九年级第三次月考数学试题

合集下载

长郡双语实验中学2023-2024学年九年级上学期第三次月考数学试题(答案)

长郡双语实验中学2023-2024学年九年级上学期第三次月考数学试题(答案)

初三数学作业精选练习参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C C B B A D D A B C二.填空题(共6小题)11. 0.35 12. (﹣3,2) 13. 114. 80 15. 4 16. 9三.解答题(共8小题)17.解:√8+|√2−1|−ππ0+(12)−1=2√2+√2−1−1+2……………………4分=3√2.……………………6分18.解:原式=x2﹣4xy+4y2+x2﹣4y2﹣2x2+2xy=﹣2xy.……………………4分当xx=−38,y=4时,原式=−2×(−38)×4=3.……………………6分19.解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=12(180°﹣50°)=65°,故答案为:65°;……………………3分(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF=√AAEE2+EEFF2=4√5.……………………6分20.解:(1)由统计图可得,这次抽样调查共抽取:16÷32%=50(人),m=50×14%=7,故答案为:50,7;……………………2分(2)由(1)知,m=7,等级为A的有:50﹣16﹣15﹣7=12(人),补充完整的条形统计图如图所示,C等所在扇形圆心角的度数为:360°×1550=108°;……………………4分(3)树状图如下所示:由上可得,一共存在12种等可能性,其中抽出的两名学生恰好是甲和丁的可能性有2种,∴抽出的两名学生恰好是甲和丁的概率为212=16.……………………8分21.解:(1)∵点A(1,4)在函数yy1=kk xx的图象上,∴k=1×4=4,∴反比例函数解析式为:y1=4xx,∵B(m,﹣2)在反比例函数图象上,∴m=4−2=−2,∴B(﹣2,﹣2),∵点A(1,4),B(﹣2,﹣2)在一次函数y2=ax+b图象上,∴�aa+bb=4−2aa+bb=−2,解得�aa=2bb=2,∴直线AB的解析式y2=2x+2.令x=0,y=2,∴D(0,2),即OD=2,∴S△AOB=S△AOD+S△BOD=12×2×2+12×2×1=3.……………………5分(2)y1>y2成立的自变量x的取值范围为:0<x<1或x<﹣2;………………8分22.解:(1)设A型与B型汽车每辆的进价分别是x万元、y万元,�2xx+3yy=1408xx+14yy=620解得�xx=25yy=30,∴A型与B型汽车每辆的进价分别是25万元、30万元;答:A型与B型汽车每辆的进价分别是25万元、30万元;……………………4分(2)设购进A型汽车a辆,则购进B型汽车(10﹣a)辆,�aa<10−aa25aa+30(10−aa)≤290,解得:2≤a<5,又a为正整数,所以a取2、3、4,∴购进A型汽车2辆,则购进B型汽车8辆;购进A型汽车3辆,则购进B型汽车7辆;购进A型汽车4辆,则购进B型汽车6辆.……………………9分23.(1)证明:如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AB=BC,∴∠ABD=∠CBD,�=AAEE�,∴AAAA∴AD=DE;……………………3分(2)解:①∵AB=BC,∠ADB=90°,∴AD=CD=3,∵AD=DE,∴CD=DE=3,∴∠C=∠CED=∠BAC,∴△BAC∽△DCE,∴AAAA AAAA=AACC AACC,∴62rr=xx3,∴r=9xx;……………………6分②当x=r时,则x=r=3,连接OD,OE,则△AOD、△DOE是等边三角形,∴∠AOD=∠DOE=60°,∴∠BOE=60°,∴△BOE是等边三角形,∴阴影部分的面积为S扇形OBE﹣S△OBE=60ππ×32360−�34×32=3ππ2−9�34.…………9分24.解:(1)y =﹣x 图象上的点(x ,﹣x )和y =2x 图象上的点(x ,2x )关于(x ,x )成中心对称, ∴y =﹣x 和y =2x 是“友好函数”;y =x +3图象上的点(x ,x +3)和y =x ﹣3图象上的点(x ,x ﹣3)关于(x ,x )成中心对称, ∴y =x +3和y =x ﹣3是“友好函数”;y =x 2+1图象上的点(x ,x 2+1)和y =x 2﹣1图象上的点(x ,x 2﹣1)不关于(x ,x )成中心对称, ∴不是“友好函数”;∴互为“友好函数”的是①②,故答案为:①②; ……………………3分 (2)①根据“友好函数”的定义得:,∴,∴y 2=﹣x +4,即函数y =2x ﹣4的“友好函数”解析式为y =﹣x +4,∵反比例函数 的图象与直线y =﹣x +4在第一象限内有两个交点,∴方程有两个不相等的实数根,且两根均为正数,整理得:x 2﹣4x +m =0,∴Δ=(﹣4)2﹣4m >0且m >0,解得:0<m <4; ……………………5分 ②如图,设C ,D 的坐标分别为 ),,(2211),(y x y x ∴x 1,x 2 是方程 x 2﹣4x +m =0 的两根,∴x 1+x 2=4,x 1•x 2=m ,且44882121=−=+−=+)(x x y y244-1624)(2)(2)(2121221121221==−+=−=−+=∴∆m x x x x x x x x y y S COD )(28416==−∴m m ,故 ……………………7分(3)由=x 得:y 2=ax 2+bx +c ,∴y =﹣ax 2+(1﹣b )x ﹣c (a ≠0)的“友好函数”解析式为 y =ax 2+bx +c , ∵M (1,m ),N (3,n )在函数 y =ax 2+bx +c 的上, ∴m =a +b +c ,n =9a +3b +c , ∵m <n <c ,∴a +b +c <9a +3b +c <c , ∴a +b <9a +3b <0, ∵a >0, ∴3<﹣<4,∵点M (1.m ),P (t ,m )的纵坐标相等, ∴抛物线对称轴为直线x =,即,∴﹣=t +1, ∴3<t +1<4, 解得:2<t <3,设h =﹣t 2﹣t +2=﹣(t +2)2+3, 当t =2时,h =﹣1; 当t =3时,h =﹣;∴﹣<h <﹣1,∵2412+−−>t t w 恒成立, ∴w ≥﹣1, ……………………10分25.解:(1)∠DAC=60° ……………………3分 (2)证明:连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴AAAA�=AAAA �, ∴∠AGF =∠ABG , ∵∠GAF =∠BAG , ∴△AGF ∽△ABG , ∴AG :AB =AF :AG , ∴AF •AB=AG 2=25法2:证明△ACF ∽△ABC 可得AF •AB=AG 2=25 ……………………6分 (3)解:AC AG x由△ACF ∽△ABC 可得AC AF CFAB AC BC∴22,101010x x AF BF ,=10CF AC x BC AB 由△AEF ∽△ABD 得2x AF AB AD AE =×=×或:由△ACE ∽△ADC 得22x AC AD AE ==×由△ACF ∽△ABC 可得)(10102x x FB AG FG CB −=×=× 2022221197220252++−=+×+×××=∴x x BC CF AD AE FG CB y对称轴为直线=2x05x所以当=2x 时,max 2024y ……………………10分(每写出一个相似给1分)。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

湖北省武汉市黄陂区木兰乡朝阳中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共30分)1.在美术字中,有些汉字或字母是中心对称图形.下面的汉字或字母不是中心对称图形的是()A.A B.B C.C D.D2.有两个事件,事件M:在汽步枪比赛中,某运动员打出10环;事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球.下列判断正确的是()A.M,N都是随机事件B.M,N都是必然事件C.M是随机事件,N是必然事件D.M是必然事件,N是随机事件3.下列方程中,有两个不相等的实数根的是()A.x2﹣2x+1=0B.x2﹣2x=0C.x2﹣2x+2=0D.x2+2=04.在平面直角坐标系中,将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y=2x2,则抛物线C的解析式为()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2+2D.y=2(x﹣2)2﹣25.如图,两个同心圆的半径分别为3,5,直线l与大⊙O交于点A,B,若AB=6,则直线l与小⊙O的位置关系是()A.相交B.相切C.相离D.无法确定6.从﹣1,﹣2,3三个数中随机取两个数求和作为a,则使抛物线y=ax2的开口向下的概率是()A.B.C.D.7.如图,P A,PB分别与⊙O相切于点A,B,,∠APB=60°,则的长为()A.B.C.D.8.已知二次函数y=x2+(m﹣1)x+m﹣2,当x>1时,y随x的增大而增大,则其图象与x 轴的交点坐标不可能是()A.B.(3,0)C.D.(﹣1,0)9.如图是某圆弧形桥洞,它的跨度AB=10,点C在圆弧上,CD⊥AB于点D,AD=6,,则该圆弧所在圆的半径为()A.B.6C.D.10.已知m,n是方程x2﹣x+1=0的两个根.记S1=,S2=,…,S t=(t为正整数).若S1+S2+…S t=t2﹣56,则t的值为()A.7B.8C.9D.10二、填空题(共18分)11.在平面直角坐标系中,若点A(a,﹣1)与点B(b,1)关于原点对称,则a+b的值为.12.一个不透明的袋子里装有红球和白球共m个,它们除颜色外完全相同,每次搅匀后从中随机摸出一个球并记下颜色,再放回袋中,不断重复,统计汇总数据如下表:摸球次数3006009001500摸到白球的频数123247365606摸到白球的频率0.4100.4120.4060.404已知袋子里白球有10个,根据表格信息,可估计m的值为.13.某商城今年9月份的营业额为440万元,11月份的营业额达到了633.6万元,则该商城9月份到11月份营业额的月平均增长率是(用百分数表示).14.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转得到△ADE(点D与点B对应),连接BD.当点E落在直线AB上时,线段BD的长为.15.若抛物线y=mx2﹣2mx+1(m<0)经过点P(﹣2,t),则关于x的不等式m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集是.16.如图1,在Rt△ABC中,∠ACB=90°,BC=2AC,定长线段EF的端点E,F分别是边AC,BC上的动点,O是EF的中点,连接OB.设AE=x,CF2=y,y与x之间的函数关系的部分图象如图2所示(最高点为(b,4)),当x=a时,∠OBC最大,则a的值为.三、解答题(共72分)17.已知3,t是方程2x2+2mx﹣3m=0的两个实数根,求m及t的值.18.如图,将△ABC绕点A顺时旋转得到△ADE,点B的对应点D在BC上,且AD=CD.若∠E=26°,求∠CDE的度数.19.在一个不透明的纸盒里装有红、白、黄三种颜色的乒乓球4个(除颜色外完全相同),其中白球2个,红球、黄球各1个.(1)从纸盒中随机摸出一个球,事件“摸到白球”的概率是;(2)若摸到红球得1分,摸到白球得2分,摸到黄球得3分.甲同学随机从纸盒中一次摸出两个球,请用画树状图法或列表法求甲同学至少得4分的概率.20.如图,在矩形ABCD中,G为AD的中点,△GBC的外接圆⊙O交CD于点F.(1)求证:AD与⊙O相切;(2)若DF=1,CF=3,求BC的长.21.如图,在平面直角坐标系网格中,A(1,6),B(5,2),C(8,5),仅用无刻度的直尺按下列步骤完成画图,并回答下列问题:(1)直接写出:AC的长为,△ABC的形状是;(2)△ABC的角平分线AD;(3)过点D作DE⊥AC,垂足为则E;(4)将线段AD绕点P顺时针旋转90°得到线段CH(点A与点C对应),直接写出点P的坐标,并画出线段CH.22.某社区决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且广场四周的4个出口宽度相同,其宽度不小于12m,不大于24m.设绿化区较长边为xm,活动区的面积为ym2.(1)直接写出:①每一个出口的宽度为m,绿化区较短边长为m(用含x的式子表示);②y与x的函数关系式是,x的取值范围是;(2)当出口的宽为多少时,活动区所占面积最大?最大面积是多少?(3)预计活动区造价为50元/m2.若该社区用于建造活动区的经费不超过60000元,当x 为整数时,共有几种建造方案?23.问题背景:(1)如图1,D是等边△ABC外的一点,且∠BDC=60°,过点A作AE⊥BD于点E,作AF⊥CD于点F.求证:DA平分∠BDF;尝试应用:(2)如图2,在等腰直角△ABC中,∠ACB=90°,在其内部作∠ADB=∠ADC=135°,E是AB的中点,连接ED,设△ABD的面积为S.求证:S=AD•DE;拓展创新:(3)如图3,∠POQ=45°,点B,C分别在OP,OQ上,点A在∠POQ的内部,AE⊥OQ于点E.若△ABC是边长为a的等边三角形,AE=4,OE=3+7,则a的值为(直接写出结果).24.如图,抛物线y=﹣x2﹣(2t+1)x﹣t2﹣t+2与x轴交于A,B两点(点A在B的左侧),与y轴交于点C.(1)当时,直接写出:点B的坐标为,点C的坐标为;(2)在(1)的条件下,P是x轴下方抛物线上的一点,且∠PBA=2∠OCB,求点P到y轴的距离;(3)当﹣2<t<1时,若△ABC的外心在x轴上,求代数式的值.参考答案一、选择题(共30分)1.解:选项A不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B、C、D能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.2.解:事件M:在汽步枪比赛中,某运动员打出10环,是随机事件,事件N:一个不透明的袋中装有除颜色外完全相同的6个小球(4个黑球,2个白球),从中随机摸出的3个球中有黑球,是必然事件.故选:C.3.解:A、∵Δ=(﹣2)2﹣4×1×1=0,∴方程有两个相等的实数根,不合题意;B、∵Δ=22﹣4×1×0=4>0,∴方程有两个不相等的实数根,符合题意;C、∵Δ=(﹣2)2﹣4×1×2=﹣4<0,∴方程没有实数根,不合题意;D、∵Δ=02﹣4×1×2=﹣8<0,∴方程没有实数根,不合题意.故选:B.4.解:∵将抛物线C向上平移2个单位长度,再向左平移2个单位长度后,得到抛物线y =2x2,∴抛物线C的解析式为y=2(x﹣2)2﹣2,故选:D.5.解:如图,连接OA,过O作OC⊥AB于C,∵OA=5,AC=AB=3,∴OC==4,∵小⊙O的半径为3<4,∴直线l与小⊙O的位置关系是相离,6.解:画树状图如下:共有6种等可能的结果,其中使抛物线y=ax2的开口向下(a<0)的结果有2种,∴使抛物线y=ax2的开口向下的概率为=,故选:C.7.解:如图,连接OA,OP,OB,∵P A、PB分别与相切⊙O于点A、B,∴P A=PB,OA⊥AB,OB⊥PB,∵∠APB=60°,∴∠AOB=120°,∵P A=,∴∠APO=∠APB=×60°=30°,∴OA=AP•tan30°=×=1.故⊙O的半径长为为1,则的长==π.故选:B.8.解:二次函数y=x2+(m﹣1)x+m﹣2的对称轴为直线x=﹣,∴抛物线开口向上,∴当x>﹣时,y随x的增大而增大,又∵当x>1时,y随x的增大而增大,∴﹣≤1,解得m≥﹣1,令y=0,则x2+(m﹣1)x+m﹣2=0,解得x1=﹣1,x2=﹣m+2,∵m≥﹣1,∴x2=﹣m+2≤3,∵>3,故选:A.9.解:如图,取圆心O,连接OA,OB,OC,BC,AC,∵∠ADC=90°,AB=10,AD=6,CD=2,∴BD=10﹣6=4,∴tan∠CAD===,∴∠CAD=30°,∴∠BOC=2∠CAD=60°,∴△BOC为等边三角形,在Rt△BCD中,根据勾股定理得,CD2+BD2=BC2,即(2)2+42=BC2,解得BC=2,∴该圆弧所在圆的半径为2.10.解:∵m,n是方程x2﹣x+1=0的两个根,∴m+n=,mn=1,∴S1=====1,S2=====1,…,∴S t==1,∴S1+S2+…S t=t2﹣56,1+1+…+1=t2﹣56,t=t2﹣56,t2﹣t﹣56=0,(t﹣8)(t+7)=0,解得:t=8或t=﹣7(舍去).故选:B.二、填空题(共18分)11.解:∵点A(a,﹣1)与点B(b,1)关于原点对称,∴a=﹣b,∴a+b=0.故答案为:0.12.解:根据表格信息,摸到白球的频率将会接近0.4,故摸到白球的概率为0.4,所以可估计袋子中球的个数m=10÷0.4=25;故答案为:25.13.解:设该商城9月份到11月份营业额的月平均增长率是x,根据题意得:440(1+x)2=633.6,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去),∴该商城9月份到11月份营业额的月平均增长率是20%.故答案为:20%.14.解:∵∠C=90°,AC=4,BC=3,∴AB===5,由旋转得∠AED=∠C=90°,DE=BC=3,AE=AC=4,如图1,点E在边AB上,则∠DEB=180°﹣∠=90°,∵BE=AB﹣AE=5﹣4=1,∴BD===;如图2,点E在边BA的延长线上,∵∠DEB=90°,BE=AB+AE=5+4=9,∴BD===3,综上所述,线段BD的长为或3,故答案为:或3.15.解:∵抛物线y=mx2﹣2mx+1(m<0)的对称轴为:x=1,∴y=m(x﹣1)2﹣2m(x﹣1)+1的对称轴为x=2,且过点(﹣1,t),∴y=m(x﹣1)2﹣2m(x﹣1)+1还过点(5,t),∵m<0,∴m(x﹣1)2﹣2m(x﹣1)+1﹣t<0的解集为:x<﹣1或x>5,故答案为:x<﹣1或x>5.16.解:∵CF≤EF,当点E与点C重合时等号成立,且EF为定长,∴CF的最大值即为EF的长,根据图象可知,CF2的最大值为4,即CF的最大值为2,∴EF=2,∵当x=1时,CF2=3,∠ACB=90°,∴CE==1,∴AC=AE+CE=1+1=2,∴BC=2AC=4,如图所示,连接OC,∵O是EF的中点,∠C=90°,∴OC=EF=1,∴点O是在半径为1的⊙C上,如图所示,∴当OB与⊙C相切时,∠OBC最大,此时OC⊥OB,过点O作OG⊥BC于点G,此时OB=,则sin∠OBC=,即,∴OG=,∵OG⊥BC,∴∠OGF=∠C=90°,∴OG∥AC,∴,即,∴CE=,∴AE=AC﹣CE=2﹣,即a=2﹣,故答案为:2﹣.三、解答题(共72分)17.解:∵3,t是方程2x2+2mx﹣3m=0的两个实数根,∴,∴m=﹣6,t=3.18.解:将△ABC绕点A顺时旋转得到△ADE,∴∠E=∠C,∠ADE=∠B,AD=AB,由AD=AB可得∠B=∠ADB,∴∠ADE=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠E=26°,∴∠ADB=∠DAC+∠C=52°,∴∠ADE=52°,∴∠CDE=180°﹣(∠ADE+∠ADB)=180°﹣(52°+52°)=76°.19.解:(1)球,事件“摸到白球”的概率是=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中甲同学至少得4分的结果有8种,∴甲同学至少得4分的概率为=.20.(1)证明:连接GO并延长交BC于E,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵G为AD的中点,∴AG=DG,∴Rt△ABD≌Rt△DCG(HL),∴BG=CG,∴GE⊥BC,∵AD∥BC,∴OG⊥AD,∵OG是⊙O的半径,∴AD与⊙O相切;(2)解:连接GF,∵∠DFG+∠CFG=∠CFG+∠CBG=180°,∵∠DFG=∠CBG,∵BG=CG,∴∠GBC=∠GCB,∵AD∥BC,∴∠DGC=∠GCB,∴∠DGC=∠DFG,∵∠D=∠D,∴△GDF∽△CDG,∴=,∴=,∴DG=2(负值舍去),∴BC=AD=2DG=4.21.解:(1)∵AC=,AB=,BC=,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,故答案为:5,直角三角形;(2)如图,AD为所作;(3)如图,DE为所作;(4)如图,CH为所作.22.解:(1)①由题意得:出口的宽度为:(50﹣2x)m,绿化区较短边长为[30﹣(50﹣2x)]÷2=(x﹣10)m,故答案为:(50﹣2x),(x﹣10);②根据题意得,y=50×30﹣4x(x﹣10),即y与x的函数关系式及x的取值范围为:y=﹣4x2+40x+1500(13≤x≤19);故答案为:y=﹣4x2+40x+1500,13≤x≤19;(2)y=﹣4x2+40x+1500=﹣4(x﹣5)2+1600,∵﹣4<0,13≤x≤19,∴x=13时,y取最大值,最大值为﹣4×(13﹣5)2+1600=1344,∴50﹣2x=50﹣2×13=24,∴当出口的宽为24m时,活动区所占面积最大,最大面积是1344m2;(3)设费用为w元,由题意得,w=50(﹣4x2+40x+1500)=﹣200x2+2000x+75000,当w=60000时,﹣200x2+2000x+75000=60000,解得x=15或x=﹣5(舍去),由二次函数性质及13≤x≤19可得,x取15,16,17,18,19时,建造活动区的经费不超过60000元,∴一共有5种建造方案.23.(1)证明:如图1,AC与BD的交点记作点G,∴∠AGB=∠CGD,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,在△ABG中,∠ABG+∠AGB=180°﹣∠BAC=120°,∴∠ABG+∠CGD=120°,在△CDG中,∠BDC=60°,∴∠ACF+∠CGD=180°﹣∠CDG=120°,∴∠ABG=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠AFC=90°,∴△ABE≌△ACF(AAS),∴AE=AF,∵AE⊥BD,AF⊥CD,∴DA是∠BDF的平分线;(2)证明:如图2,过点E作ET⊥ED交BD于点T连接CE交BD于点K.∵点E是AB的中点,在等腰直角△ABC中,∠ACB=90°,∴AC=BC,∠ACB=90°,∴CE⊥AB,AE=EC=EB,∴∠BEC=90°,∴∠EBK+∠BKE=90°,∵∠CKD=∠BKE,∴∠EBK+∠CKD=90°,在△CDK中,∠CDK=360°﹣∠ADC﹣∠ADB=90°,∴∠DCE+∠CKD=90°,∴∠DCE=∠EBK,∵∠DET=∠CEB=90°,∴∠DEC=∠TEB,∴△CED≌△BET(ASA),∴ED=ET,∴∠EDT=∠ETD=45°,∵∠ADB=135°,∴∠BDE=360°﹣135°﹣90°﹣45°=90°,延长DE至H,使EH=ED,∴∠AEH=∠BED,∵AE=BE,∴△AEH≌△BED(SAS),∴S△AEH=S△BED,∴S=S△ABD=S△ADE+S△BDE=S△ADE+S△AEH=S△ADH=AD•DH=AD•2DE=AD•DE;(3)解:在CE的延长线上取一点H,连接AH,使∠AEH=60°,∵AE⊥OQ,∴∠AEC=∠AEH=90°,在Rt△AEH中,AE=4,∴EH=4,AH=8,设CE=x,则CH=CE+EH=x+4,在CO上取一点M使CM=AH=8,则OM=OE﹣CM﹣CE=3+7﹣8﹣x=3﹣1﹣x,在△ACH中,∠ACH+∠CAH=180°﹣∠AHC=120°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠BCM+∠ACH=120°,∴∠BCM=∠CAH,∴△BCM≌△CAH(SAS),∴BM=CH=x+4,∠BMC=∠CHA=60°,∴∠OMB=120°=∠AHN,在OE的延长线上取一点N,使EN=AE=4,∴HN=EN﹣EH=4﹣4=4(﹣1),∠N=45°=∠POQ,∴△BOM∽△ANH,∴,∴,∴x=2,在Rt△ACE中,CE=2,根据勾股定理a=AC==2,故答案为:2.24.解:(1)∵,∴y=﹣x2﹣2x+,当y=0时,﹣x2﹣2x+=0,解得x=或x=﹣,∴B(,0),令x=0,则y=,∴C(0,),故答案为:(,0),(0,);(2)作O点关于BC的对称点G,连接CG交x轴于点E,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+,设G(m,n),∴n=﹣m+,∵BO=BG,∴=,解得m=,∴G(,),设直线CG的解析式为y=k'x+b',∴,解得,∴y=﹣x+,∴E(,0),∴tan∠OCE=,∵∠COE=2∠OCB,∠PBA=2∠OCB,∴∠PBA=∠COE,过点P作PH⊥x轴交于点H,设P(x,﹣x2﹣2x+),∴=,解得x=(舍)或x=﹣,∴点P到y轴的距离为;(3)∵△ABC的外心在x轴上,∴∠ACB=90°,当y=0时,﹣x2﹣(2t+1)x﹣t2﹣t+2=0,解得x=﹣t﹣2或x=﹣t+1,∵﹣2<t<1,∴A(﹣t﹣2,0),B(﹣t+1,0),当x=0时,y=﹣t2﹣t+2,∴C(0,﹣t2﹣t+2),∴OC2=OA•OB,∴(﹣t2﹣t+2)2=(t+2)•(﹣t+1),∴t2+t﹣1=0,∴=﹣1.。

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】

九年级数学第三次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a√2B. a/2C. a√3D. 2a2. 下列函数中,哪一个不是二次函数?()A. y = 2x^2 + 3x + 1B. y = x^2 4x + 4C. y = 3/xD. y = x^2 5x + 63. 若等差数列{an}中,a1 = 3,d = 2,则a5 = ()。

A. 11B. 13C. 15D. 174. 下列哪个图形不是中心对称图形?()A. 正方形B. 矩形C. 圆D. 正三角形5. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积是()。

A. 24B. 32C. 40D. 48二、判断题(每题1分,共5分)6. 两个等腰三角形的底边长相等,则这两个三角形全等。

()7. 两个角的和为180°,则这两个角互补。

()8. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式Δ = b^2 4ac,当Δ > 0时,方程有两个实数根。

()9. 函数y = kx(k为常数)是正比例函数。

()10. 任何有理数都可以表示为分数的形式。

()三、填空题(每题1分,共5分)11. 若等差数列{an}中,a1 = 1,d = 3,则a10 = ________。

12. 若一个圆的半径为r,则它的周长为 ________。

13. 若两个角互为补角,且一个角为60°,则另一个角为________°。

14. 若函数y = 2x + 3的图像是一条直线,则它的斜率为 ________。

15. 若一个正方体的体积为V,则它的表面积为 ________。

四、简答题(每题2分,共10分)16. 简述等差数列的定义及通项公式。

17. 解释二次函数图像的开口方向与系数a的关系。

18. 什么是勾股定理?请给出一个具体的例子。

湖南省长沙市雅礼集团2023-2024学年九年级上学期第三次月考数学试题

湖南省长沙市雅礼集团2023-2024学年九年级上学期第三次月考数学试题

湖南省长沙市雅礼集团2023-2024学年九年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....五一”长假期间,网红长沙”火爆出圈,长沙市共接待国内外游客179000人次,3179000用科学记数法表示为()531.7910⨯.53.17910⨯63.17910⨯70.317910⨯.下列运算正确的是()32a a a ÷=.()235a a =3323a a a +=248a a a ⋅=.下列说法正确的是().为了解我国中小学生的睡眠情况,应采取普查的方式,5,5,3,3的众数和中位数都是5.若甲、乙两组数据的方差分别是0.1,则甲组数据比乙组数据更稳定次,一定有100正面向上”.如图,在平面直角坐标系中,已知点的坐标分别为(1,1).以点O 为位似中心,在原点的同一侧按1∶3的相似比将△OAB 放大,则点A.50°8.在数轴上表示不等式组A..C.D.9.把半径为5cm的球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,若CD=,则EF的长为()8cmA.4cm B.5cm10.如图,在矩形ABCD中,点的点F处.若AB=3,BC=5A.1B216.如图,在平面直角坐标系三、解答题17.计算:()2023184sin -+-18.先化简,再求值:()m n +19.某次军事演习中,一艘船以它的北偏东60︒方向,2小时后到达20.为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,教育部办公厅印发了《教育部办公厅关于加强中小学生手机管理工作的通知》精神,长沙某校团委组织了“如何合理健康使用手机的得分情况绘制了如图所示的两幅不完整的统计图.等奖”,C表示“三等奖”,D表示请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是︒;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)全市的比赛,请用列表或画树状图的方法,求抽取同学中恰有一名男生和一名女生的概率.21.如图,正方形ABCD中,E是BC上的一点,连接AE,过B为点G,延长BG交CD于点F,连接AF.=.(1)求证:BE CF(2)若正方形边长是5,2BE=,求AF的长.22.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工(1)求COA ∠的度数;(2)求图中阴影部分的面积(结果保留(3)若2FD FA FB =⋅,试证明24.如图所示,二次函数y =(1)已知1,3a c ==,①当A 点坐标为()1,0,则b 的值是自变量x 的取值范围是;②对于一切实数x ,若函数值y (2)若222c c AB c-+=,点P 的坐标为线的L 的顶点M 在直线l 上,连接值.(1)如图1,若线段AB 的长为4,P 是线段AB 的黄金分割点(PA PB >),则PB 的长为(保留根号)(2)如图2,用边长为20的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF 接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)我们把有一个内角等于36︒的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比.如图3,AB 是O 的直径,点C 在O 108BOC ∠︒=,过点C 作直线CD 分别交直线AB 和O 于点D 、E ,连接OE ,AB =2=OD .①求弦CE 的长;②在直线AB 或CD 上是否存在点P (点C 、D 除外),使POE △是黄金三角形?若存在,直接写出DP 的长;若不存在,说明理由.。

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)

九年级第一学期第三次月考数学试卷(附带有答案)本试题分选择题和非选择题两部分。

本试题共6页,满分为150分,考试时间为120分钟。

注意事项:第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-x=0的根是()A.x1=0,x2=1B.x1=0,x2=-1C.x=-1D.x=02.下列几何体的左视图为()A. B. C. D.3.已知反比例函数y=﹣2x,下列各点中,在此函数图象上的点的是()A.(一1,1)B.(2,-1)C.(1,2)D.(2,2)4.在一个不透明的盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n的值大约为()A.16B.18C.20D.245.若两个相似三角形的对应中线比是1:3,则它们的周长比是()A.1:2B.1:3C.1:6D.1:96.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相平分C.邻边相等D.对角线互相垂直7.如图,在Rt△ABC中,AC=4,BC=3,∠C=90°,则cosA的值为( )A.34B.54C.35D.45(第7题图)(第8题图)8.如图,在平面直角坐标系中,一块污渍遮挡了横轴的位置,只有部分纵轴和部分矩形网格,已知每个小正方形的边长都是1个单位长度,反比例函数y=k x (k ≠0,x >0)的图象恰好经过2个格点A 、B ,则k 的值是( )A.3B.4C.6D.89.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC=2,则sinB 的值是( )A.23B.32C.34D.43(第9题图) (第10题图)10.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c<0;②abc>0:③a -b+c>1:④4a -2b+c<0.正确结论的个数是( )A.1B.2C.3D.4第II 卷(非选择题 共110分)二.填空题:(本大题共6个小题,每小题4分,共24分)11.若a b =53,则aa -b = .12.若反比例函数y=m -1x 的图象在一、三象限,则m 的取值范围为 .13.将抛物线y=x 2+3x -2向右平移3个单位后,再向上平移4个单位,得到新的抛物线 的解析式为 .14.如图,△ABC 与△A'B'C'是位似图形,则△ABC 与△A'B'C'的位似比为 .(第14题图) (第15题图) (第16题图)15.如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是.16.如图,已知正方形ABCD的边长为12,BE=EC,将正方形CD边沿DE折叠到DF,延长EF 交AB于G,连接DG、BF,现有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =725,在以上结论中,正确的是.(填写序号)三.解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:√3tan60°-2cos30°+4sin30°.18.(本小题满分6分)解方程:x2-5x+6=0.19.(本小题满分6分)如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.(本小题满分8分)一个不透明的口袋中有3个质地和大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。

河北省沧州市2023-2024学年九年级上学期第三次月考数学试题

河北省沧州市2023-2024学年九年级上学期第三次月考数学试题

河北省沧州市2023-2024学年九年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A..C .D .6.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是()A .只有(1)相似B .只有(2)相似C .都相似D .都不相似7.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A .甲B .乙C .丙D .丁8.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2m ,桌面离地面1m .若灯泡离地面3m ,则地面上阴影部分的面积()A .20.36πmB .20.81πmC .22πmD .23.24πmA.①B.②12.如图,已知D、E分别是ABC AE AC等于()那么:A.1:9B.1:3A .22n m 14.如图所示,王华晚上由路灯继续往前走3米到达么路灯A 的高度A .4.5米15.如图,为了测量一池塘的宽线上找一点A ,则池塘的宽DE A .25mB .30m 16.如图,矩形OABC 与矩形点B 的坐标为()32-,,则点A .()3.6,2.4B .()3,2.4C .()3,2.4-D .()3.6,2.4-二、填空题三、问答题20.如图所示的曲线是函数(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数坐标及反比例函数的解析式.21.如图,某学习小组为了测量校园内一棵小树的高度量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点点E ,A ,C 在同一直线上.已知四、证明题22.如图,在四边形ABCD 中,点E ,F 分别在边AB CD ,上,连结EC EF EC ,,平分FEB ∠,EF BC ∥.(1)求证:EB BC =;(2)若AD EF ∥,DF FC =,请判断AE 与BC 的大小关系,并说明理由.五、问答题(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点(3)求不等式m kx b x+-<(1)求点A 的坐标和反比例函数的解析式(2)点P 在射线OA 上,过点P 作x (1)如图1,在正方形ABCD 中,点E F ,分别在边,BC CD 上,且出线段AE 与BF 的数量关系.【类比探究】(2)如图2,在矩形ABCD 中,3AB =,5AD =,点E F ,分别在边BC 请写出线段AE 与BF 的数量关系,并证明你的结论.【拓展延伸】(3)如图3,在Rt ABC △中,90ABC ∠=︒,D 为BC 中点,连接AD 于点F ,交AC 于点E ,若3AB =,4BC =,求BE 的长.。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(共40分)1.下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是()A.B.C.D.2.点P(2,﹣5)关于原点的对称点的坐标是()A.(﹣2,﹣5)B.(2,5)C.(﹣2,5)D.(﹣5,2)3.已知⊙O的半径为3,点M在⊙O上,则OM的长可能是()A.2B.3C.4D.54.如图所示,在⊙O中=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°5.平面上一点P与⊙O的点的距离的最小值是2,最大值是8,则⊙O的直径是()A.6或10B.3或5C.6D.56.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.90°B.60°C.45°D.30°7.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB 上,且∠AOC的度数为100°,则∠DOB的度数是()A.34°B.36°C.38°D.40°8.下列说法:①弧长相等的弧是等弧;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的外心到三角形三个顶点的距离相等.其中不正确的有()个.A.1B.2C.3D.49.某数学兴趣小组研究二次函数y=x2+bx+c的图象时,得出如下四个结论:甲:图象与x轴的一个交点为(1,0);乙:图象与x轴的一个交点为(3,0);丙:图象与x轴的交点在原点两侧;丁:图象的对称轴为过点(1,0),且平行于y轴的直线;若这四个结论中只有一个是不正确的,则该结论是()A.甲B.乙C.丙D.丁10.如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.二、填空题(共24分)11.已知关于x的方程x2﹣3x﹣m=0的一个根是1,则m=.12.如图,若∠BOD=140°,则∠BCD=.13.在半径为10cm的⊙O中,圆心O到弦AB的距离为6cm,则弦AB的长是cm.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线P A交OC延长线于点P,则PC的长为.15.在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P,若AB=6,BC=3,则下列结论:①F是CD的中点:②⊙O的半径是2;③AE=CE,其中正确的是.(写序号)三、解答题(共86分)17.解方程:x2﹣2x﹣5=0.18.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是;(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,且n+2m=4,求n 的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB 上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)21.如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;22.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?23.如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠CAB,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形;(2)判断直线DE与⊙O的位置关系并证明;(3)若AB=10,BC=8,求CE的长.24.如图,△ABC内接于⊙O,弦BD⊥AC,垂足为E,点D、点F关于AC对称,连结AF 并延长交⊙O于点G.(1)连结OB,求证:∠ABD=∠OBC;(2)求证:点F、点G关于BC对称.25.已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.(1)若点P的横坐标为1,点B的坐标为(3,6).①求抛物线的解析式;②若当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,求m的取值范围;(2)若点P在第一象限,且P A=PO,过点P作PD⊥x轴于D,将抛物线y=x2+bx+c 平移,平移后的抛物线经过点A、D,与x轴的另一个交点为C,试探究四边形OABC的形状,并说明理由.参考答案一、选择题(共40分)1.解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.解:因为点P(2,﹣5)关于原点的对称点的坐标特点:横纵坐标互为相反数,所以对称点的坐标是(﹣2,5),故选:C.3.解:∵点M在⊙O上,⊙O的半径为3,∴OM=3,故选:B.4.解:∵=,∴AB=AC,∴∠B=∠C,∵∠A=30°,∴∠B=∠C=×(180°﹣30°)=75°.故选:B.5.解:当点P在圆内时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为10,当点P在圆外时,因为点P与⊙O的点的距离的最小值是2,最大值是8,所以圆的直径为6.故选:A.6.解:当AP与⊙O相切时,∠OAP有最大值,连接OP,如图,则OP⊥AP,∵OB=AB,∴OA=2OP,∴∠P AO=30°.故选:D.7.解:由题意得,∠AOD=31°,∠BOC=31°,又∠AOC=100°,∴∠DOB=100°﹣31°﹣31°=38°.故选:C.8.解:①弧长相等的弧是等弧,故该说法不正确;②不在同一直线的三点可以确定一个圆,故该说法不正确;③在同圆和等圆中,相等的圆心角所对的弧相等,故该说法不正确;④经过半径外端且垂直于这条半径的直线是圆的切线,故该说法不正确;⑤三角形的外心是三角形三边垂直平分线的交点,到三角形三个顶点的距离相等,故该说法正确.故选:D.9.解:若甲、乙成立,(1+3)÷2=1,∴图象的对称轴为过点(1,0),且平行于y轴的直线,图象与x轴的交点在原点右侧,故丁结论正确;图象与x轴的交点在原点右侧,故丙结论不正确,符合题意.故选:C.10.解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.二、填空题(共24分)11.解:把x=1代入方程可得:1﹣3﹣m=0,解得m=﹣2.故答案为:﹣2.12.解:由圆周角定理得,∠A=∠BOD=70°,∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=110°,故答案为:110°.13.解:连接OB.在Rt△ODB中,OD=6cm,OB=10cm.由勾股定理得BD===8.∴AB=2BD=2×8=16cm.14.解:连接OA,∵AP是⊙O的切线,∴OA⊥AP,∵∠ABC=30°,∴∠AOP=2∠ABC=60°,∴∠APO=30°,∵OA=OC=1,∴OP=2OA=2,∴PC=OP﹣OC=1.故答案为:1.15.解:如图,连接PP',过点D作DE⊥BC,∵DP绕点D逆时针旋转60°,∴DP=DP',∠PDP'=60°,∴△DP'P是等边三角形,∴DP=PP',∠DPP'=60°,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,∴△BDP≌△CPP'(AAS)∴BD=CP=2,∴BP=3,∵∠B=60°,BD=2,DE⊥BC,∴BE=1,DE=BE=,∴PE=2,∴DP===,故答案为.16.解:①∵AF是AB翻折而来,∴AF=AB=6,∵矩形ABCD,则,∴,∴DF=CF,∴F是CD中点;故①正确;②如图,连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴△APO∽△ADF,∴,设OP=OF=x,则,解得:x=2,故②正确;③∵Rt△ADF中,AF=6,DF=3,∴,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=∠B=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,故③错误;故答案为:①②.三、解答题(共86分)17.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.解:(1)∵小晗家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,∴小晗任意按下一个开关,正好楼梯灯亮的概率是:;(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:=.19.解:根据题意得Δ=(﹣2)2﹣4×(﹣m)>0,解得m>﹣1.∵n+2m=4,∴m=>﹣1,解得n<6,即n的取值范围为n<6.20.解:如图,⊙O为所作.证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.21.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠P AP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.22.解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.23.解:(1)如图1即为补全的图形.(2)直线DE是⊙O的切线.理由如下:证明:如图2,连接OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=6.∵∠BFO=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=2.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=2.答:CE的长为2.24.证明:(1)连接OC,∵BD⊥AC,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵,∴∠BOC=2∠BAC,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2∠BAC=180°,∴∠OBC+∠BAC=90°,∴∠OBC=∠ABE,即∠OBC=∠ABD,(2)连接BG,AD,GC,AG交BC于点H,∵点D,F关于AC对称,∴EF=ED,∵BD⊥AC,∴∠AEF=∠AED=90°,又∵AE=AE,∴△AEF≌△AED(SAS),∴∠EAF=∠EAD,∠AFE=∠ADE,即∠GAC=∠DAC,∵,∴∠DAC=∠DBC,∵,∴∠GAC=∠GBC,∴∠DBC=∠GBC,∵∴∠ADB=∠BGA,∵∠AFD=∠BFG,∴∠BFG=∠AGB,∴△BHF≌△BHG(AAS),∴FH=GH,∠BHF=∠BHG=90°,∴点F,点G关于BC对称.25.解:(1)①∵抛物线y=x2+bx+c的顶点P的横坐标为1,∴﹣=1,解得:b=﹣2.∴y=x2﹣2x+c,∵抛物线y=x2﹣2x+c经过点B(3,6),∴6=32﹣2×3+c,解得:c=3.∴抛物线的解析式为y=x2﹣2x+3;②由y=x2﹣2x+3=(x﹣1)2+2知,P(1,2).∴点(3,6)关于对称轴x=1的对称点B′的坐标为(﹣1,6),如图1,∵当m≤x≤3时,y=x2+bx+c的最小值为2,最大值为6,∴﹣1≤m≤1;(2)如图2,由P A=PO,OA=c,可得PD=.∵抛物线y=x2+bx+c的顶点坐标为P(﹣,),∴=.∴b2=2c.∴抛物线y=x2+bx+b2,A(0,b2),P(﹣b,b2),D(﹣b,0).可得直线OP的解析式为y=﹣bx.∵点B是抛物线y=x2+bx+b2与直线y=﹣bx的图象的交点,令﹣bx=x2+bx+b2.解得x1=﹣b,x2=﹣.可得点B的坐标为(﹣b,b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+b2.将点D(﹣b,0)的坐标代入y=x2+mx+b2,得m=b.则平移后的抛物线解析式为y=x2+bx+b2.令y=0,即x2+bx+b2=0.解得x1=﹣b,x2=﹣b.依题意,点C的坐标为(﹣b,0).则BC=b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.。

北师大版九年级上册数学第三次月考试题含答案详解

北师大版九年级上册数学第三次月考试题含答案详解

北师大版九年级上册数学第三次月考试卷一、选择题。

(每小题只有一个正确答案)1.若34yx=,则x yx+的值为()A.1B.47C.54D.742.下列函数中,反比例函数是()A.x(y+1)=1B.11yx=+C.21yx=D.13yx=3.若函数y=4x2+1的函数值为5,则自变量x的值应为()A.1B.-1C.±1D.32 24.在同一坐标系中,抛物线y=4x2,y=14x2,y=-14x2的共同特点是()A.关于y轴对称,开口向上B.关于y轴对称,y随x的增大而增大C.关于y轴对称,y随x的增大而减小D.关于y轴对称,顶点是原点5.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.36.下列各问题中,两个变量之间的关系不是反比例函数的是A.小明完成100m赛跑时,时间t(s)与跑步的平均速度v(m/s)之间的关系.B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系.C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系. D.压力为600N时,压强p与受力面积S之间的关系.7.如图,AB、CD相交于点O,AD∥CB,若AO=2,BO=3,CD=6,则CO等于()A.2.4B.3C.3.6D.48.如图,平面直角坐标系中,点M是直线2y=与x轴之间的一个动点,且点M是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是()A .0或2B .0或1C .1或2D .0,1或29.如图,已知点C 是线段AB 的黄金分割点(其中AC >BC ),则下列结论正确的是()A .512BC AC -=B .512AC BC -=C .AB 2=AC 2+BC 2D .BC 2=AC•BA10.如图,已知四边形OABC 是菱形,CD ⊥x 轴,垂足为D ,函数4y x=的图象经过点C ,且与AB 交于点E .若OD=2,则△OCE 的面积为()A .2B .4C .D .二、填空题11.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm ,则甲、乙两地间的实际距离是_____km.12.如图,圆O 的半径为2.C 1是函数y=x 2的图象,C 2是函数y=−x 2的图象,则阴影部分的面积是___.13.已知实数x ,y ,z 满足x +y +z =0,3x ﹣y ﹣2z =0,则x :y :z =_____.14.如图,在正方形ABCD 中, BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出以下结论:①AF =DE ;②∠ADP =15°;③13PF PC =;④PD 2=PH •PB ,其中正确的是_____.(填写正确结论的序号)三、解答题15.已知a 、b 、c 为三角形ABC 的三边长,且36a b c ++=,345a b c==,求三角形ABC 三边的长.16.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.17.新冠疫情暴发后,口罩的需求量增大.某口罩加工厂承揽生产1600万个口罩的任务,计划用t 天完成.(1)写出每天生产口罩w (万个)与生产时间t (天)(t >4)之间的函数表达式;(2)由于国外的疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做多少万个口罩才能完成任务?(用含t 的代数式表示)18.如图,D 、E 分别是 ABC 的边AB 、BC 上的点,DE ∥AC ,若:BDE CDE S S △△=1:3,求DOE AOC S S △△:的值.19.抛物线y =mx 2﹣4m (m >0)与x 轴交于A ,B 两点(A 点在B 点左边),与y 轴交于C 点,已知OC =2OA .求:(1)A ,B 两点的坐标;(2)抛物线的解析式.20.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB的延长线于点E.求证:(1) APB≌ APD;(2)PD2=PE•PF.21.如图,在平面直角坐标系中有抛物线c:y=x2+m和直线l:y=﹣2x﹣2,直线l与x轴的交点为B,与y轴的交点为A.(1)求m取何值时,抛物线c与直线l没有公共点;(2)向下平移抛物线c,当抛物线c的顶点与点A重合时,试判断点B是否在平移后的抛物线上.22.反比例函数y=kx(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)在y轴上确定一点M,使点M到A,B两点距离之和d=MA+MB最小,求点M的坐标.23.在 ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将 ABC沿MN折叠,顶点C恰好落在斜边的P点上.(1)如图1,若点N为BC中点时,求证:MN∥AB;(2)如图2,当MN与AB不平行时,求证:PA CM PB CN=;(3)如图3,当AC≠BC且MN与AB不平行时,(2)中的等式还成立吗?请直接写出结论.参考答案与详解1.D【详解】∵34 yx=,∴x yx+=434+=74,故选D2.D【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=kx(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).【详解】解:A、不是反比例函数,故A选项不合题意;B、不是反比例函数,故B选项不合题意;C、不是反比例函数,故C选项不合题意;D、是反比例函数,故D选项符合题意.故选:D.【点睛】此题主要考查了反比例函数的定义,解题的关键是牢记反比例函数的形式然后判断.3.C【分析】根据题意,把函数的值代入函数表达式,然后解方程即可.【详解】解:根据题意,得4x2+1=5,x2=1,解得x=-1或1.故选C.【点睛】本题考查给出二次函数的值去求函数自变量的值.代入转化为求一元二次方程的解.4.D【详解】解:因为抛物线y=4x2,y=14x2,y=-14x2都符合抛物线的最简形式y=ax2,其对称轴是y轴,顶点是原点.故选D.【点睛】本题考查二次函数的图象性质.5.D【详解】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,则对称轴所在的位置为0<h<4故选:D【点睛】本题考查二次函数的性质,利用数形结合思想解题是关键.6.C此题可先对各选项列出函数关系式,再根据反比例函数的定义进行判断.【详解】A、根据速度和时间的关系式得,t=100 v;B、因为菱形的对角线互相垂直平分,所以12xy=48,即y=96x;C、根据题意得,m=ρV;D、根据压强公式,p=600s;可见,m=ρV中,m和V不是反比例关系.故选C.【点睛】本题主要考查了反比例函数的定义,正确表示出各量之间的函数关系是解决本题的关键.7.C【分析】由平行线分线段成比例定理,得到CO BODO AO=;利用AO、BO、CD的长度,求出CO的长度,即可解决问题.【详解】如图,∵AD∥CB,∴CO BO DO AO=;∵AO=2,BO=3,CD=6,∴362COCO=-,解得:CO=3.6,故选C.【点睛】本题考查了平行线分线段成比例定理及其应用问题.掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例是解题的关键..8.D【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程12x2+bx+c=1的解的个数.解:点M 的纵坐标小于1,方程2112x bx c ++=的解是2个不相等的实数根;点M 的纵坐标等于1,方程2112x bx c ++=的解是2个相等的实数根;点M 的纵坐标大于1,方程2112x bx c ++=的解的个数是0.故方程2112x bx c ++=的解的个数是0,1或2.故选D .【点睛】本题考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.A 【分析】根据黄金分割的定义得出512BC AC AC AB -==,从而判断各选项.【详解】解:∵点C 是线段AB 的黄金分割点,且AC >BC ,∴512BC AC AC AB -==,∴选项A 符合题意,2AC BC AB =⋅,∴选项D 不符合题意;∵12AC BC +==,∴选项B 不符合题意;∵222AB AC BC ≠+,∴选项C 不符合题意;故选:A .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割的定义是解题关键.10.C如图:连接AC ,∵OD=2,CD ⊥x 轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC ==由菱形的性质,可知OA=OC ,∵△OCE 与△OAC 同底等高,∴S △OCE =S △OAC =12×OA×CD=12.故选C .11.1.25【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【详解】设甲、乙两地间的实际距离为xcm ,则:1255000x=,解得:x =125000.125000cm =1.25km .故答案为:1.25.【点睛】本题考查了比例尺的概念、比例的性质;根据比例尺进行计算,注意单位的转换问题.12.2π【分析】根据圆和二次函数图象的对称性,用割补法和圆的面积公式,即可求解.把x 轴下方阴影部分关于x 轴对称后,原图形阴影部分的面积和,变为一个半圆的面积,即2222ππ⋅=【点睛】利用图形的对称性,把不规则的阴影部分,补成规则的图形,再用圆的面积公式求解.13.1:(﹣5):4【分析】通过解方程组,用x 分别表示出y 与z ,然后求x :y :z 的值.【详解】解:x +y +z =0①,3x ﹣y ﹣2z =0②,①+②得4x ﹣z =0,则z =4x ,把z =4x 代入①得x +y +4x =0,则y =﹣5x ,所以x :y :z =x :(﹣5x ):4x =1:(﹣5):4.故答案为1:(﹣5):4.【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)是解决此类问题的关键.14.①②④【分析】先判断出BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,再判断出AB =BC =CD ,∠A =∠ADC =∠BCD =90°,进而得出∠ABE =∠DCF =30°,即可判断出△ABE ≌△DCF (ASA ),即可得出结论;由等腰三角形的性质得出∠PDC =75°,则可得出答案;证明△FPE ∽△CPB ,得出PF EF PC BC =,设PF =x ,PC =y ,则DC =y ,得出y =32(x +y ),则可求出答案;先判断出∠DPH =∠DPC ,进而判断出△DPH ∽△CPD ,即可得出结论.【详解】解:∵△BPC 是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60°,在正方形ABCD 中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴△ABE≌△DCF(ASA),∴AE=DF,∴AE﹣EF=DF﹣EF,∴AF=DE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠ADP=∠ADC﹣∠PDC=90°﹣75°=15°.故②正确;∵∠FPE=∠PFE=60°,∴△FEP是等边三角形,∴△FPE∽△CPB,∴PF EF PC BC=,设PF=x,PC=y,则DC=y,∵∠FCD=30°,∴y=32(x+y),整理得:(1﹣32)y=32x,解得:2333xy=,则2333PFPC=,故③错误;∵PC=CD,∠DCF=30°,∴∠PDC=75°,∵∠BDC=45°,∴∠PDH =∠PCD =30°,∵∠DPH =∠DPC ,∴△DPH ∽△CPD ,∴PD PH PC PD=,∴PD 2=PH •CP ,∵PB =PC ,∴PD 2=PH •PB ;故④正确.故答案为:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.15.9a =,12b =,15c =【分析】根据比例的性质,可得a 、b 、c 的关系,根据a 、b 、c 的关系,可得一元一次方程,根据解方程,可得答案.【详解】解:由345a b c ==,得35a c =,45b c =,把35a c =,45b c =代入36a b c ++=,得343655c c c ++=,解得15c =,395a c ==,4125b c ==,所以三角形ABC 三边的长为:9a =,12b =,15c =.【点睛】本题考查了比例的性质,利用了比例的性质.利用等式的性质得出35a c =,45b c =是解题关键.16.()214y x =--+【分析】设顶点式()214y a x =-+,然后把(﹣2,﹣5)代入求出a 的值即可.【详解】解:设抛物线解析式为()214y a x =-+,把(﹣2,﹣5)代入得()22145a --+=-,解得:a =﹣1,所以抛物线解析式为:()214y x =--+.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数解析式时,要根据题目给定的条件,选择恰当的方法设出解析式,从而代入数值求解.17.(1)w =1600t (t >4);(2)每天要多做264004t t -(t >4)万个口罩才能完成任务【分析】(1)根据每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系可直接列出函数表达式;(2)用提前4天交货的情况下每天生产的口罩数量减去计划每天生产的口罩数量即可得到结论.【详解】解:(1)由题意可得,函数表达式为:w =1600t(t >4);(2)由题意得:()()2160016004160016006400444t t t t t tt t ---==---(万个),答:每天要多做264004t t-(t >4)万个口罩才能完成任务.【点睛】本题主要考查了列反比例函数关系式,了解每天生产口罩w (万个)、生产时间t (天)(t >4)、生产总量之间的关系是解决问题的关键.18.1:16【分析】由已知得出BE:BC=1:4;证明△DOE∽△AOC,得到14DEAC=,由相似三角形的性质即可解决问题.【详解】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴1=4 DE BEAC BC=,∴S△DOE:S△AOC=1:16.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:4是解决问题的关键解题的关键.19.(1)A(﹣2,0),B(2,0);(2)y=x2﹣4【分析】(1)通过解方程mx²﹣4m=0可得A、B点的坐标;(2)先利用OA=2得到OC=4,所以|﹣4m|=4,然后求出满足条件的m的值,从而得到抛物线解析式.【详解】解:(1)当y=0时,mx2﹣4m=0,即x2﹣4=0,解得x1=2,x2=﹣2,∴A(﹣2,0),B(2,0);(2)当x=0时,y=mx2﹣4m=﹣4m,∴C(0,﹣4m),∵OA=2,∴OC=2OA=4,∴|﹣4m|=4,解得m=1或m=﹣1,∵m>0,∴m =1,∴抛物线解析式为y =x 2﹣4.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.20.(1)见解析;(2)见解析【分析】(1)由菱形的性质可得AB =AD ,∠BAC =∠DAC ,由“SAS”可证△ABP ≌△ADP ;(2)由全等三角形的性质可得PB =PD ,∠ADP =∠ABP ,通过证明△EPB ∽△BPF ,可得BP PE PF PB=,可得结论.【详解】证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,∠BAC =∠DAC ,在△ABP 和△ADP 中,AD AB BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP (SAS );(2)∵△ABP ≌△ADP ,∴PB =PD ,∠ADP =∠ABP ,∵AD //BC ,∴∠ADP =∠E ,∴∠E =∠ABP ,又∵∠FPB =∠EPB ,∴△EPB ∽△BPF ,∴BP PE PF PB=,∴PB 2=PE•PF ,∴PD 2=PE•PF .【点睛】本题考查了菱形的性质,三角形全等的判定与性质,三角形相似的判定与性质,解题的关键是熟练掌握三角形全等与相似的判定方法.21.(1)m>﹣1时,抛物线c与直线l没有公共点;(2)点B不在平移后的抛物线上,见解析【分析】(1)令x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,根据判别式的意义得到△=22﹣4(m+2)<0,则抛物线c与直线l没有公共点;(2)先利用一次函数解析式确定A(0,﹣2),B(﹣1,0),再写顶点在A点的抛物线解析式为y=x2﹣2,然后根据二次函数图象上点的坐标特征进行判断.【详解】解:(1)根据题意得x2+m=﹣2x﹣2,整理得x2+2x+m+2=0,∵抛物线c与直线l没有公共点,∴△=22﹣4(m+2)<0,解得m>﹣1,∴m>﹣1时,抛物线c与直线l没有公共点;(2)当x=0时,y=﹣2x﹣2=﹣2,∴A(0,﹣2),当y=0时,﹣2x﹣2=0,解得x=﹣1,∴B(﹣1,0),∵抛物线c的顶点与点A重合,∴平移后的抛物线解析式为y=x2﹣2,当x=﹣1时,y=x2﹣2=﹣1,∴点B不在平移后的抛物线上.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程,把抛物线与一次函数的交点问题转化为一元二次方程根的问题.也考查了二次函数的几何变换.22.(1)k=1;(2)M(0,3 2)【分析】(1)A(1,3),则AB=3,OB=1,而AB=3BD,故BD=1,则D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,即可求解.【详解】解:(1)∵A(1,3),AB⊥x轴,∴AB=3,OB=1,∵AB=3BD,∴BD=1,∴D(1,1),将D坐标代入反比例解析式得:k=1;(2)作点B(1,0)关于y轴的对称点E(﹣1,0),连接AE交y轴于点M,则点M为所求点,理由:d=MA+MB=MA+ME=AE为最小,设直线AE的表达式为y=mx+b,则3m bm b=+⎧⎨=-+⎩,解得3232mb⎧=⎪⎪⎨⎪=⎪⎩,故AE的表达式为y=32x+32,当x=0时,y=3 2,故点M的坐标为(0,3 2).【点睛】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、轴对称的性质等知识,本题考查知识点较多,综合性较强,难度适中.23.(1)见解析;(2)见解析;(3)不成立【分析】(1)根据折叠的性质得到∠CNM=∠PNM,CN=PN,得到PN=BN,根据等腰直角三角形的性质、平行线的判定定理证明结论;(2)过点M作ME⊥AB于E,过点N作NF⊥AB于F,证明△MEP∽△PFN,根据相似三角形的性质得到MPPN=MEPF=EPFN,根据等腰直角三角形的性质得到ME=AE,PN=BF,根据比例的性质计算,证明结论;(3)仿照(2)的证明方法可以判断(2)中的等式不成立.【详解】解:(1)∵∠C=90°,AC=BC,∴∠B=∠A=45°,∵点N为BC中点,∴CN=BN,由折叠的性质可知,∠CNM=∠PNM,CN=PN,∴PN=BN,∴∠NPB=∠B=45°,∴∠BNP=90°,∴∠CNM=45°,∴∠CNM=∠B,∴MN∥AB;(2)证明:如图2,过点M作ME⊥AB于E,过点N作NF⊥AB于F,由折叠的性质可知,MP=MC,NP=NC,∠MPN=∠C=90°,∴∠MPE+∠NPF=90°,∵∠PNF+∠NPF=90°,∴∠MPE=∠PNF,∵∠MEP=∠PFN=90°,∠MPE=∠PNF,∴△MEP∽△PFN,∴MPPN=MEPF=EPFN,∵ME⊥AB,NF⊥AB,∠B=∠A=45°,∴ME=AE,PN=BF,∴MPPN=MEPF=EPFN=ME PEPF FN++=AE PEPF FB++=APBP,∴MPPN=APBP;(3)解:不成立,理由如下:过点M作MG⊥AB于G,过点N作NH⊥AB于H,∵∠C=90°,AC≠BC,不妨设AC<BC,则∠A<45°,∠B>45°,∴MG<AG,NH>BH,由(2)的证明方法可知:MPPN≠APBP.【点睛】本题考查的是相似三角形的判定和性质、翻转变换的性质、比例的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。

九年级第第三次月考数学试卷

九年级第第三次月考数学试卷

九年级第第三次月考数学试卷九年级第第三次月考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分)1.方程的解为【】A. =1 B. =0 C. =1或=0 D. =1或 =-12.从如图所示的二次函数的图象中,你认为下面不正确的信息是【】A. B.C=0 C.对称轴为x=1 D.3.在下列的图形中,是中心对称图形的是【】4.下列说法中,正确的是【】A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“明天降雨的概率是80%”表示明天降雨的可能性有八成C.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上D.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖5.关于的说法不正确的是【】A.是无理数 B.3<<4C.是12的算术平方根 D.是最简二次根式6.如图,⊙O的弦PQ垂直于直径MN,G为垂足,OP=4,下面四个等式中可能成立的是【】.A.PQ=9 B.MN=7 C.OG=5 D.PG=GQ=27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是【】8.如图所示,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB,AC都相切,则⊙O的半径是【】A.1 B. C.D.二、细心填一填 (本大题共8小题,每小题3分,共24分)9.方程 +1=-2(1-3x)化为一元二次方程的一般形式后,二次项系数为1,一次项系数是10.( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ)计算: =(Ⅱ)用计算器计算:≈ (保留三位有效数字).11.将抛物线向下平移1个单位,得到的抛物线是.12.已知△ABC周长为1,连结△ABC三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2020个三角形的周长为13.已知A(,1),B(,1)是抛物线(≠0)上的两点,当时,y=14.如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE重合,如果AD=1,那么DE=.A BCO1 12 323 44(第16题)15.如图⊙ 和⊙ 外切,它们的半径分别为1和2,过O 作⊙ 的切线,切点为A,则O A长为 .16.如图,在已建立直角坐标系的4×4的正方形方格纸中,△ 是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点、、为顶点的三角形与△ 相似(C点除外),则格点的坐标是三、开心算一算(本大题共4小题, 每小题6分,共24分).17.化简: .18.已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程有两个相等的实数根,试判断△ABC 的形状。

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试题带答案

人教版九年级上册数学第三次月考试卷一、单选题1.下列4个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.如图,⊙O的半径是5,弦AB=6,OE⊥AB于E,则OE的长是()A.2B.3C.4D.53.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣34.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定5.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2B.3C.4D.56.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π7.如图,已知C、D在以AB为直径的⊙O上,若∠CAB=30°,则∠D的度数是()A.30°B.70°C.75°D.60°8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16B.14C.12D.109.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4B.214C.5D.25410.如图,点C在以AB为半径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关AC对称,DF⊥DE于点D,并交EC的延长线与点F.下列结论:①CE=CF;②线段EF的最小值为3③当AD=2时,EF与半圆相切;④当点D从点A运动到点B时,线段EF扫过的面积是3.其中正确的结论()A.1个B.2个C.3个D.4个二、填空题11.若点P(a,﹣2)、Q(3,b)关于原点对称,则a﹣b=_____.12,则它的周长是______.13.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为________.14.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为______.15.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB =4,则CN=_____.三、解答题16.如图,⊙O的弦AB与半径OC相交于点P,BC∥OA,∠C=50°,那么∠APC的度数为.17.解方程(1)x2﹣4x=0(2)2x2+3=7x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上.(1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1;(2)求旋转过程中动点B所经过的路径长(结果保留π).19.如图,AB是⊙O的一条弦,且AB=C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.求OA的长.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求 BC的长.21.如图,AB为⊙O的直径,直线l经过⊙O上一点C,过点A作AD⊥l于点D,交⊙O 于点E,AC平分∠DAB.(1)求证:直线l是⊙O的切线;(2)若DC=4,DE=2,求线段AB的长.22.如图,以等边三角形ABC一边AB为直径的⊙O与边AC,BC分别交于点D,E,过点D作D F⊥BC,垂足为点F.(1)求证:D F为⊙O的切线;(2)若等边三角形ABC的边长为4,求D F的长;(3)求图中阴影部分的面积.23.如图直角坐标系中,已知A(-8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.24.已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.参考答案1.A2.C3.A4.A5.B6.B7.D8.B9.D10.C 11.-5 12.12 13.240°14.315.6-16.75°.17.(1)x1=0,x2=4;(2)x1=12,x2=318.(1)画图见解析;(2)点B所经过的路径长为5π2.19.4.20.(1)证明过程见解析;(2)π21.(1)详见解析;(2)AB=10.22.(1)证明见解析;(2(3)332 23π-.23.(1)直线OB与⊙M相切.;(2)M的坐标为(-247,247).24.(1)y=﹣x2+2x+3;(2)满足题意的点P存在,其坐标为(1,﹣);(3)213 3 -<k<213 3.。

九年级第三次月考数学试卷

九年级第三次月考数学试卷

第三次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分) 1. 下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖2、下列等式一定成立的是( )=a b -=a b =+3、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A 、200 (1+a%)2=148B 、200 (1-a%)2=148C 、200 (1-2a%)=148D 、200 (1-a 2%)=1484、如图1,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置, A 落在A '位置,若B A AC ''⊥,则BAC ∠的度数是( ) A 、50° B 、60° C 、70° D 、80°5、已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是( )A .1.5cmB .3cmC .4cmD .6cm6、如图2,在⊙O 中,∠AOB 的度数为m ,C 是ACB 上一点,D 、E 是AB 上不同的两点(不与A 、B 两点重合),则∠D+∠E 的度数为( )A 、mB 、21800m -C 、2900m +D 、2m二、填空题(本大题共8小题,每小题3分,共24分)7、计算:29328+-= 8、关于x 的一元二次方程01)1(2=+--mx m x 有两个不相等的实数根,则m 的取值范围是9、如图3,⊙O 与AB 相切于A ,BO 与⊙O 交于点C ,∠BAC =25°,则∠B = 。

10、两道单项选择题都含有A 、B 、C 、D 四个选项,若某学生不知道正确图1 图2A BO C D EA·BCO图3答案就瞎猜,则这两道题恰好全部被猜对的概率是11. 已知:如图,AB 是圆O 的直径,CD 是圆O 的弦,AB ⊥CD ,P 是垂足,如果AB=10cm ,AP=1cm ,那么CD=__________cm 。

河南省郑州市二七区京广实验中学2023-2024学年九年级上学期12月月考数学试题(含解析)

河南省郑州市二七区京广实验中学2023-2024学年九年级上学期12月月考数学试题(含解析)

2023-2024学年上学期九年级第三次学习比赛数学试卷一、单选题。

(每小题3分,共30分)....“天宫课堂23日在中国空间站开讲,包括六个项目:太空“冰雪”实验、液桥演示实验、水油分离实验、太空抛物实验、空间科学设施介绍与展示、天地互动环节.若随机选取一个项A .B .4.如图,在x 轴的上方,直角∠BOA 、的图象交于B 、A 两点,则A .逐渐变小B .逐渐变大5.温州是盛产瓯柑之乡,某超市将进价为每千克千克,为了减少库存且让利顾客,决定降价销售,超市发现当售价每千克下降就增加10千克,设售价下降20︒15︒1y x =-2y x=. . . ..如图,已知菱形的顶点,点轴的正半轴上.按以下步骤作:①以点为圆心,适当长度为半径作弧,分别交边、、;②分别以点为圆心,大于的长为半径作弧,两弧在内交于点作射线,交菱形的对角线A .9.如图,已知二次函数两点.下列结论的错误个数是(A .2(2,0)B -60ABC =︒B AB N 1MN ABC P BP ()1,3B C D二、填空题。

(每小题3分,共15分)12.已知点关于原点对称的点13.如图,在平面直角坐标系中,绕点A 逆时针旋转,每次旋转14.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图形ABCD 的对角线,将观察两图,若a =434,23A ⎛⎫ ⎪⎝⎭15.如图,在矩形中,痕与边相交于点E ,与矩形另一边相交于点三、解答题。

(本火题共8小题,共55分。

请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)16.计算:(1)2sin45°﹣tan30°﹣(1)松鼠经过第一道门时,从B (2)请用树状图或列表法表示松鼠走出笼子的所有可能路线(经过两道门)的概率.18.已知关于的方程ABCD AD 3x (2x k -(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x 与竖直高度y 的几组数据如下:水平距离03 3.54 4.5竖直高度101010 6.25根据上述数据,直接写出k 的值为______,直接写出满足的函数关系式:______;(2)比赛当天的某一次跳水中,全红婵的竖直高度与水平距离x 近似满足函数关系,记她训练的入水点的水平距离为;比赛当天入水点的水平距离为,则(2)【类比迁移】/mx /m y k254068y x x =-+-1d 2d 1d d >=<(3)【拓展延伸】如图3,在中,,使得,请求线段Rt ABC △ACB ∠CD 3tan 4ACD ∠=【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.4.D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定及锐角三角函数的定义等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.B【分析】当售价下降x元时,每千克瓯柑的销售利润为(平均每天的销售量为(50+10x )千克,依题意得:(3-x )(50+10x )=120.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.D【详解】∵,∴对称轴为x =1,P 2(3,),P 3(5,)在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P 1(﹣1,)与(3,)关于对称轴对称,故,故选:D .7.D【分析】根据一次函数的和二次函数的即可判断出二次函数的开口方向和一次函数经过轴正半轴,从而排除A 和C ,分情况探讨的情况,即可求出答案.【详解】解:二次函数为 ,,二次函数的开口方向向上,排除C 选项.一次函数,,一次函数经过轴正半轴,排除A 选项.当时,则,一次函数经过一、二、四象限,二次函数经过轴正半轴,22y x x c =-++2y 3y 23y y >1y 2y 123y y y =>1b =1a =y m 2y x m =+10a ∴=>∴∴ 1y mx =-+1>0b ∴= y ∴0m >0m -<2y x m =+y∵四边形ABC都是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,可知:,,则:每旋转4次则回到原位置,∵,即:第2023次旋转结束时,完成了∴当第2023次旋转结束时,点C 对应的坐标是故答案为:.()2,2C ()1,1C '-(0,C ''-202345053÷= ()3,1-根据折叠有:,∵,,∴,∵在矩形中,AF FM =BF x =22AB =AD 22AF FM x ==-AE ABCD EN ⊥根据折叠有:,∵,,∴,∵在矩形中,∴四边形是矩形,BF FG =BF x =22AB =AD BF FG x ==AE EM ==ABCD MH AHMB由树状图可知:松鼠走出笼子的所有可能路线结果数为=由旋转的性质可得:CB ED∵,∴.∵,∴,∴,90BAC DAE ∠=∠=︒CAE BAD ∠=∠9632AC AB AE AD ====,,,32AC AE AB AD ==CAE BAD ∽∵,∴.∴.∵,∴,∴,∴,∴.AP BC ∥90DAC ACB EAB ∠=∠=∠=︒CAE DAB ∠=∠3tan 4AD ACD AC ∠==34AD AB AC AE ==DAB CAE ∽△△34BD AD EC AC ==3BD EC =质,勾股定理,三角形三边关系的应用等知识.熟练掌握旋转的性质和三角形相似的判定定理,并正确的作出辅助线是解题关键.。

九年级第第三次月考数学试卷

九年级第第三次月考数学试卷

九年级第第三次月考数学试卷九年级第第三次月考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分)1.方程的解为【】A.=1 B.=0 C.=1或=0 D.=1或=-12.从如图所示的二次函数的图象中,你认为下面不正确的信息是【】A.B.C=0 C.对称轴为x=1 D.3.在下列的图形中,是中心对称图形的是【】4.下列说法中,正确的是【】A.”明天降雨的概率是80%”表示明天有80%的时间降雨B.“明天降雨的概率是80%”表示明天降雨的可能性有八成C.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上D.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖5.关于的说法不正确的是【】A.是无理数B.3<<4C.是12的算术平方根D.是最简二次根式6.如图,⊙O的弦PQ垂直于直径MN,G为垂足,OP=4,下面四个等式中可能成立的是【】.A.PQ=9 B.MN=7 C.OG=5 D.PG=GQ=27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是【】8.如图所示,在△ABC中,&ang;C=90&deg;,AC=8,AB=10,点P在AC 上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB,AC都相切,则⊙O的半径是【】A.1 B.C.D.二、细心填一填(本大题共8小题,每小题3分,共24分)9.方程+1=-2(1-3x)化为一元二次方程的一般形式后,二次项系数为1,一次项系数是10.( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ)计算: =(Ⅱ)用计算器计算:&asymp; (保留三位有效数字).11.将抛物线向下平移1个单位,得到的抛物线是.12.已知△ABC周长为1,连结△ABC三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第20XX个三角形的周长为13.已知A(,1),B(,1)是抛物线(&ne;0)上的两点,当时,y= 14.如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE 重合,如果AD=1,那么DE= .AB CO1132 34 4(第16题)15.如图⊙和⊙外切,它们的半径分别为1和2,过O 作⊙的切线,切点为A,则O A长为.16.如图,在已建立直角坐标系的4&times;4的正方形方格纸中,△是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点、、为顶点的三角形与△相似(C点除外),则格点的坐标是三、开心算一算(本大题共4小题, 每小题6分,共24分).17.化简: .18.已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程有两个相等的实数根,试判断△ABC的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

...
a1
a=
a;④3a-2a=a,做错的题是()
6B.
3
C.
3
D.
第5题第6题
B
九年级第三次月考数学试题
班级姓名成绩
(满分:150分;考试时间:100分钟)
考生注意:本卷中凡涉及实数运算,若无特别要求,结果应该为准确数。

一.填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分。

把答案填在题中横线上。

1.函数y=ax2(a≠0)的图象是________,它的对称轴是________,它的顶点坐标是________.
2.化简:169m
=.
121n2
3.“异性电荷相吸引”是__________事件;“掷一枚骰子时一点和三点同时向上”是
__________事件;“明天可能下雨”是__________事件。

(“必然”、“不可能”或
“随机”)
4.已知⊙O•中,•弦AB•的长是8cm,•圆心O•到AB•的距离为3cm,•则⊙O•的直径
是_____cm.
5.如图所示,三个圆是同心圆,图中阴影部分的面积为______.
6.如图,点A、B、C三点在⊙O上,且∠AOB=80,则∠ACB=。

△7.如图,等边ABC的边BC上一点△D,ABD绕点A旋转到△ACE,
则∠DAE=°A.①②③④B.①②③C.①③D.③
12.小明的作业本上有以下四题:①16a4=4a2;②5a•10a=52a;③
1
a=
a2•
A.①B.②C.③D.④
13.若y=(a-1)x3a2-1是关于x的二次函数,则a的值是()
A.1B.-1C.±1D.以上答案都不对
14.抛物线y=x2+2x-2的顶点坐标是()
A.(2,-2)
B.(1,-2)
C.(1,-3)
D.(-1,-3)15.中央电视台“幸运52”节目中,开设一个幸运观众的“金花四溅”的节目,节目中准备了三个金蛋,三个银蛋,观众任选一个敲碎时,若能从中溅出金花,•即可中奖,一次节目游戏中三个金蛋都有金花,一个银蛋中有金花,•若某名幸运观众从六个中任选一个,他可以得到“金花四溅”而中奖的概率是()
A A.
1121
4
O C A B
E
D C第7题
16.二次函数y=ax2+bx+c(a≠0)的图像如图所示,下列结论:
(1)c<0,(2)b>0,(3)a+b+c>0(4)a-b+c>0
其中正确的有()
A.1个
B.2个
C.3个
D.4个
8.如果圆锥母线长为5cm,高为3cm,那么这个圆锥的侧面积是_______cm2.
9.一个直角三角形的两条直角边长是方程x2-7x+12=0的两个根,则此直角三角形外接圆的半径等于。

10.把抛物线y=2x2先向上平移1个单位,得到抛物线_______,再把它向左平移3个单位,又得到抛物线________.
二.选择题:本大题共6小题,每小题4分,计24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

11.如图所示的四个图形中,既可以通过轴对称变换,•又可以通过旋转变换得到的图形是()三、解答题:本大题共10小题,计92分。

解答应写出说理、证明过程或演算步骤
17.(6分)计算32-(2+2)2
18.(6分)求出抛物线y=x2-5x+6与x轴交点坐标。



22.(10分)如图,点A是一个半径为300m的圆形森林公园的中心,在森林公园附近有B、C
两个村庄,现要在B、C两村庄之间修一条长为1000m的笔直公路将两村连通.经测得
∠ABC=45°,∠ACB=30°,问此公路是否会穿过森林公园?请通过计算进行说明.
A
19.(8分)已知抛物线的顶点坐标是(-2,1),且过点(1,-2),求此抛物线的解
析式。

B H C
20.(8分)小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),
他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上。

(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(6分)
(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方
砖颜色?怎样改变?(2分)
23.(10分)已知关于x的二次方程x2-(k+2)x+2k=0.
(1)求证:无论K取任何实数值时,方程总有两个实数根;(5分)
(2)若等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求三角形的周长。

5分)
第20题图
21.(8分)如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC.求证:DE是⊙O的切
线。

24.(12分)某个体户经营一种水产品,成本是每千克40元,经试销发现若按每千
克50元销售,一个月能售出500千克;但是售价每涨1元,月销售量
就会减少10千克,针对以上情况,请解答下列问题:
(1)当销售单价为每千克55元时,月销售量和月利润各是多少?
(2)设销售单价为每千克x元,月销售利润为y元,试写出y与x的函数关系式。

(3)你认为销售单价定为多少元时,个体户能获得最大利润?
a N ( 8
28 ∵a x ·a y =a x +y ,∴a x +y =M·N. ∴log a (MN) =x +y ,

25. 本小题满分 12 分)已知二次函数 y = ax 2 + bx + c(a ≠ 0) 的图象与 y 轴相交于点
(0,-3),并经过点(-2,5),它的对称轴是 x =1,如图为函数图象的一部分。

(1)求函数解析式,写出函数图象的顶点坐标;(7 分) (2)在原题图上,画出函数图象的其余部分;(2 分)
(3)如果点 P (n ,-2n )在上述抛物线上,求 n 的值。

(3 分) y
4
2
即 log (MN) =log M +log N.
a a a
这是对数运算的重要性质之一。

进一步地,我们可以得出:
log (M M M …M ) =_________________________________(其中 M ,M M …,M
a 1 2 3 n 1 2, 3, n
M
均为正数,a >0, a≠1);log =______________(M,N 均为正数,a >0, a≠1)。

附加题.(本题满分 10 分)
友情提示:你已完成上面全部试题,请再认真核查一遍,并自我评价得分情况。

如 果你估计自己整卷得分低于 90 分(及格线),请再完成本大题,将补加1~10 分,并 计入你的全卷总分;如果你的上面整卷得分已经达到或超出 90 分,本大题将不再进 行批阅。

01.列代数式:a 与 2 的和。

(4 分)
-2
2
4 x
-2
02.已知等边三角形 ABC 的一边 AB =3,求它的周长。

(3 分)
03.求:3、2、6、1、3 这组数的平均数。

(3 分)
A
-4
x=1
B C
附加题
第 25 题图
26.(12 分)阅读下面的材料,并解答后面的各题:
在形如 a b =N 的式子中,我们已经研究过两种情况: (1)已知 a 和 b ,求 N ,这是乘方运算; (2)已知 b 和 N ,求 a ,这是开方运算。

现在,我们研究第三种情况:已知 a 和 N ,求 b ,我们把这种运算称为对数运算。

定义:如果 a b =N (a >0, a≠1, N>0),则 b 叫做以 a 为底 N 的对数,记作 b =log N.
a
1 1
例如,因为 23=8,所以 log 8=3;因为 2-3= ,所以 log =-3. 2
(1) 8 分)根据定义计算:①log 81=______;②log 3=______;③log 1=______;
3 3
4 ④若 log 16=4,则;x =________;
x
(2)(4 分)设 a x =M, a y =N,则 log M =x ,log N =y( a >0, a≠1,M,N 均为正数) .
a a。

相关文档
最新文档