二次根式难题(最新整理)
二次根式难题及答案
二次根式难题及答案【篇一:二次根式提高练习习题(含答案)】判断题:(每小题1分,共5分)21.(?2)ab=-2ab.???????()2.-2的倒数是3+2.()23.(x?1)=(x?1)2.?()4.ab、5.8x,13a3b、?2a是同类二次根式.?() xb1,9?x2都不是最简二次根式.() 31有意义. x?3(二)填空题:(每小题2分,共20分)6.当x__________时,式子7.化简-15828.a-a2?1的有理化因式是____________. 9.当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2(x-1)=x+1的解是____________. 11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.y?3=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.(三)选择题:(每小题3分,共15分)16.已知x3?3x2=-xx?3,则??????()(a)x≤0(b)x≤-3(c)x≥-3(d)-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y=?????????()(a)2x(b)2y(c)-2x(d)-2y 18.若0<x<1,则(x?)?4-(x?(a)1x212)?4等于?????????() x22(b)-(c)-2x(d)2x xx?a3(a<0)得????????????????????????() 19.化简a(a)?a(b)-a(c)-?a(d)a20.当a<0,b<0时,-a+2ab-b可变形为???????????????()(a)(a?b)2 (b)-(a?b)2 (c)(?a??b)2 (d)(?a??b)2(四)计算题:(每小题6分,共24分)21.(5??2)(5?3?2);22.54?-42-;?73?23.(a2abn-mmmn+n24.(a+a?babb?ababab?bab?aa?(五)求值:(每小题7分,共14分)x3?xy23?2?25.已知x=,y=,求4的值. 3223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:(每小题8分,共16分)27.计算(2+1)(1111+++?+).1?22??4?28.若x,y为实数,且y=?4x+4x?1+(一)判断题:(每小题1分,共5分)1xyxy.求?2?-?2?的值. 2yxyx2、【提示】1?23?4?223、(x?1)=|x-1|,(x≥1).两式相等,必须x≥1.但等式左边x 可取任何数.【答(x?1)2=x-113a3b、?2a化成最简二次根式后再判断.【答案】√. xb6、【提示】x何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7、【答案】-2aa.【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a-a2?1)(________)=a2-(a2?1)2.a+a2?1.【答案】a+a2?1. 9、【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3. 10、【提示】把方程整理成ax=b的形式后,a、b分别是多少?2?1,2?1.【答案】x=3+22. 11、【提示】c2d2=|cd|=-cd.【答案】ab+cd.【点评】∵ ab=(ab)2(ab>0),∴ ab-c2d2=(ab?cd)(ab?cd). 12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小. 48【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、【提示】∵ 3<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分) 16、【答案】d.【点评】本题考查积的算术平方根性质成立的条件,(a)、(c)不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=(x?y)2=|x-y|=y-x.x2?2xy?y2=(x?y)2=|x+y|=-x-y.【答案】c.【点评】本题考查二次根式的性质a2=|a|.18、【提示】(x-12111)+4=(x+)2,(x+)2-4=(x-)2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.【答案】d.xx【点评】本题考查完全平方公式和二次根式的性质.(a)不正确是因为用性质时没有注意当0<x<1时,x-1<0. x19、【提示】?a3=?a?a2=?aa2=|a|?a=-a?a.【答案】c. 20、【提示】∵ a<0,b<0,∴-a>0,-b>0.并且-a=(?a)2,-b=(?b)2,ab=(?a)(?b).【答案】c.【点评】本题考查逆向运用公式(a)2=a(a≥0)和完全平方公式.注意(a)、(b)不正确是因为a<0,b<0时,a、b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将?看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(5?)2-(2)2=5-2+3-2=6-2. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4?)4(?)2(3?)--=4+---3+7=1.16?1111?79?7abnm1nm-)22 mn+mmnabmn1nnmmmm?-? mn?+22mabmabmnnnn11a2?ab?1-+=. aba2b2a2b223、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a21b21=2b=【解】原式=24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.a??b?abaa(a?)?b(a?b)?(a?b)(a?b)a?bab(a?)(a?b)a?ba2?aab?bab?b2?a2?b2a?bab(a?)(a?b)=a?bab(a?b)(a?)=-?.a?b?ab(a?b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x=3?2=(3?2)2=5+2,3?23?2y==(3?2)2=5-26.3?2∴ x+y=10,x-y=46,xy=52-(26)2=1.2x(x?y)(x?y)x?y46x3?xy26.====2243223xy(x?y)xy(x?y)1?105xy?2xy?xy【点评】本题将x、y化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=(x2?a2)2,∴ x2+a2-xx2?a2=x2?a2(x2?a2-x),x2-xx2?a2=-x (x2?a2-x).【解】原式=xx?a(x?a?x)2222-2x?x2?a2x(x?a?x)22+1x?a22=x2?x2?a2(2x?x2?a2)?x(x2?a2?x)xx?a(x?a?x)xx2?a2(x2?a2?x)2222222222222=x?2xx?a?(x?a)?xx?a?x=(x2?a2)2?xx2?a2=xx2?a2(x2?a2?x)x2?a2(x2?a2?x) xx2?a2(x2?a2?x)11.当x=1-2时,原式==-1-2.【点评】本题如果将前两个“分式”分拆成两个“分x1?2122x式”之差,那么化简会更简便.即原式=-2x?x?a+22222222x?ax?a(x?a?x)x(x?a?x)11111=(=1. ?)+?)-(2xx?a2?xxx2?a2x2?a2?xx2?a2=六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(2?13?24??+++?+) 2?13?24?3100?99=(25+1)[(2?1)+(?2)+(4?)+?+(?)]=(25+1)(00?1)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.1?x???1?4x?0?4]28、【提示】要使y有意义,必须满足什么条件?[? ]你能求出x,y的值吗?[?14x?1?0.??y?.?2?1?x???1?4x?0111?4【解】要使y有意义,必须[?,即?∴ x=.当x=时,y=.442?4x?1?0?x?1.?4?又∵xxyxy??2?-?2?=(yyxyxy2-xy2 )(?)xyx【篇二:二次根式及经典习题及答案】>知识点一:二次根式的概念形如()的式子叫做二次根式。
新初中数学二次根式难题汇编及答案
新初中数学二次根式难题汇编及答案一、选择题1.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.2.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;==,故②正确;1====-,故③正确;a a故选:B.【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.3.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;x=-时,二次根m等于()4.当3C DA B.2【答案】B【解析】解:把x=﹣3代入二次根式得,原式=,依题意得:=.故选B.5.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.7.下列计算结果正确的是( )A 3B ±6CD .3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.下列计算错误的是()A=B=C.3=D=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C.【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.下列计算正确的是()A6=B=C.2=D5=-【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A====C.=,此选项计算错误;=,此选项计算错误;5故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列运算正确的是()A+=B)﹣1=2C 2 D±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A-=,正确;B、12C2=D3,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.12.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.14.下列计算正确的是()A.=B=C .=D -=【答案】B【解析】【分析】 根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.15.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.17.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.18.下列根式中属最简二次根式的是()A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式19.若x+y=2,x﹣y=3﹣222x y-的值为()A.2B.1 C.6 D.3﹣2【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=2,x﹣y=3﹣2,22()()(322)(322)x y x y x y-=+-=+-1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.20.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
(完整版)二次根式难题
二次根式1. 已知31=+a a ,求a a 1+的值。
2. 当m 在可以取值范围内取不同的值时,代数式22427m m +-的最小值是3. 如实数c b a ,,满足22+=b a ,0≠ab 且041232=++c ab ,则a bc =4. 已知342--+=b a a A 是2+a 的算术平方根,9232-+-=b a b B 是b -2的立方根, 求B A +的n 次方根.5. 已知72=+y x ,且y x <<0,那么满足题给式的整数对()y x ,有 组。
5. 已知x -11x -+67=,求x x ---611的值。
6. 若253-=+y x ,523-=-y x ,求xy 。
7. 已知521041+-=x ,521042++=x ,求21x x +的值.8. 若m 适合关系式y x y x m y x m y x --•+-=-++--+19919932253,求m 的值.9. 若v u ,满足23342342++-++-=v u u v v u v u v ,那么22v v u u +•-=10. 已知最简二次根式2-+b a 和b a -2能够合并,则a-b=二次根式答案难度 5 级 知识点 二次根式 编号 11 已知31=+a a ,求aa 1+的值。
解:因为31=+a a ,且52112=++=⎪⎪⎭⎫ ⎝⎛+a a a a ,所以a a 1+5= 难度 5 级 知识点 二次根式 编号 22 当m 在可以取值范围内取不同的值时,代数式22427m m +-的最小值是 解:原式()()22122524225m m m -+=+-+= 因为()0122≥-m ,所以当()0122=-m 时,即1=m 时原式有最小值为525=。
难度 5 级 知识点 二次根式 编号 33 如实数c b a ,,满足22+=b a ,且041232=++c ab ,则abc = 解:由已知得: ()02321223412241232222222=+⎪⎭⎫ ⎝⎛+=+++=+++c b c b b c b b 因为0≠ab ,所以0=c ,故abc 0= 难度 5 级 知识点 二次根式 编号 4 4 已知342--+=b a a A 是2+a 的算术平方根,9232-+-=b a b B 是b -2的立方根,求B A +的n 次方根。
二次根式50题上 参考答案与试题解析
二次根式50题上参考答案与试题解析一.解答题(共50小题)1.【解答】解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.2.【解答】解:(1)原式=3×5÷=15=15;(2)原式=5﹣3=2;(3)原式=2﹣﹣﹣=﹣;(4)原式=3×1﹣(﹣)﹣1=3﹣2+﹣1=.3.【解答】解:(1)原式=7﹣25=﹣18;(2)原式==.4.【解答】解:(1)原式=4+3﹣2=5;(2)原式=[(﹣2)(+2)]2019•(+2)﹣2(1﹣)﹣1=﹣(+2)﹣2(1﹣)﹣1=﹣﹣2﹣2+﹣1=﹣5.5.【解答】解:(I)(+)+(﹣)=2+2+﹣=3+;(II)2×÷5=4×÷5=3×=.6.【解答】解:(1)原式=4÷﹣3÷=4﹣3;(2)原式=×2﹣×=2﹣=4﹣5=﹣1.7.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.8.【解答】解:(1)﹣﹣+原式=2﹣4﹣2+5=3﹣2;(2)÷(3﹣2)=2÷(﹣)=﹣2.9.【解答】解:(1)原式=﹣|2﹣|=+2﹣=2;(2)原式=2(1+)(1﹣)=2×(1﹣3)=﹣4.10.【解答】解:(1)原式=+﹣4=2+3﹣4=1;(2)原式=+4﹣4+3=3+4﹣4+3=7﹣.11.【解答】解:原式=2+1﹣+8=+9.12.【解答】解:原式=+4=3+4=7.13.【解答】解:(1)﹣+=2﹣3+5=4;(2)()﹣2﹣(π﹣3)0+|﹣2|+6×=4﹣1+2﹣+3=5+2.14.【解答】解:(1)原式=(2+7﹣)•=27﹣.(2)原式=(5﹣3)﹣(2+2+6)=2﹣(8+4)=2﹣8﹣4=﹣6﹣4.(3)原式=÷==.15.【解答】解:原式=2﹣+(3+9﹣6)÷=+(12﹣6)÷=+4﹣6=5﹣6.16.【解答】解:(1)原式=×4﹣1+4++1=2﹣1+4++1=7;(2)原式=(6﹣+4)÷2=÷2=.17.【解答】解:原式=(6﹣)÷2=×=.18.【解答】解:(1)原式=(3)2﹣62=18﹣36=﹣18;(2)原式=3+﹣1+1=4.19.【解答】解:(1)原式=[x2﹣4xy+4y2﹣(4y2﹣x2)]÷2x =[x2﹣4xy+4y2﹣4y2+x2]÷2x=(2x2﹣4xy)÷2x=x﹣2y;(2)原式=1+﹣1+3﹣=3.20.【解答】解:原式=1﹣3﹣+﹣2=﹣4.21.【解答】解:(1)原式=﹣3=2﹣3=﹣;(2)原式=()2﹣()2=8﹣=.22.【解答】解:×﹣()﹣1﹣|2﹣|=﹣﹣|2﹣3|=﹣﹣1=﹣﹣.23.【解答】解:(3﹣)2+=18﹣6+6+4=18﹣12+6+4=24﹣8.24.【解答】解:原式=4+﹣2+﹣1=4+﹣2+﹣1=3.25.【解答】解:(1)原式=2+1+2﹣2+4=7;(2)原式=4÷(8﹣﹣3)=1.26.【解答】解:(1)原式=3﹣2﹣3﹣1=﹣2﹣1;(2)原式=3+4﹣4﹣6=1﹣4.27.【解答】解:(1)(3﹣)2++4=9﹣6+2+4+2=11;(2)|﹣1|﹣•+(+1)2﹣()2=﹣1﹣2+3+2+1﹣3=;(3)÷+(﹣1)0﹣1=×+1﹣1=5+1﹣1=5;(4)+×﹣=3+﹣=3;(5)()2(5+2)+5=(3﹣2+2)×(5+2)+5=(5﹣2)×(5+2)+5=25﹣24+5=6;(6)÷﹣|2﹣3|+(﹣)﹣1=﹣(3﹣2)+(﹣2)=﹣3+2+(﹣2)=﹣5+.28.【解答】解:(1)原式=+3﹣4=0;(2)原式=2××=;(3)原式=12﹣6=6.29.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=3﹣4+4+2+2=7.30.【解答】解:(1)原式=2+3﹣2﹣6=﹣4+;(2)原式=+﹣﹣=﹣=.31.【解答】解:(1)原式=﹣2+4=4﹣4+4=4;(2)原式=4﹣3+=+3.32.【解答】解:原式=﹣2+4×=3﹣6+=3﹣5.33.【解答】解:(1)原式=4×÷=3÷=;(2)原式=3﹣﹣(8﹣4+1)=3﹣﹣(9﹣4)=3﹣﹣9+4=7﹣﹣9.34.【解答】解:(1)原式=(×3+2×﹣2)×2=(+﹣2)×2=(﹣)×2=6﹣8;(2)原式=3﹣4+12﹣4+1=12﹣4.35.【解答】解:(1)﹣4÷+3=2﹣4+=﹣.(2)(﹣2)(+2)﹣(﹣)+|1﹣|=3﹣4+2+﹣1=﹣2+3.36.【解答】解:(1)=3﹣2+(3﹣1)=3﹣2+2=+2;(2)(﹣)×(﹣)+|﹣1|+(5﹣2π)0=3+﹣1+1=4.37.【解答】解:(1)=+1+3﹣3+2=4;(2)=2b•(﹣a)•=﹣9a2b.38.【解答】解:(1)﹣=2﹣=;(2)﹣×=2﹣=;(3)(+﹣×)÷=(5+4﹣3)÷2=6÷2=3.39.【解答】解:原式=﹣(×2﹣×2)+()2﹣()2=﹣+3+2﹣3=3﹣1.40.【解答】解:原式=4﹣3+﹣1+﹣2=6﹣6.41.【解答】解:原式=(2)2﹣12=12﹣1=11.42.【解答】解:(1)原式=3﹣2+3=+3;(2)原式=(4﹣2+6)÷=8÷=8.43.【解答】解:(1)(+)﹣(﹣)=2+﹣+=3+;(2)()2﹣()=5+2+2﹣﹣=7+2﹣﹣.44.【解答】解:(﹣2)2++6﹣|1﹣|=3﹣4+4+2+2﹣(﹣1)=3﹣4+4+2+2﹣+1=8﹣.45.【解答】解:(1)=2﹣﹣+=;(2)=+1﹣1=3+1﹣1=3.46.【解答】解:=3﹣﹣3=3﹣2﹣3=﹣3.47.【解答】解:原式=2+1﹣﹣2﹣=﹣1.48.【解答】解:原式=+2﹣=2+2﹣=3.49.【解答】解:(1)原式=2×2÷4=8÷4=2;(2)原式=2+3﹣2=3.50.【解答】解:(1)原式=•=;(2)原式=4×﹣(5﹣1)=12﹣4=8.。
专题02 二次根式综合(压轴33题10个考点)(解析版)
专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。
期末复习 《二次根式》常考题与易错题精选(45题)(解析版)
期末复习- 《二次根式》常考题与易错题精选(45题)一.选择题(共22小题)1.若是整数,则正整数n的最小值是( )A.4B.5C.6D.7【分析】根据二次根式的定义可得答案.【解答】解:∵=3,∴正整数n的最小值是5;故选:B.【点评】本题考查了二次根式的定义,利用二次根式的乘法是解题关键.2.若是整数,则正整数n的最小值是( )A.2B.3C.4D.5【分析】先化简,然后根据二次根式的定义判断即可.【解答】解:∵=2,∴正整数n的最小值是:5,故选:D.【点评】本题考查了二次根式的定义,熟练掌握二次根式的定义是解题的关键.3.下列式子中,一定属于二次根式的是( )A.B.C.D.【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【解答】解:被开方数为非负数,所以A不合题意;x≥﹣2时二次根式有意义,x<﹣2时没意义,所以B不合题意;为三次根式,所以C不合题意;满足二次根式的定义,所以D符合题意.故选:D.【点评】本题考查二次根式的定义,注意选项中各式的形式及未知数取值范围是解本题的关键.4.给出下列各式:;②6;;④(m≤0);⑤;⑥.其中二次根式的个数是( )A.2B.3C.4D.5【分析】根据二次根式的定义即可作出判断.【解答】解:①∵3>0,∴是二次根式;②6不是二次根式;②∵﹣12<0,∴不是二次根式;④∵m≤0,∴﹣m≥0,∴是二次根式;⑤∵a2+1>0,∴是二次根式;⑥是三次根式,不是二次根式.所以二次根式有3个.故选:B.【点评】本题考查的是二次根式的定义,解题时,要注意:一般地,我们把形如(a≥0)的式子叫做二次根式.5.下列各式:、,,,,中,一定是二次根式的有( )A.3个B.4个C.5个D.6个【分析】利用二次根式的定义对每个式子进行判断即可.【解答】解:∵式子(a≥0)是二次根式,∴,,(x≥1),是二次根式,无意义,是三次根式,∴一定是二次根式的有:,,(x≥1),,故选:B.【点评】本题主要考查了二次根式的定义,熟练掌握二次根式的意义是解题的关键.6.已知x、y为实数,且,则x+y的值是( )A.10B.8C.5D.3【分析】根据二次根式(a≥0)可得x﹣2≥0且6﹣3x≥0,从而可得x=2,进而可得y=3,然后把x,y的值代入式子中进行计算即可解答.【解答】解:由题意得:x﹣2≥0且6﹣3x≥0,解得:x≥2且x≤2,∴x=2,∴x+y=2+3=5,故选:C.【点评】本题考查了二次根式的有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.7.若代数式在实数范围内有意义,则x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2【分析】根据二次根式(a≥0)可得2x﹣4≥0,然后进行计算即可解答.【解答】解:由题意得:2x﹣4≥0,解得:x≥2,故选:B.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.8.已知x,y为实数,且满足++2,则x y的值为( )A.4B.6C.9D.16【分析】根据二次根式(a≥0),可得x=3,从而可得y=2,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:由题意得:x﹣3≥0,3﹣x≥0,∴x=3,∴y=2,∴x y=32=9,故选:C.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.9.若分式有意义,则x的取值范围是( )A.x≠4B.x>C.x≥2且x≠4D.x>2且x≠4【分析】根据分式和二次根式有意义的条件即可得出答案.【解答】解:∵x﹣2≥0,x﹣4≠0,∴x≥2且x≠4.【点评】本题考查了分式和二次根式有意义的条件,掌握分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数是非负数是解题的关键.10.若x,y为实数,且y=2++,则|x+y|的值是( )A.5B.3C.2D.1【分析】根据二次根式有意义的条件列不等式,求出x,代入y=2++求出y,把x、y的值代入|﹣x+y|计算.【解答】解:∵,∴,∴x=3,∴y=2,∴|x+y|=|3+2|=5,故选:A.【点评】本题主要考查了解不等式组、代数式求值、二次根式有意义的条件,掌握根据二次根式有意义的条件列不等式,是解题关键.11.下列各式中,正确的是( )A.B.﹣C.D.【分析】利用二次根式的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵=|﹣3|=3,∴A选项的结论不正确;∵﹣=﹣3,∴B选项的结论正确;∵=|﹣3|=3,∴C选项的结论不正确;∵=3,∴D选项的结论不正确,故选:B.【点评】本题主要考查了二次根式的性质,正确利用二次根式的性质对每个选项进行判断是解题的关键.12.化简得( )A.B.C.D.【分析】根据二次根式的性质化简即可.【解答】解:原式=a•=﹣.故选:D.【点评】本题考查了二次根式的运算,掌握商的算术平方根的性质是解决本题的关键.13.已知|a|=3,=5,且|a+b|=a+b,那么a+b的值是( )A.2或8B.2或﹣8C.﹣2或8D.﹣2或﹣8【分析】根据二次根式的性质与化简,立方根的意义,进行计算逐一判断即可解答.【解答】解:∵|a|=3,=5,∴a=±3,b=±5,∵|a+b|=a+b,∴a+b≥0,∴当a=3,b=5时,a+b=3+5=8,当a=﹣3,b=5时,a+b=﹣3+5=2,综上所述:a+b的值是2或8,故选:A.【点评】本题考查了二次根式的性质与化简,准确熟练地进行计算是解题的关键.14.下列二次根式是最简二次根式的是( )A.B.C.D.【分析】根据最简二次根式的定义,逐一判断即可解答.【解答】解:A、=2,故A不符合题意;B、==,故B不符合题意;C、=2,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.【点评】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.15.已知1<p<2,化简+()2=( )A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.【点评】本题考查了二次根式的性质与化简,解决本题的关键是掌握二次根式的性质.16.如果ab>0,a+b<0,那么下列各式:①;②;③;④.其中正确的个数是( )A.1个B.2个C.3个D.4个【分析】先根据ab>0,a+b<0得到a<0,b<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【解答】解:∵ab>0,a+b<0,∴a<0,b<0.∴,无意义,①错误;,②正确;,③正确;,④错误;正确的有2个,故选:B.【点评】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.17.下列各式中是﹣a﹣b有理化因式的是( )A.a+b B.b﹣a C.a﹣b D.b﹣a 【分析】利用平方差公式,进行计算即可解答.【解答】解:(﹣a﹣b)(b﹣a)=﹣(b+a)(b﹣a)=﹣(b2x﹣a2y)=﹣b2x+a2y,故选:B.【点评】本题考查了分母有理化,熟练掌握平方差公式是解题的关键.18.计算:的值为( )A.B.3C.D.9【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:=×===.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握相关运算法则是解题关键.19.若最简二次根式与是同类二次根式,则a的值为( )A.0B.8C.2D.2或8【分析】根据同类二次根式的定义,可得2a﹣1=9﹣3a,然后进行计算即可解答.【解答】解:由题意得:2a﹣1=9﹣3a,2a+3a=9+1,5a=10,a=2,故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.20.下列二次根式中,与是同类二次根式的是( )A.B.C.D.【分析】先把每一个选项的二次根式化成最简二次根式,然后根据同类二次根式的定义,逐一判断即可解答.【解答】解:A、=3,与不是同类二次根式,故A不符合题意;B、=2,与不是同类二次根式,故B不符合题意;C、=,与是同类二次根式,故C符合题意;D、=,与不是同类二次根式,故D不符合题意;故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.21.下列二次根式中、是同类二次根式的一组是( )A.和B.和C.和D.和【分析】根据二次根式的性质把各个二次根式化为最简二次根式,再根据同类二次根式的概念判断即可.【解答】解:A、=2,与不是同类二次根式,本选项不符合题意;B、=,与是同类二次根式,本选项符合题意;C、=|a|,=|b|,∴与不是同类二次根式,本选项不符合题意;D、与不是同类二次根式,本选项不符合题意;故选:B.【点评】本题考查的是最简二次根式的、同类二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.下列运算正确的是( )A.(﹣x2)3=﹣x6B.C.D.2﹣1+(π﹣3.14)0=2【分析】利用二次根式的加减法的法则,幂的乘方的法则,分式的除法的法则,负整数指数幂对各项进行运算即可.【解答】解:A、(﹣x2)3=﹣x6,故A符合题意;B、,故B不符合题意;C、与2不属于同类二次根式,不能运算,故C不符合题意;D、2﹣1+(π﹣3.14)0=,故D不符合题意;故选:A.【点评】本题主要考查二次根式的加减法,幂的乘方,分式的除法,解答的关键是对相应的运算法则的掌握.二.解答题(共23小题)23.已知y=++3且与互为相反数,求yz﹣x的平方根.【分析】根据算术平方根的非负性及互为相反数的特点列不等式组和方程,确定x,y,z的值,从而结合平方根的概念求解.【解答】解:∵y=++3,∴,解得:x=2,∴y=3,∵与互为相反数,∴1﹣2z+3z﹣5=0,解得:z=4,∴yz﹣x=3×4﹣2=10,∴yz﹣x的平方根为±.【点评】本题考查二次根式有意义的条件,理解二次根式的非负性,掌握立方根和平方根的概念是解题关键.24.已知y=.【分析】根据二次根式的定义,可得x=2,可求得y的值,进而可得x+y的值与它的平方根.【解答】解:∵y=++5有意义,∴,解得x=2,故y=5;则x+y=7,故x+y的平方根为±.【点评】本题考查二次根式的意义,平方根的概念.此类题目是常见的考题,应特别注意.25.计算:= 3 ,= 0.7 ,= 0 ,= 6 ,= ,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来;(2)利用你总结的规律,计算.【分析】根据二次根式的性质=|a|,进行计算即可解答.【解答】解:计算:=3,=0.7,=0,=6,=,故答案为:3;0.7;0;6;;(1)不一定等于a,发现的规律是:=|a|;(2)=|3.14﹣π|=π﹣3.14.【点评】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质=|a|是解题的关键.26.已知数a,b,c在数轴上的位置如图所示:化简:.【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:c<b<0<a,∴a﹣b>0,c﹣a<0,∴=﹣b﹣(a﹣b)+a﹣c﹣(﹣c)=﹣b﹣a+b+a﹣c+c=0.【点评】本题考查了实数与数轴,二次根式的性质与化简,准确熟练地化简各式是解题的关键.27.数a,b在数轴上的位置如图所示,化简.【分析】根据数轴可得出a,b的取值范围,再化简即可.【解答】解:如图得,﹣2<a<﹣1,1<b<2,∴a﹣b<0,b﹣1>0,a+1<0,∴.=b﹣a+b﹣1﹣(﹣a﹣1),=2b﹣a﹣1+a+1,=2b.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.28.把二次根式(x﹣1)化为最简二次根式.【分析】根据题意可得:1﹣x>0,从而可得x﹣1<0,然后进行计算即可解答.【解答】解:由题意得:1﹣x>0,∴x﹣1<0,∴(x﹣1)=﹣(1﹣x)=﹣=﹣.【点评】本题考查了最简二次根式,准确熟练地进行计算是解题的关键.29.计算:.【分析】系数先除后乘,被开方数也是按这个顺序运算,把除法化为乘法求出最后结果.【解答】解:原式=12a÷3b2===4.【点评】本题考查了二次根式的乘除法、二次根式的性质与化简,掌握计算时先乘除,后化简,运算顺序是解题关键.30.计算:.【分析】根据二次根式的乘法、除法法则运算,注意结果是最简二次根式.【解答】解:原式===.【点评】本题主要考查了二次根式的乘除法,掌握二次根式的乘除法法则是解题关键.31.已知:m=,n=,求的值.【分析】将m和n的式子分母有理化,在代入所求式子,利用完全平方公式和平方差公式计算即可.【解答】解:∵m===2﹣,n===2+,∴,=,=,=.【点评】本题考查了二次根式的化简求值,掌握运算法则,平方差公式与完全平方公式是解题的关键.32.计算:(1)+()﹣2﹣|﹣2|;(2)+2﹣(﹣).【分析】(1)先化简各式,然后再进行计算即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.【解答】解:(1)+()﹣2﹣|﹣2|=2+9﹣(2﹣)=2+9﹣2+=3+7;(2)+2﹣(﹣)=2+2﹣3+=3﹣.【点评】本题考查了实数的运算,二次根式的加减法,负整数指数幂,准确熟练地进行计算是解题的关键.33.计算:(1);(2)[(﹣ab2)2﹣2b⋅a2b3]÷a2b.【分析】(1)先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变;(2)先算中括号乘方与乘法.再合括号内并同类项,最后算除法.【解答】解:(1)原式=﹣+2﹣5+=﹣6+3;(2)原式=(a2b4﹣2a2b4)÷a2b=﹣a2b4÷a2b=﹣b3.【点评】本题主要考查了二次根式的加减法、幂的乘方与积的乘方、单项式与单项式相乘,掌握这三种运算法则是解题关键.34.计算:(1);(2);(3);(4).【分析】(1)利用分母有理化进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(4)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)==﹣;(2)=1+(﹣2)+﹣5﹣2=1﹣2+3﹣5﹣2=﹣6;(3)=3﹣2+=;(4)=﹣(5﹣2)=﹣3=1﹣3=﹣2.【点评】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,分母有理化,平方差公式,准确熟练地进行计算是解题的关键.35.已知A,B都是关于x的多项式,且A=2x2﹣5x+4,A﹣B=2x+1.(1)求B;(2)若,求B的值.【分析】(1)根据已知可得B=A﹣(2x+1),然后把A=2x2﹣5x+4代入式子中,进行计算即可解答;(2)根据已知可得2x+1=,从而可得:x=,然后把x的值代入(1)的结论进行计算,即可解答.【解答】解:(1)∵A=2x2﹣5x+4,A﹣B=2x+1,∴B=A﹣(2x+1)=2x2﹣5x+4﹣(2x+1)=2x2﹣5x+4﹣2x﹣1=2x2﹣7x+3;(2)∵,∴2x+1=,解得:x=,当x=时,B=2×()2﹣7×+3=﹣+3=,∴B的值为.【点评】本题考查了二次根式的混合运算,整式的加减,准确熟练地进行计算是解题的关键.36.计算:.【分析】先计算二次根式的乘法,再算加减,即可解答.【解答】解:=4﹣2+3+(﹣1)=3+.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.37.已知x=+1,y=﹣1,求x2+xy的值.【分析】利用因式分解进行计算,即可解答.【解答】解:∵x=+1,y=﹣1,∴x2+xy=x(x+y)=(+1)(+1+﹣1)=(+1)×2=10+2,∴x2+xy的值为10+2.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.38.(1)先化简,再求值:(﹣)÷,其中m=+1,n=﹣1;(2)已知a=,b=,求值:+.【分析】(1)先利用异分母分式加减法法则计算括号里,再算括号外,然后把m,n的值代入化简后的式子进行计算,即可解答;(2)先利用分母有理化化简a,b的值,然后再求出a+b与ab的值,从而利用完全平方公式进行计算即可解答.【解答】解:(1)(﹣)÷=•=•=•=,当m=+1,n=﹣1时,原式===;(2)∵a===﹣,b===+,∴a+b=﹣++=2,ab=(﹣)(+)=7﹣5=2,∴+======12.【点评】本题考查了二次根式的化简求值,分式的化简求值,分母有理化,准确熟练地进行计算是解题的关键.39.已知x=2+,y=2﹣,求代数式x2+2xy+y2的值.【分析】根据二次根式的加法法则求出x+y,根据完全平方公式把原式变形,把x+y的值代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=2++2﹣=4,∴x2+2xy+y2=(x+y)2=42=16.【点评】本题考查的是二次根式的化简求值,掌握二次根式的加法法则、完全平方公式是解题的关键.40.已知a=3+2,b=3﹣2,求a2b﹣ab2的值.【分析】利用因式分解,进行计算即可解答.【解答】解:∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=(3)2﹣(2)2=18﹣12=6,a﹣b=3+2﹣(3﹣2)=3+2﹣3+2=4,∴a2b﹣ab2=ab(a﹣b)=6×4=24.【点评】本题考查了二次根式的化简求值,熟练掌握因式分解是解题的关键.41.如图,从一个大正方形中裁去面积为4cm2和25cm2的两个小正方形,求留下的阴影部分的面积.【分析】根据开方运算,可得阴影的边长,根据乘方,可得大正方形的面积,根据面积的和差,可得答案.【解答】解:∵大正方形的边长=,∴大正方形的面积为49cm2,∴阴影部分的面积=49﹣4﹣25=20(cm2).【点评】本题考查了算术平方根,根据小正方形的面积得到边长,进而得到大正方形的边长是解题的关键.42.如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD和正方形ECFG的边长;(2)求阴影部分的面积.【分析】(1)根据正方形的面积公式求得边长;(2)先求出直角三角形BFG、ABD的面积,然后用两个正方形的面积减去两个直角三角形的面积,这就是阴影部分的面积.【解答】解:(1)正方形ABCD的边长为:BC=,正方形ECFG的边长为:CF=;(2)∵BF=BC+CF,BC=2,CF=4,∴BF=6;∴S△BFG=GF•BF=24;又S△ABD=AB•AD=4,∴S阴影=S正方形ABCD+S正方形ECFG﹣S△BFG﹣S△ABD=8+32﹣24﹣4,=12.【点评】本题主要考查了二次根式的应用,正方形的性质,三角形的面积.第(2)题关键是把阴影部分面积转化为正方形与三角形的面积进行计算.43.据研究,从高空抛物时间t(秒)和高度h(米)近似满足公式(不考虑风速影响).(1)从50米高空抛物到落地所需时间t1的值是多少?(2)从100米高空抛物到落地所需时间t2的值是多少?(3)t2是t1的多少倍?【分析】(1)将h=50代入t1=进行计算即可;(2)将h=100代入t2=进行计算即可;(3)计算的值即可得出结论.【解答】解:(1)当h=50时,t1=(秒);(2)当h=100时,t2=(秒);(3)∵,∴t2是t1的倍.【点评】本题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.44.某居民小区有块形状为矩形ABCD的绿地,长BC为米,宽AB为米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?【分析】(1)根据矩形的周长=(长+宽)×2计算即可;(2)先求出通道的面积,再算钱数即可.【解答】解:(1)(+)×2=(8+5)×2=13×2=26(米),答:矩形ABCD的周长为26米;(2)×﹣2×(+1)×(﹣1)=8×5﹣2×(13﹣1)=80﹣24=56(平方米),6×56=336(元),答:购买地砖需要花费336元.【点评】本题考查了二次根式的应用,最简二次根式,掌握=•(a≥0,b≥0)是解题的关键.45.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积S=.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:如图,在△ABC中,a=7,b=5,c=6.(1)求△ABC的面积;(2)设AB边上的高为h1,AC边上的高为h2,求h1+h2的值.【分析】(1)根据题意先求p,再将p,a,b,c的值代入题中所列面积公式计算即可;(2)按照三角形的面积等于×底×高分别计算出h1和h2的值,再求和即可.【解答】解.(1)根据题意知p==9所以S===6∴△ABC的面积为6;(2)∵S=ch1=bh2=6∴×6h1=×5h2=6∴h1=2,h2=∴h1+h2=.【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.。
二次根式难题汇编附答案
二次根式难题汇编附答案一、选择题1.使式子433xx+-+在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个【答案】C【解析】∵式子433xx+-+在实数范围内有意义∴30430xx+>⎧⎨-≥⎩,解得:433x-<≤,又∵x要取整数值,∴x的值为:-2、-1、0、1.即符合条件的x的值有4个.故选C.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.38a-172a-a的值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.4.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【答案】C【解析】【分析】【详解】Q也是整数,解:=∴n的最小正整数值是15,故选C.5.在下列算式中:=②=;==;=,其中正确的是()③42A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;222==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.7. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.8.=) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.9.下列式子正确的是( )A .366=±B .()237-=-327C .()3333-=-D .()255-=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:A. 366=,故A 错误.B. ()237-=327,故B 错误.C. ()3333-=-,故C 正确.D. ()255-=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a=|a|.11.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.下列各式中,不能化简的二次根式是()A 12B0.3C30D18【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A 1222=,被开方数含有分母,不是最简二次根式;B300.310=,被开方数含有小数,不是最简二次根式;D1832=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.15.a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .16.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.18.若x2+在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 19.下列运算正确的是()A235+=B2)﹣1=2 2C2(32)-3 2 D9±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A23B、122)2-=,正确;C2(32)23-=D93,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.20.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.。
新初中数学二次根式难题汇编含答案
A. 平方米B. 平方米C. 平方米D. 平方米
【答案】D
【解析】
【分析】
根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.
【详解】
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.已知 是正偶数,则实数 的最大值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
3.若x、y都是实数,且 ,则xy的值为
A.0B. C.2D.不能确定
【答案】C
【解析】
由题意得,2x−1⩾0且1−2x⩾0,
解得x⩾ 且x⩽ ,
∴x= ,
y=4,
∴xy= ×4=2.
故答案为C.
4.若 与 是同类二次根式,则 的值不可以是()
A. B. C. D.
【答案】B
【解析】
【分析】
将 与 化简,根据同类二次根式的定义进行判断.
【解析】
【分析】
先根据二次根式有意义的条件是被开方式大于等于0,列出关于x的不等式,求出x的取值范围即可.
【详解】
解:∵二次根式 在实数范围内有意义,
∴x-3≥0,解得x≥3.
故选:C.
【点睛】
本题考查的是二次根式有意义的条件,即被开方数大于等于0.
17.下列运算正确的是()
二次根式练习题总结(有一定难度)
二次根式复习一、 分式,平方根,绝对值; 1.22)(a a =成立的条件是_______________2. 当a________时,12=a a ;当a________时,12-=aa 。
3. 若a a =2,则a __________;若a a -=2,则a __________。
4. 把()111---x x 根号外的因式移入根号内,结果为________。
5. 把-33a根号外的因式移到根号内,结果为________。
6. 把31a a-根号外的因式移入根号内,得________。
7. 化简|a -2|+2)2(a -的结果是______。
8. x <y ,那么化简2)(y x x y ---为________9.最简二次根式5231-+-+-y x y x yx 与是同类根式,则x=____,y=_____10.若a+b4b 与3a +b 是同类二次根式,则a=____,b=_____。
11.求使()-+a 12为实数的实数a 的值为____。
12.已知4m-3n=2,3m-2n=1,则的平方根是____。
13.比较下列数值的大小;(1);(2)二、根式,绝对值的和为0;1. 若22)32()5(++-b a =0,则2ab =__________。
2.正数m ,n 满足的值。
3.如果a ab b a 22230++++=求b a -2的算术平方根。
4.若82--y x +12++y x =0 求x y ;5.如果5-a +2-b = 0,那么以a ,b 为边长的等腰三角形的周长是_______。
6.在ΔABC 中,a ,b ,c 为三角形的三边,则b a c c b a ---+-2)(2=_______。
7.已知的值。
求代数式22,211881-+-+++-+-=xyy x x yy x x x y 8.如果,则=_______。
9.若a ,b 满足a=++ ,那么a 2-ab+b 2=_______。
二次根式经典难题(含答案)
二次根式经典难题(含答案)1.当x满足x+2+1-2x有意义时。
2.若-m+1/(m+1)有意义,则m的取值范围是什么。
3.当x满足1-x为二次根式时。
4.在实数范围内分解因式:x^4-9=(x^2+3)(x^2-3),x^2-22x+2=(x-11+3√3)(x-11-3√3)。
5.若4x^2=2x,则x的取值范围是0和1/2.6.已知(x-2)^2=2-x,则x的取值范围是{x|x≤2+√2或x≥2-√2}。
7.化简:x^2-2x+1(x+1)的结果是(x-1)^2.8.当1≤x≤5时,(x-1)^2+x-5=x^2-2x+5.9.把a-1/a的根号外的因式移到根号内等于|a-1|。
10.使等式(x+1)(x-1)=x-1/x+1成立的条件是x不等于1.11.若a-b+1与a+2b+4互为相反数,则(a-b)^2005=1.12.在式子x^2(x,2,y+1)(y=-2),-2x(x,3,3),x^2+1,x+y中,二次根式有2个。
14.下列各式一定是二次根式的是a2+1.15.若2a=3,则(2-a)^2-(a-3)^2等于5-2a。
16.若A=(a^2+4)^4,则A=(a^2+2)^2.18.能使等式x/(x-2)=x-2成立的x的取值范围是{x|x≠2且x≥2}。
19.计算:(2a-1)^2+(1-2a)^2的值是4a^2-4a+2.20.下面的推导中开始出错的步骤是(2)。
21.当a≤0,b≤0时,ab^3=-a^2b。
23.去掉下列各根式内的分母:(1) 2y/3x(x)。
(2) (x-1)/(x^5(x+1))(x-1)。
24.已知x^2-3x+1=0,求x^2+1/x^2-2的值为-1/3.25.已知a,b为实数,且1+a-(b-1)/(1-b)=0,求a^2005-b^2006的值为a^2005-b^2005.2.若 $2m+n-2$ 和 $33m-2n+2$ 都是最简二次根式,则$m=11,n=24$。
初中数学二次根式难题汇编附答案解析
B. 8 2 2 ,故 B 错误;
C. (3)2 3 ,故 C 错误;
D. 27 3 27 3 9 3 ,正确.
故选 D.
15.计算 2 12 3 3 2 的结果是( ) 4
A. 2 2
B. 3 3
C. 2 3
【答案】A
【解析】
【分析】
根据二次根式的运算法则,按照运算顺序进行计算即可.
D.6 到 7 之间பைடு நூலகம்
【答案】A
【解析】
【分析】
先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估
算即可得解.
【详解】
解: 2 6 2 12 2
∵ 9 12 16 ∴ 9 12 16 ∴ 3 12 4
∴估计 2 6 2 值应在 3 到 4 之间. 2
故选:A 【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.
b a 1 b a2 1 b a .
ba
ba
故选 C.
【点睛】
本题考查了二次根式的性质与化简: a2 |a|.也考查了二次根式的成立的条件以及二
次根式的乘法.
4.下列各式计算正确的是( )
A. 102 82 102 82 10 8 2
B.
49 4 9 23 6
C. 1 1 1 1 1 1 5 49 4 9 236
故选:A. 【点睛】 本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟 练运用二次根式的运算法则.
14.下列计算或化简正确的是( )
A. 2 3 4 2 6 5
B. 8 4 2
C. (3)2 3
D. 27 3 3
最新初中数学二次根式难题汇编含答案解析
最新初中数学二次根式难题汇编含答案解析一、选择题1.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.2.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.4.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.5.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.7.=) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x 6≥.故选B.8.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.9.12x x +-x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.a a -a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .11.下列二次根式中是最简二次根式的是( )A B CD 【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A ,故本选项错误;BC 3,故本选项错误;D,故本选项错误. 故选:B .【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.13.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.15.下列根式中属最简二次根式的是()A BC D【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式16.若x2+在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.17.估计262值应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:22612=∵91216<<91216<<∴3124<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列各式中,属于同类二次根式的是()A B.C.3D.【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、C、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.20.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。
最新初中数学二次根式难题汇编附答案(2)
最新初中数学二次根式难题汇编附答案(2)一、选择题1.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.2.已知n 是整数,则n 的最小值是( ).A .3B .5C .15D .25【答案】C【解析】【分析】【详解】解:=Q 也是整数,∴n 的最小正整数值是15,故选C .3.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.4.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.5.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m =3,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.7.=) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x 6≥.故选B.8.下列运算正确的是( )A B .1)2=3-1 C D 5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.已知实数a 满足2006a a -=,那么22006a -的值是( )A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.10.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.11.下列各式中,属于同类二次根式的是( )A B . C . 3 D .【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A 的被开方数不同,所以它们不是同类二次根式;故本选项错误;B 、C 、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C .本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.13.下列计算或化简正确的是( )A .=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .14.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为( )A .B .C .D . 【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.估计2值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.。
新初中数学二次根式难题汇编及答案(2)
新初中数学二次根式难题汇编及答案(2)一、选择题 1.化简2-2()的结果是 A .-2B .2C .-4D .4【答案】B【解析】 2(2)22-=-=故选:B2.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B与不能合并,所以A 、B 选项错误; C 、原式=×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.已知352x x -+-=,则化简()()2215x x -+-的结果是( ) A .4B .62x -C .4-D .26x - 【答案】A【解析】由352x x -+-=可得30{50x x -≥-≤ ,∴3≤x ≤5,∴()()2215x x -+-=x-1+5-x=4,故选A.4.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.7.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】 根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.8.-中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】3,不是最简二次根式;2,不是最简二次根式;-,不是最简二次根式;是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;1==,故②正确;a a ====-,故③正确; 故选:B .【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.10.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .11.下列根式中属最简二次根式的是( )A BC D【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式12.12n-n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n12n-212n-2,从而得出结果.【详解】12n-2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解12n-”的含义.13.1a-a的取值范围是()A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1a-1-a≥0且a+2≠0,解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.15.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.16.a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .17.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.18.已知1a b ==+,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1a b -===B. 1ab =≠-,错误;C. 1ab =≠,错误;D. 10a b +++=,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.19.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩可求解.20.下列计算或运算中,正确的是()A.=B=C.=D.-=【答案】B【解析】【分析】根据二次根性质和运算法则逐一判断即可得.【详解】A、=BC、=D、-=,此选项错误;故选B.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.。
2020-2021初中数学二次根式难题汇编含答案
2020-2021初中数学二次根式难题汇编含答案一、选择题1.1x =-,那么x 的取值范围是( )A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.2.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.3.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、(51)(51)514-+=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.4.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|2a a b +的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|, ()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.下列计算或运算中,正确的是()A .2a a =B 1882=C .61523345=D .3327-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、2a 2a 2a = B 188222C 、6152335=D 、3327-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.7.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .223355=D 632=【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .8.n 的最大值为( )A .12B .11C .8D .3 【答案】C【解析】【分析】如果实数n 取最大值,那么12-n22,从而得出结果.【详解】2时,n 取最大值,则n =8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.9.x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.10.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.11.下列二次根式中的最简二次根式是( )AB C D 【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC ,不是最简二次根式;D 2,不是最简二次根式; 故选:A .【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12.下列计算正确的是( )A .3=B =C .1=D 2=【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;B=⨯=C、22D2==,正确;故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.14.下列计算错误的是( )A.BC D【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2÷=选项C,原式=选项D,原式==.故选A.15.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.16.下列计算正确的是( )A .=B =C .=D -=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.二次根式3x +有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.18.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .12 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 20.下列各式中,不能化简的二次根式是()A B C D【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】=,被开方数含有分母,不是最简二次根式;解:A2B=,被开方数含有小数,不是最简二次根式;D=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a27 - 4m + 2m 2 x y 6 - x 6 - x1.已知 a + 1a= 3 ,求 二次根式+ 1 的 值 。
2.当 m 在可以取值范围内取不同的值时,代数式 的最小值是3.如实数 a , b , c 满足 a = 2b +, ab ≠ 0 且 ab +3c 2 + 1 = 0 ,则 bc = 2 4 a4. 已知 A = 4a -b -3 a + 2 是 a + 2 的算术平方根, B = 3a +2b -9 2 - b 是 2 - b 的立方根,求 A + B 的 n 次方根。
5. 已 知 + = , 且 0 < x < y , 那 么 满 足 题 给 式 的 整 数 对(x , y )有组。
5. 已知 + = 7 ,求 - 的值。
6.若 x + y = , x - y =,求 xy 。
a 2 72 11 - x 11 - x 3 5 - 2 3 2 - 52x + 3y - mx - 199 + y199 - x - yv - 2u 4u + 3v a + b - 2 7.已 知 x 1 = , x 2 =,求 x 1 + x 2的值。
8.若 m 适合关系式求 m 的值。
+ =•,9.若u , v 满足v =+ + 3 ,那么u 2 - u • v + v 2 = 210. 已知最简二次根式 和 2a - b 能够合并,则 a-b=4 - 10 + 2 54 + 10 + 25 3x + 5 y - 2 - m 2u - v 4u + 3vaa a a 27 - 4m + 2m 2 25 + (2 - 4m + 2m 2 ) 3 x y 2 x 2 x ⎨⎩二次根式答案难度 5级知识点二次根式编 号 11 已知 a + 1 a = 3 ,求+ 1 的 值 。
1⎛ 1 ⎫21 1解:因为 a + = 3 ,且 + a ⎝⎪ = a + + 2 = 5 ,所以 + = ⎭ a 难度 5级 知识点 二次根式 编 号 22 当 m 在可以取值范围内取不同的值时,代数式的最小值是解:原式==因为 2(1 - m)2 ≥ 0 ,所以当 2(1 - m )2 = 0 时,即 m = 1时原式有最小值为= 5 。
难度 5级知识点二次根式编号33 如实数 a , b , c 满足 a = 2b +,且 ab +c 2 + 1 2 4 = 0 ,则 bc =a解:由已知得:( )121⎛1 ⎫22 2b + b + c 2 + = 2b + 4 bc2b + + c = 4 2 ⎝2b + ⎪ + c = 0 ⎭ 因为 ab ≠ 0 ,所以 c = 0 ,故 = 0a难度 5级知识点二次根式编号44 已知 A = 4a -b -3 a + 2 是 a + 2 的算术平方根, B = 3a +2b -92 - b 是 2 - b 的立方根,求 A + B 的 n 次方根。
⎧ 4a - b - 3 = 2解: ⎩3a + 2b - 9 = 3 ⎧a = 2 ,解得: ⎨b = 3 ,故 A = = 2 , B = = -1 , A + B = 1 。
当 n 为奇数时, = 1 ;当 n 为偶数时, ± = ±1。
难度 5 级 知识点 二次根式 编号 55 已知+ = ,且 0 < x < y ,那么满足题给式的整数对 (x , y )有组。
解:因为= 6 ,所以 + = 6 。
又因为 0 < x < y ,且 x , y 都是整数,设 = m 2 a a 525 + 2(1 - m )225 2 4 3 - 1 nA +B n A + B 72 72 y 22 2y 2 11 - x 3 2 - 5 5 2 2 5 5 5 2 4 - 10 + 2 54 + 10 + 2 55 5 2x + 3y - m x - 199 + y 199 - x - y 2 1 2 1 ,= n ,其中 m + n = 6 ,且 m < n ,解得 m , n 的整数值为 m = 1.n = 5 ; m = 2, n = 4 。
故所求整数对为(2,50), (8,32) 共 2 组。
难度 5 级 知识点二次根式编号 66 已知 解:( ∴ + 11 - x )2- ( - = 7 ,求 - 6 - x )2= 5 ,即( =5。
7的值。
+ 6 - x)(11 - x -6 - x )= 5 ,难度 5级知识点二次根式编号77 若 x + y =, x - y = ,求 xy 。
解; x + y = , x - y = ,∴ (x + y )2 = 3 - , (x - y )2 = 3 - ,4xy = (x + y )2 - (x - y )2 = 4 - 4∴ xy = - 。
难度 5 级 知识点 二次根式 编号 88 已 知 x 1 = , x 2 =,求 x 1 + x 2 的值。
解: x 1 =, x 2 = ,∴ x 2 + x 2= 8x • x == - 1 。
1212(x + x )2 = x 2 + x 2 + 2x x = 8+ 2( - 1)= 6 + 2∴ x 1 + x 2 = + 1难度 5 级 知识点 二次根式编 号 99 若 m 适合关系式求 m 的值。
+ = • ,解: x - 199 + y ≥ 0 ,且199 - x - y ≥ 0 ,11 - x 6 - x 6 - x 11 - x 11 - x 6 - x 3 5 - 2 3 2 - 5 3 5 - 2 24 - 10 + 25 4 + 10 + 2 56 - 2 5 5 53x + 5 y - 2 - m 1 23x + 5 y - 2 - m 2x + 3y - m v - 2u 4u + 3v a + b - 2 ∴ x - 199 + y = 199 - x - y = 0 ,∴ x + y = 199 。
⎧3x + 5 y - 2 - m = 0 (1)+ = 0 。
即⎨⎩ 2x + 3y - m = 0 (2)由(2)⨯ 2 - (1)得, x + y + 2 = m ,所以 m = 201+ ,那么u - + v 2 =解:由条件知 2u - v 4u + 3v≥ 0 , v - 2u4u + 3v≥ 0 。
所以 2u - v 4u + 3v≥ 0 且 2u - v 4u + 3v 3 ≤ 0 ,所以3 2u - v 4u + 3v3= 0 。
所以 2u - v = 0 , v = 2u 。
代入 v =+ + 得u = 2 , v = 4 2所以u 2 - u • v + v 2= 27 。
16难度 5 级 知识点 二次根式 编号 3411 、已知最简二次根式 和 2a - b 能够合并,则a-b= b-22u - v 4u + 3v 难 度 5级知识点二次根式编号1010 若u , v 满足 v 3 22u • v“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。