浙大出版社 大学物理 第1章 答案
大学物理(浙大三版)第一章
2 2 2
r k o i jx源自P(x,y,z)y
§1.2 位置矢量 运动方程 位移
23 2011-2-12
二、 运动方程 运动方程:位置矢量r与时间t的函数关系 运动方程: r (t ) x(t )i y(t ) j z(t )k 轨道
——研究物质高速运动、引力、时间和空间等;
量子力学(quantum-mechanics)
——研究微观体系的运动规律。
8 2011-2-12
第一篇 力学
研究对象:机械运动。 机械运动就是物体之间或 物体内部各部分之 就是 间相对位置随时间的变化过程。 内容:运动学与动力学。
9 2011-2-12
8
2.4 10 1
地球上各点的公转速度相差很小,可忽略地球自身 尺寸的影响,作为质点处理。
4
§1.1 质点 参考系
12 2011-2-12
研究地球自转
R vv R
地球上各点的自 转速度相差很大,因 此,地球自身的大小 和形状不能忽略,这 时不能将地球作质点 处理。
§1.1 质点 参考系
19 2011-2-12
§1.1 质点 参考系
时间的计量:利用具有周期性的现象测量时间。
1967 年第十三届国际计量大会决定,用铯原子钟 作为时间计量的基准,1秒是铯133原子基态的两超精细 能级之间跃迁对应辐射周期的9192631770倍,精度可达 10-12。国际单位制中时间单位为秒(s)。
空间的计量:
运动学:研究物体运动的描述及各运动学物理量
之间的关系,不涉及引起和改变运动的原因。 质点在三维空间运动的描述,刚体运动的描述。
动力学:研究物体运动与物体相互作用之间的
大学物理第1章习题参考答案
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)101(3)01(21)01(32ji ⎥⎦⎤⎢⎣⎡-+--=(3) (4) (5) (6) 1-2 =v c t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++=将t =3s 代入证)sm (45)sm (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααx y tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆(4) 1-41-5 g)(25m/s1047.280.13600101600223≈⨯=⨯⨯==t v a基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---=(2) .对应于t 13.184.122212120-=-="t t v ∆m /s )(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v sh s tl hl l ts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d dd d s v h t l v hl l lt va -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωgr n gr1-9 物体A 下降的加速度(如图所示)为222m/s 2.04.022=⨯==h a在1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-=由此得s 59.02.18.95.1220=-⨯=-=ag h t而小球相对地面下落的距离为2021gt t v h +=259.08.92159.06.0⨯⨯+⨯=m 06.2= 1-11风地vb )两图中风地v应是同一矢量.1-12 (1) vLv L t 22==(2) 22212uv vL uv L uv L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v L v L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22uv V -='.习题1-12图习题1-11图2221222⎪⎭⎫ ⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V而1212sin sin =⨯=='αβu V船达到BD OB AB 将式(1) (2) 由t =即 c o s α故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min =⨯=⨯=⨯=s u t π(3) 设l OB =,则ααββsin cos 2sin sin 22u uV Vu D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV Vu u D l'⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0c o s 2s i n s i n 2222=⎥⎦⎤'-+''+αuV Vu a a uV简化后可得01cos cos 222=+'+-'αuVV u a即 01c o s 613c o s 2=+'-'αa解此方程得32cos ='α︒=='-2.4832cos1α将α'AB。
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理(上)课后习题答案
第1章 质点运动学 P211.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。
⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v (6) 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。
1.9 质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。
质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。
解:由d d d d d d d d x a t x t x===v v v v 得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 1m s -=⋅v1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒==即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。
大学物理学(课后答案解析)第1章
第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
大学物理第一章 质点运动学-习题及答案
第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
大学高等物理课后答案 第一章 力学基本定律
第1章习题答案1-1 解:竖直上抛运动 gH 2max20v = ()s m gH /849102008.1223max 0=⨯⨯⨯==v1-2 解:匀变速直线运动 ()()g s m t a t 259.24680.103600/1000160020<⋅=-⨯=∆-=-v v (不超过) ()()m t s t 4008.1036001000160021210=⨯⎪⎭⎫ ⎝⎛+⨯⨯=∆⨯+=v v 1-3 解:以喷嘴作为坐标原点,竖直向上作为y 轴的正向 竖直上抛运动 ()m g v H 5.348.92262220max=⨯== !()gyv y v 220-=连续性方程 ()()gyv qy v q y S 220-==任一瞬间空间上升的水流体积 ()()l gy v g q dy gyv qdy y S V H H 38.1222maxmax020020=⎥⎦⎤⎢⎣⎡--=-==⎰⎰上升下降上升V V =()l V V V 7.24=+=下降上升总1-4 解:()()bt u bt u btbt b u u dt dx v --=----⎪⎭⎫ ⎝⎛-+==1ln 1ln 11 ()()btub bt b u dt dv a -=---==11 ()00=v,()()()s m v /1091.6120105.71ln 100.3120333⨯=⨯⨯-⨯-=-1-5 解:()2122212R R N rNdr s R R -==⎰ππ ()()()()m in 6939416364132256650222122==-⨯⨯=-==∆s v R R N v s t ππ()s rad r v /26.00.53.1===ω ()222/338.00.53.1s rad r v ===α1-6 解: ()s m v /37430344=+=东()s m v /31430344=-=西()s m v /3433034422=-=北·N F μθ≥cos1-7 解: 因θsin F mg N +=故 θμμθsin cos F mg F +≥ (1) θμθμsin cos s s mgF -≥静(2) θμθμsin cos k k mgF -≥动(3) 0sin cos ≤-θμθs sμθ1tan ≥1-8 解:{()()()()()()()N a g m M F am M g m M F 676006.08.915005000=+⨯+=++=+=+-桨桨()()()N a g m F mamg F 156006.08.91500=+⨯=+==-桨绳1-9 解: r m rMm G22ω= ()()()Kg G r T G r M 261138232321069.51067.61036.136002.142/2⨯=⨯⨯⨯⎪⎭⎫ ⎝⎛⨯===-ππω1-10 解: ⎰⎰⎰-=-==ωπω20cos tdt kA kxdt Fdt IωωωωπkAt kA -=⎥⎦⎤⎢⎣⎡-=20sin(1-11 解: ()s m /500i v-= ()()s m t /45sin 8045cos 800j i v +=()()s N m m t ⋅+=-=j i v v I92.778.140()215278.1492.7arctan 89.160'=-=⋅=πϕs N I ()6168.914.084584502.089.16=⨯===∆=mg F N t I F】1-12 一辆停在直轨道上质量为m 1的平板车上站着两个人,当他们从车上沿同方向跳下后,车获得了一定的速度。
《大学物理学》第1-6章课后习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+,然后根据drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即22dx dy v dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 及 222222d x d y a dt dt ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理第一章质点运动学习题解详细完整
第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。
大学物理课后答案第1章质点运动学习题解答
第1章质点运动学习题解答1-1如图所示,质点自A 点沿曲线运动到B 点A 点与B 点的矢径分别为°与g的头3s 内质点的位移、平均速度、平均加速度与所通过的路程 解:y 5 24t 2t 3,v 24 6t 2,a 12ty y(3) y(0) 18(m ) v - 6(m/s)3v(3) v(0)2、a18(m/ s )3t 2s 时,v 0,质点作反向运动s y(2)y(0) |y(3)y(2) | 46(m)1-3 一质点沿x 轴作直线运动,图示为其v t 曲 线图。
设t 0时,x 5m 。
试根据v t 图画出:(1) 质点的a t 曲线图;(2)质点的x t 曲线图。
试在图中标出位移 r 与路程s,同时对| r |与r 的意义及它们与矢径的关系进1-2 一质点沿y 轴作直线运动,其运动方程为y 5 24t 2t 3(SI)。
求在计时开始20 20t 解: 15 2.5t75 7.5t(0(2(6t 2)6)10)(1)20 20t 15 2.5t 75 7.5t(0(2(62)6)10)质点的a t曲线图如右图所示⑵v dxdt Xdxtvdt,可求得:t 2时,xdx 5 t0(20 20t)dt, 10t 2 20tt 6时,xdx 5 20(20 20t )dtt2(152.5t)dt ,5t215t 30410时,xdx20(20 20t)dt62(15 2.5t)dtt6(75 7.5t)dt , 75t 210210t 20t 5 (0 t 2)5t215t4%2 75t 4 门気105)30 (2 t 6)开口制上的覚皙變210 (6 t 10)质点的x t曲线图如右图所示。
1-4如图所示,路灯距地面的高度为H,在与路灯水平距离为s处,有一气球由离t 1 0 时,x(0) 0, y(0) 19,v x (0) 2—(0) 0地面h 处开始以匀速率v o 上升(h H )。
大学物理(上册)参考答案
大学物理(上册)参考答案第一章作业题P211.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62 x,a 的单位为2sm -?,x 的单位为 m. 质点在x =0处,速度为101s m -?,试求质点在任何坐标处的速度值.解:∵x v v t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得 cx x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-?++=x x v1.10已知一质点作直线运动,其加速度为 a =4+3t 2sm -?,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += 又因为2234d d t t t x v +== 分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+?+?=?=?+=-x v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-?=??==βτR a2222s m 1296)29(1-?=??==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==?na aτ即βωR R =2 亦即t t 18)9(22= 则解得 923=t 于是角位移为rad67.29232323=?+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1)bt v t sv -==0d dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹角为20)(arctan bt v Rba a n --==τ?(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-?-+=bt v R bt v b b∴当b v t 0=时,b a = 第二章作业题P612.9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解:2s m 83166-?===m f a x x 2s m 167-?-==m f a y y(1)--?-=?-=+=?-=?+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-?--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x--=?-+??+?-=++=2.10 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m t k v v d d -= 即 ??-=v v t m tk vv 00d dmkt e v v -=ln ln 0∴tm kev v -=0(2)---===tttm k m k e k mv t ev t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有∞-=='00d k m v t ev x tm k(4)当t=k m时,其速度为e v e v ev v kmm k 0100===-?-即速度减至0v 的e 1.2.11一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p -=?由矢量图知,动量增量大小为v m,方向竖直向下.2.13作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则it i t t F p t10401s m kg 56d )210(d -??=+==,沿x 轴正向,i p I im p v111111s m kg 56s m 6.5--??=?=?=?=? 若物体原来具有6-1s m -?初速,则+-=+-=-=t t tF v m t m F v m p v m p 000000d )d (,于是 ??==-=?t p t F p p p 0102d, 同理, 12v v=?,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去)3.14一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=?=ω2.15 一颗子弹由枪口射出时速率为10s m -?v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t =(2)子弹所受的冲量-=-=tbt at t bt a I 0221d )(将b at =代入,得b a I 22=(3)由动量定理可求得子弹的质量202bv a v I m ==第三章作业题P883.1; 3.2; 3.7;3.13计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50 kg ,2m =200 kg,M =15 kg, r =0.1 m 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =-③又,βr a = ④联立以上4个方程,得2212s m 6.721520058.92002-?=++?=++=M m m g m a题2-27(a)图题2-27(b)图题2-28图3.14 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg=∴ l g θωsin 3=题2-29图3.15 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?解: (1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mvI mv +=ω②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212?-=lMg I ω ③由③式得2121)231(3)30cos 1(?-=-=l g I Mgl ω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时小球受到的冲量为-=?=0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=?glM 6)32(6--=负号说明所受冲量的方向与初速度方向相反.第五章作业题P1455.1; 5.2;5.7 质量为kg 10103-?的小球与轻弹簧组成的系统,按)SI () 328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又πω8.0==A v m 1s m -? 51.2=1s m -?2.632==A a m ω2s m -?(2) N 63.0==m m a FJ 1016.32122-?==m mv E J 1058.1212-?===E E E k p当p k E E =时,有p E E 2=,即)21(212122kA kx ?= ∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=?t t5.8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 -==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t TA x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 一质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=?=-T A∴ 1s rad 5.02-?==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-?=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=?=-t x πN102.417.0)2(10103232--?-=-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向.(2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且∴ s 322/3==?=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--?====πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-?==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又ππωφ253511=+?= ∴ πω65=故 m t x b )3565cos(1.0ππ+= 5.12 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.(1)此时的振动周期与空盘子作振动时的周期有何不同?(2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动方程为 ?+++++=g m M kh t M m k gM m khk m g x )(2arctan cos )(215.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) +=+=cm )373cos(5cm )33cos(521ππt x t x (2)??+=+=cm)343cos(5cm )33cos(521ππt x t x解:(1)∵ ,233712πππφφφ=-=-=? ∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=? ∴合振幅 0=A5.16 一质点同时参与两个在同一直线上的简谐振动,振动方程为-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理第1章习题解答(全)ppt课件
23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为
大学物理课后答案第1章质点运动学习题解答
大学物理课后答案第1章质点运动学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第1章质点运动学习题解答1-1 如图所示,质点自A 点沿曲线运动到B 点,A 点和B 点的矢径分别为A r 和B r 。
试在图中标出位移r ∆和路程s ∆,同时对||r ∆和r ∆的意义及它们与矢径的关系进行说明。
解:r ∆和s ∆如图所示。
||r ∆是矢径增量的模||A B r r -,即位移的大小;r ∆是矢径模的增量A B A B r r r r -=-|||| ,即矢径长度的变化量。
1-2 一质点沿y 轴作直线运动,其运动方程为32245t t y -+=(SI )。
求在计时开始的头3s 内质点的位移、平均速度、平均加速度和所通过的路程。
解:32245t t y -+=,2624t v -=,t a 12-=)(18)0()3(m y y y =-=∆)/(63s m y v =∆= )/(183)0()3(2s m v v a -=-= s t 2=时,0=v ,质点作反向运动)(46|)2()3(|)0()2(m y y y y s =-+-=∆1-3 一质点沿x 轴作直线运动,图示为其t v -曲线图。
设0=t 时,m 5=x 。
试根据t v -图画3出:(1)质点的t a -曲线图;(2)质点的t x -曲线图。
解:⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v(1)dtdv a = ,可求得: ⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v质点的t a -曲线图如右图所示(2)dt dx v = ,⎰⎰=t x vdt dx 00, 可求得:20≤≤t 时,⎰⎰+-=tx dt t dx 05)2020(, 520102+-=t t x 62≤≤t 时,⎰⎰⎰+++-=t x dt t dt t dx 2205)5.215()2020(, 3015452-+=t t x 106≤≤t 时,⎰⎰⎰⎰-++++-=tx dt t dt t dt t dx 662205)5.775()5.215()2020(, 210754152-+-=t t x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-+-≤≤-+≤≤+-=∴)106( 21075415)62( 301545)20( 52010222t t t t t t t t t x质点的t x -曲线图如右图所示。
(完整版)大学物理上第1章习题解答
第一章质点运动学1-1在一艘内河轮船中,两个旅客有这样的对话:甲:我静静地坐在这里好半天了,我一点也没有运动。
乙:不对,你看看窗外,河岸上的物体都飞快地向后掠去,船在飞快前进,你也在很快地运动。
试把他们讲话的含意阐述得确切一些,究竟旅客甲是运动,还是静止?你如何理解运动和静止这两个概念的。
答:①如果以轮船为参考系,则甲、乙旅客都是静止的,而河岸上的物体都在向后运动;如果以河岸为参考系,则轮船及甲、乙旅客都是运动的。
②运动是绝对的,而静止是相对的。
描述物体的运动情况时,首先要选定参考系,选取的参考系不同,对物体运动的描述也就不同。
1-2有人说:“分子很小,可将其当作质点;地球很大,不能当作质点”,对吗?答:这种说法不对。
“质点”是经过科学抽象而形成的物理模型。
物体能否当作质点是有条件的,相对的。
当研究某物体的运动,可以忽略某大小和形状,或者只考虑其平动,那么就可把物体当作质点.。
例如,分子虽小,但如研究分子内部结构时,不能当作质点;地球虽大,但如研究地球自转现象时,也不能当作质点,而当研究地球绕太阳的公转时,就可当作质点。
1-3已知质点的运动方程为r =x (t )i +y (t )j ,有人说其速度和加速度分别为d r d 2r v =,a =2d t d t 其中r =x 2+y 2,你说对吗?v v v r d rr v v d v d 2r v=答:题中说法不对。
根据定义v =.a =,所以,由r =x (t )i +y (t )j d t d t d t 2d y d x ϖx +y 22ρdx ρdy ρdx dy d r d r d x +y d t 可得如下结论:v =v =i +j =()2+()2,===d tdt dt dt dt d t d t d t x 2+y 222v 222d r v d 2y v ⎛⎫⎛⎫d v d x d x d y 显然,v ≠,a ==i +2j = 2⎪+ 2⎪2d t d t d t d t ⎝d t ⎭⎝d t ⎭d r=2d t d t 22ϖd r2d y ⎛d xx +yd ⎛d r ⎫d d t d t = ⎪=d t ⎝d t ⎭d t x 2+y 2⎝⎫⎪d 2r ⎪,显然,a ≠2。
(完整版)大学物理学(课后答案)第1章.doc
第 1 章质点运动学习题一选择题1-1 对质点的运动,有以下几种表述,正确的是[](A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化(D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C。
1-2 某质点的运动方程为x 2t 3t 312(m) ,则该质点作[](A)匀加速直线运动,加速度沿 ox 轴正向(B)匀加速直线运动,加速度沿ox 轴负向(C)变加速直线运动,加速度沿ox 轴正向(D)变加速直线运动,加速度沿ox 轴负向dx 2 dv解析:vdt 2 9t ,adt18t,故答案选 D。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 v ,某一段时间内的平均速率为 v ,平均速度为 v ,他们之间的关系必定有 [](A) v v , v v (B) v v , v v(C) v v , v v (D) v v , v v解析:瞬时速度的大小即瞬时速率,故v v ;平均速率 vs ,而平均速r,故 v v 。
答案选 D。
t度 v =t1-4 质点作圆周运动时,下列表述中正确的是[](A) 速度方向一定指向切向,所以法向加速度也一定为零(B)法向分速度为零,所以法向加速度也一定为零(C)必有加速度,但法向加速度可以为零(D)法向加速度一定不为零解析:质点作圆周运动时,v 2dva a n e n a t e te ndte t,所以法向加速度一定不为零,答案选 D 。
1-5 某物体的运动规律为dvkv 2t ,式中, k 为大于零的常量。
当 t 0 时,dt初速为 v 0 ,则速率 v 与时间 t 的函数关系为 [](A) v 1 kt 2 v 0(B)1 kt2 12v 2 v 0(C) v1 kt2 v 0 (D)1 kt2 12v2v 0解析:由于dvvt( kv 2t) dt ,得到1kt 21,故答案kv 2t ,所以 dvdtv 0v 2 v 0选 B 。
大学物理习题答案解答第一章质点的运动
第一章 质点的运动一、填空题1、质点的位移为21()()2r r t r t Ri ∆=-=由r xi yj =+可知cos sin x R t y R t ωω=⎧⎨=⎩(1-1) 消去t ,可得质点的轨道方程为222x y R += 表明质点作已原点为圆心,半径为R 的圆周运动。
结合(1-1)可知运动周期为2T πω=从1t 到2t ,时长为2T ,所求路程为半圆周长,即R π。
2、因为()()32()()()281068d d d v t r t x t i t t i t i dt dt dt ⎡⎤===-+=-⎣⎦ 所以第二秒末的速度为1(2)16()v i m s -=⋅3、因为()()232()()()10203090040d d d v t r t x t i t t i t t i dt dt dt ⎡⎤===-+=-⎣⎦ 而()()2()()90040180040d d a t v t t t i t i dt dt ⎡⎤==-=-⎣⎦ 所以初始时刻的加速度为2(0)40()a i m s -=-⋅4、在地面上取竖直向下方向为x 轴方向。
(1)重物从开始脱落到再次回到脱落处是一个对称过程。
速度从105v m s -=-⋅变化至15v m s -=⋅,而加速度为210.0a m s -≈⋅,由0v v at =+ (1-2)可解出所花时间为1 1.0t s =。
(2)考察重物继续下落至触地的过程。
以初速105v m s -=⋅,加速度210.0a m s -≈⋅下落,发生的路程为20s m ∆=,由 2012s v t at ∆=+ 可解出21 1.6()2t s == 由(1-2)可计算出落地时的速度为121v m s -=⋅,方向竖直向下,而所求重物落地时间为12 2.6()t t t s =+=5、由图1-1,可得汽车行驶的总路程为30302080()s AB BC AB km ∆=++=++=取东北方向为x 轴,则总位移为2062.4()r AB BC CD i i km ∆=++=+≈ 图1-16、由r xi yj =+可知4cos 23sin 2x t y t=⎧⎨=⎩ (1-2) 消去t ,可得质点的轨道方程为2222143x y += 表明质点的运动轨迹为一椭圆。