传热学第五章_对流换热原理-1
合集下载
传热学第五章 对流换热计算

2019/11/12
20
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
③短管 当管子的长径比l/d<60时,属于短管内流动换 热,进口段的影响不能忽视。此时亦应在按 照长管计算出结果的基础上乘以相应的修正
系数Cl。 cl 1 d l 0.7
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
第五章 对流换热计算
§5-1 管(槽)内流体受迫对流换热计算 §5-2 流体外掠物体的对流换热计算 §5-3 自然对流换热计算
2019/11/12
1
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
华中科技大学热科学与工程实验室
HUST Lab of Thermal Science & Engineering
2 管内强制对流换热的准则关系式 ①管内紊流换热准则关系式
迪图斯-贝尔特(Dittus-Boelter)公式
Nu 0.023Re0.8 Prn
特征尺寸为d,特征流速
采用的定性温度是t f tf tf
HUST Lab of Thermal Science & Engineering
大温差情况下计算换热时准则式右边要乘以物 性修正项 。
气体 液体
ct
Tf 1
ct
f f
Tw 0.5
0.11 w
0.25 w
2020年高中物理竞赛—传热学-第五章 对流换热:相似原理的应用等(共27张PPT) 课件

均匀热流边界 Nuf 4.82 0.0185Pef0.827
实验验证范围: Ref 3.6 103 ~ 9.05 105, Pef 102 ~ 104。
均匀壁温边界 Nuf 5.0 0.025Pef0.8
实验验证范围: Pef 100。
特征长度为内径,定性温度为流体平均温度。
第五章 对流换热
❖ 一般在关联式中引进乘数 (f / w )n 或(Prf / Prw )n
来考虑不均匀物性场对换热的影响。
第五章 对流换热
17
大温差情形,可采用下列任何一式计算。 (1)迪贝斯-贝尔特修正公式
Nuf 0.023 Ref0.8 Prfn ct
对气体被加热时,
ct
Tf Tw
0.5
当气体被冷却时, ct 1。
目的:完满表达实验数据的规律性、便于应用,特征数 关联式通常整理成已定准则的幂函数形式:
Nu c Ren Nu c Ren Prm Nu c(Gr Pr)n
式中,c、n、m 等需由实验数据确定,通常由图解法和
最小二乘法确定
第五章 对流换热
7
幂函数在对数坐标图上是直线
Nu c Ren lg Nu lg c nlg Re
n tg l2 ;
l1
c
Nu Re n
实验数据很多时,最好的方法是用最小二乘法由计算 机确定各常量
特征数关联式与实验数据的偏差用百分数表示
第五章 对流换热
8
① 回答了关于试验的三大问题:
(1) 实验中应测哪些量(是否所有的物理量都测) (2) 实验数据如何整理(整理成什么样函数关系) (3) 实物试验很困难或太昂贵的情况,如何进行试验? ② 所涉及到的一些概念、性质和判断方法:
传热学-5 对流传热原理

电场与温度场:微分方程相同,内容不同。 强制对流换热与自然对流换热:微分方程的形式和内容都 有差异。 外掠平板和外掠圆管:控制方程相同,单值性条件不同。
5-4 相似原理简介
1)几何相似 对应的长度量成固定比例,对应的角度相等。
若(1)(2)相似
a' a ''
b' b ''
c' c ''
h' h ''
' ''
P' P ''
CF
5-4 相似原理简介
4)初始条件和边界条件相似 保证定解条件一致。
几何相似是运动相似和动力相似的前提; 动力相似是决定流动相似的主要因素(保证); 运动相似是几何相似和动力相似的表现。
y
u
u
tw x
5-1 对流传热概述
特点: (1)导热与热对流同时存在的复杂热传递过程; (2)必须有流体和壁面的直接接触和宏观运动, 也必须有温差; (3)由于流体的黏性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的流动边界层; (4)紧贴壁面处同时形成温度梯度很大的热边界层。
5-1 对流传热概述
偏微分方程+定解条件
速度场和温度场
表面传热系数h
2 实验法
相似原理指导下通过实验获得表面传热系数的 计算式(是目前工程计算的主要依据)。
对流传热问题的研究方法
3 比拟法
通过研究热量传递与动量传递的共性或类似特性, 建立起表面传热系数 h 与阻力系数 cf 间的相互联系, 通过较易测定的阻力系数来获得相应的表面传热系数 值。
主流区:速度梯度为0, 0 可视为无粘性理想流
5-4 相似原理简介
1)几何相似 对应的长度量成固定比例,对应的角度相等。
若(1)(2)相似
a' a ''
b' b ''
c' c ''
h' h ''
' ''
P' P ''
CF
5-4 相似原理简介
4)初始条件和边界条件相似 保证定解条件一致。
几何相似是运动相似和动力相似的前提; 动力相似是决定流动相似的主要因素(保证); 运动相似是几何相似和动力相似的表现。
y
u
u
tw x
5-1 对流传热概述
特点: (1)导热与热对流同时存在的复杂热传递过程; (2)必须有流体和壁面的直接接触和宏观运动, 也必须有温差; (3)由于流体的黏性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的流动边界层; (4)紧贴壁面处同时形成温度梯度很大的热边界层。
5-1 对流传热概述
偏微分方程+定解条件
速度场和温度场
表面传热系数h
2 实验法
相似原理指导下通过实验获得表面传热系数的 计算式(是目前工程计算的主要依据)。
对流传热问题的研究方法
3 比拟法
通过研究热量传递与动量传递的共性或类似特性, 建立起表面传热系数 h 与阻力系数 cf 间的相互联系, 通过较易测定的阻力系数来获得相应的表面传热系数 值。
主流区:速度梯度为0, 0 可视为无粘性理想流
传热学第56章对流换热

1、概述
要求解对流换热需得到速度场和温度场
假设: a) 流体为连续性介质
b) 流体为不可压缩的牛顿流体 c) 所有物性参数(、c、、μ)为常量 d) 忽略粘性力作功(即忽略粘性耗散产生的耗散热)
对于牛顿流体: u
y
4个未知量:速度 u、v ;温度 t ;压力 p
需要4个方程:连续性方程(1)、动量方程(2)、能量方程(3)
在贴壁处流速滞止,处于无滑移状态 (即:y=0, u=0),形成一极薄的不 运动的贴壁流体层。
在这一极薄的贴壁流体层中,热量只 能以导热方式传递
根据傅里叶定律:
qw
t
y
y0
W m2
流体的热导率 W (mC)
t y y0 — 在坐标(x,0)处流体的温度梯度
2020/4/28 - 10 -
(V) 0
2020/4/28 - 15 -
第5章 对流换热——§5-2 对流换热问题的数学描述
Euler法(控制体微元):
(1) x、y、z方向流入的净流量:
udydz u u dxdydz u dxdydz
x
x
vdxdz
v
v y
dy
dxdz
v y
dxdydz
wdxdy w w dxdxdy w dxdydz
2020/4/28 - 5 -
第5章 对流换热——§5-1 对流换热概述
(3) 流体有无相变
单相换热 (Single phase heat transfer) :
显热的变化
相变换热(Phase change):凝结(Condensation)、 沸腾(Boiling)、
升华(sublimation)、 凝固(coagulation)、 融化(thaw)
传热学第五章对流换热

1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
传热学5

7/42
分析 解法
采用数学分析求解的方法。
传热学 Heat Transfer
2.如何从获得的温度场来计算h 无论是分析解法还是数值法首先获得都是温度场, 如何由T→h? t q 由傅里叶定律 w y
y 0
牛顿冷却公式
q w qc
qc h t w t
y
主流区
u∞
d 5 .0 离开前缘x处的边界层厚度 x Re x
局部表面传热系数
1/ 2 1/ 3 hx 0.332 Re x Pr x hx x 0.332 Re x1/ 2 Pr 1/ 3 Nu x 努塞尔数
(特征数方程,关联式)
u x 雷诺数: Re x 5 Re Re 5 10 关联式适用范围: c
25/42
传热学 Heat Transfer
1.数量级分析方法的基本思想 分析比较方程中等号两侧各项的数量级大小,在 同一侧内保留数量级大的项而舍去数量级小的项 2.实施方法 ①列出所研究问题中几何变量及物理变量的数量 级的大小,一般以1表示数量级大的物理量的量级。 以Δ表示小的数量级 ②导数中导数的数量级由自变量及因变量的数量 级代入获得
2t t t 2t c p u x v y x 2 y 2
28/42
传热学 Heat Transfer
5.4流体外掠平板传热层流 分析解及比拟理论
29/42
传热学 Heat Transfer
一、外掠等温平板层流流动下对流换热问 题的分析解
u v 0 x y
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y
分析 解法
采用数学分析求解的方法。
传热学 Heat Transfer
2.如何从获得的温度场来计算h 无论是分析解法还是数值法首先获得都是温度场, 如何由T→h? t q 由傅里叶定律 w y
y 0
牛顿冷却公式
q w qc
qc h t w t
y
主流区
u∞
d 5 .0 离开前缘x处的边界层厚度 x Re x
局部表面传热系数
1/ 2 1/ 3 hx 0.332 Re x Pr x hx x 0.332 Re x1/ 2 Pr 1/ 3 Nu x 努塞尔数
(特征数方程,关联式)
u x 雷诺数: Re x 5 Re Re 5 10 关联式适用范围: c
25/42
传热学 Heat Transfer
1.数量级分析方法的基本思想 分析比较方程中等号两侧各项的数量级大小,在 同一侧内保留数量级大的项而舍去数量级小的项 2.实施方法 ①列出所研究问题中几何变量及物理变量的数量 级的大小,一般以1表示数量级大的物理量的量级。 以Δ表示小的数量级 ②导数中导数的数量级由自变量及因变量的数量 级代入获得
2t t t 2t c p u x v y x 2 y 2
28/42
传热学 Heat Transfer
5.4流体外掠平板传热层流 分析解及比拟理论
29/42
传热学 Heat Transfer
一、外掠等温平板层流流动下对流换热问 题的分析解
u v 0 x y
u u u p 2u 2u ( u v ) Fx ( 2 2 ) x y x x y v v v p 2v 2v ( u v ) Fy ( 2 2 ) x y y x y
传热学对流换热ppt课件

总结词
优化对流换热过程,提高传热效率是传热学的重要研究方向。
详细描述
对流换热是传热过程中的重要环节,优化对流换热过程、提高传热效率对于节能减排、提高能源利用 效率具有重要意义。未来研究将进一步探索对流换热的优化方法和技术,为实现高效传热提供理论支 持。
THANKS
感谢观看
02 通过求解这些方程,可以得到流体温度场和物体 温度场的分布,进而分析对流换热的规律和特性 。
02 对流换热的数学模型是研究对流换热问题的重要 工具,可以用于预测和分析各种实际工程中的传 热问题。
03
对流换热的影响因素
流体物性参数
01 密度
密度越大,流体质量越大,流动时受到的阻力也 越大,对流传热速率相对较快。
,提高能源利用效率。
工业炉的热能回收主要涉及对流 换热器的设计和优化,需要考虑 传热效率、热损失、设备成本等
因素。
通过对流换热技术回收工业炉的 热量,可以降低能源消耗和减少
环境污染。
建筑物的自然通风设计
建筑物的自然通风设计利用对流 换热原理,通过合理设计建筑布 局、窗户位置和大小等,实现自
然通风,降低室内温度。
传热学对流换热ppt 课件
目录
• 对流换热的基本概念 • 对流换热原理 • 对流换热的影响因素 • 对流换热的实际应用 • 对流换热的实验研究方法 • 对流换热研究的未来展望
01
对流换热的基本概念
对流换热定义
总结词
对流换热是指流体与固体表面之间的热量传递过程。
详细描述
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本现象。当流体与固 体表面接触时,由于温度差异,会发生热量从固体表面传递到流体的过程。
在对流换热过程中,热传导与对流同时存在,共 02 同作用,两者相互关联,共同决定热量传递的速
优化对流换热过程,提高传热效率是传热学的重要研究方向。
详细描述
对流换热是传热过程中的重要环节,优化对流换热过程、提高传热效率对于节能减排、提高能源利用 效率具有重要意义。未来研究将进一步探索对流换热的优化方法和技术,为实现高效传热提供理论支 持。
THANKS
感谢观看
02 通过求解这些方程,可以得到流体温度场和物体 温度场的分布,进而分析对流换热的规律和特性 。
02 对流换热的数学模型是研究对流换热问题的重要 工具,可以用于预测和分析各种实际工程中的传 热问题。
03
对流换热的影响因素
流体物性参数
01 密度
密度越大,流体质量越大,流动时受到的阻力也 越大,对流传热速率相对较快。
,提高能源利用效率。
工业炉的热能回收主要涉及对流 换热器的设计和优化,需要考虑 传热效率、热损失、设备成本等
因素。
通过对流换热技术回收工业炉的 热量,可以降低能源消耗和减少
环境污染。
建筑物的自然通风设计
建筑物的自然通风设计利用对流 换热原理,通过合理设计建筑布 局、窗户位置和大小等,实现自
然通风,降低室内温度。
传热学对流换热ppt 课件
目录
• 对流换热的基本概念 • 对流换热原理 • 对流换热的影响因素 • 对流换热的实际应用 • 对流换热的实验研究方法 • 对流换热研究的未来展望
01
对流换热的基本概念
对流换热定义
总结词
对流换热是指流体与固体表面之间的热量传递过程。
详细描述
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本现象。当流体与固 体表面接触时,由于温度差异,会发生热量从固体表面传递到流体的过程。
在对流换热过程中,热传导与对流同时存在,共 02 同作用,两者相互关联,共同决定热量传递的速
第五章-传热学

h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y
=
2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
传热学 第五章 对流换热

t qw
n w
第三类边界条件?
思考
对流换热微分方程表明,在边界上垂直于壁面的热量传 递完全依靠导热,那么在对流换热过程中流体的流动起 什么作用?
hx
tw t
x
t y
y0,x
c
p
t
u t x
v
t y
2t x2
2t y 2
流场决定温度场
小结
我们学习了 影响对流换热的一些因素; 对流换热微分方程:对流换热系数的定义 对流换热微分方程组:连续性方程、动量方程、能量方程
A qxdA
A
hx
tw
t
x
dA
h
1 A
A hxdA
对流换热的 核心问题
对流换热的影响因素
对流换热是流体的导热和热对流两种基本传热方式共同作用的结果。 影响因素:
1)流动的起因:强迫对流换热与自然对流换热 2) 流动的状态:层流和紊流 3) 流体有无相变 4) 流体的物理性质
5) 换热表面的几何因素
v
t y
2t x2
2t y 2
2) 对流换热的单值性条件
(1) 几何条件 (2) 物理条件 (3) 时间条件 (4) 边界条件
1904年,德国科学家普朗特(L. Prandtl)提出著名 的边界层概念后,上述方程的求解才成为可能。
第一类边界条件 t w f x, y, z,
q 第二类边界条件 w f x, y, z,
采用氢冷须注意其密封结构,否则泄露后会发生爆炸。
5) 换热表面的几何因素
强迫对流
(1)管内的流动
(2)管外的流动
自然对流
(3)热面朝上
(4)热面朝下
对流换热分类
传热学第五章

h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x
传热学-对流换热PPT课件

传热学-对流换热
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
传热学第五章对流传热的理论基础

30
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W
实验数据如何整理(整理成什么样函数关系) 强制对流:Nu f (Re,Pr); Nux f ( x' , Re,Pr)
自然对流换热:Nu f (Gr, Pr) 混合对流换热:Nu f (Re, Gr, Pr)
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
2
流体流过固体表面时,。。。
普朗特边界层理论:粘性流体流过固体表面时,粘滞性 起作用的区域仅仅局限在靠近壁面的薄层内。
3
2. 对流传热系数
u∞ ; t ∞
tw
由傅里叶定律:
q t y w
W m2
对流传热的定义式: q ht h tw t [W/m2 ]
在边界层不脱落的前提下:
q ht = t y w
x为当前点与板前缘的距离。 Pr=
a
1
1
hx x
0.332
u x
2
a
3
Nux 0.332Re1x 2 Pr1 3
上述理论解与实验值吻合。
注意:层流
18
2. 对于外掠平板层流分析解的几个讨论
(1)局部对流传热系数,平均对流传热系数
局部对流传热系数
Nux
hx x
11
0.332Rex 2 Pr 3
第五章 对流传热的理论基础
1
5.1 对流传热概述
1. 对流传热的定义、研究对象
流体流过固体表面时,流体与固体之间的热量传递。
工程上约定的计算习惯:
若tw t,Φ hA(tw t ) W 若tw t,Φ hA(t tw ) W
对流传热原理

4.流 体 相 变
5.壁 面 形 状
确定对流换热系数的方法: 1)理论解法
在边界层建立对流传热微分方程组的基础上, 通过数学分析法、积分近似解法、数值解法和比拟 解法求得。
2)实验解法
对微分方程组进行量纲分析,得出有关相似 特征数,在相似原理的指导下建立实验台和整理 实验数据,求得各特征数间的函数关系,再将函 数关系推广至与实验现象相似的现象中去。
从y方向流出微元体的质量流量在x方向上的 动量为: ∂v ∂u
v dy dx 1 u dy ∂y ∂y
x方向上的动量改变量 :
∂u ∂u dxdy 1 u v ∂y ∂x
化简过程中利用了连续性方程和忽略了高阶 小量。 同理,导出y方向上的动量改变量 :
1)定义
具有很大温度变化的流体薄层,即具有明显 温度梯度的流体薄层为热边界层。 2)热边界层厚度 把从壁面过余温度(t-tw)为零,到流体过 余温度为来流过余温度的99 % 的热边界层 距离称为热边界层厚度,用δ t 表示。
热边界层的形成和发展与速度边界类似。
3、热边界层与速度边界层的关系 速度边界层厚度δ与速度分布有关,反映 流体分子动量是扩散能力与运动粘度有关。 热边界层厚度δt与温度分布有关,反映流体 分子热量扩散能力,与热扩散率α 有关。
单位时间内微元体内流体质量的变化:
∂ρdxdy ) ( ∂τ = ∂ρ ∂τ dxdy
∵单位时间:流入微元体的净质量 = 微元体内 流体质量的变化
∂ u ) ( ∂x dxdy ∂ v) ( ∂y dxdy ∂ ∂ dxdy
∴连续性方程:
∂ρ ∂τ
+
∂ρu ∂x
+
5.壁 面 形 状
确定对流换热系数的方法: 1)理论解法
在边界层建立对流传热微分方程组的基础上, 通过数学分析法、积分近似解法、数值解法和比拟 解法求得。
2)实验解法
对微分方程组进行量纲分析,得出有关相似 特征数,在相似原理的指导下建立实验台和整理 实验数据,求得各特征数间的函数关系,再将函 数关系推广至与实验现象相似的现象中去。
从y方向流出微元体的质量流量在x方向上的 动量为: ∂v ∂u
v dy dx 1 u dy ∂y ∂y
x方向上的动量改变量 :
∂u ∂u dxdy 1 u v ∂y ∂x
化简过程中利用了连续性方程和忽略了高阶 小量。 同理,导出y方向上的动量改变量 :
1)定义
具有很大温度变化的流体薄层,即具有明显 温度梯度的流体薄层为热边界层。 2)热边界层厚度 把从壁面过余温度(t-tw)为零,到流体过 余温度为来流过余温度的99 % 的热边界层 距离称为热边界层厚度,用δ t 表示。
热边界层的形成和发展与速度边界类似。
3、热边界层与速度边界层的关系 速度边界层厚度δ与速度分布有关,反映 流体分子动量是扩散能力与运动粘度有关。 热边界层厚度δt与温度分布有关,反映流体 分子热量扩散能力,与热扩散率α 有关。
单位时间内微元体内流体质量的变化:
∂ρdxdy ) ( ∂τ = ∂ρ ∂τ dxdy
∵单位时间:流入微元体的净质量 = 微元体内 流体质量的变化
∂ u ) ( ∂x dxdy ∂ v) ( ∂y dxdy ∂ ∂ dxdy
∴连续性方程:
∂ρ ∂τ
+
∂ρu ∂x
+
传热学-第五章-对流原理.

三个准则数分别称为努谢尔特准则,雷诺 准则和普朗特准则,相应地用符号Nu、Re 和Pr表示,代入式(d)中,得
N uARcePer
写成一般形式的无量纲关系式,则为
u=f〔Re,Pr)
上两式称之为准则方程式,式中的系 数和指数,或方程的具体形式由试验确
定。
至于自然对流换热,无论是理论分析还 是试验分析,都觉察正是由于壁面和流 体之间存在的温度差,使流体密度不均 匀所产生的浮升力,导致了自然对流运 动的发生和进展。自然对流换热系数α 与其影响因素的一般关系式为
如下图,流体接触管道后,便从两侧流过, 并在管壁上形成边界层。正对着来流方向 的圆管最前点,即φ=0处,流速为零, 边界层厚度为零。此后,在圆管壁上形成 层流边界层,并随着φ角的增大而增厚。 当厚度增加到肯定程度时,便过渡到紊流 边界层。在圆管壁φ=80°四周处,流体 脱离壁面并在圆管的后半部形成旋涡。
明显,流体温度的分布与流体的流淌有关, 深受速度边界层的影响。流体呈层流状态时, 流体微团沿相互平行的流线进展,没有横向 流淌,不发生物质交换,壁面法线方向上的 热量传递,根本上靠分子的导热进展,层内 温度变化较大,温度分布呈抛物线型。对于 紊流边界层,其中层流底层的热量传递也是 靠导热,而在紊流核心层的热交换,除靠分 子的导热外,主要靠流体涡流扰动的对流混 合,从而使得层流底层的温度梯度最大,而 在紊流核心层温度变化平缓比较均匀全都。
二、
从上节可以知道,在大多数状况下, 影响无相变对流换热过程的换热系数 α的物理因素可归结为流体流态、物 性、换热壁面状况和几何条件、流淌 缘由四个方面。争论说明,对于管内 受迫流淌,假设假定物性是常数,不 随温度而变,争论的是平均对流换热 系数。影响换热系数α的因素有流速V, 管径D,流体密度ρ,动力粘度μ,比 热cp和导热系数λ。
《传热学》第5-6章-对流换热

dxdy
λ
∂ 2t ∂x2
+
∂ 2t ∂y 2
dxdy
−
ρc
p
∂
(ut
∂x
)
+
∂
(vt
∂y
)dxdy
=
ρc p
∂t ∂τ
dxdy
ρc
p
∂t ∂τ
+ u ∂t ∂x
+ v ∂t ∂y
+
t
∂u ∂x
+
∂v ∂y
=
λ
∂ 2t ∂x 2
+
似,已很少再用
5-2对流换热的数学描述
1) 对流换热微分方程
取边长为∆x, ∆y, ∆z=1的微元体为研究对象
当粘性流体在壁面上流动时,由于 粘性的作用,流体的流速在靠近壁 面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑 移状态(即:y=0, u=0)
在这极薄的贴壁流体层中, 热量只能以导热方式传递
∂ρ ∂T
p
λ ↑⇒ h ↑ (流体内部和流体与壁面间导热热阻小)
ρ、c ↑⇒ h ↑ (单位体积流体能携带更多能量)
µ ↑⇒ h ↓ (有碍流体流动、不利于热对流)
α ↑⇒ 自然对流换热增强
5) 换热表面的几何因素
对流换热分类
1
对流换热的主要研究方法
v (1) 分析法——解析解 v (2) 数值法——近年发展的方法 v (3) 实验法——主要方法(拟合公式) v (4) 比拟法——热量传递与动量传递 的相
在层流边界层与层流底层内,垂直于壁面方向上的热量传递 主要靠导热。紊流边界层的主要热阻在层流底层。
第五章对流传热理论基础

动量方程中的惯性力项和能量方程中的对流项均为非线性项,难以直接求解
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]
简化
流动
普朗特 速度边界层
类比
对流换热
波尔豪森 热边界层
38
传热学
一、流动边界层
1、流动边界层及其厚度 定义:当流体流过固体壁面时,由于流 体粘性的作用,使得在固体壁面附近存 在速度发生剧烈变化的薄层称为流动 边界层或速度边界层。
实际流动 ≈ 边界层区粘性流动+主流区无粘性理想流动
大空间自然对流 有限空间自然对流
沸腾换热 有相变
凝结换热
大容器沸腾 管内沸腾
管外凝结 管内凝结
14
传热学
六、研究对流传热的方法(确定h的方法)
四种:1)分析法;2)实验法;3)比拟法;4)数值法
适当介绍
重点介绍 一定介绍
不作介绍
1)分析法
解析:二维、楔形流、平板 边界层积分方程(近似解析)
2)实验法
u∞
y δ
0x xc
粘性底层
掠过平板时边界层的形成与发展
湍流核心 缓冲层
41
传热学
层流: 流体做有秩序的分层流动,各层互不干扰,只有分子扩散,
无大微团掺混
湍流: 流体微团掺混,紊乱的不规则脉动
粘性底层 :速度梯度较大、分子扩散—导热
湍流边界层
缓冲层 :导热+对流 湍流核心 :质点脉动强化动量传递,速度变化
换热表面的形状、大小、换热表面与流体运动方向的 相对位置及换热表面的状态(光滑或粗糙)
内部流动对流传热:管内或槽内 外部流动对流传热:外掠平板、圆管、管束
10
传热学
11
传热学
(5) 流体的热物理性质:
热导率 [W (m C)] 比热容 c [J (kg C)]
传热学5-对流换热分析

Mx
M x dx x
M y vdx
单位时间内、沿x轴方向、 经x表面流入微元体的质量 单位时间内、沿x轴方向、经 x+dx表面流出微元体的质量
M x udy
M x M x dx M x dx x
单位时间内、沿x轴方向流入微元体的净质量:
M x M x dx
无论流体流动与否, p 都存在;而 ii只存在于流动时
同一点处各方向的 p 都相同;而 ii与表面方向有关
推导过程见P110 动量微分方程 — Navier-Stokes方程(N-S方程)
u u u p u u ( u v ) Fx ( 2 2 ) x y x x y
M x ( u ) dx dxdy x x
单位时间内、沿 y 轴方向流入微元体的净质量:
M y M y dy
单位时间内微元体 内流体质量的变化:
( v) dy dxdy y y
M y
( dxdy) dxdy
Mx
速度场和温度场由对流换热微分方程组确定: 质量守恒方程、动量守恒方程、能量守恒方程
2 质量守恒方程(连续性方程) 流体的连续流动遵循质量守恒规律
(x, y) 处取出边长为 dx、dy 的微元体(z方向为单位长度),M 为质量 流量 [kg/s]
从流场中
Mx
M x dx x
M y vdx
热的核心问题
研究对流换热的方法:
(1)分析法 (2)实验法 (3)比拟法 (4)数值法
传热系数大致范围
5 对流换热的影响因素
对流换热是流体的导热和对流两种基本传热方式 共同作用的结果。其影响因素主要有以下五个方面: (1)流动起因 (2)流动状态 (3)流体有无相变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递过程,是宏观的热对流与微观的热传导的综合传热过程。 • 对流换热与热对流不同,既有热对流,也有导热;不是基
本传热方式 • 对流换热实例:1) 暖气管道; 2) 电子器件冷却
②对流换热的特点:
(1) 导热与热对流同时存在的复杂热传递过程 (2) 必须有直接接触(流体与壁面)和宏观运动;同时必须
有温差 ③特征:以简单的对流换热过程为例,对对流换热过程的特
3.流体有无相变
对流换热无相变时流体仅改变显热,壁面与流体间有较大 的温度差,而对流换热流体有相变时,流体吸收或放出汽 化潜热。对于同一种流体其汽化潜热比比热容大得多,所 以有相变时的对流换热系数比无相变时大。此外,沸腾时 液体中汽泡的产生和运动增加了液体内部的扰动,也使对 流换热强化。 4.换热面的几何形状、大小和位置
h湍流 h层流
紊流流动极为普遍 自然现象:收获季节的麦浪滚滚,旗帜在微 风中轻轻飘扬,以及袅袅炊烟都是由空气的 紊流引起的。
③ 流体有无相变
• 单相换热 • 相变换热:凝结、沸腾、升华、凝固、融化
无相变时流体仅改变显热,壁面与流体间有较大 的温度差;而有相变时,流体吸收或放出汽化潜 热。对于同一种流体,其汽化潜热比热容大得多, 所以有相变时的对流换热系数比无相变时大。此 外,沸腾时液体中汽泡的产生和运动增加了液体 内部的扰动,也使对流换热得到强化。
第五章 对流换热原理
§5-1 对流换热概述 §5-2 对流换热问题的数学描写 §5-3 对流换热的边界层微分方程 组 §5-4 边界层积分方程组的求解及 比拟理论 §5-5 相似原理及量纲分析 §5-6 相似原理的应用
§5-1 对流换热概述
①1对对流流换热换定热义过:流程体和与之接触的固体壁面之间的热量传
外部流动 外掠圆管管束的对流换热
无外掠其它截面柱体的换热相射流冲击换热变
大空间自然对流
对
自然对流
有限空间自然对流
流
换
混合对流
热 有 沸腾换热 相 变 凝结换热
大空间沸腾
管内沸腾 管内凝结
管外凝结
3 对流换热系数
①对流换热系数(表面传热系数)
h Φ (A(tw t )) [W (m2C)]
(5-1)
综上所述,影响对流传热系数h的主要因素,可定性地用函
数形式表示为:
h f (u,l, Cp )
(5-2)
③ 确定对流换热系数h函数关系式的方法 ——理论解法 ——实验解法 ——比拟法 ——数值法
理论解法(分析法)是在所建立的边界层对流
换热微分方程组的基础上,通过数学分析解法、 积分近似解法、数值解法和比拟法求得对流换热 思系路数:h取的控表制达体式,。利一用般能可量以守有恒和动量守恒建立微分 (方a程)组建并立结边合界单层值内性的条微件分求方解程。组求解h (b) 建立边界层的积分方程组求解h (近似解法)
• 由于粘性力的作用,使流体速度在垂直于壁面的方向上发 生改变。流体速度从壁面上的零速度值逐步变化到来流的 速度值。
• 同时,通过固体壁面的热流也会在流体分子的作用下向流 体扩散(热传导),并不断地被流体的流动而带到下游(热 对流),也导致紧靠壁面处的流体温度逐步从壁面温度变 化到来流温度。
2 对流换热的分类
壁面的形状、大小和位置对流体在壁面上的运动状态、速 度分布和温度分布都有很大影响。 图5—1a示出了几何形 状对强迫流动情况的影响,分别表示流体纵掠平壁、管内 强迫流动和横掠单管时的流动情况。团5—1b示出了坚直 乎壁、热面向上和向下的水平平壁上自然对流的情况。由 于换热面的几何形状、位置不同,流体在传热面上的流动
自然对流换热是流体在浮升力的作用下运动而引起的对流换热。 强迫对流换热是流体在泵和风机及其它压差作用下流过换热面时的对 流换热。流动的起因不同,换热规律不同,对流换热系数也不同。一 般,同一流体的强迫对流换热系数比自然对流换热系数大。
2.流动速度
由流体力学可知,流体纵掠平板时,流速增加,层流边界层厚度 减小,紊流边界层中层流底层的厚度也减少,对流换热热阻减小,对 流换热系数增加。 流速增加,雷诺数增加。雷诺致的增加有时会使流
h相变 h单相
④ 流体与固体壁面的接触方式 • 内部流动对流换热:管内或槽内 • 外部流动对流换热:外掠平板、圆管、管束 ⑤ 流体运动是否与时间相关 • 非稳态对流换热:与时间有关 • 稳态对流换热:与时间无关
圆管内强制对流换热 内部流动
其它形状管道的对流换热
强制对流
外掠平板的对流换热 外掠单根圆管的对流换热
对流换热:导热 + 热对流;壁 面+流动
① 流动起因
• 自然对流:流体因各部分温 度不同而引起的密度差异所 产生的流动(Free convection)
• 强制对流:由外力(如:泵、 风机、水压头)作用所产生 的流动(Forced convection)
h强制 h自然
② 流动状态 • 层流:整个流场呈一簇互相平行的流线(Laminar flow) • 湍流:流体质点做复杂无规则的运动 • (Turbulent flow)
物理意义:当流体与壁面温度相差1℃时、 每单位壁面面积上、单位时间内所传递的 热量.
确定h及增强换热的措施是对流换热的核心问 题
②影响对流换热系数的因素
对流换热是流体流过固体壁时的热量传递。它是由热对流 和导热构成的复杂的热量传递过程。因此,影响对流换热 系数的因素不外乎是影响流动的因素及流体本身的热物理 性质。 1.流动的起因
征进行粗略的分析。
下图表示一个简单的对流换热过程。流体以来流速度u和来 流温度t流过一个温度为tw的固体壁面。选取流体沿壁面 流动的方向为x坐标、垂直壁面方向为y坐标。
y t∞ u∞
tw
qw
x
• 壁面对流体分子的吸附作用,使得壁面上的流体是处于不 滑移的状态(此论点对于极为稀薄的流体是不适用的)。
5.流体的热物理性质
如果把手放在同温度的静止冷空气和冷水中,将会感到水 比空气冷一些。这是因为,水和空气的热物理性质不同, 对流换热的强度不同引起的。由绪论可知,对流换热是导 热和流动着的流体微团携带热量的综合作用,因此对流换 热系数与反映流体导热能力的导热系数λ、反映流体携带 热量能力的密度及定压比热容CP有关。另外,流休的粘 度η(或运动粘度)的变化引起雷诺数的变化,从而影响流 体流态和流动边界层厚度δ。体膨胀系数αV影响自然对流 换热时浮升力的大小和边界层内的速度分布(强迫对流强 烈时αV的影响往往可以忽略)。因此,流体的这些物性值
本传热方式 • 对流换热实例:1) 暖气管道; 2) 电子器件冷却
②对流换热的特点:
(1) 导热与热对流同时存在的复杂热传递过程 (2) 必须有直接接触(流体与壁面)和宏观运动;同时必须
有温差 ③特征:以简单的对流换热过程为例,对对流换热过程的特
3.流体有无相变
对流换热无相变时流体仅改变显热,壁面与流体间有较大 的温度差,而对流换热流体有相变时,流体吸收或放出汽 化潜热。对于同一种流体其汽化潜热比比热容大得多,所 以有相变时的对流换热系数比无相变时大。此外,沸腾时 液体中汽泡的产生和运动增加了液体内部的扰动,也使对 流换热强化。 4.换热面的几何形状、大小和位置
h湍流 h层流
紊流流动极为普遍 自然现象:收获季节的麦浪滚滚,旗帜在微 风中轻轻飘扬,以及袅袅炊烟都是由空气的 紊流引起的。
③ 流体有无相变
• 单相换热 • 相变换热:凝结、沸腾、升华、凝固、融化
无相变时流体仅改变显热,壁面与流体间有较大 的温度差;而有相变时,流体吸收或放出汽化潜 热。对于同一种流体,其汽化潜热比热容大得多, 所以有相变时的对流换热系数比无相变时大。此 外,沸腾时液体中汽泡的产生和运动增加了液体 内部的扰动,也使对流换热得到强化。
第五章 对流换热原理
§5-1 对流换热概述 §5-2 对流换热问题的数学描写 §5-3 对流换热的边界层微分方程 组 §5-4 边界层积分方程组的求解及 比拟理论 §5-5 相似原理及量纲分析 §5-6 相似原理的应用
§5-1 对流换热概述
①1对对流流换热换定热义过:流程体和与之接触的固体壁面之间的热量传
外部流动 外掠圆管管束的对流换热
无外掠其它截面柱体的换热相射流冲击换热变
大空间自然对流
对
自然对流
有限空间自然对流
流
换
混合对流
热 有 沸腾换热 相 变 凝结换热
大空间沸腾
管内沸腾 管内凝结
管外凝结
3 对流换热系数
①对流换热系数(表面传热系数)
h Φ (A(tw t )) [W (m2C)]
(5-1)
综上所述,影响对流传热系数h的主要因素,可定性地用函
数形式表示为:
h f (u,l, Cp )
(5-2)
③ 确定对流换热系数h函数关系式的方法 ——理论解法 ——实验解法 ——比拟法 ——数值法
理论解法(分析法)是在所建立的边界层对流
换热微分方程组的基础上,通过数学分析解法、 积分近似解法、数值解法和比拟法求得对流换热 思系路数:h取的控表制达体式,。利一用般能可量以守有恒和动量守恒建立微分 (方a程)组建并立结边合界单层值内性的条微件分求方解程。组求解h (b) 建立边界层的积分方程组求解h (近似解法)
• 由于粘性力的作用,使流体速度在垂直于壁面的方向上发 生改变。流体速度从壁面上的零速度值逐步变化到来流的 速度值。
• 同时,通过固体壁面的热流也会在流体分子的作用下向流 体扩散(热传导),并不断地被流体的流动而带到下游(热 对流),也导致紧靠壁面处的流体温度逐步从壁面温度变 化到来流温度。
2 对流换热的分类
壁面的形状、大小和位置对流体在壁面上的运动状态、速 度分布和温度分布都有很大影响。 图5—1a示出了几何形 状对强迫流动情况的影响,分别表示流体纵掠平壁、管内 强迫流动和横掠单管时的流动情况。团5—1b示出了坚直 乎壁、热面向上和向下的水平平壁上自然对流的情况。由 于换热面的几何形状、位置不同,流体在传热面上的流动
自然对流换热是流体在浮升力的作用下运动而引起的对流换热。 强迫对流换热是流体在泵和风机及其它压差作用下流过换热面时的对 流换热。流动的起因不同,换热规律不同,对流换热系数也不同。一 般,同一流体的强迫对流换热系数比自然对流换热系数大。
2.流动速度
由流体力学可知,流体纵掠平板时,流速增加,层流边界层厚度 减小,紊流边界层中层流底层的厚度也减少,对流换热热阻减小,对 流换热系数增加。 流速增加,雷诺数增加。雷诺致的增加有时会使流
h相变 h单相
④ 流体与固体壁面的接触方式 • 内部流动对流换热:管内或槽内 • 外部流动对流换热:外掠平板、圆管、管束 ⑤ 流体运动是否与时间相关 • 非稳态对流换热:与时间有关 • 稳态对流换热:与时间无关
圆管内强制对流换热 内部流动
其它形状管道的对流换热
强制对流
外掠平板的对流换热 外掠单根圆管的对流换热
对流换热:导热 + 热对流;壁 面+流动
① 流动起因
• 自然对流:流体因各部分温 度不同而引起的密度差异所 产生的流动(Free convection)
• 强制对流:由外力(如:泵、 风机、水压头)作用所产生 的流动(Forced convection)
h强制 h自然
② 流动状态 • 层流:整个流场呈一簇互相平行的流线(Laminar flow) • 湍流:流体质点做复杂无规则的运动 • (Turbulent flow)
物理意义:当流体与壁面温度相差1℃时、 每单位壁面面积上、单位时间内所传递的 热量.
确定h及增强换热的措施是对流换热的核心问 题
②影响对流换热系数的因素
对流换热是流体流过固体壁时的热量传递。它是由热对流 和导热构成的复杂的热量传递过程。因此,影响对流换热 系数的因素不外乎是影响流动的因素及流体本身的热物理 性质。 1.流动的起因
征进行粗略的分析。
下图表示一个简单的对流换热过程。流体以来流速度u和来 流温度t流过一个温度为tw的固体壁面。选取流体沿壁面 流动的方向为x坐标、垂直壁面方向为y坐标。
y t∞ u∞
tw
qw
x
• 壁面对流体分子的吸附作用,使得壁面上的流体是处于不 滑移的状态(此论点对于极为稀薄的流体是不适用的)。
5.流体的热物理性质
如果把手放在同温度的静止冷空气和冷水中,将会感到水 比空气冷一些。这是因为,水和空气的热物理性质不同, 对流换热的强度不同引起的。由绪论可知,对流换热是导 热和流动着的流体微团携带热量的综合作用,因此对流换 热系数与反映流体导热能力的导热系数λ、反映流体携带 热量能力的密度及定压比热容CP有关。另外,流休的粘 度η(或运动粘度)的变化引起雷诺数的变化,从而影响流 体流态和流动边界层厚度δ。体膨胀系数αV影响自然对流 换热时浮升力的大小和边界层内的速度分布(强迫对流强 烈时αV的影响往往可以忽略)。因此,流体的这些物性值