电路分析第二章电阻电路的等效变换

合集下载

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

i

… i
+ -
u

K=1,2 , i
+ -
u
Reg
u
G1
in Gn
u

Geg
分流公式: 分流公式:ik=Gku=Gk/Geg i n=2时,Reg=R1R2/(R1+R2) 时 ( i1=R2/(R1+R2), 2=R1/(R1+R2)×i ),i ( ( *混联:有串,又有并 混联:有串, 混联 1 R1 R2 R3 R4
对于△ 对于△形,各电阻中电流为:i12=u12/R12 i23=u23/R23 i31=u31/R31 各电阻中电流为:
i ′ =i12-i31=u12/R12-u31/R31 1
i ′2 =u23/R23-u12/R12
i ′3 =u31/R31-u23/R23
i1 + i 2 + i 3 = 0

2
2 i31 1 i12

2

i′2
1
1
R2
3
自已补充:R 自已补充 4与1串,R3与2串,然 串 串然 后再并 i2
R4 R3 2
3
i3 2
1
1
2-5
电压源和电流源的串联和并联

1、n个电压源串联:us=∑usk--------等效电压源 、 个电压源串联: 等效电压源 个电压源串联 + - + ○ ○ -○ us1 us2 usn。 。 注:正、负号取 。 。 。 2、n个电流源的并联: 个电流源的并联: 、 个电流源的并联 is1 is=is1+is2+…is=∑isk 。 。
αi
+ uS - i +

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

第2章简单电阻电路分析-2理想电压源电流源的串并联和等效变换

利用上述关系式,可测量电阻。
返回首页
习题讨论课1—
简单—电阻电路分析
(总第七、八讲)
重点和要求:
1. 参考方向的正确使用。
2. 分压、分流、功率的计算。
3. 欧姆定律、KCL、KVL的使用。
4. 等效的概念 电源的等效变换、电阻的Y-变换。
1. 求入端电阻。
(1) 求Rab、 Rac 。
c
4
4
2
2
4
a 3
a
(2) 求 Rab .
4 2
6
4
2 0.6
b
ab
2. 用电源等效变换化简电路。
(3) 求 Rab .
2 2 1 2 4
a
b 4
a
a
6A
10
等效 R
+ 2A
+
_ 6V
_ Us
b
b
3. 电路如图
g
2A
R=3
(1) 求I1, I2, I3, Uab, Ueg;
e
1 a
b 2 f
(2) 若R变为5 ,
U
I
+
US _
+
U
Ri
_
0
Ii
U=US – Ri I
R Ri: 电源内阻, 一般很小。
一个实际电压源,可用一个理想电压源uS与一个电阻Ri 串联的支路模型来表征其特性。
二、实际电流源
实际电流源,当它向外电路供给电流时,并不
是全部流出,其中一部分将在内部流动,随着端电 压的增加,输出电流减小。
I
u
GiU
is us Ri ,
Gi
1 Ri

第二章 电阻电路的等效变换

第二章    电阻电路的等效变换

第二章电阻电路的等效变换1.内容提要:“等效变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析中经常使用的方法。

所谓两个电路是互为等效的,是指⑴两个结构参数不同的电路在端子上有相同的电压、电流关系,因而可以互相代换;⑵代换的效果是不改变外电路中的电压、电流和功率。

由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。

等效的对象是外接电路中的电压、电流和功率。

等效变换的目的是简化电路,方便地求出需要求的结果。

深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。

2.重点和难点(1) 等效与近似概念的认识①等效:同一物体在不同的场合(情况)下,其作用效果相同,称之为等效。

在电路分析中有两种形式的等效:其一:站在电源立场,等效负载(电阻)。

即求等效电阻。

如图2.1所示。

其二:站在负载(电阻)立场,等效电源。

即求等效电源。

如图2.2所示。

图2.3所示的电路不是等效。

图2.1 站在电源立场等效负载图2.2 站在负载(电阻)立场,等效电源。

即求等效电源等效的多样性:等效可以是非同类元件之间进行,如交流电的有效值。

等效也可以是虚拟元件之间进行,如实际电压源与实际电流源之间等效,戴维南定理与诺顿定理之间等效,晶体三极管的小信号模型等。

图2.3②近似:在对一个复杂的电路进行分析时,影响该问题的因素较多,因此,忽略一些次要因素,而保留主要影响因素。

即抓主要矛盾或矛盾的主要方面。

称为近似处理。

尤其在模拟电子技术课程中应用极为广泛。

如图2.4所示。

图2.4 近似处理实例(2) 电阻、理想电压源、理想电流源的组合表2—1 单一类型元件的组合表2—2 不同类型元件的组合(3)实际电压源与实际电流源的互换(4)三角形与星形连接的等效变换3.典型例题分析【例题1】:电阻元件的组合,即电阻元件的串、并联;分流和分压的计算。

电路如图2.5所示,计算各支路的电压和电流。

图2.5解:这是一个电阻串、并联电路,首先求出等效电阻R eg=11Ω,则各支路电流和电压为:I1=165V/11Ω=15A;U2=6 15=90V;I2=90V/18Ω=5A;U3=6 10=60V;I3=15-5=10A;U4=90V-60V=30V;I4=30V/4Ω=7.5A;I5=10-7.5=2.5A。

第二章 等效变换

第二章 等效变换

例2:
求图2-9a电路中电流 I1, I2, I3 , I4。
I
I2 I1
解: 思路
Δ→Y
Req
I
Rb
48 2, 同理, 求得 : Rc 2, Rd 1, Req (1 Rb ) //(5 Rd ) Rc 4 4 48 1 Rb 18 I 3 A, 由分流公式, 可得: I1 I 1A, I 2 I I1 2 A 2 Req 1 Rb 5 Rd U db 5 I1 1 I 2 I3 0.75 A, I 4 I1 I 3 1.75 A 4 4
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 3 3 2 16 Req [( 2 // 1) 2] //(2 // 1) 2 // 2 8 2 3 3 15 3 3
§2-4电阻的Y-Δ 等效变换
R1, R2, R3 Y(星)形连接 R3, R4, R5 R1, R3, R4 Δ(三角)形连接 R2, R3, R5

'' Req R1 Req 6 6 12 ③
15 10 6 ②R R2 R34 15 10
'' eq ' R2 Req
Req R1 R2 //(R3 R4 ) R1
R2 ( R3 R4 ) 15(5 5) 6 12 R2 R3 R4 15 5 5
6 9 54 断开时,Req 2+4) 3 6) ( //( 3.6 6 9 15
结论:若电路中两点电位相等,则: ①可将这两点短路 ② 可将这两点之间连接的支路断开 对某些对称性电路可采用此方法处理

电路分析基础 张凤霞课件-第02章.电阻电路的等效变换

电路分析基础 张凤霞课件-第02章.电阻电路的等效变换
20 100 60
120 60
ab
20 100 60
40
2020/5/25
返回 上页 下 页
例5 求: Rab
5
15
6
a 20 b
7
6
缩短无 电阻支路
Rab=10
4
ba
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7 3
2020/5/25
返回 上页 下 页
例6 求: Rab
iR
对称电路 c、d等电位
变量之间无控制和被控的关系,则称 N1和 N2为 单口网络(二端网络)。
一个单口网络对电路其余部分的影响,决定于其 端口电流电压关系(VAR)。
2020/5/25
返回 上页 下 页
二. 等效单口网络
a
i +
b u-
N
u f (i)
a
i +
b u-
N'
u f(i)
若网络 N 与 N 的VAR相同,则称该两网络为
等效单口网络。
将电路中一个单口网络用其等效网络代替(称 为等效变换),电路其余部分的工作状态不会 改变。
2020/5/25
返回 上页 下 页
2.1.2 单口网络端口伏安关系(VAR)的求取
将单口网络从电路中分离出来,标 好其端口电流、电压的参考方向;
假定端电流i 已知(相当于在端口 接一电流源),求出 u = f (i) 。或 者,假定端电压 u 已知(相当于在 端口接一电压源),求出 i = g (u) 。
返回 上页 下 页
• 三端网络的端口VAR
端口独立电流(例如 i1、i2 )与端口独立电压(例 如 u13 、u23 )之间的关系。

电阻电路的等效变换

电阻电路的等效变换

电阻电路的等效变换电阻电路的等效变换是指将一个电阻电路转化为另一个等效的电阻电路,使得两个电路在电学性质上完全相同。

等效变换在电路分析和设计中起着重要的作用,能够简化电路分析过程,提高计算效率。

一、串联电阻的等效变换串联电阻是指多个电阻按顺序连接在一起,电流依次通过每个电阻。

当电路中有多个串联电阻时,可以通过等效变换将其转化为一个等效电阻。

假设有两个串联电阻R1和R2,其等效电阻为Req。

根据欧姆定律可知,串联电阻中的电流相同。

根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。

因此,R1和R2的电阻值可以表示为R1 = U / I1,R2 = U / I2。

在串联电路中,电流I1通过R1,电流I2通过R2,由于串联电路中电流只有一个路径,所以I1 = I2。

将上述两个等式相等,可得到R1 / I1 = R2 / I2,即R1 / R2 = I1 / I2。

由此可推导出串联电阻的等效电阻为Req = R1 + R2。

二、并联电阻的等效变换并联电阻是指多个电阻同时连接在一起,电流分别通过每个电阻。

当电路中有多个并联电阻时,可以通过等效变换将其转化为一个等效电阻。

假设有两个并联电阻R1和R2,其等效电阻为Req。

根据欧姆定律可知,电压在并联电路中相同。

根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。

因此,R1和R2的电阻值可以表示为R1 = U1 / I,R2 = U2 / I。

在并联电路中,电压U1作用在R1上,电压U2作用在R2上,由于并联电路中电压相同,所以U1 = U2。

将上述两个等式相等,可得到R1 / U1 = R2 / U2,即R1 / R2 = U1 / U2。

由此可推导出并联电阻的等效电阻为1 / Req = 1 / R1 + 1 / R2。

三、星型-三角形转换星型电阻网络和三角形电阻网络是常见的电阻网络拓扑结构。

在电路分析中,有时需要将星型电阻网络转换为三角形电阻网络,或将三角形电阻网络转换为星型电阻网络,以便于进行电路分析。

第2章电阻电路的等效变换

第2章电阻电路的等效变换

总电流
U S 18 I= = A = 6A R 3
由分流公式得
6 I1 = I = × 6A = 4A 4× 4 9 6 + (1 + ) 4+4
再分流得
6
1 I x = I 1 = 2A 2
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.4 Y形电路和Δ形电路之间 的等效变换
返回
电路分析基础
如何等效化简电桥测温电路? 如何等效化简电桥测温电路?
返回
电路分析基础
第2章 电阻电路的等效变换
2.1 等效变换
电阻电路
线性电阻电路
非线性电阻电路
简化线性电阻电路的主要依据是等效变换
返回
电路分析基础
第2章 电阻电路的等效变换
2.1.1 一端口网络的定义
二端网络
一端口网络
流入一个端子的电流必定等于流出另一端子的电流
Ig =
Rp Rg + R p
× 10 × 10 −3 = 1 × 10 −3 mA
解之得应并联的电阻为
0.1RG 2 × 10 3 Rp = = Ω ≈ 222.22Ω 0.9 9
返回
电路分析基础
第2章 电阻电路的等效变换
2.2.3 电阻的混联
判别电路的串并联关系根据以下原则: 判别电路的串并联关系根据以下原则: (1)看电路的结构特点。 看电路的结构特点。 (2)看电压、电流关系。 看电压、电流关系。 (3)对电路作变形等效。 对电路作变形等效。 (4)找出等电位点。 找出等电位点。
R4 R5 R2(R3 + ) R4+R5 R = R1 + R4 R5 R2 + (R3 + ) R4 + R5

电阻电路的等效变换法

电阻电路的等效变换法

i
R1
+
u
R2
-
VAR:
i + u VAR:
R=R1+R2
注意:当电路中的某一部分用其等效电路替代后,未被替代部分的电压电流均 应保持不变,即“对外等效”。
§2-1 引言
三、等效法
1、等效法:将复杂电路进行等效化简,从而求出各i. u, p的一种分析方法
2、本章内容
电阻的等效变换 电源的等效变换
第二章 电阻电路的等效变换法
R4
Rg
R2
R3
若R1 R3=R2 R4
R1
R4
则电桥平衡
或者
R2
R3
R1
R4
x
R2
R3
第二章 电阻电路的等效变换法
§2-3 Y—△等效变换
一、电阻的Y、△联接 1、为什么需Y—△变换 2、Y形联接
Байду номын сангаас
§2-3 Y—△等效变换
3、△形联接 a
4、举例: 上图:R1.R2.R3 R3.R4.R5——△ R1.R3.R4 R2.R3.R5——Y
+
i
+
US -
U
R0 -
i
+
US R0
R0
U
-
§2-5 两种实际电源的等效变换
2、实际电流源——实际电压源
iS R0
+
i
iSR0 -
R0
3、说明: 注意极性 等效对外电路等效,内部不等效 举例说明其应用 受控源也可以同样等效(但不能将受控变掉)
§2-5 两种实际电源的等效变换
+
U1
-
R0

电路基本分析第二章电阻电路的等效变换法

电路基本分析第二章电阻电路的等效变换法

Chapter 2
方法二:将Y→△(如下图),自己练习。
1

R12
2
1Ω 2Ω
1


2

3
1
1
R12
R13 2 Ω
2

2 1Ω
R23
3
1
R12
2
说明:使用△-Y 等效变换公式前,应先标出三个端头标 号,再套用公式计算。
Chapter 2
小结: 1 .一个内部不含独立电源的单口网络对外可以等效为一
电路对外可等效为一个理想电压源us和一个内阻Rs串 联的电压源模型。
Chapter 2
2. n个实际电流源并联:
isn
Gsn
i s2
is1
is3 Gs3
Gs2
i +a Gs1 u
-
b
i'
a
+
is
Gs
u'
-
b
由KCL得端口电压电流关系:
i i s 1 i s 2 i s 3 i s n G s 1 G s 2 G s 3 G s n u
解得:
i1

R1R2
R3u12 R2R3
R3R1

R1R2
R2u31 R2R3
R3R1
i2

R1R2
R1u23 R2R3
R3R1

R1R2
R3u12 R2R3
R3R1
i3

R1R2
R2u31 R2R3
R3R1

R1R2
R1u23 R2R3
R3R1

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换

4
Rab=10
15 10
a b
a b
7
20
15
3
返 回
上 页
下 页
例 2-8 求图 2-5电路 a b 端的等效电阻。
Req (2 // 2 (4 // 4 2) // 4) // 3 (1 4 // 4) // 3 1.5
21
复习
1、电阻的串联 等效电阻、分压
23
例2-4 图2-7所示电路每个电阻都是2Ω, 求a, b两端的等效电阻
解:
c
d
e
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 16 3 3 2 Req [(2//1) 2]// 2//1 2 // 2 8 2 3 3 15 3 3
26
R12 ( R23 + R31 ) R12 + R23 + R31
i1
i1
i3
i2
i3
i2
R12 R31 R12 + R23 + R31 R23 R12 R12 + R23 + R31 R31 R23 R12 + R23 + R31
27
同理,令i1=0, 可得: R23 ( R12 + R31 ) R2 + R3 = R12 + R23 + R31 同理,令i2=0, 可得:
25
二、 等效变换:保证伏安特性相同
对应端口电压、电流分别相等
i1
u12 = f1 ( i1 , i2 , i3 ) u23 = f 2 ( i1 , i2 , i3 ) u31 = f3 (i1 , i2 , i3 )

第二章 电阻电路的等效变换

第二章 电阻电路的等效变换
将三个串联的电阻等效为一个电阻,其电阻为
R R2 R1 R3 4 2 6 12
由图(b)电路可求得电阻RL的电流和电压分别为:
i uS 15V 1A R RL 12 3
u RLi 3 1A 3V
例2-3电路如图2-7(a)所示。已知iS1=10A, iS2=5A, iS3=1A, G1=1S, G2=2S和G3=3S,求电流i1和i3。
u2

R3i1

(R2

R3
)i2

对电阻三角形联接的三端网络,外加两个电流源i1 和i2,将电流源与电阻的并联单口等效变换为一个
电压源与电阻的串联单口,得到图(b)电路,由此得

i12

R31i1 R23i2 R12 R23 R31
uu12

R31i1 R31i12 R31 (i1 i12 ) R23i12 R23i2 R23 (i2 i12 )
例2-2 图(a)所示电路。已知uS1=10V, uS2=20V, uS3=5V, R1=2, R2=4, R3=6和RL=3。求电阻RL的电流和电压。
解:为求电阻RL的电压和电流,可将三个串联的电压 源等效为一个电压源,其电压为
uS uS2 uS1 uS3 20V 10V 5V 15V
R3

R12
R23 R31 R23
R31
(2 13)
由此 解得
R2

R12
R12 R23 R23

R31

(2 14)
R2

R3

R23 (R12

R31 )

第二章 电路分析的等效变换法

第二章 电路分析的等效变换法
i3 Y u31Y R2 u23Y R1 R1 R2 R2 R3 R3 R1
R1R2 R2R3 R3R1 R12 R3 R1R2 R2R3 R3R1 R23 R1 R1R2 R2R3 R3R1 R31 R2
i1 =u12 /R12 – u31 /R31
+
+
5V
_
5V
_
_
2.3.2 电流源的串并联 并联: 可等效成一个理想电流源 i S º iS1 iS2 iSk º 串联: º 2A 2A 2A º º 电流相同的理想电流源 才能串联。但每个电流 iS
º iS= iSk (注意参考方向) º
源的端电压无法确定。 º
2. 3. 3 电压源与电流源的串并联 Is
º
º
º
º
º
º
º
º
º
º
º
º
2.3 电源的等效变换
2.3.1 电压源的串并联 + uS1 _ + uSn _ º
º + uS _
º
串联: uS= uSk ( 注意参考方向。一致, 取+;否则,取 - 。) 并联: 电压相同的电压源才 能并联。但每个电压 源的电流无法确定。 º
º I
º
I
º + 5V º
=G1u2+G2u2+ +Gnu2
=p1+ p2++ pn 故可以直接用等效电阻计算并联电路“内部”的总功率。 (对照前面:“对外等效”,对内不一定等效。)
2.1.3 电阻的串并联 要求:弄清楚串、并联的概念。 计算举例: 例1.
4 º 2
3 Req = 4∥(2+3∥6) = 2

第02章 电阻电路的等效变换

第02章 电阻电路的等效变换
u i is R0
i
R0=R , is=us/R
u us Ri
u is R0 R0 i
i
i
i' Ru 0 O
u
is
i
R=R0, us=Ris
所以,如果令
R R0
us R is
电压源、电阻的串联组合与电流源、电阻的并联组合 可以相互等效变换。 i R + + u i +
1
1
R3
3
R1
R2
2 3
R31
R12
R23
2
星接(Y接)
三角接(△接)
R1 R2 R2 R3 R3 R1 R12 R3 R1 R2 R2 R3 R3 R1 R23 R1 R1 R2 R2 R3 R3 R1 R31 R2
三式相加后通分可 得,Δ形连接变Y形 连接的电阻等效变 换关系式为(下页)
例2-2 求电流i 和 i5

i5
② ①

i5


① i1

等效电阻 R = 1.5Ω
i5

④ ③
i = 2A
i1

×
i5
-
i1 1A
2 1 - 6 2 1 1
1 A 3

*电阻的混联
电阻串并联的组合称为电阻混联。处理混联电路问 题的方法是:利用电阻串联或并联的公式对电路进 行等效变换,将复杂的混联电路转化成简单的电路 。 〖例1-6〗 求图1-19所示电路的等效电阻Rab, 已知图中各电阻的阻值均为20Ω 。
R2
2
3
R31
R12
R23

第2章 电阻电路的等效变换

第2章 电阻电路的等效变换

结论 串联电路的等效电阻等于各分电阻之和。
等效:对外部电路(端钮以外)效果相同。
2.串联电阻上电压的分配
R1
Rk
Rn
i + u1 _ + uk_ + un _
+
u
_
表明
uk

Rk i

Rk
u Req

Rk u Req
u
电压与电阻成正比,因此串联电阻电路可作分压电路。
两个电阻的分压:
i
+ u
u-+__1
等效的目的:化简电路
电阻的串联: Req= Rk
电 阻 电
2.2 电阻的等效变换 ( ,★ )
电阻的并联:Geq= Gk 电阻的Y- 等效变换
uk
ik
Rk GRk eqi
Geq
u

电压源串联:uS= uSk
的 等 效
2.3 独立源的等效变换 (,★)
电流源并联: iS= iSk 实际电源两种模型间的等效: uS=iSRS
(3)等效电导等于并联的各电导之和。
Geq=G1+G2+ ... +Gk+ ... +Gn= Gk = 1/Rk
3. 并联电阻的分流: 由 ik u/Rk Gk i u/Req Geq
ik

Gk i Geq
电流分配与
电导成正比
对于两电阻并联,有:
i
+ i1
i2
u_ R1
R2
1 Req
思考与练习
1.等效变换的概 念是什么?“电 路等效就是相等” 这句话对吗?为 什么?
2.电路等效变 换的目的是 什么?

电阻电路的等效变换

电阻电路的等效变换

R23
R31
R12 R3 R31 R2 R1 R2 R3
R12 R31 R1
R1
R12
R12 R31 R23
R31
已知电阻,求Y形电阻
R1
R12
R12 R31 R23
R31
R2
R12
R23 R12 R23
R31
R3
R12
R31 R23 R23
R31
请用文字概括以上三个公式
R31 i3/ 3
已知电阻,求Y形电阻
R1
R 12
R12R 31 R 23 R 31
R2
R 12
R 23R12 R 23 R 31
R3
R 12
R 31R 23 R 23 R 31
R1
R2
R3
RY
1 3
R
用电导表示时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
Y形电阻两两乘积之和 Y形不相邻电阻
Y连接的三个电阻相等R1=R2=R3=RY时 已知Y电阻,求形电阻
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
R3 R1
R31
R1 R2
R2 R3 R2
R3 R1
R R12 R23 R31 3 RY
连接的三个电阻相等R12=R23=R31=R 时
并联 16 64 12.8
10
16 64
串联12.8 7.2 20
并联 20 30 12 20 30
例: 电路如图,求等效电阻 Rab 和 Rcd。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回 上页 下 页
2.1.2 单口网络端口伏安关系(VAR)的求取
将单口网络从电路中分离出来,标好 其端口电流、电压的参考方向;
假定端电流i 已知(相当于在端口接 一电流源),求出 u = f (i) 。或者, 假定端电压 u 已知(相当于在端口接 一电压源),求出 i = g (u) 。
返回 上页 下 页
可以证明,不含独立源单口线性电阻电路的端电 压和端电流之比为一常数。
定义不含独立源单口线性电阻网络的等效电阻
(输入电阻)为:
Ri
u i
a
i +
b u-
N
注意 u、i 应为关联参考方向。
返回 上页 下 页
例2: 求图示二端电
ia
路的VAR及其 + 等效电路。 u1
-
3Ω i1 3Ω 3Ω
-+
5u1 u
一个单口网络对电路其余部分的影响,决定于其 端口电流电压关系(VAR)。
返回 上页 下 页
二. 等效单口网络
a
i +
b u-
N
u f (i)
a
i +
b u-
N'
u f (i)
若网络 N 与 N 的VAR相同,则称该两网络为
等效单口网络。
将电路中一个单口网络用其等效网络代替(称 为等效变换),电路其余部分的工作状态不会 改变。
i1 5
+
165V
i2 6 i3
+
i2
i3
-
18
4 i4
i5
165V
-
18
9
12
i1 165 11 15A i2 90 18 5A i3 15 5 10A i4 30 4 7.5A
u2 6i1 615 90V u3 6i3 610 60V u4 3i3 30V
i
解: 设端口电流 i 已知,有
b
i1 (3 9)i , u1 3i1 1 i
u 5u1 6i1 7 i
根据VAR,可 得等效电路:
a i
u
7Ω b
返回 上页
下页
3. 电阻的串并联
电路中有电阻的串联,又有电阻的并联, 这种连接方式称电阻的串并联。
例1 计算各支路的电压和电流。
6
i1 5
i5 10 7.5 2.5A
返回 上页 下 页
例2
I1 I2 R I3 R
I4
求:I1 ,I4 ,U4
+ 12V
_
++ 2R U_1 2R U_2 2R
+ 2R U_4
解 ①用分流方法做
I4
1 2
I3
1 4
I2
1 8
I1
1 8
12 R
3 2R
U4 I4 2R 3V
②用分压方法做
I1
12 R
uS
u
_
_
对外等效!
返回 上页 下 页
2. 理想电流源的串联并联
注意参考方向
①并联
i
is1
i
is 2
isn
isk
iS1
iS2
iSn
等效电路
i
②串联
iS1
iS2
i is1 is2
i
注意相同的理想电流源才能串联, 每个电流源
的端电压不能确定。
返回 上页 下 页
3. 电流源与支路的串、并联等效
iS1 R1
i
iS2
+
R2
u _
等效电路
iS R
i is1 u R1 is2 u R2 is1 is2 (1 R1 1 R2)u is u R
任意
元件 +
iS
uR
_
iS 等效电路
对外等效!
返回 上页 下 页
例1:
a
2A
+1A 2Ω 5V
b

例2:
a+
5V
-
+
3V
b
- 2A 3Ω
uab
i1R i2 R
( i 2
上页 下 页
2.2 电压源及电流源串、并联电路的等效变换
1.理想电压源的串联和并联
注意参考方向
①串联
+ uS1 _
u uuS2s1
+
us2
_
usk
+u
_ 等效电路
+_
u
②并联 u us1 us2
等效电路
i
注相意同电压源才能并联,
电源中的电流不确定。
+
+
+
uS1
_
uS2
_
u
_
返回 上页 下 页
③电压源与支路的串、并联等效
uS1 _ +
uS2 +
_
+ uS _ R
i
R1
+
u
R2_
i +u _
u us1 R1i us2 R2i (uS1 uS2) (R1 R2)i uS Ri
i
i
+
+
+
+
uS _
任意 元件
uR _
第二章 电阻电路的等效变换
❖ 2.1 等效二端网络 ❖ 2.2 电压源及电流源串、并联电路的等效变换 ❖ 2.3 实际电源的两种模型及其等效变换 ❖ 2.4 电阻星形连接与三角形连接的等效变换
2.1 等效二端网络
2.1.1 单口网络和等效单口网络 2.1.2 单口网络端口伏安关系(VAR)的求取 2.1.3 不含独立源单口电阻网络的等效电阻
电阻电路 分析方法
仅由电源和线性电阻构成的 电路
(1)欧姆定律和基尔霍夫定律 是分析电阻电路的依据;
(2)等效变换的方法,也称化 简的方法
返回 上页 下 页
2.1.1 单口网络和等效单口网络
一、单口网络
N
i
N1
+
u-
N2
将电路 N 分为 N1和 N2两部分,若 N1 、 N2内部
变量之间无控制和被控的关系,则称 N1和 N2为 单口网络(二端网络)。
U4
U2 2
1 4
U1
3V
I4
3 2R
返回 上页 下 页
从以上例题可得求解串、并联电路的一般步骤:
①求出等效电阻或等效电导; ②应用欧姆定律求出总电压或总电流; ③应用欧姆定律或分压、分流公式求各电阻上的电流和电压 以上的关键在于识别各电阻的串联、并联关系!
例3 a 6
cd 5
15
5
b
求: Rab , Rcd
Rab (5 5) //15 6 12Ω
Rcd (15 5) // 5 4Ω
等效电阻针对端口而言
返回 上页 下 页
例4 求: Rab
ab
Rab=70
20
100 10
40 80 60 50
ab
20 100 100
ab
20 100 60
120 60
ab
20 100 60
40
返回 上页 下 页
例5 求: Rab
5
15
6
a 20 b
7
6
缩短无 电阻支路
Rab=10
4
ba
15
10
20
5
a
15 b
7 6 6 4 a
b
15 7 3
返回 上页 下 页
例6 求: Rab
iR
对称电路 c、d等电位
c
R
R i 断路
c
R
a i1 R
i2 b R
a
b
R
R
d
d 根据电流分配
i1
1 2
i
i2
Rab R
11
例1:求图示二端
a
电路的VAR及其 等效电路。
i
5Ω 10V
u
u
解:设端口电压u 已知,有
20Ω b
i u 20 (u 10) 5 0.25u 2
或者 u 8 4i
根据VAR,可得等效电路:
a
2A
i
u
或者
4Ω b
4Ω 8V
a i
u
b
返回 上页 下 页
2.1.3 不含独立源单口电阻网络的等效电阻
相关文档
最新文档