解:.由222()()()()0k k k k k +⊥-⇒+-=-=a b a b a b a b a b16.已知,则 解:.对等式两边求导得98710982110982a x a x a x a x a =+++⋅⋅⋅++.继续对此等式两边求导,得 98710982109988721a x a x a x a =⨯+⨯+⨯+⋅⋅⋅+⨯.令得10982360109988721a a a a =⨯+⨯+⨯+⋅⋅⋅+⨯).三.解答题:本大题共6小题. 解答须写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三角形中,角、、所对的边分别为、、,且. (Ⅰ)求角;(Ⅱ)在数列,中,,,数列的前项和为.证明:. 解:(Ⅰ)由及正弦定理得由勾股定理定理得. ……6分 (Ⅱ)由(Ⅰ)得 .故. ……12分18.(本小题满分12分)ACxx如图,已知三棱锥的三条侧棱、、两两垂直,且,. (Ⅰ)求点到平面的距离;(Ⅱ)设、、依次为线段、、内的点.证明:是锐角三角形.解:(Ⅰ)依题意得5AC AB BC ====,则中,边上的高12ABC h S AC h ∆==⇒=⋅=设点到平面的距离为,则由1133O ABC A OBC ABC OBC V V d S OA S --∆∆=⇒⨯=⨯即.即点到平面的距离为. (6)分(Ⅱ)设,则有 依题意得111111A B B C C A===22221111111111111cos 2A B AC B C B AC A B AC +-∠==⨯则有为锐角,同理可得、均为锐角. 故是锐角三角形.……12分解法二:依题意,建立如图所示坐标系. (Ⅰ)则,设平面的法向量为m ,则有 设点到平面的距离为. ……6分(Ⅱ)设1(,0,0),(0,,0),(0,0,)OA a OB b OC c ===,则有,则,又、、三点不共线为锐角, 同理可得、均为锐角.故是锐角三角形. ……12分19.(本小题满分12分)在一次高三数学考试中,第22、23、24题为选做题,规定每位考生必须且只须在其中选做一题.按照以往考试的统计,考生、、中,、选做以上每道试题的可能性均为,只选做23、24题,且他选做这两道试题中每道试题的可能性均为.他们在考试中都按规定选做了其中一道试题.(Ⅰ)求考生、、最多有1人选做第23题的概率;(Ⅱ)设考生、、在第22、23、24中所选择的不同试题个数为,求的分布列及. 解:(Ⅰ)设“考生、、最多有1人选做第23题”为事件,选做23题的人数为,则11221111111112()1(2)(3)133********p M p p C C ηη=-=-==-⨯⨯-⨯⨯⨯-⨯⨯=故考生、、中最多有1人选做第23题的概率为. ……6分 (Ⅱ)依题意得可取,,, ,,, 即的分布列为故. ……12分20.(本小题满分12分)已知函数. (Ⅰ)求的最大值.(Ⅱ)对于数列,其前项和为,如果存在实数,使对任意成立,则称数列是“收敛”的;否则称数列的“发散”的.当时,请判断数列是“收敛”的还是“发散”的?证明你的结论. 解:(Ⅰ)令,由,,故在区间上为减函数,在区间上为增函数.故,即当时,恒成立,故即当时,的最大值为1. ……6分(注:直接对求导,而未说明恒不为零的,扣1分). (Ⅱ)由(Ⅰ)知即(当时等号成立) 依次令得223344111ln ,1ln ,1ln ,,1ln 112233n n n n++->->->⋅⋅⋅->,即121314*********ln ,ln ,ln ,,ln ln ln ln 112233123123n n n n +>>>⋅⋅⋅>⇒+++⋅⋅⋅+>+++ 11112341ln ln(1)123123n n n n+⇒+++⋅⋅⋅+>⨯⨯⨯⋅⋅⋅⨯=+. 即. ……11分 对任意实数当时,,从而 故不存在实数,使对任意成立.依题意知数列是“发散”的. ……12分21.(本小题满分12分)已知椭圆:左、右焦点为、,、、、是它的四个顶点(其相应位置如图所示).且,. (Ⅰ)求椭圆的方程;(Ⅱ)过且与两坐标轴均不平行的直线与椭圆交于、两点, 为坐标原点,,求的取值范围. 解:(Ⅰ)设,则由 ①由22212212122(,)(,)(,)(,)33333a cB F B F B A c b c b a b b -=+⇒-=--+-=- ② 由①、②两式得.故椭圆的方程为. ……5分 (Ⅱ)由(Ⅰ)得椭圆的方程为,的坐标为依题意,设的方程为由222222(1)(43)84120143y k x kx k x k x y =+⎧⎪⇒+++-=⎨+=⎪⎩设,则有……8分则2212(1)||43k MN k +==+,又点到直线的距离,即 ③又22211221212 (,)(,)(1)()OM ON x kx k x kx k k x x k x x k •=++=++++22422222(1)(412)8512434343k k k k k k k k +-+=-+=-+++,即④由③、④得212|tan 512k k θ=-=+由2211191200tan 0512121685k k θ>⇒<<<⇒-<<+. 故的取值范围是. ……12分 (注:本题有其它解法,请根据不同解法进行判分)请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,圆、的半径分别为、,两圆外切于点,它们的一条外公切线与这两圆分别切于、两点. (Ⅰ)当时,证明:; (Ⅱ)当,时,求.证明:(Ⅰ)连接、、,由两圆外切于点知经过点, 由分别与两圆分别切于、两点,知,,由弦切角定理知,又 ,结合知四边形是矩形,,即. ……5分 (Ⅱ)由(Ⅰ)知,且. ,过作的垂线,设垂足为,则有2222122OO DO -=-=. ……10分23.(本小题满分10分)选修4—4:坐标系与参数方程已知坐标系中的极点与直角坐标系中的坐标原点重合,极轴与轴的正半轴重合,且两个坐标系选用相同的单位长度.曲线的极坐标方程为. (Ⅰ)写出曲线的直角坐标方程,并指明它是什么曲线;(Ⅱ)已知直线的参数方程为(为参数,),当直线与相切(即与只有一个交点)时,求.解:(Ⅰ)由222222222(2sin cos )4cos 2sin 4142x y ρθθρθρθ+=⇒+=⇒+=. 即曲线的直角坐标方程为,它是中心在坐标原点,焦点在轴上的椭圆.……5分(Ⅱ)将代入得 ① 依题意①式的判别式22222)8(2sin cos )0sin cos tan 1θθθθθθ-+=⇒=⇒=±而或. ……10分24.(本小题满分10分)选修4—5:不等式证明选讲已知中,角、、所对的边长依次为、、. (Ⅰ)当时,证明:; (Ⅱ)证明:. 证明:(Ⅰ)当时,43431434()()()()(5)222B AA B A B AB A B A B A Bπππππ+=++=++=++ .当且仅当即当时等号成立. ……5分 (Ⅱ)在中,由均值定理得22()()()2a b c b c a a b c b c a b +-++-+-+-≤=①(当时取等号); 同理可得②(当时取等号); ③(当时取等号).由①、②、③得22()[()()()]abc a b c b c a c a b ≥+-+-+-,又0,()()()0()()()abc a b c b c a c a b abc a b c b c a c a b >+-+-+->⇒≥+-+-+- 当时等号成立. ……10分24202 5E8A 床'38128 94F0 铰 22416 5790垐?{20630 5096 傖X-38406 9606 阆cE25095 6207 戇。

期中题型专练其五:高频易错解答30题[真题精选]-五年级数学上册(原卷版)人教版

期中题型专练其五:高频易错解答30题[真题精选]-五年级数学上册(原卷版)人教版

2023-2024学年五年级数学上册典型例题系列期中题型专练其五:高频易错解答30题[真题精选]五、解答题。

1.把6张卡片放入纸袋,随意摸出一张。

(1)要使摸出数字“2”的可能性大,摸出数字“5”的可能性小,卡片上的数字应该怎样填?请你填一填。

(2)要使摸到的一定是数字“2”,卡片上的数字应该怎样填?请你填一填。

2.两种规格的巧克力,a种0.48千克卖36元,b种0.25千克卖18元。

哪一规格的巧克力比较便宜?3.小鹏的妈妈要将4.2千克蜂蜜分装在一些瓶子里,需要准备几个瓶子?4.按要求完成下面各题。

(1)用数对分别表示A、B、C的位置。

5.1台抽水机每小时可以浇地0.6公顷,2台同样的抽水机,花4小时一共可以浇地多少公顷?6.停车场的收费标准如下表,方老师停车7.8小时,应交停车费多少元?7.两地相距102千米,两辆汽车同时两地背向开出,甲车每小时行62千米,乙车每小时行70千米,2.5小时后两车相距多少千米?8.一根绳子长18米,第一次剪去4.6米,第二次剪去后,剩下的长度刚好是第一次剪去的2倍,第二次剪去多少米?9.某出租车公司规定:行程2千米及以内收费5元,超过2千米的部分(不足1千米,按1千米计算),按1.8元每千米的标准收费,妈妈从家乘出租车去公司行驶了8千米应付多少元钱?10.一个房间长8.1米,宽5.2米,现在要铺上边长为0.6米的正方形地板,100块够吗?11.一个房间长10.5米,宽7.2米。

如果不考虑损耗,用边长是6分米的正方形地砖铺地,200块够吗?12.一个正方体骰子,六个面上分别写着数字1~6。

小明和小军进行掷骰子比赛,小军对小明说:“如果掷到大于3,我赢;如果掷到小于3,你赢。

”同学们,你认为这个游戏公平吗?为什么?13.妈妈带100元去超市购物。

她买了2袋大米,每袋30.6元。

还买了0.8千克肉,每千克26.5元,剩下的钱还够买一盒10元的鸡蛋吗?14.乐乐一家为响应国家“节能减排,降低能源消耗、减少污染物排放,保护绿色家园”的号召,周末乐乐和爸爸妈妈一起去看望外婆没有开车,乘坐出租车去的,出租车起步价为8元(含3千米),超出3千米的平均每千米加收1.8元(不足1千米按1千米计算),乐乐一家乘出租车到外婆家共付车费20.6元。

期中题型专练其一:高频易错填空30题[真题精选]-五年级数学上册(原卷版)人教版

期中题型专练其一:高频易错填空30题[真题精选]-五年级数学上册(原卷版)人教版

2023-2024学年五年级数学上册典型例题系列期中题型专练其一:高频易错填空30题[真题精选] 一、填空题。

1. 2.4 2.4 2.4 2.4 2.4+++=⨯( )。

2.1欧元可以兑换7.06元人民币,一个水杯标价25欧元,相当于( )元人民币。

3.小明在教室里的位置用数对表示是(5,3),他前面同学的位置用数对表示是( )。

4.爷爷感冒了,下面是医生所开的药的部分说明书,请填空。

(1)爷爷一天最多吃( )克。

(2)该药的保质期是( )年。

5.口袋里有10块奶糖,8块水果糖,5块酥糖,任意摸出一块,摸到( )糖的可能性最大,摸到( )糖的可能性最小。

6.根据已有的结果找出规律,直接写得数。

⨯=37.0373111.111⨯=37.0376222.222⨯=37.0379333.333⨯=( )37.03712⨯=( )37.037187.妈妈买了3.6kg的香蕉,每千克9.8元,又买了4.2kg橘子,每千克3.6元。

一共花了( )元。

8.单位换算。

5cm=( )m 2.2时=( )分50g=( )kg7km30m=( )km9.两个数的商是一个三位小数,保留两位小数后是2.58,这两个数的商最小是( ),最大是( )。

10.李家村修一条长7.5千米的水渠,已经修了4天,平均每天修0.65千米,已修( )千米,剩下的要7天修完,平均每天修( )千米。

11.食堂有一堆煤,如果每天烧3.6吨,可烧20天,如果每天烧2.4吨,可烧( )天。

12.小数5.747474…的小数部分的第100位( )是4;小数3.257的小数部分的第100位( )是4;小数2.1415926…的小数部分的第100位( )是4。

(填“可能”“不可能”或“一定”)13.一个转盘被平均分成了12份,其中6份涂黄色,4份涂红色。

2份涂蓝色,用飞镖投1次,投中( )区域的可能性最小,投中( )区域的可能性最大。

14.小明家装修需要沙子,如果使用载重量7.5吨的大卡车,每车运费是130元;如果使用载重量3吨的小卡车,每车运费是60元。

2021年高三下学期第三次(期中)质检数学(文)试题 含答案

2021年高三下学期第三次(期中)质检数学(文)试题 含答案

2021年高三下学期第三次(期中)质检数学(文)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,,则有().A.B.C.D.2.关于复数的命题:(1)复数;(2)复数的模为;(3)在复平面内纯虚数与轴上的点一一对应,其中真命题的个数是().A.0个B.1个C.2个D.3个3.一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为( ) .A.长方形B.直角三角形C.圆D.椭圆4.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,,分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有().A.B.C.D.5.设是直线,,是两个不同的平面,下列命题正确的是().A. 若,,则B. 若,,则C. 若,,则D. 若, ,则6.函数的值域为().A. [ -2 ,2] B.[-,] C.[-1,1 ] D.[- , ]7.公差不为零的等差数列的前项和为,若是与的等比中项,且,则=().A.80B.160C.320D.6408.定义在上的函数,满足,,若且,则有().A.B.C.D.不能确定9. 倾斜角为的直线经过抛物线的焦点,且与抛物线相交于两点(点在轴上方),则的值为( ).A.1B.2C.3D.410.如图:一个周长为1的圆沿着边长为2的正方形的边按逆时针方向滚动(无滑动),是圆上的一定点,开始时,当圆滚过正方形一周,回到起点时,点所绘出的图形大致是().二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量则的最大值为.12.下列程序框图输出的结果,.13.设变量满足,则的最大值为.14.已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于两点,为坐标原点,若,则双曲线的离心率为.15.已知函数,若关于的不等式的解集为,则的取值范围是.三、解答题:本大题共6题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知设的内角所对边分别为,且.(1)求角的大小;(2)若,求边长的最小值.17.已知递增的等差数列与等比数列,满足:(1)求数列的通项公式;(2)求数的前项和.18. (本小题满分12分)已知直角梯形中,,,,是等边三角形,平面⊥平面.(1)求证:;AB(2)求三棱锥的体积.19.(本小题满分12分)某种产品按质量标准分为五个等级.现从一批该产品中随机抽取个,对其等级进行统计分析,得到频率分布表如下:等级 1频率(1)在抽取的个零件中,等级为的恰有个,求;(2)在(1)的条件下,从等级为和的所有零件中,任意抽取个,求抽取的个零件等级恰好相同的概率.20.(本小题满分13分)已知的定义域为,且满足(1)求及的单调区间;(2)设,且,两点连线的斜率为,问是否存在常数,有,若存在求出常数,不存在说明理由.21.(本小题满分14分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,点在线段的垂直平分线上,且,求的值.景德镇市xx 届高三第三次质检试卷数学(文)参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(2)121112213252(21)2n n n n S a b a b a b n -=⋅++=+⋅+⋅+-⋅18. 解:(1)∵,, 过作,垂足为,则∴,∴,∴ …………………6分 (2)2116433(22)223233P BCD V -==⋅= …………………12分 19.(1)解:由频率分布表得 ,即 . 由抽取的个零件中,等级为的恰有个,得 . 所以. ………5分(2) , 取 又,2222211()()33c b ab a b b b b ∴=++<++=2222211()()33c b ab a a a a a ∴=++>++= 故存在常数.……………………………13分① 当时,线段的垂直平分线方程为令 解得 由222222(28)646()14141414k k k k k k k k --=++++++综上或 ……………14分 34409 8669 虩24502 5FB6 徶 W32623 7F6F 罯23778 5CE2 峢38874 97DA 韚O30837 7875 硵28605 6FBD 澽= 29051 717B 煻33432 8298芘。

专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。

精品解析:河北省衡水中学2021届高三9月摸底联考(全国卷)文数试题解析(原卷版)

精品解析:河北省衡水中学2021届高三9月摸底联考(全国卷)文数试题解析(原卷版)

河北省衡水中学2021届高三摸底联考(全国卷)文数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}{}2|30,|13A x x x B x x =-≥=<≤,则如图所示阴影部分表示的集合为( )A . [)0,1B . (]0,3C .()1,3D .[]1,32. 已知向量()(),2,1,1m a n a ==-,且m n ⊥,则实数a 的值为( )A .0B .2C .2-或1D .2-3.设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( )A . 1B .116C . 14D .125. 若直线:4l mx ny +=和圆22:4O x y +=没有交点,则过点(),m n 的直线与椭圆22194x y +=的交点个数为( )A . 0B . 至多有一个C .1D .26. 在四面体S ABC -中,,2,2,6AB BC AB BC SA SC SB ⊥======,则该四面体外接球的表面积是( )A .86πB .6πC .24πD .6π7. 已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B . 110C .10D .208. 若函数()()()sin 0f x A x A ωϕ=+>的部分图象如图所示,则关于()f x 的描述中正确的是( )A .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是减函数B .()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是减函数 C .()f x 在5,1212ππ⎛⎫- ⎪⎝⎭上是增函数 D .()f x 在5,36ππ⎛⎫ ⎪⎝⎭上是增减函数 9.某程序框图如图所示,若该程序运行后输出的值是2312,则( )A .13a =B .12a =C .11a =D .10a =10. 函数()321122132f x ax ax ax a =+-++的图象经过四个象限的一个充分必要条件是( ) A . 4133a -<<- B .112a -<<- C .20a -<< D .63516a -<<- 11. 已知某几何体的三视图如图所示,则该几何体的体积为( )A .1133B .35C .1043D .107412. 已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭,当12a <<时实根个数为( ) A . 5 个 B .6个 C . 7个 D . 8个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点()2,1-,则它的离心率为.14.曲线()232ln f x x x x =-+在1x =处的切线方程为.15. 某大型家电商场为了使每月销售A 和B 两种产品获得的总利润达到最大,对某月即将出售的A 和B进行了相关调査,得出下表:如果该商场根据调查得来的数据,月总利润的最大值为元.16. 如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+.(1)求角A 的大小;(2)若224b c +=,求ABC ∆的面积.18. (本小题满分12分)如图,三棱住111ABC A B C -中,11,,60CA CB AB AA BAA ==∠=.(1)证明:1AB A C ⊥;(2)若12,6AB CB AC ===,求三棱住111ABC A B C -的体积.(1)根据直方图估计这个开学季内市场需求量x 的中位数;(2)将y 表示为x 的函数;(3)根据直方图估计利润不少于4800元的概率.20. (本小题满分12分)在平面直角坐标系xOy 中,过点()2,0C 的直线与抛物线24y x =相交于,A B 两点,()()1122,,,A x y B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.21. (本小题满分12分)已知函数()()2ln ,f x ax bx x a b R =+-∈. (1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值; (2)设0a >,且对于任意的()()0,1x f x f >≥,试比较ln a 与2b -的大小.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(1)若11,32EC ED EB EA ==,求DC AB的值; (2)若2EF FA FB =,证明:EF CD .23. (本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为: 312(12x t t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.24. (本小题满分10分)选修4-5:不等式选讲已知函数()()223,12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.。

专题:数轴、相反数与绝对值高频考题及易错题(浙教版)(原卷版)

专题:数轴、相反数与绝对值高频考题及易错题(浙教版)(原卷版)

专题01数轴、相反数与绝对值高频考题及易错题【考点简介】数轴、相反数与绝对值考点中易错题极多,且都属于高频题,是大部分七年级学生考试的集中失分点,但这些易错题本质都是围绕的相对应的性质出题,本篇题目都选自于各大真题卷中且集中了各类易错题,有助于学生集中吸收与掌握。

【必备方法大招】1.数轴:①三要素:单位长度、正方向、原点②数轴上有A 、B 两点:.a 求A 、B 两点间的距离:若能确定左右位置: AB 右—左若无法确定左右位置:BA AB .b 求A 、B 的中点:2B A ③易错点:.a 数轴是一条直线,而不是线段或射线;.b 已知两点间的距离时,要注意点的左右位置,即数轴分左右;.c 所有的有理数都能在数轴上表示,但是数轴上的点表示的不都是有理数。

2.相反数:①性质:相加和为0,即若a ,b 互为相反数,则0 b a ;反之,若0 b a ,则a ,b 互为相反数。

②常见相反数形式:.a b a 的相反数是b a ;.b b a 的相反数是b a 或ab 即每一项的符号都进行改变。

3.绝对值:性质:①非负性:任何数的绝对值都是非负数,即0 a ;经典题型:若0 b a ,则0 a ,0 b ②绝对值为a 的数有两个,即a ;易错考点:容易忽视a 。

③绝对值相等的两个数相等或互为相反数,即b a ,则0 b a b a 或;易错考点:容易忽视互为相反数0 b a 情况。

④绝对值是他本身的数是非负数;绝对值是它相反数的数是非正数易错考点:容易忽视0的本身与相反数都是0。

注:绝对值性质每条都属于易错考点,且属于高频题,需反复牢记!【真题演练】1.(2021•南充)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.(2021•莱西市模拟)下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数3.(2020秋•岳池县期中)a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则a2>b2D.若a2>b2,则a>b4.(2020•岱岳区二模)下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|5.(2019秋•贵港期末)下列说法正确的是()A.一个数的绝对值等于它本身,这个数一定是正数B.一个数的绝对值等于它的相反数,这个数一定是负数C.绝对值越大,这个数越大D.两个负数,绝对值大的那个数反而小6.(2019•邛崃市模拟)如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤07.(2019秋•天津期末)下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个8.(2019秋•翁牛特旗期中)已知|x﹣2|=3,则x的值为()A.﹣5B.﹣1C.﹣5,﹣1D.5,﹣19.下列说法错误的是()A.最小自然数是0B.最大的负整数是﹣1C.没有最小的负数D.最小的整数是010.(2019秋•东台市月考)下列关于数轴的概念叙述不正确的是()A.数轴是一条直线B.数轴上位于原点的两侧且到原点距离相等的点表示的数互为相反数C.数轴上的点只能表示有理数D.数轴上表示的两个数,左边的数总比右边的小11.(2020秋•万州区校级期中)已知a与b互为相反数,则下列式子:①a+b=0;②a=﹣b;③a=b;④<0,其中一定成立的是()A.1个B.2个C.3个D.4个12.(2019秋•东台市期中)已知x与y互为相反数,那么|x﹣3+y|的值是()A.3B.0C.﹣3D.无法确定13.(2020秋•顺义区期末)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2 14.(2019秋•宁波期中)若﹣|a|=﹣3.5,则a=()A.3.5B.﹣3.5C.±3.5D.以上都不对15.(2019秋•雁塔区校级月考)已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<a D.﹣b<﹣c<a16.(2020秋•诸暨市期中)在数轴上与表示﹣2的点的距离等于4的点表示的数是.17.已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为2,则所有满足条件的点B 与原点O的距离之和为.18.若代数式a﹣1与2a+10的值互为相反数,则a=.19.已知数轴上点A和点B分别表示互为相反数的两个数a、b(a<b),并且A、B两点之间相距10个单位.那么a、b分别为、.20.若|m+5|=|n+5|,则m、n之间的关系为.21.如果a•b<0,那么=.22.(2019秋•大连月考)如果a、b、c是非零有理数,且a+b+c=0,那么的所有可能的值为.23.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)星期一二三四五每股涨跌(元)+3﹣0.5+2+1﹣1.5(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?。

最新状元笔记衡中资料学习文档清单

最新状元笔记衡中资料学习文档清单
【历史14】中外古今历史大事纪年表
【生物10】测试你的高中生物根底【会做这100题你
【生物11】高中生物选择题85个高频考点+记忆口诀
【历史15】高中历史重要结论总汇
【生物12】2021(高&考)生物:实验及相关知识汇总
<高中地理文档集粹>
【生物13】高中生物知识主干
【地理01】高中地理雕虫小技口诀记忆法
【生物14】高中生物必修3 稳态与环境知识点汇编
【地理02】轻松学习高中地理,顺口溜快速记忆
【地理03】高中地理详细知识点快速记忆
【地理04】(高&考)地理:中国地理复习重、难点归纳
【地理05】高中地理知识点全面汇总
【地理06】高中地理综合题的分析思路和答题方法集锦
【地理07】高中地理23个常见简答题答题标准
淘宝销售的状元笔记,根底全面,很详实
15
【化学04】:2021(高&考)河南理科状元化学笔记
新课标全国Ⅰ卷适用地区:河南、河北、山西
2
生物笔记
【生物01】:2021吉林(高&考)理科状元生物笔记
很详尽的生物笔记,薄薄的小册子
5
【生物02】:安娜状元笔记之生物笔记
理综297分状元学姐生物笔记
18
【生物03】:2021(高&考)河北理科状元生物笔记
15
【衡水中学2021-2021(政&治)月考调研试卷】
12
【衡水中学2021-2021历史月考调研试卷】
15
【衡水中学2021-2021地理月考调研试卷】
15
衡水中学2021(高&考)三轮试卷万马奔腾、马不停蹄、一马平川、快马加鞭、
百炼成钢、精益求精、凤凰涅槃、破茧成蝶等等有比拟多的人需要我再整理,

全国Ⅰ卷 2021届高三理数名校高频错题卷(一)参考答案 (1)

全国Ⅰ卷 2021届高三理数名校高频错题卷(一)参考答案 (1)

)<f( ).1.C【解析】全国Ⅰ卷 2020 届高三理数名校高频错题卷(一)参考答案因为全称命题的否定是特称命题,所以命题”的否定是,. 故选:C .2.C 【解析】故选:C 。

为实数,,.3.B【解析】若 f(x)在(2,4)上单调递增,则= ,在(2,4)上恒成立.在(2.4)上单调递增,,所.故“ "是 f(x)在(2.4)上单调递增”的必要不充分条件. 故选:B.4.A. 【解析】成公比为 q 的等比数列,,又为等差数列,即即 d =0 或公或或 2故选:A.5.D. 【解析】故选:D 。

6.B【解析】依题意可得,f(x)的图象关于直线 x=1 对称. 因为 , ∈(4,8),f(x)在[1,+∞)上单调递增,所以 f( )<f(故选:B 。

7.A. 【解析】所以 a ,b ,c 的大小关系为 c >b >a .且b <0,c >0,8.C【解析】 因为,所以,故A,B 正确.g(x)的图象关于点( , )对称,故C 错误.对于D,由的图象向右平移个单位长度得到的图象,故D 正确.9.C【解析】化简得f(x) =sin +1=(1,2)上单调-cosωx + sinωx= )因为在区间所以TT= ππ≥ 2 − 1 令t =ωx - ( ) ,)2 ωω所以或或所以的取值范围是10.C.【解析】选项A,因为MN//BD,所以MN//平面ABD,故选项A 正确:选项B,取AC 中点0,连接OB,OD,则AC⊥OB,且AC⊥OD,所以AC⊥平面OBD,所以AC⊥BD,异面直线AC 与BD 所成的角为90°,为定值,故选项B 正确;选项C,若直线AD 与直线BC 垂直,因为直线AB 与直线BC 也垂直,则直线BC⊥平面ABD,所以直线BC⊥直线BD,又因为BD⊥AC,所以BD⊥平面ABC,所以BD⊥OB 而△OBD 为等腰三角形,这显然不可能,故选项C 不正确:选项D,当平面DAC⊥平面ABC 取最大值,故选项D 正确.11.D【解析】试题分析:在平面直角坐标系中画出函数y =f (x) 及y = log5| x - 1 | 的图象,结合函数的图象可以看出函数共有8 个零点,且关于x = 1对称,故所有零点的和为2 ⨯ 4 = 8 ,应选D. 12.D.【解析】因,所以2π是f(x)的一个周期,选项①正确;因为f(-x)=-f(x),所以f(x)是奇函数,选项②正确;当x∈时单调递增,又因为f(x)是奇函数且过原点,所以是函数f(x)的一个单调递增区间,选项③正确;由②③可画出函数极值点∴,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(全国Ⅰ卷)2021届高三数学高频错题卷 文满分:150分 时间:120分钟姓名: 班级: 考号:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12题,每小题5分,共60分) 1.【2021年广东省名校试题】【年级得分率:0.6364】 集合2{N|4},{|9<0}A x x B x x =∈≤-,则A B =( )A.B.C.D.2.【2021年河南省名校试题】【年级得分率:0.6818】 已知曲线1ln xy x a=+在1x =处的切线l 与直线320x y +=垂直,则实数a 的值为( ) A.2B.35C.12D.35-3.【2021年河北省名校试题】【年级得分率:0.4318】 函数2()ln()ln()1f x x e x e x =+-++的图象大致为( )A B CD4.【2021年山西省名校试题】【年级得分率:0.3409】过双曲线C :22221(0,0)x y a b a b-=><的右焦点F 作一条渐近线的垂线,与C 左支交于点A ,若||||OF OA =,则C 的离心率为( )2 B.25 D.55.【2021年江西省名校试题】【年级得分率:0.5484】已知函数3121xxf x x x e e =-++-(),其中e 是自然对数的底数若2122f a f a -+≤()(),则实数a 的取值范围是( )A.[-1,32] B.[-32,1] C.[-1,12] D.[-12,1] 6.【2021年河南省名校试题】【年级得分率:0.7097】若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4π,则其侧棱长为( )A 33 B. 233C. 223D.23-7.【2021年湖北省名校试题】【年级得分率:0.7419】已知函数||sin ,,)0(00x f x A x e A ωωϕϕπ-=+>><⋅<()() 的图象如图所示,则A ω的可能取值为( )A.2πB.πC.32πD.12π8.【2021年湖北省名校试题】【年级得分率:0.5833】 已知x =a 是函数3()12f x x x =-的极小值点,则a =( ) A .-4 B .-2 C .4 D .29.【2021年安徽省名校试题】【年级得分率:0.1724】 如图,一个正四棱锥–A D 和一个正三棱锥–的所有棱长都相等,F 为棱的中点,将、,、,、分别对应重合为P,B,C,得到组合上体.关于该组合体有如下三个结论:①AD ⊥SP ;②AD ⊥SF ;③AB//SP.其中错误结论的个数是( ) A.0 B.1 C.2 D.310.【2021年山东省名校试题】【年级得分率:0.1935】已知抛物线C:y 2=2px (p>0)的焦点为F ,且F 到准线l 的距离为2,直线1l :x-my-=0与抛物线C 交于P 、Q 两点(点P 在x 轴上方),与准线l 交于点R ,若|QF|=3, 则QRF PRFS S=( )A57B.37C.67D.9711.【2021年湖北省名校试题】【年级得分率:0.3333】已知函数()f x 的导函数()2f x sinx '=+,且(0)1f =-,数列{}n a 是以4π为公差的等差数列,若234(3f a f a f a π++=)()(),则20162a a =( )A .202XB .202XC .202XD .2013 12.【2021年湖南省名校试题】【年级得分率:0.2143】 已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .[-3,3]B .(-3,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)第II 卷(非选择题)二、填空题(本题共4题,每小题5分,共20分) 13.【2021年河南省名校试题】【年级得分率:0.9655】 已知向量()()2,1,1,2,a b =-=则2a b -=____.14.【2021年广东省名校试题】【年级得分率:0.2273】已知两个同底的正四棱锥的所有顶点都在同一球面上,它们的底面边长为2,体积的比值为,则该球的表面积为_________. 15.【2021年河南省名校试题】【年级得分率:0.2258】 若双曲线c :-=1(a >0,b>0)的一条渐近线被圆x 2+(y+2)2=4所截得的弦长为2,则双曲线C 的离心率为______. 16.【2021年湖南省名校试题】【年级得分率:0.0387】已知数列{a n }满足a 1=1;()121n n a a n ++=+(n N*),则a 2021-a 2021=_______.132435981009910111111...a a a a a a a a a a +++++=_______.三、解答题(第17题10分,第18-22题每题12分,共70分) 17.【2021年山东省名校试题】【年级得分率:0.3106】 已知数列{}n a 的前n 项和为211,,0(2)2n n n n n S a s a S a n =-+=≥. (1)求证:数列1{}nS 是等差数列; (2)若1,=32,nn n S n C n n -⎧⎪+⎨⎪⎩为奇数为偶数,设数列{}n C 的前n 项和为n T ,求2n T18. 【2021年河南省名校试题】【年级得分率:0.5230】某校高三文科(1)班共有学生45人,其中男生15人,女生30人在一次地理考试后,对成绩作了数据分析(满分100分),成绩为85分以上的同学称为“地理之星”,得到了如下图表:地理之星非地理之星合计男生女生合计如果从全班45人中任意抽取1人,抽到“地理之星"的概率为(1)完成“地理之星”与性别的2×2列联表, 并回答是否有90%以上的把握认为获得“地理之星”与“性别”有关?(2)若已知此次考试中获得“地理之星”的同学的成绩平均值为90,方差为7.2,请你判断这些同学中是否有得到满分的同学,并说明理由.(得分均为整数)参考公式:K2=,其中 n=a+b+c+d .临界值表:19.【2021年广东省名校试题】【年级得分率:0.4697】如图所示,四棱锥的底面是梯形,且AB⊥平面PAD,E是PB中点,(1)求证:CE⊥AB;(2)若CE=AB=2,求三棱锥的高.20.【2021年安徽省名校试题】【年级得分率:0.2367】在平面直角坐标系中,已知椭圆的左顶点为A,右焦点为F,P,Q为椭圆C上两点,圆O:.P(≥)0.10 0.05 0.010 0.005 0.0012.7063.841 6.635 7.879 10.828(1)若PF ⊥x 轴,且满足直线AP 与圆O 相切,求圆O 的方程; (2)若圆O 的半径为2,点P ,Q 满足,求直线PQ 被圆O 截得弦长的最大值. 21.【2021年河南省名校试题】【年级得分率:0.2385】 已知函数()(R,0)xkxf x k k e =∈≠(e 为自然对数的底数). (1)讨论函数()f x 的单调性; .(2)当1,0k x =≥时,若2()()0f x f x ax +-+≤恒成立,求实数a 的取值范围, 22.【2021年湖南省名校试题】【年级得分率:0.2411】已知函数f (x )=1+ln x -ax 2. (1)讨论函数f (x )的单调区间;(2)证明:xf (x )<2e2·e x +x -ax 3.参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】C【解析】5.【答案】C【解析】本题主要考查函数的奇偶性与单调性、不等式的解法,考查的核心素养是数学抽象、逻辑推理、数学运算.设g(x)=x3-2x+1+e x-,则g(-x)=(-x)3-2(-x)+e-x-=- x3-2x+ 1xe-e x=-g(x),所以函数g(x)是奇函数。

因为g'(x)=3x2-2+ e x +≥3x2-2+2=3x2≥0,所以g(x)是R上的增函数。

又f(x)=g(x)+1,所以不等式f(a-1)+f(2a2)≤2等价于g(a-1)+1+g(2a2)+1≤2,即g(2a2)≤-g(a-1),即g(2a2)≤g(1-a),所以2a2≤1-a,解得-1≤a≤,故选C.6.【答案】B【解析】设三棱锥的侧棱长为a,将该三棱锥补成棱长为a的正方体,则棱长为a的正方体的体对角线与三棱锥外接球的直径相等.因为三棱锥外接球的表面积为4π,所以其外接球的半径为1,所以a=2,解得a=,故选B.7.【答案】B【解析】本题主要考查函数的奇偶性、函数的图象等,考查的核心素养是逻辑推理、直观想象、数学运算.由题图知,函数f(x)为偶函数.因为函数y=e-|x|为偶函数,所以函数y=sin Asin(x+)为偶函数,所以=kπ+(k Z).因为0<<π,所以=,所以f(x)=Asin(x+)·e-|x|=Acos(x)·e-|x|.由题图知,即∴,所以A故选B8.【答案】D9.【答案】A【解析】由于正四棱锥-A D和正三棱锥-S所有的棱长都相等,可以叠放在一起,得到组合体PAD-SBC,把其放在两个相同的正四棱柱拼成的几何体内,如图所示,点P 对应左侧正四棱柱上底面的中心,点S对应右侧正四棱柱上底面的中心,由图可知拼成的组合体PAD-SBC是一个三棱柱,所以SP//AB,设E为AD的中点,连接PE,EF,FS,可知AD⊥SP,AD⊥平面PEFS,所以AD⊥SF,故三个结论都正确,选A.10.【答案】C【解析】由焦点F到准线l的距离为2,得p=2,即y2=4x.设P(x p,y p),Q(x Q,y Q),如图作QQ'⊥于l于点Q',PP'⊥l于点P',则QQ'//PP'.因为|QF|=3=x Q+1,所以x Q =2.联立得,消元化简得x2-(4m2+2)x+5=0,由根与系数的关系得x Q x p=5,所以x p,所以=====故选C11.【答案】B12.【答案】A13.【答案】5【解析】由己知得∣a →∣=∣b →∣=,且a→b →=0,所以∣2a b →→-∣=2(2)a b →→-=22445455a a b b →→→→-+=+⨯=.14.【答案】9π【解析】易知球心在两四棱锥顶点连线的中点,设体积较小的锥体的高为x ,则222)2()2()2(x xx +=+解得1=x ,半径为23,所以表面积为π915.【答案】233【解析】本题主要考查双曲线的性质、直线与圆的位置关系,考查考生分析、解决问题的能力,逻辑思维能力,考查的核心素养是逻辑推理、数学运算.解法一不妨设渐近线的方程为y=x ,即bx-a y=0,圆的圆心为(0,-2),半径为2.因为截得的弦长为2,所以圆心到直线的距离为,结合点到直线的距离公式得=,即23ac=, 所以双曲线C 的离心率e==解法二不妨设渐近线过一、三象限,由题意知圆过原点O 且半径为2,如图所示,记圆的圆心为B ,渐近线与圆的另一个交点为A ,连接AB ,则△OAB 为正三角形,所以该渐近线的倾斜角为,即渐近线的斜率k==tan =,所以双曲线c 的离心率e====16.【答案】【解析】本题主要考查数列的递推关系式、裂项相消法求和,考查考生的运算求解能力 先根据数列{a n }。

相关文档
最新文档