电磁感应计算题集(学生)

合集下载

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。

在此题中,导线不运动,所以感应电动势为零。

因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。

答案:电路中的电流为0A。

题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。

当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。

在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。

根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。

根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。

答案:环中的新磁场强度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。

在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。

答案:导线在磁场中的运动速度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

电磁感应计算题--基础

电磁感应计算题--基础

电磁感应计算题—计算题一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.2.如图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?电磁感应计算题—基础一.计算题(共7小题)1.如图所示,宽度为L=0.40m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=2.0Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.40T.一根质量为m=0.1kg的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=0.50m/s,在运动过程中保持导体棒与导轨垂直.求:(1)导体棒MN中感应电流的方向;(2)闭合回路中产生的感应电流的大小;(3)作用在导体棒上的拉力的大小.【解答】解:(1)由右手定则判断知,通过导体棒MN的电流方向N到M.(2)感应电动势为:E=BLv=0.4×0.40×0.5V=0.08V感应电流的大小为:I==A=0.04A;(3)导体棒匀速运动,安培力与拉力平衡,则有:F=F A=BIL=0.4×0.04×0.4N=0.0064N.2.图所示,两根足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.磁感应强度为B,一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)稳定时的电流I;(2)电流稳定后,导体棒运动速度的大小v.【解答】解:(1)当电流稳定时,导体棒做匀速直线运动,有:mg=BIL,解得I=.(2)电流稳定时,I=,又I=,解得v=.3.如图所示,将边长为L、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度也为L、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,并再次进入磁场时恰好做匀速运动,整个运动过程中始终存在着大小恒定的空气阻力,且有f=0.25mg,而线框始终保持在竖直平面内不发生转动.求(1)线框最终离开磁场时的速度;(2)线框在上升阶段刚离开磁场时的速度;(3)整个运动过程中线框产生的焦耳热Q.【解答】解:(1)线框在下落阶段通过磁场过程中,始终做匀速运动,设其速度为v1,则有:mg=f+,解得:v1==(2)设线框在上升阶段离开磁场时的速度为v2,由动能定理,线框从离开磁场至上升到最高点的过程有:0﹣(mg+f)h=0﹣mv22…①线圈从最高点落至进入磁场瞬间,下落过程中有:(mg﹣f)h=mv12…②由①②得:v2=(3)设线框刚进入磁场时速度为v0,在向上穿越磁场过程中,产生焦耳热为Q1,由功能关系,则有:mv02﹣mv22=Q1+(mg+f)2L,而v0=2v2解得:Q1=线框在下落过程中,产生的焦耳热为:Q2=2(mg﹣f)L,解得:Q=Q1+Q2=+2(mg﹣f)L=,4.如图所示,水平放置的光滑平行金属轨道,电阻不计,导轨间距为L=2m,左右两侧各接一阻值为R=6Ω的电阻.两轨道内存垂直轨道平面向下的有界匀强磁场,一质量为m、电阻为r=2Ω的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.2v+3(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,用电压表测得电阻两端电压随时间均匀增大.(1)请推导说明金属棒做什么性质的运动.(2)求磁感应强度B的大小.(1)设金属棒左右两侧电阻阻值分别为R1、R2,则R1、R2的等效电阻为R==3Ω,【解答】解:设电阻两端电压为U、U随t的变化关系为U=kt,导体棒切割磁感线产生的感应电动势为E,通过导体棒的电流为I,导体棒所受安培力大小为F A,则:U=E﹣IrE=BLvI=解得:U=0.6BLv,结合U=kt可得:0.6BLv=kt,v∝t,故金属棒做初速度为零的匀加速直线运动(2)取金属棒为研究对象,根据牛顿第二定律可得:F﹣F A=maF A=BIL=0.2B2L2v解得:0.2v+3﹣0.2B2L2v=ma因导体棒做匀加速,故a与v无关,即:0.2v=0.2B2L2v解得:B==0.5T5.如图示,光滑的U型导轨形成一个倾角为30°的斜面,导轨的水平间距为l=10cm,在斜面上有垂直斜面向上的匀强磁场,磁感应强度B=20T,一质量为m=2kg的导体棒在导轨上由静止释放,导体棒的电阻R=2Ω,导轨电阻不计,当小球沿斜面下滑S=6m时,导体棒获得最大速度.求(1)导体棒的最大速度,(2)从静止到小球获得最大速度过程中回路产生的焦耳热.【解答】解:(1)当导体棒受力平衡时速度最大,根据平衡条件可得:30°=BIl,根据法拉第电磁感应定律和闭合电路的欧姆定律可得:,联立解得:v=5m/s;(2)由能量守恒得:mgs•sin30°=+Q,解得:Q=25J.6.如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻为r的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动.求:(1)ab杆沿导轨上滑过程中所达到的最大速度v;(2)ab杆达到最大速度时电阻R消耗的电功率.【解答】解:(1)当ab杆沿导轨上滑达到最大速度v时,其受力如图所示:由平衡条件可知:F﹣F B﹣mgsinθ=0…①又F B=BIL…②而I=…③联立①②③式得:v=…④(2)ab杆达到最大速度时电流最大,故电阻R消耗的功率最大,有:P=I2R…⑤联立③④⑤得:P=;7.有一边长为L=0.1m的正方形导线框,质量为m=1kg,由高度H=0.05m高处自由下落,如图所示.当导线框下边ab刚进入宽度也是L=0.1m的匀强磁场区域后,线圈以恒定速率穿越磁场,不计空气阻力.g=10m/s2,求:(1)ab边刚进入磁场时速度大小?(2)导线框在穿越磁场过程中产生的焦耳热Q?【解答】解:(1)由动能定理可知:mgH=mv2解得v==m/s=1m/s.(2)由能量守恒可知:△E P=Q△E P=2mgL解得Q=2×10×0.1J=2J.。

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

磁场,感应计算题有详细答案(快考试了,希望对同学们有所帮助)

稳恒磁场计算题144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O点的磁感应强度.解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中:DC 产生 )21(4)2sin 4(sin45cos 40001-=-=RI R IB πμπππμ 方向向里 CB 产生 RIR I B 16224002μμππ== 方向向里 BA 产生 03=BRIR I B B B B O 16)12(400321μπμ+-=++= 方向向里145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。

若导线的流过电流I ,求圆心O 处的磁感应强度。

解:两段直电流部分在O 点产生的磁场01=B弧线电流在O 点产生的磁场 RIB 2202μπα=RI R I B B B O παμπαμ42220021==+=∴146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生01=B大半圆 产生1024R IB μ=方向向里小半圆 产生2034R IB μ=方向向里竖直直电流产生2044R I B πμ=方向向外4321B B B B B O +++=∴ )111(44442210202010R R R I R I R IR IB O πμπμμμ-+=-+=方向向里147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空间磁感应强度分布,指明方向和磁感应强度为零的点的位置.、解:取垂直纸面向里为正,如图设X 轴。

)1.0(102102)(2272010x x xx d I x I B --⨯=-+=-πμπμ 在电流1I 左侧,B方向垂直纸面向外在电流1I 、2I 之间,B方向垂直纸面向里在电流2I 右侧,当m x 2.0<时,B方向垂直纸面向外当m x 2.0>时,B方向垂直纸面向里当0=B 时,即0)1.0(1021027=--⨯-x x x则 m x 2.0=处的B为0。

高三物理电磁感应计算题专题训练

高三物理电磁感应计算题专题训练

电磁感应计算题专题训练1.(19分)某同学利用电磁感应现象设计了一种发电装置。

如图1为装置示意图,图2为俯视图,将8块相同的磁铁N 、S 极交错放置组合成一个高h = 0.5m 、半径r = 0.2m 的圆柱体,并可绕固定的OO ′轴转动。

圆柱外侧附近每个磁场区域的磁感应强度大小均为B = 0.2T ,磁场方向都垂直于圆柱表面,相邻两个区域的磁场方向相反。

紧靠圆柱外侧固定一根与圆柱体等长的金属杆ab ,杆与圆柱平行,杆的电阻R = 0.4Ω。

从上往下看,圆柱体以ω=100rad/s的角速度顺时针方向匀速转动。

以转到如图所示的位置为t = 0的时刻。

取g = 10m/s 2,π2= 10。

求:(1)圆柱转过八分之一周期的时间内,ab 杆中产生的感应电动势的大小E ;(2)如图3所示,M 、N 为水平放置的平行板电容器的两极板,极板长L 0 = 0.314 m ,两板间距d = 0.125m 。

现用两根引线将M 、N 分别与a 、b 相连。

若在t = 0的时刻,将一个电量q = +1.00×10-6C 、质量m =1.60×10-8kg 的带电粒子从紧临M 板中心处无初速释放。

求粒子从M 板运动到N 板所经历的时间t 。

不计粒子重力。

(3)在如图3所示的两极板间,若在t = 0的时刻,上述带电粒子从靠近M 板的左边缘处以初速度v 0水平射入两极板间。

若粒子沿水平方向离开电场,求初速度v 0的大小,并在图中画出粒子对应的运动轨迹。

不计粒子重力。

2.(19分)如图甲所示,PQNM 是表面粗糙的绝缘斜面,abcd 是质量m=0.5kg 、总电阻R=0.5Ω、边长L=0.5m 的正方形金属线框,线框的匝数N=10。

将线框放在斜面上,使斜面的倾角θ由0°开始缓慢增大,当θ增大到37°时,线框即将沿斜面下滑。

假设最大静摩擦力与滑动摩擦力大小相等,现保持斜面的倾角θ=37°不变,在OO ′NM 的区域加上垂直斜面方向的匀强磁场,使线框的一半..处于磁场中,磁场的磁感应强度B 随时间t 变化的图像如图乙所示。

电磁感应计算题及解答讲解

电磁感应计算题及解答讲解

一、选择题1、如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO’为其对称轴。

一导线折成变长为的正方形闭合回路abcd,回路在纸面内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势大小为C.回路中感应电流的方向为顺时针方向D.回路中ab边与cd边所受安培力方向相同2、如图8,在O点下方有一个具有理想边界的磁场,铜环在A点由静止释放向右摆至最高点B,不考虑空气阻力,则下列说法正确的是()A.A、B两点在同一水平线B.A点高于B点C.A点低于B点D.铜环将做等幅摆动二、计算题3、如图所示,两根质量均为m=2kg的金属棒垂直地放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今用250N的水平力F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产生的焦耳热共为45J,此时CD棒速率为8m/s,立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)撤去拉力F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。

4、如图所示,光滑矩形斜面ABCD的倾角为,在其上放置一矩形金属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近。

重物质量,离地面的高度为。

斜面上区域是有界匀强磁场,方向垂直于斜面向上,已知AB到的距离为,到的距离为,到CD的距离为,取。

现让线框从静止开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产生的焦耳热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所示,半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行的金属板,两极间的距离为d,板长为L。

电磁感应计算题

电磁感应计算题

电磁感应计算题1.如图所示,两根相距L平行放置的光滑导电轨道,与水平面的夹角为θ,轨道间有电阻R ,处于磁感应强度为B、方向垂直轨道向上的匀强磁场中,一根质量为m 、电阻为r 的金属杆ab ,由静止开始沿导电轨道下滑,设下滑过程中杆ab 始终与轨道保持垂直,且接触良好,导电轨道有足够的长度且电阻不计,求: (1)金属杆的最大速度是多少;(2)当金属杆的速度刚达到最大时,金属杆下滑的距离为S ,求金属杆在此过程中克服安培力做的功; (3)若开始时就给杆ab 沿轨道向下的拉力F使其由静止开始向下做加速度为a 的匀加速运动(a>gsinθ),求拉力F与时间t 的关系式2.如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为 m ,左端通过导线与阻值为 2 的电阻R 连接,右端通过导线与阻值为 4 的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长为2 m ,CDEF 区域内磁场的磁感应强度B 随时间变化如图所示,在t =0时,一阻值为 2 的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度; $(2)恒力F 的大小; (3)金属棒的质量。

…%R Ba b θ#θ3.如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m ,上端连接R=Ω的电阻,下端连接着电阻不计的金属卡环,导轨与水平面的夹角θ=30°.导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离S =10m ,磁感应强度的B -t 图如图乙所示。

长为L 且质量为m=0.5kg 的金属棒ab 的电阻不计,垂直导轨放置于距离磁场上边界d =2.5m 处,与导轨始终接触良好.在t =0时刻棒由静止释放,滑至导轨底端被环卡住不动,g 取10m/s 2,求: (1)棒运动到磁场上边界的时间; (2)棒进入磁场时受到的安培力;(3)在0—5s 时间内电路中产生的焦耳热。

初三电磁感应练习题及答案

初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。

求导线所受的感应电动势大小。

2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。

3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。

当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。

求在导线上出现的电动势大小。

答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。

根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。

将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。

故导线所受的感应电动势大小为0.4V。

2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。

根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。

将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。

导线两端之间的感应电势差为45V。

3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。

根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。

将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。

在导线上出现的电动势大小为0.8V。

练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。

圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。

2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。

高中物理电磁感应经典计算题

高中物理电磁感应经典计算题

电磁感应经典计算题1如图所示,边长L=0.20m 的正方形导线框 ABCD 由粗细均匀的同种材料制成, 正方形导线 框每边的电阻R )=1.0 Q,金属棒MNW 正方形导线框的对角线长度恰好相等, 金属棒MN 勺电磁场的磁感应强度 B=0.50T ,方向垂直导线框所在且与导线框对角线 BD 垂直放置在导线框上,金属v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字 )(1) 金属棒产生的电动势大小;(2) 金属棒MN 上通过的电流大小和方向; (3 )导线框消耗的电功率。

2.如图所示,正方形导线框 abed 的质量为m 边长为I ,导线框的总电阻为 R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落, 下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为 B ,方向垂直纸面向里,磁场上、下两个界面水平距离为 I 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g o(1 )求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培 力做功的功率等于导线框消耗的电功率。

(3 )求从线框cd 边刚进入磁场到 ab 边刚离开磁场的过程中,线框克服 安培力所做的功。

3.如图所示,在高度差 h = 0.50m 的平行虚线范围内,有磁感强度 A0.50T 、方向水平向里的匀强磁场,正方形线框 abcd 的质量m= 0.10kg 、 边长L = 0.50m 、电阻R = 0.50 Q ,线框平面与竖直平面平行, 静止在位置“I ”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力 F = 4.0N 向上提线框,该框由位置"I”无初速度开始向上运动,穿过磁场区,最 后到达位置“n”( ab 边恰好出磁场),线框平面在运动中保持在竖直 平面内,且cd 边保持水平。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

《大学物理》电磁感应练习题及答案

《大学物理》电磁感应练习题及答案

《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。

2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。

由于磁感强度变化而引起的感应电动势称为感生电动势。

3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。

两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。

4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。

不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。

5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。

答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。

9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。

10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。

电磁感应计算题训练及答案

电磁感应计算题训练及答案

电磁感应大题训练1.如图所示,在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L .一个质量为m 、边长也为L 的正方形线框(设电阻为R )以速度υ进入磁场时,恰好做匀速直线运动,若当ab 边到达'gg 与'ff 中间位置时,线框又恰好做匀速运动,则(1)当ab 边刚越过'ff 时,线框加速度的值为多少?(2)求线框从开始进入磁场到ab 边到达'gg 和'ff 中点的过程中产生的热量是多少?2.如图a所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图b所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2×10-21kg、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,1B 、2B 方向如图所示(粒子重力及其相互作用不计).求(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?(2)粒子从边界MN射出来的位置之间最大的距离为多少?3.如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1㎏的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:(1)导体棒所达到的稳定速度是多少?(2)导体棒从静止到达稳定速度的时间是多少?.4.图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

九年级物理电磁感应题库及答案

九年级物理电磁感应题库及答案

九年级物理电磁感应题库及答案一、选择题1、下列设备中,利用电磁感应原理工作的是()A 电动机B 发电机C 电铃D 电磁铁答案:B解析:发电机是利用电磁感应原理工作的,闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生感应电流。

电动机是利用通电导体在磁场中受力的作用而工作的;电铃和电磁铁是利用电流的磁效应工作的。

2、关于产生感应电流的条件,下列说法中正确的是()A 只要导体在磁场中运动,就会产生感应电流B 只要闭合电路的一部分导体在磁场中运动,就会产生感应电流C 只要闭合电路的一部分导体在磁场中做切割磁感线运动,就会产生感应电流D 闭合电路的全部导体在磁场中做切割磁感线运动,才会产生感应电流答案:C解析:产生感应电流的条件:一是“闭合电路”,二是“一部分导体”,三是“做切割磁感线运动”,三个条件缺一不可。

选项 A 中,导体在磁场中运动,如果不是闭合电路,或者导体没有做切割磁感线运动,都不会产生感应电流;选项B 中,闭合电路的一部分导体在磁场中运动,如果不是做切割磁感线运动,也不会产生感应电流;选项 D 中,闭合电路的全部导体在磁场中做切割磁感线运动时,也不一定会产生感应电流,比如全部导体都沿着磁感线运动。

3、如图所示,在探究“什么情况下磁可以生电”的实验中,保持磁体不动,下列现象描述正确的是()A 导线 ab 竖直向上运动时,电流表指针会偏转B 导线 ab 竖直向下运动时,电流表指针会偏转C 导线 ab 水平向左运动时,电流表指针会偏转D 导线 ab 静止不动时,电流表指针会偏转答案:C解析:产生感应电流的条件是闭合电路的一部分导体在磁场中做切割磁感线运动。

导线 ab 竖直向上或竖直向下运动时,都没有做切割磁感线运动,所以电流表指针不会偏转;导线 ab 水平向左运动时,做切割磁感线运动,电流表指针会偏转;导线 ab 静止不动时,没有做切割磁感线运动,电流表指针不会偏转。

4、下列电器中,工作时利用电磁感应原理的是()A 电烤箱B 电热水器C 发电机D 电熨斗答案:C解析:电烤箱、电热水器和电熨斗都是利用电流的热效应工作的,即电流通过电阻时会产生热量。

电磁感应定律典型计算题

电磁感应定律典型计算题

.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

《大学物理》电磁感应练习题及答案解析

《大学物理》电磁感应练习题及答案解析

《大学物理》电磁感应练习题及答案解析一、选择题1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时.( D )(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。

(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。

(C) 铜盘上没有感应电流产生,铜盘中心处电势最高。

(D) 铜盘上没有感应电流产生,铜盘边缘处电势最高。

2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中( C )A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;C.感应电动势相同,感应电流不同;D.感应电动势不同,感应电流相同。

3.两根无限长的平行直导线有相等的电流但电流的流向相反如右图,而电流的变化率均大于零,有一矩形线圈与两导线共面,则( B )A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。

4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。

(a)、(b)、(c)处有三个光滑细金属框。

今使以速度向右滑动。

设(a)、(b)、(c)、(d)四种情况下在细棒中的感应电动势分别为ℇa、ℇb、ℇc、ℇd,则( C )A.ℇa =ℇb =ℇc <ℇd B.ℇa =ℇb =ℇc >ℇdC.ℇa =ℇb =ℇc =ℇd D.ℇa >ℇb <ℇc <ℇd5.一矩形线圈,它的一半置于稳定均匀磁 场中,另一半位于磁场外,如右图所示, 磁感应强度B的方向与纸面垂直向里。

欲使线圈中感应电流为顺时针方向则(A ) A .线圈应沿x 轴正向平动; B .线圈应沿y 轴正向平动;C .线圈应沿x 轴负向平动D .线圈应沿y 轴负向平动6.在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示,B 的大小以速率dtdB变化,在磁场中有A 、B 两点,其间可以放置一直导线和一弯曲的导线,则有下列哪种情[ D ] (A) 电动势只在直导线中产生(B) 电动势只在弯曲的导线产生 (C) 电动势在直导线和弯曲的导线中都产生, 且两者大小相等(D)直导线中的电动势小于弯曲导线中的电动势 知识点:电动势 类型:A7、关于感生电场和静电场下列哪一种说法正确.( B )(A) 感生电场是由变化电场产生的.(B) 感生电场是由变化磁场产生的,它是非保守场. (C) 感生电场是由静电场产生的(D) 感生电场是由静电场和变化磁场共同产生的1D 2C 3B 4C 5A6D7B二、填空题1.如图所示,AB 、CD 、为两均匀金属棒,长均为0.2m ,放在磁感应强度 B=2T 的均匀磁场中,磁场的方向垂直于屏面向里,AB 和CD 可以在导轨上自由滑动,当 CD 和AB 在导轨上分别以s m v /41=、s m v /22=速率向右作匀速运动时,在CD 尚未追上AB 的时间段内ABDCA 闭合回路上动生电动势的大小______________ 方向 _____________________.1电动势的大小 0.8V 方向 顺时针方向2.一匝数的线圈,通过每匝线圈的磁通量,则任意时刻线圈感应电动势的大小 ______________ . 感应电动势的大小 t ππ10cos 1057⨯ 3.感生电场产生的原因_ 变化的磁场产生感生电场4.动生电动势的产生的原因是:___电荷在磁场中运动受到洛伦兹力___ 5 。

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案1. 单选题:(1) 当穿过一根金属导线的电流方向改变时,导线中的电磁场磁感应强度的变化过程是:A. 逐渐增大,然后逐渐减小B. 逐渐减小C. 总是不变D. 逐渐增大答案:D(2) 一个圆形回路平面内以T/秒的速度向外运动,一匀强磁场的磁感应强度大小为B,方向垂直于回路平面。

圆形回路中的恒定磁通量的大小等于:A. BTB. BπT^2C. B/TD. B/T^2答案:B(3) 一根长度为l的匀强磁场中有一导线,导线以v的速度作匀速运动。

如果导线与磁感线的夹角为α,则磁感应强度大小的变化率为:A. l/vcosαB. vcosα/lC. v/lcosαD. v/(lcosα)答案:A2. 多选题:(1) 关于法拉第电磁感应定律的描述,下列说法中正确的是:A. 在一个闭合电路中,当磁通量发生变化时,电路中会产生感应电流B. 直流电流产生的磁感应强度可以通过法拉第电磁感应定律计算C. 在一个闭合电路中,当磁感应强度发生变化时,电路中会产生感应电流D. 电流在导体中流动会产生磁场,这是法拉第电磁感应定律的基础答案:A、B(2) 以下哪些现象可以用电磁感应来解释?A. 电动机的工作原理B. 发电机的工作原理C. 变压器的工作原理D. 电磁铁的吸铁石的原理答案:A、B、C3. 计算题:(1) 一根直导线的长度为0.2m,电流强度为2A。

将这根导线竖直放置在一个垂直于地面的匀强磁场中,磁感应强度为0.5T。

求导线上电流产生的磁场的磁感应强度大小。

解答:根据安培定律,导线产生的磁场的磁感应强度大小与电流强度和导线与磁感应强度之间的夹角有关。

在这个问题中,导线与磁场方向垂直,所以夹角为90°。

由于导线长度为0.2m,电流强度为2A,根据毕奥-萨伐尔定律,我们可以使用以下公式来计算导线上电流产生的磁场的磁感应强度大小:磁感应强度大小= (μ0/4π) * (I/l)其中,μ0是真空中的磁导率,其数值为4π * 10^-7 T·m/A,I是电流强度,l是导线长度。

电磁感应计算题及答案

电磁感应计算题及答案

电磁感应计算题及答案1.如图29所示,金属框架与水平面成30°角,匀强磁场的磁感强度B=0.4T,方向垂直框架平面向上,金属棒长l=0.5m,重量为0.1N,可以在框架上无摩擦地滑动,棒与框架的总电阻为2Ω,运动时可认为不变,问:(1)要棒以2m/s的速度沿斜面向上滑行,应在棒上加多大沿框架平面方向的外力?(2)当棒运动到某位置时,外力突然消失,棒将如何运动?(3)棒匀速运动时的速度多大?(4)达最大速度时,电路的电功率多大?重力的功率多大?2.如图30所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?3.如图31所示,平行金属导轨的电阻不计,ab、cd的电阻均为R,长为l,另外的电阻阻值为R,整个装置放在磁感强度为B的匀强磁场中,当ab、cd以速率v向右运动时,通过R的电流强度为多少?4.固定在匀强磁场中的正方形导线框abcd各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线,磁感应强度为B,方向垂直纸面向里,现有一段与ab完全相同的电阻丝PQ 架在导线框上,如图32所示,以恒定的速度v从ad滑向bc,当PQ滑过5.两根相距0.2m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计,已知金属细杆在平行于导轨的拉力的作用下,沿导轨朝相反方向匀速平移,速率大小都是v=0.5m/s,如图33所示,不计导轨上的摩擦,求:(1)作用于每条金属细杆的拉力;(2)求两金属细杆在间距增加0.10m的滑动过程中共产生的热量6.电阻为R的矩形导线框abcd,边长ab=l,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图34所示,若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少?7.如图35所示,导线框abcd固定在竖直平面内,bc段的电阻为R,其他电阻均可忽略,ef是一电阻可忽略的水平放置的导体杆,杆长为l,质量为m,杆的两端分别与ab和cd保持良好接触,又能沿它们无摩擦地滑动,整个装置放在磁感强度为B的匀强磁场中,磁场方向与框面垂直,现用一恒力F竖直向上拉ef,当ef匀速上升时,其速度的大小为多少?答案1.0.09N,减速,2.5m/s0.125J,0.125J2.5s 3.2BLv/3R4.9BLv/nR,向左5.3.2×10-2N 1.28×10-2J6.2mgh 7.R(F-mg)/B2l2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应最新计算题集(学生)————————————————————————————————作者:————————————————————————————————日期:电磁感应最新计算题集1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。

圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。

在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。

设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。

⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。

⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。

2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。

整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。

AC 端连有阻值为R 的电阻。

若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。

现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。

求:(1)金属棒下滑过程中的最大速度。

(2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)?FRB图t /1510 5 0 2 4 v(m/图A BDCEF B s θ R4.如图(A )所示,固定于水平桌面上的金属架cdef ,处在一竖直向下的匀强磁场中,磁感强度的大小为B 0,金属棒ab 搁在框架上,可无摩擦地滑动,此时adeb 构成一个边长为l 的正方形,金属棒的电阻为r ,其余部分的电阻不计。

从t =0的时刻起,磁场开始均匀增加,磁感强度变化率的大小为k (k =ΔBΔt)。

求:1用垂直于金属棒的水平拉力F 使金属棒保持静止,写出F 的大小随时间t 变化的关系式。

2如果竖直向下的磁场是非均匀增大的(即k 不是常数),金属棒以速度v 0向什么方向匀速运动时,可使金属棒中始终不产生感应电流,写出该磁感强度B t 随时间t 变化的关系式。

3如果非均匀变化磁场在0—t 1时间内的方向竖直向下,在t 1—t 2时间内的方向竖直向上,若t =0时刻和t 1时刻磁感强度的大小均为B 0,且adeb 的面积均为l 2。

当金属棒按图(B )中的规律运动时,为使金属棒中始终不产生感应电流,请在图(C )中示意地画出变化的磁场的磁感强度B t 随时间变化的图像(t 1-t 0=t 2-t 1<lv)。

5.一有界匀强磁场区域如图甲所示,质量为m 、电阻为R 的长方形矩形线圈abcd 边长分别为L 和2L ,线圈一半在磁场内,一半在磁场外,磁感强度为B 0。

t =0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v -t 图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响。

⑴磁场磁感强度的变化率。

⑵t 3时刻回路电功率。

6.如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B 0=0.5T ,并且以Bt∆∆=1T/s 在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m ,左端所接电阻R =0.4Ω。

在导轨上l =1.0m 处的右端搁一金属棒ab ,其电阻R 0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M =2kg 的重物,欲将重物吊起,问: (1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小; (2)经过多长时间能吊起重物。

a b cd e f图以向左为运动的正方向 t tvvt-以竖直向下为正方向 t tB tBt-L2 B a bc d甲vtv 0 t t 乙t l RB ab7.如图所示,在磁感应强度为B 的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。

导轨上端跨接一阻值为R 的电阻(导轨电阻不计)。

两金属棒a 和b 的电阻均为R ,质量分别为kg m a 2102-⨯=和kg m b 2101-⨯=,它们与导轨相连,并可沿导轨无摩擦滑动。

闭合开关S ,先固定b ,用一恒力F 向上拉,稳定后a 以s m v /101=的速度匀速运动,此时再释放b ,b 恰好保持静止,设导轨足够长,取2/10s m g =。

(1)求拉力F 的大小;(2)若将金属棒a 固定,让金属棒b 自由滑下(开关仍闭合),求b 滑行的最大速度2v ;(3)若断开开关,将金属棒a 和b 都固定,使磁感应强度从B 随时间均匀增加,经0.1s 后磁感应强度增到2B 时,a 棒受到的安培力正好等于a 棒的重力,求两金属棒间的距离h 。

8.如图15所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计。

导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的磁感应强度满足关系B=B 0sin (lx2π)。

一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R 。

开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。

图9.水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。

(取重力加速度g=10m/s2)(1)金属杆在匀速运动之前做什么运动? (2)若m=0.5kg ,L=0.5m ,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少?10.如图(a )所示,光滑的平行长直金属导轨置于水平面内,间距为L 、导轨左端接有阻值为R 的电阻,质量为m 的导体棒垂直跨接在导轨上。

导轨和导体棒的电阻均不计,且接触良好。

在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B 。

开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。

⑴求导体棒所达到的恒定速度v 2;⑵为使导体棒能随磁场运动,阻力最大不能超过多少?⑶导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大? ⑷若t =0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v -t 关系如图(b )所示,已知在时刻t 导体棒瞬时速度大小为v t ,求导体棒做匀加速直线运动时的加速度大小。

vR× × × ×× × × ×× × × ×B Lm v (tt v O(11.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距l m ,导轨平面与水平面成θ=37°角,下端连接阻值为尺的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. (1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻尺消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g =10rn /s 2,sin37°=0.6,cos37°=0.8)12、如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数53=μ,导轨平面的倾角为030=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让金属杆AB 由静止开始下滑从杆静止开始到杆AB 恰好匀速运动的过程中经过杆的电量1C q =,求: (1)当AB 下滑速度为s m /2时加速度的大小 (2)AB 下滑的最大速度(3)从静止开始到AB 匀速运动过程R 上产生的热量θ RBA B MPQN13.光滑平行金属导轨水平面内固定,导轨间距L=0.5m,导轨右端接有电阻R L=4Ω小灯泡,导轨电阻不计。

如图甲,在导轨的MNQP矩形区域内有竖直向上的磁场,MN、PQ间距d=3m,此区域磁感应强度B随时间t变化规律如图乙所示,垂直导轨跨接一金属杆,其电阻r=1Ω,在t=0时刻,用水平恒力F拉金属杆,使其由静止开始自GH位往右运动,在金属杆由GH 位到PQ位运动过程中,小灯发光始终没变化,求:(1)小灯泡发光电功率;(2)水平恒力F大小;(3)金属杆质量m.14.两根光滑的长直金属导轨导轨MN、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。

长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。

ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。

相关文档
最新文档