5月考数学试题
2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题
![2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题](https://img.taocdn.com/s3/m/e1f58630eef9aef8941ea76e58fafab069dc44a9.png)
2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足2(13)(1)i z i +=+,则||z =( ) ABCD2.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( )A.y = B.y =±C.y x = D.2y x =± 3.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x=- 4.一个正四棱锥形骨架的底边边长为2,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )A. B .4π C. D .3π5.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .36. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A.75 B.65 C.55 D.457.函数cos()cosx xf xx x+=-在[2,2]ππ-的图象大致为A.B.C.D.8.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月份C.1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元9.已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >> 10.已知集合{}10,1,0,12x A xB x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( ) A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,1 11.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .112.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥二、填空题:本题共4小题,每小题5分,共20分。
陕西省西安市铁一中学2022-2023学年七年级下学期5月月考数学试卷(含解析)
![陕西省西安市铁一中学2022-2023学年七年级下学期5月月考数学试卷(含解析)](https://img.taocdn.com/s3/m/59b2c28732d4b14e852458fb770bf78a65293ade.png)
2022-2023-2七年级数学试题时间:100分钟满分:100分一、选择题(每小题3分,共30分)1. 下列计算正确的是()A. B. C. D.答案:C解析:解:A、,原计算错误,该选项不符合题意;B、,原计算错误,该选项不符合题意;C、,原计算正确,该选项符合题意;D、,原计算错误,该选项不符合题意.故选:C.2. 世界上最小的开花结果植物——澳大利亚的出水浮萍,其果实像一个微小的无花果,它的质量只有0.000000076克,将0.000000076用科学记数法表示为()A. B. C. D.答案:A解析:解:,故选:A.3. 已知三角形三边长分别为3,a,7,且a为奇数,则这样的三角形有()A. 2个B. 3个C. 4个D. 5个答案:B解析:解:∵三角形三边长分别为3,a,7,,∴,∵a为奇数,∴a可取5,7,9∴这样的三角形共3个,故B正确.故选:B.4. 如图,下列条件不能判定的是()A. B. C. D.答案:D解析:解;∵和是同位角,当时,,故A错误;∵和是同旁内角,当时,,故B错误;∵和是内错角,当时,,故C错误;∵和不是同位角,也不是内错角,当时,不能证明,故D正确,故选:D.5. 如图,为测量池塘两侧A,B两点间距离,在地面上找一点C,连接,,使,然后在的延长线上确定点D,使,得到,通过测量的长,就能得出的长.那么的理由是()A. B. C. D.答案:A解析:解:∵,∴,则在和中∴.故选:A.6. 若两个大小不同的正方形的周长之和为36,面积之和为53,分别以两个正方形的边长作为长方形的长和宽,则该长方形的面积为()A. 7B. 9C. 14D. 28答案:C解析:解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,∴,∴,∴以两个正方形的边长作为长方形的长和宽,则该长方形的面积为:,故C正确.故选:C..7. 如图,将长方形沿折叠,使点A落在边上的点E处,点B落在点F处,若,则的度数为()A. B. C. D.答案:A解析:解:根据折叠可知,,,∵,,∴,∴,∴,∴,故A正确.故选:A.8. 高原反应是人到达一定海拔高度后,由于机体对低压低氧环境的适应能力不足而引起的,下面是反映海拔高度与空气含氧量之间关系的一组数据:海拔高度/m01000200030004000空气含氧量299.3265.5234.8209.6182.1下列说法不正确的是()A. 海拔高度是自变量,空气含氧量是因变量B. 在海拔高度为的地方空气含氧量是C. 海拔高度每上升,空气含氧量减少D. 当海拔高度从上升到时,空气含氧量减少了答案:C解析:解:A.海拔高度是自变量,空气含氧量是因变量,故A正确,不符合题意;B.在海拔高度为的地方空气含氧量是,故B正确,不符合题意;C.,,海拔高度每上升,空气含氧量减少值不都是,故C错误,符合题意.D.当海拔高度从上升到时,空气含氧量减少了,故D正确,不符合题意.故选:C.9. 下列说法中正确的是()①过一点有且只有一条直线与已知直线平行;②两边分别相等的两个直角三角形全等;③直线外一点与直线上各点连接的线段中,垂线段最短;④全等三角形的周长和面积都相等;⑤三角形的三条角平分线交于一点、三条中线交于一点、三条高线交于一点.A. ①②B. ③④C. ③④⑤D. ①②③④⑤答案:B解析:解:①过直线外一点有且只有一条直线与已知直线平行,故原说法错误;②如果一个直角三角形的直角边和斜边与另一个直角三角形的两条直角边分别相等,则这两个直角三角形不全等,故原说法错误;③直线外一点与直线上各点连接的线段中,垂线段最短,此说法正确;④全等三角形的周长和面积都相等,此说法正确;⑤三角形的三条角平分线交于一点、三条中线交于一点、三条高线所在的直线交于一点,故原说法错误;综上分析可知,正确的有③④,故B正确.故选:B.10. 如图,在中,点D为上一点,E,F分别为线段,的中点,连接,,,已知,,则的面积为()A 25 B. 9 C. 2 D. 1答案:D解析:解:∵E为线段的中点,∴,,∴,∵F分别为线段的中点,∴,∴.故选:D二、填空题(每小题3分,共18分)11. 计算:______.答案:-1解析:解:,故答案为:.12. 如图,点,在上,,,请你添加一个条件__________,使得可用“”证明.(写出一个即可)答案:(答案不唯一)解析:解:添加一个条件可以是,,,,,,故答案为:(答案不唯一).13. 一副三角板如图放置,当∠1与∠2互余时,∠1的度数是__________.答案:##度解析:解:∵∠1与∠2互余,∴,∵与互余,∴,∴,∵与互余,∴,∴.故答案为:.14. 若为完全平方式,则m的值为_____.答案:10或-10##-10或10##±10.解析:∵,∴或,解得:m=10或-10.故答案为:10或-10.15. 已知等腰三角形的周长为,其一条边长为,则该等腰三角形的底边长为__________.答案:或解析:解:当为等腰三角形的底时,则腰长为:,此时等腰三角形的三边长分别为:,,,符合三角形三边关系,能够组成三角形;当为等腰三角形的高时,则底边长为:,此时等腰三角形的三边长分别为:,,,符合三角形三边关系,能够组成三角形;综上分析可知,该等腰三角形的底边长为或.故答案为:或.16. 如图,在中,,于点F,点D为延长线上一点,连接,过点D 作交延长线于点E,若,则__________.答案:8解析:解:∵,,∴,,∵,∴,∵,∴,即,解得:.故答案为:8.三、解答题(共52分)17. 计算题(1)(2)(3)(4)答案:(1)(2)(3)(4)小问1解析:解:;小问2解析:解:;小问3解析:解:;小问4解析:解:.18. 先化简,再求值:,其中,.答案:;解析:解:,把,代入得:原式.19. 小明不小心将一块三角形玻璃打碎,他拿出如图所示的一块去配新玻璃.请你用尺规作图的方法画一个,使所得的和原来的三角形玻璃全等.(不要求写作法,保留作图痕迹.)答案:见解析解析:解:如图所示,即为所求.20. 如图,已知和,,,,点B,C,E,F在同一条直线上.求证:.答案:见解析解析:证:∵,,∴,,在与中,∴,∴,∴,∴.21. 2023年世界泳联跳水世界杯在西安奥体中心举行,小亮和姐姐周末去观赛,姐姐骑共享单车保持匀速从家到奥体中心看比赛,到达赛场后看比赛用了,看完比赛后骑车以同样的速度沿原路返回家中,姐姐从家出发的同时小亮刚看完上一场比赛从奥体中心步行返回家中,结果比姐姐早到家,姐姐从家出发开始计时,两人离家的距离与所用时间之间的关系图像如图所示,请结合图像信息解答下列问题:(1)_______________,______________;(2)求出姐姐从家前往奥体中心的过程中,姐姐离家的距离与时间之间的关系式;(3)在姐姐去奥体中心的过程中,为何值时,两人相距.答案:(1)40;70(2)(3)在姐姐去奥体中心的过程中,或时,两人相距小问1解析:解:根据图像可知,姐姐从家到奥体中心用时,到达赛场后看比赛用了,因此;∵姐姐看完比赛后骑车以同样的速度沿原路返回家中,∴姐姐去奥体中心和返回用的时间都是,∴.故答案为:40;70.小问2解析:解:姐姐从家前往奥体中心的过程中,姐姐离家的距离与时间之间的关系式为,把代入得:,解得:,∴姐姐离家的距离与时间之间的关系式为.小问3解析:解:设小亮返回时的函数解析式为,把,代入得:,解得:,∴小亮返回时的函数解析式为,当时,,解得:;当时,,解得:;答:在姐姐去奥体中心的过程中,或时,两人相距.22. 如图,四边形和四边形是正方形,(正方形四条边都相等,四个内角都是直角)感知(1)某学习小组探究如下问题:如图1,连接,,直线于点H,交于点M,则与面积的大小关系是:_________.探究(2)该学习小组在探究(1)中面积问题时,发现M为中点,你认为是否成立?若成立,请证明;若不成立,请说明理由.拓展(3)经过以上探究,该学习小组也提出问题:若正方形和正方形的位置如图2所示,点M为中点,连接交于点H,那么与有怎样的关系?试探究,并说明理由答案:(1);(2)成立;理由见解析;(3),;理由见解析解析:解:(1)过点E作于点Q,延长,过点G作于点P,如图所示:则,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴.故答案为:.(2)成立;理由如下:过点E作于点P,过点B作于点Q,如图所示:∵,∴,∵,∴,∴,∵,∴,∴,同理得:,∴,∴,∵,,∴,∴,(3),.理由如下:延长,在延长线上截取,连接、,如图所示:∵M为的中点,∴,∵,∴,∴,,∵,∴,∵,∴,∴,∵,,∴,即,∴,∵,∴,∴,,∵,∴,∴,。
2023-2024学年广东省广州市高一下学期5月月考数学质量检测模拟试题(含答案)
![2023-2024学年广东省广州市高一下学期5月月考数学质量检测模拟试题(含答案)](https://img.taocdn.com/s3/m/c7241594b8f3f90f76c66137ee06eff9aef84934.png)
广东省广州市2023-2024学年高一下学期5月月考数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足1i2i 1i z --=+(i 为虚数单位),则z 的虚部是()A.1B.iC.i- D.1-【正确答案】A【分析】根据复数的除法与虚部的定义求解即可.【详解】()()()21i 1i2i 2i 2i 2i i 1i 1i 1i 2z ---=+=+=+=++-,故虚部为1.故选:A2.已知()1,1a = ,()2,0b = ,()2,4c =r,则下列各组向量中,不能作为平面内一组基底的是()A.a ,b c -B.a ,b c+C.a ,2b c-D.a ,2b c+【正确答案】B【分析】根据向量的坐标运算结合基底向量的定义逐项分析判断.【详解】对于A :()0,4b c -=-r r,则()141040⨯--⨯=-≠,可得a ,b c - 不共线,则a ,b c -可以作为一组基底,故A 正确;对于B :()4,4b c +=r r,则14140⨯-⨯=,可得a ,b c + 共线,则a ,b c +不可以作为一组基底,故B 错误;对于C :()22,4b c -=-r r,则()141260⨯--⨯=-≠,可得a ,2b c - 不共线,则a ,2b c -可以作为一组基底,故C 正确;对于D :()26,4b c +=r r,则141620⨯-⨯=-≠,可得a ,2b c + 不共线,则a ,2b c +可以作为一组基底,故D 正确;故选:B.3.在ABC中,若222a b c +=,则角C 等于()A.30︒B.60︒C.150︒D.120︒【正确答案】A【分析】根据余弦定理可得cos C 的值,即得答案.【详解】在ABC 中,222a b c +=+,可得22233cos 222a b c C ab ab +-===,由于0180C ︒<<︒,故30C =︒,故选:A .4.已知不重合的直线l ,m 和不重合的平面α,β,下列命题正确的是()A.若l α∥,//l β,则//αβB.若l α⊥,l m ⊥,则//m αC.若l α⊥,l β⊥,则//αβD.若l ⊂α,m α⊂,//l β,//m β,则//αβ【正确答案】C【分析】根据空间中的线、面关系分析判断.【详解】对于A :若//l α,//l β,则平面α,β的位置关系有:平行、相交,故A 错误;对于B :若l α⊥,l m ⊥,则,m α的位置关系有://m α或m α⊂,故B 错误;对于C :若l α⊥,l β⊥,根据线面垂直的性质可知://αβ,故C 正确;对于D :根据面面平行的判定定理可得:若,l m 相交,则//αβ,否则不成立,故D 错误.故选:C.5.用半径为3cm ,圆心角为23π的扇形纸片卷成一个圆锥筒,则这个圆锥筒的高为()A.1cmB.C.D.2cm【正确答案】B【分析】设圆锥的底面半径为rcm,根据底面圆的周长即扇形的弧长求出半径r,利用勾股定理可得答案.【详解】设圆锥的底面半径为rcm ,由题意底面圆的周长即扇形的弧长,可得2πr=23,3π⨯即底面圆的半径为1,.所以圆锥的高h ==,故选B本题考查圆锥侧面展开图的应用,圆锥侧面展开图为扇形,扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.在数学探究活动课中,小华进行了如下探究:如图1,水平放置的正方体容器中注入了一定量的水;现将该正方体容器其中一个顶点固定在地面上,使得DA ,DB ,DC 三条棱与水平面所成角均相等,此时水平面为HJK ,如图2所示.若在图2中23DH DA =,则在图1中EFEG=()A.49B.481C.427D.827【正确答案】B【分析】设出正方体的边长,利用水的体积相等建立方程求解【详解】当DA ,DB ,DC 三条棱与水平面所成角均相等时,三棱锥D HJK -为正三棱锥,设正方体的棱长为3,则2DH DK DJ ===,所以11142223323D HJK DHJ V S DK -=⋅=⨯⨯⨯⨯=△,则题图1中2433V EF =⋅=,则427EF =,所以481EF EG =.故选:B7.已知ABC 中,角A ,B ,C 的对边分别是a ,b ,c 下列选项中正确的是()A.若222a b c +>,则ABC 是锐角三角形B.若sin cos A B =,则ABC 是直角三角形C.若22tan tan a B b A =,则ABC 是等腰三角形D.若()()()cos cos cos 1A B B C C A ---=,则ABC 是等边三角形【正确答案】D【分析】根据正、余弦定理结合三角函数、三角恒等变换逐项分析判断.【详解】对于A :若222a b c +>,则222cos 02a b c C ab+-=>,因为()0,πC ∈,可得C 为锐角,但不确定,A B 是否为锐角,所以不能确定ABC 的形状,给A 错误;对于B :因为()0,πA ∈,则sin cos 0A B =>,可得π0,2B ⎛⎫∈ ⎪⎝⎭,且πsin cos sin 2A B B ⎛⎫==- ⎪⎝⎭或πsin cos sin 2A B B ⎛⎫==+ ⎪⎝⎭,可得π2A B =-或π2A B =+,故B 错误;对于C :若22tan tan a B b A =,由正弦定理可得:22sin sin sin sin cos cos B AA B B A⨯=⨯,因为(),0,πA B ∈,则sin 0,sin 0A B ≠≠,可得sin cos sin cos A A B B =,整理得sin 2sin 2A B =,所以22A B =或22πA B +=,即A B =或π2A B +=,可知ABC 是等腰三角形或直角三角形,故C 错误;对D :因为(),,0,πA B C ∈,则()()()π,π,π,π,π,πA B B C C A -∈--∈--∈-,可得()(]()(]()(]cos 1,1,cos 1,1,cos 1,1A B B C C A -∈--∈--∈-,若()()()cos cos cos 1A B B C C A ---=,则()()()cos 1,cos 1,cos 1A B B C C A -=-=-=,可得0,0,0A B B C C A -=-=-=,即A B C ==,则ABC 是等边三角形,故D 正确;故选:D.8.有一直角转弯的走廊(两侧与顶部都封闭),已知走廊的宽度与高度都是3米,现有不能弯折的硬管需要通过走廊,设不计硬管粗细可通过的最大极限长度为l 米.为了方便搬运,规定允许通过此走廊的硬管的最大实际长度为0.9m l =米,则m 的值是()A.8110B.10C.5D.【正确答案】A【分析】先求出硬管不倾斜,水平方向通过的最大长度AB ,再利用勾股定理求出硬管倾斜后能通过的最大长度,即可得到答案.【详解】如图示,先求出硬管不倾斜,水平方向通过的最大长度AB.设π,02BAQ θθ⎛⎫∠=<<⎪⎝⎭,则π2ABQ θ∠=-.过A 作AC 垂直内侧墙壁于C ,B 作BD 垂直内侧墙壁于D ,则π3,,2AC BD CPA BAQ DPB ABQ θθ==∠=∠=∠=∠=-.在直角三角形ACP 中,sin sin AC CPA AP θ∠==,所以3sin sin AC AP θθ==.同理.3πcos sin 2BD BP θθ==⎛⎫- ⎪⎝⎭所以33π,0sin cos 2AB AP BP θθθ⎛⎫=+=+<< ⎪⎝⎭.因为333sin cos AB θθ=+≥⨯=≥sin cos θθ=且π4θ=时等号成立).所以AB ≥.因为走廊的宽度与高度都是3米,所以把硬管倾斜后能通过的最大长度为9l ===,所以810.90.9910m l ==⨯=.故选:A利用三角函数解应用题的解题思路:(1)画出符合题意的图形;(2)把有关条件在图形中标出;(3)建立三角关系式,利用三角函数求最值.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知i 为虚数单位,以下四个说法中正确的是()A.234i i i i 0+++=B.2i 1i+>+C.若()212i z =-,则z 在复平面内对应的点位于第四象限D.已知复数z 满足2z =,则复数z 对应点的集合是以O 为圆心,以2为半径的圆【正确答案】AD【分析】根据复数的概念,运算,几何意义,判断选项.【详解】A.234i i i i i 1i 10+++=--+=,故A 正确;B.虚数不能比较大小,故B 错误;C.()212i 34i z =-=--,则z 在复平面内对应的点为()3,4--,在第三象限,故C 错误;D.根据复数模的几何意义,可知D 正确.故选:AD10.关于平面向量,下列说法正确的是()A.若a b ∥,b c ∥,则a c∥B.若()1,2a =r ,()4,3b = ,则a 在b 方向上的投影向量是86,55⎛⎫⎪⎝⎭C.若(),2a λ= ,()1,1b λ=+- ,且a 与b的夹角为钝角,则()2,1λ∈-D.若OA OC OB OD +=+且AB AD AC AB AD AC+= ,则四边形ABCD 为菱形【正确答案】BD【分析】根据向量共线的概念判断A ;根据投影向量的概念判断B ;根据向量夹角的概念判断C ;由向量的线性运算得AB DC =,可得ABCD 是平行四边形,则AB AD AC +=,由条件结合平面向量基本定理可判断D .【详解】若0b = ,虽然有a b ∥,b c ∥,但不一定有a c∥,A 错;()1,2a =r ,()4,3b = ,则a 在b方向上的投影向量是24686(,)5,55(43)a b b b b ⋅+==,B 正确;当2(2,1)3λ=-∈-时,2a b =- ,两向量方向相反,夹角为π不是钝角,C 错;若OA OC OB OD +=+,即OB OA OC OD -=- ,则AB DC = ,所以ABCD 是平行四边形,则AB AD AC +=,又||||||AB AD ACAB AD AC +=,即||||||||AC AC AB AD AC AB AD += ,则||||1||||AC AC AB AD == ,所以AB AD AC ==,所以ABCD 是菱形,D 正确.故选:BD .11.如图,正方体1111ABCD A B C D -中,2AB =,点Q 为11B C 的中点,点N 为1DD 的中点,则下列结论正确的是()A.CQ 与BN 为异面直线B.11CQ C D ⊥C.直线BN 与平面ABCD 所成角为30︒ D.三棱锥Q NBC -的体积为23【正确答案】AB【分析】对A ,直接观察判断即可;对B ,根据11C D ⊥平面11BCC B 判断即可;对C ,根据线面角的定义,结合直角三角形的性质求解即可;对D ,利用等体积法Q NBC N QBC V V --=求解即可.【详解】对A ,由图可得,,,C Q B 共面,且N 不在平面内,则CQ 与BN 为异面直线,故A 正确;对B ,由正方体性质可得11C D ⊥平面11BCC B ,又CQ ⊂平面11BCC B ,故11C D CQ ⊥,故B 正确;对C ,由ND ⊥平面ABCD 可得直线BN 与平面ABCD 所成角为NBD ∠,又2AB AD ==,则1BD ND ==,故tan4NBD ∠==,故30NBD ∠≠︒,故C 错误;对D ,111114·2223323Q NBC N QBC QBC V V S D C --===⨯⨯⨯⨯= ,故D 错误.故选:AB12.在锐角ABC 中,已知4,3AB AC ==,D 为边BC 上的点,BAD CAD ∠=∠,则线段AD 长的可能取值为()A.B.C.3.3D.【正确答案】AB【分析】根据等面积公式,结合三角形是锐角三角形,求线段AD 的取值范围,即可判断选项.【详解】4,3AB AC ==,设AD x =,BC a =,BAD CAD θ∠=∠=,且AB BD AC DC =,所以47BD a =,37DC a =根据ABD ADC ABC S S S += ,得1114sin 3sin 43sin 2222x x θθθ⨯⋅+⨯⋅=⨯⨯⋅,得24cos 7x θ=,π0,4θ⎛⎫∈ ⎪⎝⎭,那么1222477x <<,角C 为锐角三角形,则ABC 中,2291609160a a ⎧+->⎨+->⎩,即2725a <<,ADC △中,223907a x ⎛⎫+-> ⎪⎝⎭,229949x a <+,即2929710497x ≤+⨯=综上可知,12261477x <≤,只有AB 满足条件.故选:AB关键点点睛:本题考查解三角形中的范围问题,关键是如何应用锐角三角形这个条件,根据余弦定理和三角形面积公式,围绕锐角三角形列式,即可求解.三、填空题:本大题共4小题,每题5分,共20分.13.如图,A B C ''' 是斜二测画法画出的水平放置的ABC 的直观图,D ¢是B C ''的中点,且A D y ''∥轴,BC x ''∥轴,2AD ''=,2B C ''=,则ABC 的面积是________.【正确答案】4【分析】根据斜二测画法确定原图形,求解即可.【详解】由图象知:2BC B C ''==,24''==AD A D ,AD BC ⊥,D 为BC 的中点,ABC 的面积142S BC AD =⨯⨯=.故4.14.已知圆台的上底面半径为2,下底面半径为6,若该圆台的体积为104π,则其母线长为________.【正确答案】213【分析】由圆台的体积求得圆台的高h ,作出圆台的轴截面,由勾股定理可求得结果.【详解】圆台的上底面半径为2,下底面半径为6,设圆台的高为h ,则该圆台的体积为22152ππ(2626)104π33V h h =⨯++⨯⨯==,则6h =,作出圆台的轴截面如图所示,上底面圆心为M ,下底面圆心为N ,MD =2,NC =6,过D 作DE ⊥NC ,则EC =6-2=4,又DE =h =6,所以圆台的母线长为22213DC DE EC =+=.故答案为.21315.已知直三棱柱111ABC A B C -的高为4,2AB AC ==,90BAC ∠=︒,则该三棱柱的外接球的体积为________.【正确答案】86π【分析】首先求出ABC 外接圆的半径r ,设直三棱柱111ABC A B C -外接球的半径为R ,则()()22222R h r =+,即可求出R ,再根据球的体积公式计算可得.【详解】因为2AB AC ==,90BAC ∠=︒,所以222BC AB AC =+=设ABC 外接圆的半径为r ,则222sin BCr BAC==∠,又直三棱柱111ABC A B C -的高4h =,设直三棱柱111ABC A B C -外接球的半径为R ,则()()22222R h r =+,即()(22224R =+,解得R =,所以外接球的体积34π3R V ==.故16.已知ABC 满足()AB AC AB AC BC ⋅=+⋅ ,则cos C 的最小值为________.【正确答案】23【分析】首先化简条件,再结合数量积公式和余弦定理化简得到2223a b c +=,再结合余弦定理和基本不等式求解.【详解】由条件可知,22()()A AB A A C A C B B AC AB A C ⋅=-=-+⋅ ,设,,AB c AC b BC a ===,则22cos bc A b c =-,即22222cos 2b c b c a A bc bc -+-==,则2222222b c b c a -=+-,化简为2223a b c +=,222222222222cos 233a b c a b c c C ab a b c +-+-=≥==+,当a b =时等号成立,所以cos C 的最小值是23.故23四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量()()32,,1,=-= a b x .(1)若()()22a b a b +⊥- ,求实数x 的值;(2)若()()8,1,//=--+ c a b c ,求向量a 与b 的夹角θ.【正确答案】(1)6x =或32x =-.(2)π4θ=【分析】(1)根据平面向量线性运算的坐标表示和数量积的坐标表示列出方程,解方程即可;(2)根据共线向量的坐标表示列出方程,解之可得5x =,结合数量积的定义计算即可求解.【小问1详解】已知()()=3,2,=,1a b x - ,所以()()232,0,26,5+=+-=- a b x a b x .又因为()()22a b a b +⊥- ,所以有()()220a b a b +⋅-=r r r r ,所以()()326050x x +-+⨯=,解得6x =或32x =-.【小问2详解】因为()8,1c =-- ,所以()8,2b c x +=-- .又()//a b c + ,所以()()32280x ⨯--⨯-=,解得5x =,所以()=5,1b - .所以cos 2||||a b a b θ⋅==⋅ ,因为0πθ≤≤,所以π4θ=.18.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b,c 2sin 0b C -=.(1)求角B的大小;(2)从条件①4b a ==;条件②2,4a A π==这两个条件中选择一个作为已知,求△ABC 的面积.【正确答案】(1)3B π=(2)条件①:+;条件②:332+【分析】(1)首先利用正弦定理边化角求出sin B ,再结合角的范围,即可求得.(2)选条件①:首先利用余弦定理求出2c =.选条件②:首先利用正弦定理求出b ,再结合三角函数恒等变换求出sin C ,再利用三角形面积公式即可求得.【小问1详解】解:(12sin 0bC -=2sin sin 0C B C -=.因为0,,sin 02C C π⎛⎫∈≠ ⎪⎝⎭,所以sin 2B =.又因为0,2B π⎛⎫∈ ⎪⎝⎭,所以3B π=.【小问2详解】选条件①:4b a ==;因为4b a ==,由(1)得3B π=,所以根据余弦定理得2222cos =+-⋅⋅b c a c a B ,可得24110c c --=,解得2c =+所以ABC 的面积1sin 2S c a B =⋅=,选条件②:2,4a A π==;由(1)知3B π=且4A π=,根据正弦定理得sin sin b a B A =,所以sin sin ⋅==a B b A ,因为512C A B ππ=--=,所以5sin sin sin 12464C πππ⎛⎫==+= ⎪⎝⎭,所以ABC 的面积13sin 22=⋅=S b a C .19.如图,某种水箱用的“浮球”是由两个半球和一个圆柱筒组成,已知半球的直径是6cm ,圆柱筒长2cm .(1)这种“浮球”的体积是多少3cm (结果精确到0.1)(2)要在2500个这样的“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,那么共需涂胶约多少克附:π 3.14≈.【正确答案】(1)169.6(2)3768【分析】(1)分别求出两个半球的体积1V ,和圆柱体的体积2V ,即可求出“浮球”的体积;(2)先求出一个“浮球”的表面积,再求出2500个的面积,即可求解.【小问1详解】该半球的直径6cm d =,所以“浮球”的圆柱筒直径也是6cm ,得半径3cm R =,所以两个半球的体积之和为3344ππ2736πcm 33球==⋅=V R ,而23ππ9218πcm 圆柱=⋅=⨯⨯=V R h ,该“浮球”的体积是336π18π54π169.6cm 球圆柱=+=+=≈V V V ;【小问2详解】上下两个半球的表面积是224π4π936πcm 球表==⨯⨯=S R ,而“浮球”的圆柱筒侧面积为22π2π3212πcm 圆柱侧==⨯⨯⨯=S Rh ,所以1个“浮球”的表面积为24436π12π48πm 1010+==S ,因此,2500个“浮球”的表面积的和为244825002500π12πm 10=⨯=S ,因为每平方米需要涂胶100克,所以总共需要胶的质量为:10012π3768⨯≈(克).20.如图,为了测量出到河对岸铁塔的距离与铁搭的高,选与塔底B 同在水平面内的两个测点C 与D .在C 点测得塔底B 在北偏东45︒方向,然后向正东方向前进10米到达D ,测得此时塔底B 在北偏东15︒方向.(1)求点D 到塔底B 的距离BD ;(2)若在点C 测得塔顶A 的仰角为60︒,求铁塔高AB .【正确答案】(1)米;(2)+米.【分析】(1)利用正弦定理列方程,解方程求得BD .(2)利用正弦定理列方程,解方程求得BC ,再解直角三角形求得AB .【详解】(1)由题意可知,45BCD ∠=︒,105BDC ∠=︒,故30CBD ∠=︒在BCD △中,由正弦定理,得sin sin BD CD BCD CBD =∠∠,10sin 45sin 30BD ∴=⋅︒=︒∴点D 到塔底B 的距离BD 为米(2)在BCD △中,由正弦定理,得sin sin BC BD BDC BCD=∠∠∴()()102sin10520sin 604520sin 60cos 45cos 60sin 45sin 45BC =⋅︒=⋅︒+︒=⋅︒︒+︒︒︒204=⨯=.在Rt ABC 中,tan AB BC ACB =⨯∠==.所以,铁塔高AB 为+米.21.如图1所示,在等腰梯形ABCD 中,//BC AD ,CE AD ⊥,垂足为E ,33AD BC ==, 1.EC =将DEC ∆沿EC 折起到1D EC ∆的位置,如图2所示,使平面1D EC ⊥平面ABCE .(1)连结BE ,证明:AB ⊥平面1D BE ;(2)在棱1AD 上是否存在点G ,使得//BG 平面1D EC ,若存在,直接指出点G 的位置(不必说明理由),并求出此时三棱锥1G D EC -的体积;若不存在,请说明理由.【正确答案】(1)证明见解析;(2)存在,点G 为1AD 的中点,16.【分析】(1)通过面面垂线的性质定理,证得1D E ⊥平面ABCE ,由此证得1D E AB ⊥.利用勾股定理计算证明BE AB ⊥,从而证得AB ⊥平面1D EB .(2)通过线面平行的判定定理,判断出点G 为1AD 的中点.利用换顶点的方法,通过11G D EC C D EG V V --=,来计算出三棱锥1G D EC -的体积.【详解】(1)因为平面1D EC ⊥平面ABCE ,平面1D EC 平面ABCE EC =,11,D E EC D E ⊥⊂平面1D EC ,所以1D E ⊥平面ABCE ,又因为AB ⊂平面ABCE ,所以1D E AB⊥,又2AB BE AE ===,满足222AE AB BE =+,所以BE AB ⊥,又1BE D E E = ,所以AB ⊥平面1D EB .(2)在棱1AD 上存在点G ,使得//BG 平面1D EC ,此时点G 为1AD 的中点.11G D EC C D EG V V --=,由(1)知,1D E ⊥平面ABCE ,所以1CE D E ⊥,又CE AE ⊥,所以CE ⊥平面1AED ,所以CE 为三棱锥1C D EG -的高,且1CE =,在1Rt D EA 中,11,2D E AE ==,G 为斜边1AD 的中点,所以111111212222D EG D EA S S ==⨯⨯⨯=,所以111111113326G D EC C D EG D EG V V S CE --==⋅=⨯⨯=.故,在棱1AD 上存在点G ,使得//BG 平面1D EC ,此时三棱锥1G D EC -的体积为16.本小题主要考查线面垂线的证明,考查面面垂直的性质定理的运用,考查三棱锥体积的计算,考查空间想象能力和逻辑推理能力,属于中档题.22.已知向量()()2sin ,sin cos ,cos ,2a x x x b x m =+=-- ,函数()f x a b =⋅ .(1)当2m =时,求()f x 的最小值;(2)是否存在实数m ,使不等式()42si 6n cos f x m x x>--+对任意的π0,2x ⎡⎤∈⎢⎣⎦恒成立,若存在,求出m 的取值范围;若不存在,说明理由.【正确答案】(1)1-(2)存在,取值范围为(4,)+∞【分析】(1)根据已知条件及向量的数量积的坐标运算,再利用辅助角公式及二倍角的余弦公式,结合换元法及二次函数的性质即可求解;(2)根据(1)的出函数()f x ,利用换元法但注意新元的范围,结合不等式恒成立问题利用分离参数法转化为函数的最值问题,再利用对勾函数的性质即可求解.【小问1详解】由题可知,因为()()2sin ,sin cos ,cos ,2a x x x b x m =+=-- ,所以π2sin cos (2)(sin cos )sin 22)sin((4)f x a b x x x x x x m m -++=+==+⋅ ππcos(2)2)sin2(4m x x +=+-+,又2ππcos(22sin (124x x -+=+-,令πsin([1,1]4x t =+∈-,当2m =时,所以22()()212(5f t t x t ϕ==--=--,对称轴1t =>,开口向上,由二次函数的单调性知,所以()t ϕ在[1,1]-上单调递减,所以当1t =时,()t ϕ取得最小值为2min ()(1)()21111t f x ϕϕ===⨯--=-.所以()f x 的最小值为1-【小问2详解】由(1)知,2sin cos (2)(sin )co (s )m f x a b x x x x -⋅+==+ ,所以()2sin cos (2)(sin cos )42sin c 6os f x x x m x x m x x =-++>--+,对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦恒成立,令sin cos x x p =+,π0,2x ⎡⎤∈⎢⎣⎦,则πsin cos 4p x x x ⎛⎫=+= ⎝+⎪⎭,因为π0,2x ⎡⎤∈⎢⎣⎦,所以ππ3π,444x ⎡⎤+∈⎢⎥⎣⎦,所以πsin 124x ⎛⎫≤+≤ ⎪⎝⎭,即π14x ⎛⎫≤+≤ ⎪⎝⎭,所以1p ≤≤由sin cos x x p =+,得22sin cos 1x p x =-,则21(2)642p m p m p--+>--,整理得2(3)(2)(2)0p p mp p +-+->,所以23p mp +<,故3m p p >+在上恒成立,由对勾函数的性质知:3p p+在上单调递减,当1p =时,3p p+取到最大值4,所以4m >,故存在m ,且m 的范围为(4,)+∞.。
2024北京首都师大附中初三5月月考数学试卷和答案
![2024北京首都师大附中初三5月月考数学试卷和答案](https://img.taocdn.com/s3/m/1cf888a1c9d376eeaeaad1f34693daef5ff71378.png)
2024北京首都师大附中初三5月月考数 学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图书馆标志图形中,是轴对称图形的是()A.B.C.D.2.2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发CZ-,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行射.长征二号F(代号:2F器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.2⨯D.40.85108.510⨯8510⨯B.28.510⨯C.3m+<,则下列结论正确的是()3.已知30A.33-<<<-D.33<-<<-m mm m<-<-<C.33m m-<<-<B.33m m4.下列几何体中,主视图是三角形的是()A.B.C.D.5.如图,两个边长为1的正方形整齐地排列在数轴上形成一个大的长方形,以O点为圆心,以长方形的对角线长度为半径作圆与数轴有两个交点,其中点p表示的数是()A B C .2.2D 6.下列各式中,运算正确的是( )A =B =C a b =+D )0,0a b=>>7.如图,在ABC 中,90ABC ∠=︒,在边AC 上截取AD AB =,连接BD ,过点A 作AE BD ⊥于点E .已知3AB =,4BC =,如果F 是边BC 的中点,连接EF ,那么EF 的长是( )A .1B .2C .3D .58.如图,90ABC BA BC ∠==°,,BM 是ABC ∠内部的射线且45CBM ∠<°,过点A 作AD BM ⊥于点D ,过点C 作CE BM ⊥于点E ,在DA 上取点F ,使得DF DE =,连接EF .设CE a BE b EF c ===,,,给出下面三个结论:①c b a -);②a c +上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题(本大题共8小题,每小题3分,共24分.请把答案填写在答题卡相应位置上)9x 的取值范围是 .10.分式方程32122x x x =---的解x = .11.在平面直角坐标系xOy 中,若点()11,A y ,()23,B y 在反比例函数0k y k x=>()的图象上,则1y 2y (填“>”“<”或“=”).12.如图,AB 是O 的直径,P 是AB 延长线上一点,PC 与O 相切于点C .若40P ∠=︒,则A ∠= ︒.13.小明观看了纸牌魔术表演,非常感兴趣,并做了如下实验和探究:将几张纸牌摞起来(从上面分别记为第1张,第2张,第3张),先将第1张牌放到整摞牌的下面,再去掉第2张牌;继续将第3张牌放在整摞牌的下面,再去掉第4张牌……如此循环往复,最终到只留下一张纸牌为止.例如,若将4张纸牌摞起来,按上述规则操作,陆续去掉第2张,第4张,第3张,最终留下第1张纸牌.将8张纸牌摞起来,按上述规则操作,最终留下的是第 张纸牌;将m 张纸牌摞起来,按上述规则操作,若最终留下的是第1张纸牌,则m = (用含n 的代数式表示,其中n 为自然数).14.如图,两个边长相等的正六边形的公共边为BD ,点A ,B ,C 在同一直线上, 点1O ,2O 分别为两个正六边形的中心. 则2tan O AC ∠的值为 .15.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm )如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183则两队队员身高的平均数x 甲 x 乙(填><、或=),身高的方差2S 甲 2S 乙(填><、或=).16.如图1所示,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图2是一款拱门的示意图,其中拱门最下端18AB =分米,C 为AB 中点,D 为拱门最高点,圆心O 在线段CD 上,27CD =分米,则拱门所在圆半径的长为 分米.三、解答题(本大题共12小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:()0124sin 451π--︒-.18.已知221x x +=,求代数式()()2411x x ++-的值.19.解不等式组:37111122x x ->-⎧⎪⎨+>⎪⎩.20.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,与过点(2,0)-且平行于y 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,直接写出n 的取值范围.21.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,2BD BC =,E 、F 、G 分别是OC 、OD 、AB 的中点.(1)求证BE AC ⊥;(2)连接AF ,求证:四边形AGEF 是菱形.22.某市统计局为研究我国省会及以上城市发展水平与人均GDP 之间的关系,收集了2023年31个城市的人均GDP 数据(单位:万元)以及城市GDP 排名,进行了相关的数据分析,下面给出了部分信息.a .城市的人均GDP 的频数分布直方图(数据分成5组:58x <≤,811x <≤,1114x <≤,1417x <≤,1720x <≤):频数(城市个数)<≤这一组的是:12.313.213.613.8,,,;b.城市的人均GDP(万元)的数值在1114xc.以下是31个城市2023年的人均GD(万元)和城市GDP排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均GDP为13.8万元,该城市GDP排名全国第_____;(2)在31个城市2023年的人均GDP和城市GDP排名情况散点图中,请用“ ”画出城市GDP排名的中位数所表示的点;(3)观察散点图,请你写出一条正确的结论.23.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口,温水的温度为30℃,流速为20ml/s,开水的温度为100℃,流速为20ml/s,某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml温度为60℃的水(不计热损失),求该学生分别接温水和开水的时间.物理常识:开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以表示为:开水的体积⨯开水降低的温度=温水的体积⨯温水升高的温度.24.如图,矩形AOBC 的顶点B ,A 分别在x 轴,y 轴上,点C 坐标是()5,4,D 为BC 边上一点,将矩形沿AD 折叠,点C 落在x 轴上的点E 处,AD 的延长线与x 轴相交于点.F(1)如图1,求点D 的坐标;(2)如图2,若P 是AF 上一动点,PM AC ⊥交AC 于M ,PN CF ⊥交CF 于N ,设AP t =,FN s =,求s 与t 之间的函数关系式;(3)在(2)的条件下,是否存在点P ,使PMN 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.对于平面内的点K 和点L ,给出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90︒,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点()4,0A ,在点()(((12340,4,2,,2,,Q Q Q Q --中,是点A 关于点O 的锐角旋转点的是______.(2)已知点()5,0B ,点C 在直线2y x b =+上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围;(3)点D 是x 轴上的动点,()(),0,3,0D t E t -,点(),F m n 是以D 为圆心,3为半径的圆上一个动点,且满足0n ≥.若直线26y x =+上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.26.在平面直角坐标系xOy 中,对于线段MN ,直线l 和图形W 给出如下定义:线段MN 关于直线l 的对称线段为M N ''(,M N ''分别是M ,N 的对应点).若MN 与MN 均与图形W (包括内部和边界)有公共点,则称线段MN 为图形W 关于直线l 的“对称连接线段”.(1)如图1,已知圆O 的半径是2,112233B C B C B C ,,,,,的横、纵坐标都是整数.在线段112233B C B C B C ,,中,是O 关于直线1y x =-的“对称连接线段”的是 .(2)如图2,已知点()01P ,,以O 为中心的正方形ABCD 的边长为4,各边与坐标轴平行,若线段OP 是正方形ABCD 关于直线2y kx =+的“对称连接线段”,求k 的取值范围.(3)已知O 的半径为r ,点()10M ,,线段MN 的长度为1.若对于任意过点Q ()02,的直线l ,都存在线段MN 是O 关于l 的“对称连接线段”,直接写出r 的取值范围.27.我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30︒,夏至正午阳光与日影夹角为60︒,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).28.某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米.d(米)01234h(米)0.5 1.25 1.5 1.250.5根据上述信息,解决以下问题:(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m=;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过.如图2所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为2米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).参考答案1.A【分析】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.根据轴对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,故A 正确;B .不是轴对称图形,故B 错误;C .不是轴对称图形,故C 错误;D .不是轴对称图形,故D 错误.故选:A .2.C【分析】此题考查了正整数指数科学记数法,对于一个绝对值大于10的数,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为比原数的整数位数少1的正整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:38.8550001=⨯.故选C .3.D【分析】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.根据不等式的性质,逐项判断即可求解.【详解】解:∵30m +<,∴3m <-,∴3m ->,∴33m m <-<<-,∴A ,B ,C 不符合题意;D 符合题意;故选:D4.B【分析】本题考查了简单几何体的三视图,解题的关键是熟练的掌握简单几何体的三视图,根据主视图是从正面看到的视图对各选项分析判断后利用排除法求解.【详解】解:A .主视图是正方形,故本选项错误;B .主视图是三角形,故本选项正确;C .主视图是长方形,故本选项错误;D .主视图是圆,故本选项错误.故选:B .5.B【分析】本题考查实数与数轴,勾股定理,根据勾股定理求出OP OA ==,据此可得答案.【详解】解:由勾股定理得OP OA ===∴点Р故选B .6.D【分析】本题考查了二次根式的加减,二次根式的乘除,解题的关键是熟练掌握二次根式的运算法则,根据二次根式的运算法则逐个判断即可.【详解】解:A 不是同类二次根式,不能合并,不符合题意;B 不是同类二次根式,不能合并,不符合题意;C a b ≠+,故C 不正确,不符合题意;D )0,0a b>>,故D 正确,符合题意;故选:D .7.A【分析】本题考查了勾股定理、等腰三角形的性质及三角形中位线的性质,根据勾股定理求得5AC =,进而可得2CD =,再证得EF 是BCD △的中位线,从而可求解,熟练掌握等腰三角形的三线合一性质是解题的关键.【详解】解:Rt ABC △,90ABC ∠=︒,3AB =,4BC =,5AC ∴===,AD AB =,AE BD ⊥,3AB =,3AD ∴=,点E 是BD 的中点,2CD AC AD ∴=-=,又 F 是边BC 的中点,EF ∴是BCD △的中位线,112EF CD ∴==,故选A .8.B 【分析】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识.证明()AAS ADB BEC ≌,推出BD EC a ==,BE AD b ==,推出DE DF b a ==-,再利用等腰三角形的性质,可以判定①正确;连接AE ,根据AF EF AE +>,可以判定②错误;BM 是ABC ∠内部的射线且45CBM ∠<°,可得b a >,推出22b a >,推出2222b a b >+>③正确.【详解】解:AD BM ⊥ ,CE BM ⊥,90ADB BEC ∴∠=∠=︒,90ABC ∠=︒ ,90ABD CBE ∴∠+∠=︒,90CBE C ∠+∠=︒,ABD C ∴∠=∠,在ADB 和BEC 中,ADB CABD C AB CB∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADB BEC ∴ ≌,BD EC a ∴==,BE AD b ==,DE DF b a ∴==-,EF c =,)c b a ∴-,故①正确,连接AE,则AE =BE AD = ,DE DF =,AF BD CE a ∴===,AF EF AE +>,a c ∴+>②错误,BM 是ABC ∠内部的射线且45CBM ∠<°,b a ∴>,22b a ∴>,2222b a b ∴>+,∴>③正确.故选:B .9.6x ≥【分析】本题考查的是二次根式有意义的条件,根据二次根式中的被开方数是非负数是解题即可.【详解】由题意可得60x -≥,解得6x ≥,故答案为:6x ≥.10.76/116【分析】本题考查解分式方程,去分母将分式方程转化为整式方程,求解后检验即可.【详解】解:去分母得:()23221x x =-⨯-,去括号得:2344x x =-+,移项,合并同类项得:67x =,∴76x =,经检验,76x =是原方程的解;故答案为:76.11.>【分析】本题主要考查了反比例函数的图象与性质,根据反比例函数的图象与性质进行判断即可,熟练掌握反比例函数的图象与性质是解题的关键.【详解】∵0k >,∴反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小,又∵点()11,A y ,()23,B y 在反比例函数0k y k x =>()的图象上,且013<<,∴12y y >,故答案为:>.12.25【分析】本题考查的是等腰三角形的性质,三角形的外角的性质,切线的性质,如图,连接OC ,求解904050COP ∠=︒-︒=︒,再根据圆周角定理即可得答案.【详解】解:如图,连接OC ,∵PC 与O 相切于点C .40P ∠=︒,∴90OCP ∠=︒,904050COP ∠=︒-︒=︒,∴1252A COP ∠=∠=︒,故答案为:2513. 1 2n【分析】题目主要考查规律探索,理解题意,找出相应的规律是解题关键8张纸牌顺序从上到下为,(将1张牌放到牌底,去掉下一张视为一轮),1,2,3,4,5,6,7,8,按照规则依次即可得出结果;根据题意找出相应规律即可得出结果.【详解】解:8张纸牌顺序从上到下为,(将1张牌放到牌底,去掉下一张视为一轮),1,2,3,4,5,6,7,8,前四轮去掉了2,4,6,8,还剩下4张纸牌从上至下为1,3,5,7,再经过2轮去掉3,7,还利2张纸牌、从上至下为1,5,再经过1轮,去掉5,最终剩下的是原来的第1张纸牌;由条件中4张纸牌,按上述规则操作后,最后留下的第1张纸牌,将m 张纸牌摞起来,按上述规则操作,若最终留下的是第1张纸牌,∴2n m =;故答案为:1;2n .14【分析】本题考查正多边形和圆,掌握正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义是正确解答的关键.连接2O C ,过2O 点作2O E BC ⊥,垂足为E ,根据正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义进行计算即可.【详解】解:如图,连接2O C ,过2O 点作2O E BC ⊥,垂足为E ,设正六边形的边长为a ,则112O A O B O C a ===,在2Rt O CE 中,22,3606230O C a CO E =∠=︒÷÷=︒,∴21122EC O C a BE ===,22O E C ==,∴15222AE a a a =+=,∴22tan O E O AC AE ∠==15. = <【分析】本题主要考查了求平均数和方差,根据方差和平均数的计算方法求解即可.【详解】解:由题意得,177176175172175175cm 5x ++++==甲,170175173171183175cm 5x ++++==乙,∴x x =甲乙;()()()()222221721752175175176175177175 2.85S -+⨯-+-+-==甲,()()()()()22222217017517317517417517517518317518.85S -+-+-+-+-==乙,∴22S S <甲乙,故答案为:=,<.16.15【分析】本题主要考查了垂径定理的实际应用,勾股定理,连接AO ,根据垂径定理求得9AC BC ==分米,设圆的半径为x 分米,则OA OD x ==分米,()27OC x =-米,根据勾股定理即可求得x ,进而可得答案.【详解】解:连接AO ,∵CD 过圆心,C 为AB 的中点,∴CD AB ⊥,∵18AB =分米,C 为AB 的中点,∴9AC BC ==分米,设圆的半径为x 分米,则OA OD x ==分米,∵27CD =分米,∴()27OC x =-分米,在Rt OAC 中,由勾股定理222AC OC OA +=,∴()222927x x +-=,∴15x =,即拱门所在圆的半径是15分米.故答案为:15.17.32【分析】题目主要考查实数的混合运算,特殊角的三角函数及零次幂、负整数指数幂的运算,熟练掌握各个运算法则是解题关键.先计算负整数指数幂、零次幂运算,化简二次根式,代入特殊角的三角函数,然后计算即可得出结果.【详解】解:()0124sin 451π--︒-1412=-112=-+32=.18.6【分析】本题主要考查了整式的化简求值,先根据完全平方公式去括号,然后合并同类项,最后利用整体代入法求解即可得到答案.【详解】解:∵221x x +=,∴()()2411x x ++-24421x x x =++-+225x x =++15=+6=.19.2x >【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:37111122x x ->-⎧⎪⎨+>⎪⎩①②解不等式①得:2x >,解不等式②得:1x >,∴不等式组的解集为2x >.20.(1)21y x =+;(2,3)--(2)312n ≤≤【分析】本题考查待定系数法求一次函数解析式,一次函数图象及性质,用数形结合思想考虑本题是解答本题的关键.(1)将两点代入函数解析式中即可求得函数解析式,再将2x =-代入解析式即可求出点C 坐标;(2)根据题意将(2,2)--代入(0)y nx n =≠求出n 的最小值,再根据题意将C 代入求出n 的最大值,即为本题答案.【详解】(1)解:∵函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,∴将点(1,3)A 和(1,1)B --代入(0)y kx b k =+≠中,31k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=⎩,∴该函数的表达式为:21y x =+,∵与过点(2,0)-且平行于y 轴的直线交于点C ,∴将2x =-代入21y x =+中,得=3y -,∴(2,3)C --;(2)解:∵当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,,通过图象可知,当(0)y nx n =≠的函数值小于2-时,即将(2,2)--H 代入(0)y nx n =≠中,1n =,当(0)y nx n =≠的函数值大于函数(0)y kx b k =+≠的值将(2,3)C --代入(0)y nx n =≠中,32n =,∴n 的取值范围为:312n ≤≤.21.(1)见解析(2)见解析【分析】(1)根据平行四边形的性质得出12BO OD BD ==,结合体已知条件得出BC BO =,进而根据三线合一即可得证;(2)根据(1)的结论得出12GE AB =,根据中位线的性质得出1122EF CD AB ==,根据菱形的判定定理即可得证.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴12BO OD BD ==,又∵2BD BC =,∴BC BO =,∵E 是OC 的中点,∴BE AC ⊥;(2)证明:如图所示,连接AF ,∵BE AC ⊥,G 是AB 的中点,∴12GE AB =,∵E ,F 分别是OC ,OD 的中点∴EF CD ∥,12EF CD =,又∵四边形ABCD 是平行四边形∴AB CD =,AB CD ∥,∴12EF AB AG ==,EF AG ∥,GE EF =,∴四边形AGEF 是平行四边形,又∵GE EF =,∴四边形AGEF 是菱形.【点睛】本题考查了平行四边形的性质与判定,菱形的判定,三角形中位线的性质,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,综合运用以上知识是解题的关键.22.(1)8;(2)画图见解析;(3)结论见解析.【分析】(1)根据城市的人均GDP 的频数分布直方图和城市的人均GDP (万元)的数值在1114x <≤这一组的数据即可求解;(2)根据收集了2023年31个城市的人均GDP 数据,可得城市GDP 排名的中位数是第16个,即可解答;(3)答案不唯一,根据散点图写出一条正确的结论即可;此题考查了频数分布直方图,中位数,看懂统计图是解题的关键.【详解】(1)解:根据城市的人均GDP 的频数分布直方图得,1417x <≤和1720x <≤两组的城市共有347+=个,由城市的人均GDP (万元)的数值在1114x <≤这一组的数据得,某城市的人均GDP 为13.8万元,该城市GDP 排名全国第8,故答案为:8;(2)解:∵收集了2023年31个城市的人均GDP 数据,∴城市GDP 排名的中位数是第16个,画图如下,(3)解:观察散点图可得,人均GDP (万元)大的和城市GDP 的排名也靠前.23.该学生接温水的时间为8s ,接开水的时间为6s .【分析】本题考查一元一次方程的实际应用,理解题意,理清数量关系是解决问题的关键.设该学生接温水的时间为s x ,则接温水20ml x ,开水()28020ml x -,由物理常识的公式可得方程,解方程即可.【详解】解:设该学生接温水的时间为s x ,根据题意可得:()()()2060302802010060x x ⨯-=-⨯-,解得8x =,∴208160ml ⨯=,∵280160120ml -=,∴120206s ÷=,答:该学生接温水的时间为8s ,接开水的时间为6s .24.(1)34,2D ⎛⎫ ⎪⎝⎭(2)8s =+(3)存在,()4,2或4024,1111⎛⎫ ⎪⎝⎭或4820,1111⎛⎫ ⎪⎝⎭【分析】(1)设()5,D a ,则,4BD a CD ED a ===-,再求出,OE BE 的长,在Rt BDE △中,根据勾股定理求出a 的值,即可求解;(2)延长MP 交OF 于N ',则PN OF '⊥,先证明ADC FDB ∽,可得38BF OF ==,,从而得到AF ==,在Rt BCF 中,由勾股定理可得5CF =,可得AC CF =,从而得到CAF AFC ∠=∠,进而得到CAF EFA AFC ∠∠∠==,可证得PFN DAC ∽,可得到11,422PN s PM s ==-,再证明APM FPN ' ∽,即可求解;(3)分三种情况:①当PM PN =时;②当PM MN =时;当MN NP =时,即可求解.【详解】(1)解:在矩形AOBC 中,()5,4C ,5AC ∴=,4OA BC ==,设()5,D a ,则BD a =,4CD ED a ==-,5AE AC == ,在Rt AOE △中,3O E ===,532BE OB OE ∴=-=-=,在Rt BDE △中,由勾股定理得:222DE BD BE =+,222(4)2a a ∴-=+,0a ∴>,32a ∴=,34,2D ⎛⎫∴ ⎪⎝⎭;(2)如图2,延长MP 交OF 于N ',则PN OF '⊥,∵AC BF ∥,PAM DFB ∠∠∴=,90ACD FBD ∠∠==︒ ,ADC FDB ∴ ∽,AC CDBF BD ∴=,由(1)知:32BD =,35422CD ∴=-=,又5AC =,55232BF ∴=,38BF OF ∴==,,AF ∴===在Rt BCF中,由勾股定理得:5CF ==,5AC = ,AC CF ∴=,CAF AFC ∴∠=∠,∵AC EF ∥,CAF EFA AFC ∠∠∠∴==,FA ∴平分CFO ∠,,PN CF PN OF '⊥⊥ ,PN PN '∴=,4PM PN PM PN MN ''∴+=+==, 90CAF CFA ACD PNF ∠∠∠∠===︒ ,,PFN DAC ∴ ∽,FNPNAC CD ∴=,51252PNCDNF AC ∴===,又NF s =,11,422PN s PM s ∴==-,PA t PF t == ,,,PAM PFN APM FPN ∠∠∠∠''== ,APM FPN '∴ ∽,PM AP PN PF ∴=',即14212s s-=8s ∴=+;(3)分三种情况:①当PM PN =时,如图3,PAM PFN ∠=∠ ,90AMP PNF ∠=∠= ,PAM ∴ ∽PFN ,1PAPMPF PN ∴==,PA PF ∴=,即t t =,解得:t =∴84FN s ===,2PM PN ∴===,4AM ===,()4,2P ∴;②当PM MN =时,如图4,过M 作MH PN ⊥于H ,PN 与MC 的延长线交于点G ,有1124PH NH PN s ===,4PM PN += ,142PM s ∴=-,GCN MPN BFC ∠∠∠== ,即MPN BFC ∠∠=,90MHP CBF ∠=∠= ,∴ PMH ∽FCB ,53PMFC PH FB ∴==,即1452134ss-=,解得:4811s =,代入8s =+得:t =∵AC OF ∥,∴MAP AFO ∠=∠,tan tan MAP AFO ∠=∠,∴12PMAOAM OF ==,∴::1:2PM AM AP =,∴4011AM =,2011PM =,∴P 的纵坐标为:202441111-=,4024,1111P ⎛⎫∴ ⎪⎝⎭;③当MN NP =时,如图5,过点N 作NQ PM ⊥于Q ,NPQ BFC ∠∠∴=,90NQP CBF ∠=∠= ,NQP ∴ ∽CBF V ,PNCFPQ BF ∴=,又12PN s =,1111422224PQ PM s s ⎛⎫==-=- ⎪⎝⎭ ,5CF =,1521324s s ∴=-,4011s ∴=,代入8s =+得:t =同理可得:4820,1111P ⎛⎫ ⎪⎝⎭;综上,点P 的坐标是()4,2或4024,1111⎛⎫ ⎪⎝⎭或4820,.1111⎛⎫ ⎪⎝⎭【点睛】此题是四边形综合题,主要考查了折叠的性质,相似三角形的性质和判定,勾股定理,一次函数,等腰三角形的性质和判定,锐角三角函数的应用等知识,用分类讨论的数学思想和方程思想解决问题是解本题的关键.25.(1)2Q ,4Q .(2)5b -≤<(3)32t -≤<【分析】(1)如图中,满足条件的点在半圆上(不包括点A 以及y 轴上的点),点2Q ,4Q 满足条件.(2)如图中,以O 为圆心,3为半径作半圆,交y 轴于(0,3)P ,()03P '-,当直线2y x b =+与半圆有交点(不包括P ,)B 时,满足条件.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,求出图3(2),图3(3)中,t 的值,可得结论.【详解】(1)解:如图,(4,0)A ,1(0,4)Q ,14OA OQ ∴==,190AOQ ∠=︒,∴点1Q 不是点A 关于点O的锐角旋转点;2(2,Q ,作2Q F x ⊥轴于点F,24OQ OA ∴====,2tan Q OF ∠== 260Q OF ∴∠=︒,∴点2Q 是点A 关于点O 的锐角旋转点;3(2,Q - ,作3Q G x ⊥轴于点G ,则33tan Q GQ OG OG ∠==360Q OG ∴∠=︒,3324cos cos 60OGOQ OA Q OG ∴====∠︒,318060120AOQ ∠=︒-︒=︒ ,3Q ∴不是点A 关于点O的锐角旋转点;(4Q - ,作4Q H x ⊥轴于点H ,则44tan 1Q HQ OH OH ∠===,445Q OH ∴∠=︒,444cos OH OQ OAQ OH ====∠ ,4Q ∴是点A 关于点O 的锐角旋转点;综上所述,在点1Q ,2Q ,3Q ,4Q 中,是点A 关于点O 的锐角旋转点的是2Q ,4Q ,故答案为:2Q ,4Q .(2)解:在y 轴上取点()0,5P ,当直线2y x b =+经过点P 时,可得5b =,当直线2y x b =+经过点B 时,则250b ⨯+=,解得:10b =-,∴当105b -<<时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线2y x b =+上,过点O 作OG ⊥直线2y x b =+,垂足G 在第四象限时,如图,则OT b =-,12OS b =-,ST ∴===,当5OG =时,b 取得最小值,152b b ⎛⎫⎛⎫⨯=-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭ ,b ∴=-5b ∴-≤<.(3)解:根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线26y x =+相切于点G ,tan 2EMG ∠=,3SG =,过点G 作GI x ⊥轴于点I ,过点S 作SJ GI ⊥于点J ,SGJ EMG ∴∠=∠,tan tan 2SGJ EMG ∴∠=∠=,GJ ∴=SJ =3GI GJ JI ∴=+=1322MI GI ∴==,32OE IE MI OM ∴=+-=-,即332E x t =-=,解得32t =+,如图3(3)中,阴影部分与HK 相切于点G ,tan tan 2OMK EMH ∠=∠=,6EH =,则3MH =,EM =33E x t ∴=-=--,解得t =-观察图象可知,32t -≤<.【点睛】本题属于圆综合题,考查了直线与圆的位置关系,坐标与图形,解直角三角形,勾股定理,点P 是点M 关于点N 的锐角旋转点的定义等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题,属于压轴题.26.(1)11B C ,33B C (2)1k ≥或1k ≤-(3)1r ≥+【分析】本题主要考查了轴对称的性质、圆的性质、“对称连接线段”的定义等知识点,掌握“对称连接线段”的定义成为解题的关键.(1)直接根据“对称连接线段”的定义以及抽对称的性质进行解答即可;(2)先根据“对称连接线段”的定义以及抽对称的性质画出图形,然后点P 的对称点是()12-,和()12,时是临界点即可解答;(3)如图3:连接MQ ,则MQ =“对称连接线段”的定义即可解答.【详解】(1)解:如图1:因为1C 关于1y x =-的对称点是()02-,在O 上,所以11B C 是O 关于直线1y x =-的“对称连接线段”,因为2B 和2C 关于1y x =-的对称点是()21-,和()13,在O 外,所以22B C 不是O 关于直线1y x =-的“对称连接线段”,因为3B 关于1y x =-的对称点是()11,在O 内,所以33B C 是O 关于直线1y x =-的“对称连接线段”.故答案为:1133B C B C ,.(2)解:如图2:设直线2y kx =+交y 轴于A ,根据轴对称的性质,点P 和它的对称点到A 的距离相等,所以点P 的对称点在以A 为圆心,1为半径的圆上运动,当点P 的对称点在圆和正方形重合的部分时,满足条件,过点P 的对称点是()12-,和()12,时是临界,此时k 的值分别是1和1-.∴1k ≥或1k ≤-.(3)解:如图3:连接MQ ,则MQ =∴点M 关于过Q 的直线的对称点在以Q N 在以Q 为圆心,半径是11-的圆上运动,y 轴于点W ,∴1r ≥.27.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键.(1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE ==BF ==【详解】(1)解:是,理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD Ð=°,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=︒,2AB =,30AFB ∠=︒,60AEB ∠=︒,∴tan tan 60AB AEB BE ∠=︒=,∴BE ==同理:tan tan 30AB AFB BF ∠=︒=,∴BF ===∴FE BF BE =-==;.28.(1)见详解(2)1.5(3)2.1米【分析】本题属于二次函数的应用,主要考查待定函数求函数解析式,二次函数图象的平移,解题的关键在于掌握由二次函数的图象建立二次函数模型.。
河南省中牟县第一高级中学2024届高三5月月考(期中)数学试题
![河南省中牟县第一高级中学2024届高三5月月考(期中)数学试题](https://img.taocdn.com/s3/m/e40ba836bfd5b9f3f90f76c66137ee06eff94e16.png)
河南省中牟县第一高级中学2024届高三5月月考(期中)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C 162D .1632.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21B .22C .11D .123.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=的2,则E 的离心率为( ) A 3B .12C 2D 2 4.若样本1231,1,1,,1n x x x x ++++的平均数是10,方差为2,则对于样本12322,22,22,,22n x x x x ++++,下列结论正确的是( ) A .平均数为20,方差为4 B .平均数为11,方差为4 C .平均数为21,方差为8D .平均数为20,方差为85.下列函数中,既是奇函数,又在(0,1)上是增函数的是( ). A .()ln f x x x = B .()x x f x e e -=- C .()sin 2f x x =D .3()f x x x =-6.各项都是正数的等比数列{}n a 的公比1q ≠,且2311,,2a a a 成等差数列,则3445a a a a ++的值为( )A .152- B .512+ C .512- D .512+或512- 7.已知非零向量a ,b 满足()2a b a -⊥,()2b a b -⊥,则a 与b 的夹角为( ) A .6πB .4π C .3π D .2π 8.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5,5P m ⎛⎫⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( )A .210B .1010C .7210D .310109.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .210.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b a b aa b a b >>> B .1log log a bb ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 11.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥12.复数z 满足()11z z i -=+ (i 为虚数单位),则z 的值是( ) A .1i +B .1i -C .iD .i -二、填空题:本题共4小题,每小题5分,共20分。
福建省福州市台江区2024-2025学年五年级上学期第一次月考数学试题
![福建省福州市台江区2024-2025学年五年级上学期第一次月考数学试题](https://img.taocdn.com/s3/m/255e1b5eb42acfc789eb172ded630b1c59ee9ba9.png)
2024—2025学年五年级上册数学第一至二单元练习2024.9一、仔细填空。
等级1.已知28×12=336, 那么0.28×( )=33.6,2.8×( )=0.3362.计算3.54×2.6的积是( )位小数,积是( ),如果将3.54扩大到原来的100倍,2.6扩大到原来的10倍,那么现在积是( )。
3.同学们团体表演时,佳佳的位置在第4列第5行,用数对(4,5)表示,刘丹在位罚用数对表示是(7,2),她在第( )列第( )行;张婷与佳佳在同一行,与刘丹在同一列,张婷的位置用数对表示是( )。
4.在◯里填上“>” “<”或“=”。
924×0.6◯924 1×0.44◯0.447.3×1.8◯7.3 2.34×1.5◯23.4×0.155.0.3分=( )秒 1.6小时=( )分0.6平方米=( )平方分米 0.35吨=( )千克6.一个三角形的三个顶点的位置分别为(2, 1)、(8, 1)、(9, 3),这个三角形一定是( )三角形。
7.妈妈在超市买了2.5千克面粉,每千克4.6元,妈妈买面粉用( )元。
8.世界著名画家达·芬奇的巨作《最后的晚餐》是当今世界上最珍贵的壁画之一。
这幅壁画长8.8米,高4.6米。
计算这幅壁画的面积时,8.8×4.6的积是( )位小数,保留整数约是( )平方米。
9.每年4月26日是世界知识产权日,这天红星小学开展“拒绝盗版,从我做起”的主题活动,倡导尊重原创,支持正版。
活动前期制作了长5.4米、宽2.3米的长方形宣传展板,这块展板的面积是( )平方米。
10.古代一尺约为0.33米,照这样计算,安徽桐城“六尺巷”的宽度大约是( )米。
(保留一位小数)千里修书只为墙,让他三尺又何妨?万里长城今犹在,不见当年秦始皇。
二、慎重选择。
1.计算“0.72×5”时,应先把它看成( )计算,再看因数中共有两位小数,点上小数点,A.0.72×0.5B.7.2×5C.72×5D.72×502.下列算式中, 与4.5×1.01的积相等的是( )。
最新人教版小学五年级数学下册月考试题及答案共3套(3-5月份)
![最新人教版小学五年级数学下册月考试题及答案共3套(3-5月份)](https://img.taocdn.com/s3/m/7cd1fda4ccbff121dd3683f2.png)
人教版小学五年级数学下册月考试卷2(3月份)一.填空题(共11小题,满分20分)1.(1)如图所示,这个皮鞋盒的上面是形,长cm,宽cm.和它相同的面是皮鞋盒的.(2)它的左面是形,长cm,宽cm,和它大小相同的面是.(3)有个面的长是30cm,宽是10cm.2.120米用去,还剩米.3.一列火车每小时可行使60千米,它的速度可以写成,光的速度的每秒30万千米,可以写成.4.把8米长的绳子平均分成5段,每段占全长的,每段绳子的长是米.5.淘气和奇思进行100米赛跑,淘气用了分,奇思用了分.的速度更快.6.异分母分数相加减,要先,化成,再加减.7.学校古诗文诵读大赛中设一、二、三等奖,获一、二等奖的人数占获奖总数的,获二、三等奖的人数占获奖总数的,获二等奖的人数占获奖总数的,获三等奖的人数占获奖总数的.8.一根铁丝可以扎一个长5cm,宽4cm,高3cm的长方体框架,这根铁丝至少有cm.如果用它扎一个正方体框架,那么这个正方体的棱长是cm.9.小华5分钟能走320米,用同样的速度走768米,需要分钟.10.一个棱长总和是36m的立方体,它的表面积是.11.千克黄豆可以榨出千克豆油,照这样计算,要榨出1千克豆油需要千克黄豆.二.选择题(共7小题,满分14分,每小题2分)12.在一个大正方体上面的中间挖去一个棱长1cm的小正方体,大正方体的表面积()A.增加了4平方厘米B.增加了5平方厘米C.减少了1平方厘米D.减少了4平方厘米13.用一根64分米长的铁丝,正好可以焊成长6分米,宽3分米,高()分米的长方体框架.A.6B.7C.8D.914.下面()中两个数的积在和之间.A.×B.×C.×515.某市去年实际绿化面积比原计划增加了,实际绿化270公顷,原计划绿化多少公顷?正确列式是()A.270÷(1+)B.270÷(1﹣)C.270÷16.3米的与5米的相比,()A.3米的长些B.5米的长些C.一样长D.不能比较17.把一个正方体的表面沿某些棱剪开,展开形成一个平面图(如图),这个平面图是下面正方体()的表面展开图.A.B.C.D.18.一个正方体的棱长之和是48cm,这个正方体的表面积是()cm2.A.384B.96C.216D.64三.解答题(共3小题,满分40分)19.直接写得数+=﹣=+=2﹣=+=﹣=1﹣﹣=++=20.脱式计算,能简算的要简算.﹣(﹣)﹣(+)++﹣(+)﹣﹣+++21.解方程.3x﹣8=16x+0.7=3.6 2.4×5﹣2x=6x+2.8x=4.56(100﹣x)÷5=45(x﹣1.8)=18四.解答题(共5小题,满分26分)22.一种车载铁皮油箱,长0.8米,宽0.6米,高0.5米.(1)做这个油箱至少需要多少平方米的铁皮?(2)如果每升油重0.75千克,这个油箱可装油多少千克?23.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?24.做一个小礼物的包装盒,长6cm,宽5cm,高10cm,至少用多少平方厘米的硬纸板?25.某修路队修好一条路,第一天修了全长的;第二天修了余下的,正好是150米.这条路长多少米?26.动动脑:一个分数,分子、分母同时除以相同的数得.原来分子与分母的和是52.这个分数原来是多少?参考答案与试题解析一.填空题(共11小题,满分20分)1.解:由题意得:(1)如图所示,这个皮鞋盒的上面是长方形,长30cm,宽20cm.和它相同的面是皮鞋盒的下面.(2)它的左面是长方形,长20cm,宽10cm,和它大小相同的面是右面.(3)前后有2个面的长是30cm,宽是10cm.故答案为:(1)长方,30,20,下面;(2)长方,20,10,右面;(3)2.2.解:120﹣120×=120﹣30=90(米)答:还剩下90米.故答案为:90.3.解:“每小时可行使60千米”书面写法如下:60千米/小时,“每秒30万千米”的书面书写如下:30万千米/每秒.故答案为:60千米/小时,30万千米/每秒.4.解:1÷5=8÷5=(米)答:每段占全长的,每段绳子的长是米.故答案为:,.5.解:=,=>所以>,所以奇思的速度快.故答案为:奇思.6.解:异分母分数相加减,要先通分,化成同分母分数,再加减.故答案为:通分,同分母分数.7.解:+﹣1=﹣1=﹣=答:获二等奖的人数占获奖总数的,获三等奖的人数占获奖总数的.故答案为:,.8.解:(5+4+3)×4=12×4=48(厘米)48÷12=4(厘米),答:这根铁丝至少有48cm.如果用它扎一个正方体框架,那么这个正方体的棱长是4cm.故答案为:48,4.9.解:768÷(320÷5)=768÷64=12(分钟)答:需要12分钟.故答案为:12.10.解:正方体的棱长:36÷12=3(米),正方体的表面积:3×3×6,=9×6,=54(平方米);答:这个正方体的表面积是54平方米.故答案为:54平方米.11.解:÷=4(千克)答:要榨出1千克豆油需要4千克黄豆.故答案为:4.二.选择题(共7小题,满分14分,每小题2分)12.解:在一个大正方体的上面的中间挖去一个棱长1cm的小正方体,那么它的表面积就增加了棱长为1厘米的小正方体的4个面的面积,所以这个大正方体表面积增加了:1×1×4=4(平方厘米)答:大正方体的表面积增加了4平方厘米.故选:A.13.解:64÷4﹣(6+3)=16﹣9=7(分米);答:高是7分米.故选:B.14.解:A、×=,,本选项不在范围内;B、×=,本选项在范围内;C、×5=,本选项不在范围内;故选:B.15.解:270÷(1+)=270÷=240(公顷)答:原计划绿化面积是240公顷.故选:A.16.解:3×=(米)5×=(米)因为,所以3米的与5米的相比,5米的长些.答:3米的与5米的相比,5米的长些.故选:B.17.解:答案A和B中带黑圆与白圆的两个面相邻,根据展开图的特征,带标志的这两个面应是相对的两个面.答案D中,两个阴影的形状与展开图中的形状不符.故选:C.18.解:正方体的棱长:48÷12=4(厘米)正方体的表面积:4×4×6=96(平方厘米)答:正方体的表面积是96平方厘米.故选:B.三.解答题(共3小题,满分40分)19.解:+=﹣=+=2﹣=1+=﹣=1﹣﹣=0++=120.解:(1)﹣(﹣)=﹣=(2)﹣(+)=﹣﹣=﹣=(3)++=++=1+=1(4)﹣(+)=﹣﹣=﹣=(5)﹣﹣=﹣(+)=﹣=(6)+++=(+)+(+)=1+1=221.解:(1)3x﹣8=163x﹣8+8=16+83x=243x÷3=24÷3x=8(2)x+0.7=3.6x+0.7﹣0.7=3.6﹣0.7x=2.9(3)2.4×5﹣2x=612﹣2x=612﹣2x+2x=6+2x2x+6=122x+6﹣6=12﹣62x=62x÷2=6÷2x=3(4)x+2.8x=4.563.8x=4.563.8x÷3.8=4.56÷3.8x=1.2(5)(100﹣x)÷5=4(100﹣x)÷5×5=4×5100﹣x=20100﹣x+x=20+xx+20=100x+20﹣20=100﹣20x=80(6)5(x﹣1.8)=185(x﹣1.8)÷5=18÷5x﹣1.8=3.6x﹣1.8+1.8=3.6+1.8x=5.4四.解答题(共5小题,满分26分)22.解:(1)(0.8×0.6+0.8×0.5+0.6×0.5)×2,=(0.48+0.4+0.3)×2,=1.18×2,=2.36(平方米);答:做这个油箱至少需要2.36平方米的铁皮.(2)0.8×0.6×0.5,=0.8×(0.6×0.5),=0.8×0.3,=0.24(立方米);0.24立方米=240立方分米,240立方分米=240升,0.75×240=180(千克);答:这个油箱可装油180千克.23.解:设甲书架原有x本书,则乙书架原有(450﹣x)本,得(1+)x=(450﹣x)×(1+)x=(450﹣x)×x=585﹣xx=585x=200450﹣200=520(本)答:原来甲书架有图书200本、乙书架有图书250本.24.解:(6×5+6×10+5×10)×2=(30+60+50)×2=140×2=280(平方厘米)答:做这个纸盒至少需要280平方厘米的硬纸板.25.解:150÷[(1)×]=150×[]==150×4=600(米)答:这条路长600米.26.解:因为一个分数,分子、分母同时除以一个相同的数得,所以原来的分数化简后是,原来分数的分子是:52×=52×=16原来分数的分母是:52﹣16=36所以原来的分数是.答:原来的分数是.人教版小学五年级数学下册月考试卷2(4月份)一.填空题(共10小题,满分20分)1.42和7,是的倍数,是的因数.2.一个数既是18的约数,又是18的倍数,这个数是.3.能同时被2、3、5整除的最大两位数是.4.一个长方体中有四个面完全一样,那么另外两个面一定是正方形..5.有9根a厘米长和6根b厘米长的小棒,用其中的12根搭成长方体框架,长方体框架的棱长总和为厘米.6.正方体的棱长扩大3倍,它的表面积就扩大倍.7.一个长方体,如果高增加2cm,就成为一个正方体.这时表面积比原来增加72cm2,原来长方体的体积是cm3.8.立方米=立方分米小时=分7.06升=升毫升;250立方分米=升.9.物体的表面或的大小,就是它们的面积.常用的面积单位有平方米、和.10.一个数是A×B的倍数,它又是A×B的因数,猜一猜,这个数是.二.判断题(共8小题,满分16分,每小题2分)11.在自然数列中,所有的偶数都是合数.(判断对错)12.一个数的因数一定小于它本身.(判断对错)13.一个长方体的长宽高分别扩大3倍,长方体的表面积和体积扩大了9倍.(判断对错)14.如图,将瓶中的水全部倒入杯中后,水的形状和体积都发生了变化(在不计算损耗的情况下)..(判断对错)15.质数的因数只有一个.(判断对错)16.所有的质数都是奇数,所有的合数都是偶数.(判断对错)17.个位上是0的数都是2和5的倍数..(判断对错)18.一个长方体和一个正方体的体积相等,那么它们的表面积也相等(判断对错)三.选择题(共6小题,满分12分,每小题2分)19.10以内既是奇数,也是合数的数是()A.9B.2C.720.要使1280是3的倍数,至少要加上()A.1B.3C.421.把一个正方体分割成两个小长方体后,表面积()A.不变B.比原来大了C.比原来小了22.下面的几何体从侧面看,图形是的有()A.(1)(2)(4)B.(2)(3)(4)C.(1)(3)(4)23.一个合数最少有()个因数.A.3B.2C.124.用4个同样的小正方体,可以摆出一个()A.正方体B.长方体C.圆柱D.球四.计算题(共3小题,满分14分)25.解方程.3.5+x=9.86x﹣x=24.34 x+2.5×0.2=10.526.计算下面各题,注意使用简便方法.14.39+4.8+5.61+6.25.6÷2.5÷0.499×0.95+0.956.8+1.25×6.8×83.75÷[0.3×(1.34﹣0.84)]27.(8分)计算下面图形的表面积,(单位:分米)五.填空题(共1小题,满分9分,每小题9分)28.(1)从正面看到的有.(2)从正面看到的有.(3)从侧面看到的有.六.解答题(共5小题,满分23分)29.五(1)班6名同学去给小树苗浇水,小树苗不到30棵,他们发现每人浇水棵数相同,这批小树苗可能有多少棵?30.如图:一个长方形面积864平方厘米,长比宽多12厘米,求长方形的长和宽.31.如图,在长20厘米,宽7厘米的长方形的四角各剪去四个边长1厘米的小正方形,做一个无盖的纸盒,这个纸盒的体积是多少?32.将长是16分米,宽12分米的长方形分成大小相同的正方形(边长是整分米数),且没有剩余.至少能分成多少个?33.在一个长5dm,宽3dm,高5dm的长方体玻璃缸内盛有2dm深的水.放入一块石头后(石头完全浸入水中),这时水深2.2dm.这块石的体积是多少dm3?参考答案与试题解析一.填空题(共10小题,满分20分)1.解:因为42÷7=6,所以42是7的倍数,7是42的因数.故答案为:42,7,7,42.2.解:由分析得:一个数既是18的倍数,又是18的因数,这个数是18;故答案为:18.3.解:因为能同时被2、5整除的数的个位上是0,所以根据是3的倍数的特征,可得能同时被2、3、5整除的最大两位数是90.故答案为:90.4.解:假如长方体中两个正方形面是左右面,那么这个长方体的宽和高的长度相等,进而可得出4个长方形面的宽都相等,又由于剩下的4条长相等,所以一个长方体中有四个面完全一样,那么另外两个面一定是正方形;故答案为:正确.5.解:用8根据a厘米长的小棒和4根b厘米长的小棒搭成一个长方体框架,这个长方体框架的棱长和是8a+4b厘米;故答案为:8a+4b.6.解:正方体的棱长扩大3倍,它的表面积就扩大3×3=9倍;故答案为:9.7.解:72÷2=36(厘米),36÷4=9(厘米),9﹣2=7(厘米),9×9×7=567(立方厘米);答:原来这个长方体的体积是567立方厘米.故答案为:567立方厘米.8.解:(1)立方米=350立方分米;(2)小时=25分;(3)7.06升=7升60毫升;(4)250立方分米=250升.故答案为:350,25,7,60,250.9.解:物体的表面或平面图形的大小,就是它们的面积.常用的面积单位有平方米、平方分米和平方厘米.故答案为:平面图形,平方分米,平方厘米.10.解:一个数是A×B的倍数,它又是A×B的因数,这个数是A×B.故答案为:A×B.二.判断题(共8小题,满分16分,每小题2分)11.解:由分析可知:在自然数列中,所有的偶数都是合数,说法错误,如2;故答案为:×.12.解:因为,一个数的最小的因数是1,最大的因数是它本身,所以,一个数的因数一定小于它本身,这种说法是错误的.故答案为:×.13.解:3×3=93×3×3=27所以,一个长方体的长宽高分别扩大3倍,长方体的表面积扩大了9倍,体积扩大了27倍.因此,一个长方体的长宽高分别扩大3倍,长方体的表面积和体积扩大了9倍.这种说法是错误的.故答案为:×.14.解:由分析可知:将瓶中的水全部倒入杯中后,水的形状发生了变化,但体积不变,所以本题说法错误;故答案为:×.15.解:因为质数有1和它本身两个因数;所以质数的因数只有一个,错误.故判断为:×.16.解:根据偶数与奇数,质数与合数的定义可知,所有的偶数都是合数,所有的奇数都是质数的说法是错误的.如:2既为质数也为偶数;9,15等既为奇数也为合数.故答案为:×.17.解:由分析可得,“个位上是0的数都是2和5的倍数.”是正确的.故答案为:√.18.解:一个长方体和正方体的体积相等,都是8,所以正方体的棱长是2,表面积是2×2×6=24;长方体的长宽高可以分别是:1、2、4,表面积是:1×2×2+1×4×2+2×4×2=4+8+16=28,所以“一个长方形和一个正方形的体积相等,那么它们的表面积也相等”说法错误.故答案为:×.三.选择题(共6小题,满分12分,每小题2分)19.解:10以内的奇数为:1,3,5,7,9;10以内的合数为:4,6,8,9.所以10以内既是奇数又是合数的数是9,即只有1个;故选:A.20.解:1+2+8+0=11,11+1=12,12能被3整除,所以至少加1;故选:A.21.解:根据题干分析可得,把一个正方体分割成两个长方体后,表面积是比原来大了.故选:B.22.解:从侧面看,图形是的有(1)(3)(4).故选:C.23.解:一个合数最少有3个因数;故选:A.24.解:用4个同样的小正方体,可以摆出一个大长方体;不能摆出正方体、圆柱和球;故选:B.四.计算题(共3小题,满分14分)25.解:(1)3.5+x=9.83.5+x﹣3.5=9.8﹣3.5x=6.3(2)6x﹣x=24.35x=24.35x÷5=24.3÷5x=4.86(3)4x+2.5×0.2=10.54x+0.5=10.54x+0.5﹣0.5=10.5﹣0.54x=104x÷4=10÷4x=2.5 26.解:(1)14.39+4.8+5.61+6.2=(14.39+5.61)+(4.8+6.2)=20+11=31(2)5.6÷2.5÷0.4=5.6÷(2.5×0.4)=5.6÷1=5.6(3)99×0.95+0.95=(99+1)×0.95=100×0.95=95(4)6.8+1.25×6.8×8=6.8+1.25×8×6.8=6.8+10×6.8=6.8+68=74.8(5)3.75÷[0.3×(1.34﹣0.84)]=3.75÷[0.3×0.5]=3.75÷0.15=2527.解:(8×3+8×4+3×4)×2=(24+32+12)×2=68×2=136(平方分米)答:这个长方体的表面积是136平方分米.5×5×6=150(平方分米)答:这个正方体的表面积是150平方分米.五.填空题(共1小题,满分9分,每小题9分)28.解:(1)从正面看到的有1、2、7.(2)从正面看到的有3、4、5、.(3)从侧面看到的有6、8.故答案为:1、2、7;3、4、5;6、8.六.解答题(共5小题,满分23分)29.解:小于30的且是6的倍数的有:6、12、18、24棵;答:这批小树苗可能有6棵或12棵或18棵或24棵.30.解:12×12=144(平方厘米)144+864×4=144+3456=3600(平方厘米)3600=60×60,所以大正方形的边长是60厘米,(60+12)÷2=72÷2=36(厘米)36﹣12=24(厘米)答:长方形的长是36厘米,宽是24厘米.31.解:(20﹣1×2)×(7﹣1×2)×1=18×5×1=90(立方厘米)答:这个纸盒的体积是90立方厘米.32.解:16=2×2×2×2,12=2×2×3,所以16和12的最大公因数是:2×2=4,16×12÷(4×4)=192÷16=12(个);答:至少能分成12个.33.解:5×3×(2.2﹣2)=5×3×0.2=3(dm3)答:这块石的体积是3dm3.人教版小学五年级数学下册月考试卷2(5月份)一.填空题(共11小题,满分26分)1.24和40的最大公因数是,最小公倍数是.2.一筐苹果,6个6个的数剩3个,8个8个的数也剩3个,这筐苹果至少个.3.把米长的铁丝剪成相等的6段,每段占全长的,4段长米.4.立方米=立方厘米;35平方分米=平方米;时=分;350ml=cm3=dm3.5.一个长方体的长、宽、高分别是10厘米、6厘米、5厘米,它的棱长总和是厘米,体积是立方厘米,表面积是平方厘米.6.==24÷()==(填小数).7.把8米长的绳子平均分成5段,每段占全长的,每段绳子的长是米.8.把的分子扩大3倍,要使它的大小不变,分母应该加上.9.8和9的最大公因数是,6和10的最小公倍数是.10.钟面上的分针从6:30到7:00,时针旋转了.11.把77.8%、、0.777、78%、这五个数按从大到小的顺序排列是:.二.选择题(共5小题,满分5分,每小题1分)12.在四位数23□0的方框里填入一个数字,使它能同时被2、3、5整除,最多有()种填法.A.1B.2C.313.一个长方体的长、宽、高都扩大到原来的6倍,它的体积扩大到原来的()倍.A.6B.36C.18D.21614.一根长方体钢材,横截面积是110平方厘米,长0.5米,它的体积是()立方厘米.A.55B.5500C.550D.5500015.下列说法正确的是()A.所有的质数都是奇数B.两个奇数的差一定是奇数C.整数都比分数大D.是4的倍数的数一定是偶数16.黑兔只数是白兔只数的,()是单位“1”的量.A.白兔只数B.黑兔只数C.总只数三.判断题(共5小题,满分5分,每小题1分)17.把一根木料平均截成2段用5分钟,如果平均截成4段要10分钟.(判断对错)18.两个质数的和一定是偶数..(判断对错)19.两个长方体的表面积相等,它们的体积也相等.(判断对错)20.2米的和1米的一样长.(判断对错)21.分数的分母越大,它的分数单位就越小..(判断对错)四.填空题(共5小题,满分27分)22.在下面每组的横线上填上“>”、“<”或“=”.333 3.3423.把下列各小数化成分数,分数化成小数(除不尽的保留三位小数)0.85=4.4=2==24.把假分数化成整数或带分数.、、、、、.25.把下列各组分数通分并比较大小.①和②和③和26.把下面各组分数通分.和和1和.五.操作题(共2小题,满分8分,每小题4分)27.看一看、填一填、画一画(1)从①号和②号物体的面看到的图形相同.(2)从①号物体和②号物体的面看到的图形不同.(3)画出两个物体从前面看到的图形28.画出三角形AOB绕O点逆时针旋转180o后的图形.六.应用题(共6小题,满分29分)29.故宫是全世界最大的宫殿建筑群,天安门广场的占地面积大约是44公顷,比故宫的占地面积少.故宫的占地面积大约是多少公顷?30.五(1)的同学站队做操,按12人一队或15人一队都正好而没有剩余,这个班至少多少人?分别能站成几队?31.如图,在长20厘米,宽7厘米的长方形的四角各剪去四个边长1厘米的小正方形,做一个无盖的纸盒,这个纸盒的体积是多少?32.小红和妈妈在中心广场锻炼,妈妈跑一圈用6分钟,小红跑一圈用8分钟.她们同时从起点出发,他们几分钟后可以在起点第一次相遇?33.学校准备粉刷多媒体室,教室长8米,宽6米,高3米.门窗面积是12平方米.需要粉刷的面积是多少平方米?如果每平方米用4元的涂料费,粉刷这间教室要多少钱?34.一个假分数,它的分子是37,把它化成带分数后,分子是5,这个假分数可能是多少?参考答案与试题解析一.填空题(共11小题,满分26分)1.解:因为:24=2×2×2×3,40=2×2×2×5,所以24和40的最大公因数是:2×2×2=8,它们的最小公倍数是:2×2×2×3×5=120,.故答案为:8,120.2.解:6=2×38=2×2×2所以6和8的最小公倍数是:2×2×2×3=2424+3=27(个)答:这筐苹果最少有27个.故答案为:27.3.解:1÷6=,÷6×4=×4=(米);答:每段占全长的,4段长米.故答案为:,.4.解:立方米=800000立方厘米;35平方分米=0.35平方米;时=10分;350ml=350cm3=0.35dm3故答案为:800000,0.35,10,350,0.35.5.解:(10+6+5)×4=21×4=84(厘米)10×6×5=300(立方厘米)(10×6+10×5+6×5)×2=(60+50+30)×2=140×2=280(平方厘米)答:它的棱长总和是84厘米,体积是300立方厘米,表面积是280平方厘米,.故答案为:84,300,280.6.解:==24÷64==0.375.故答案为:6,64,,0.375.7.解:1÷5=8÷5=(米)答:每段占全长的,每段绳子的长是米.故答案为:,.8.解:现在的分子扩大3倍,所以要使分数的大小不变分母应该扩大3倍,变为7×3=21,所以分母应该加上:21﹣7=14.答:分母应该加上14.故答案为:14.9.解:(1)7和9是互质数,最大公因数是1;(2)6=2×3,10=2×5,所以6和10的最大公因数是2,最小公倍数是2×3×5=30;故答案为:1,30.10.解:由分析得:从6:30到7:00,分针转了:30°×6=180°,时针转了:30°×0.5=15(度),故答案为:15°.11.解:因为77.8%=0.778,≈0.7778,78%=0.78,=0.7,且0.78>0.778>0.7778>0.777>0.7,所以78%>77.8%>>0.777>.故答案为:78%>77.8%>>0.777>.二.选择题(共5小题,满分5分,每小题1分)12.解:四位数23□0的个位是0,满足了能同时被2和5整除,四位数23□0的千位、百位、个位的和是2+3+0=5,;5+1=6,5+4=9,5+7=12,十位上是1,4、7,四位数23□0都是3的倍数,所以四位数23□0的□里能填:1、4、7,一共3种填法;故选:C.13.解:一个长方体的长、宽、高都扩大到原来的6倍,它的体积扩大到原来的6×6×6=216倍.故选:D.14.解:0.5米=50厘米.110×50=5500(立方厘米).答:它的体积是5500立方厘米.故选:B.15.解:A、除了1和它本身外,没有其它因数的数为质数,自然数中,是2的倍数的数为偶数,由此可知:所有的质数都是奇数,说法错误,如2;B、因为奇数﹣奇数=偶数,所以两个奇数的差一定是奇数,说法错误;C、整数都比分数大,说法错误,如1<;D、自然数中,是2的倍数的数为偶数,所以是4的倍数的数一定是偶数,说法正确;故选:D.16.解:黑兔只数是白兔只数的,白兔只数是单位“1”的量.故选:A.三.判断题(共5小题,满分5分,每小题1分)17.解:5÷(2﹣1)×(4﹣1)=5×3=15(分钟)即平均截成4段要15分钟,所以原题说法错误.故答案为:×.18.解:如:2+3=5,5是奇数,2+5=7,7也是奇数;所以,两个质数相加的和一定是偶数.此说法错误.故答案为:×.19.解:假设两个长方体的体积都为18立方厘米,甲长方体的长、宽、高可以分别为2cm、3cm、3cm,乙长方体的长、宽、高可以分别为1cm、2cm、9cm.根据条件可以算出甲长方体的表面积是21平方厘米,乙长方体的表面积是29平方厘米.两个长方体的体积相等但表面积不相等,则可推断出表面积相等体积未必相等.所以原题不成立.故答案为:×.20.解:2×=(米),1×=(米),米=米.故答案为:√.21.解:分数的分母越大,它的分数单位就越小.题干的说法是正确的.故答案为:√.四.填空题(共5小题,满分27分)22.解:(1)=,>;所以,>;(2)3==,<;所以,3<;(3)3=,>;所以,3>;(4)3=3+0.34=3.34所以,3=3.34.故答案为:>,<,>,=.23.解:0.85==4.4==2=2+(5÷12)≈2+0.417=2.417;=13÷20=0.65.24.解:50÷8=6 (2)==5;235÷100=2 (35)=2=2;17÷3=5 (2)=5;15÷7=2 (1)=2;125÷6=20 (5)=20;36÷15=2 (6)=2=2.25.解:①因为==<所以<;②因为=<所以<;③因为==<所以<.26.解:(1)=,=;(2)=,=;(3)1==,=.五.操作题(共2小题,满分8分,每小题4分)27.解:(1)从①号和②号物体的侧、上面看到的图形相同.(2)从①号物体和②号物体的前面面看到的图形不同.(3)画出两个物体从前面看到的图形(下图);故答案为:侧、上,前.28.解:画出三角形AOB绕O点逆时针旋转180°后的图形(图中红色部分):六.应用题(共6小题,满分29分)29.解:44÷(1﹣)=44÷=72(公顷)答:故宫的占地面积大约是72公顷.30.解:12=2×2×315=3×5则12、15的最小公倍数是:2×2×3×5=6060÷12=5(队)60÷12=4(队)答:这个班至少60人,分别能站成5队或4队.31.解:(20﹣1×2)×(7﹣1×2)×1=18×5×1=90(立方厘米)答:这个纸盒的体积是90立方厘米.32.解:6=2×3,8=2×2×2,所以6和8的最小公倍数是:2×3×2×2=24(分钟),答:他们24分钟后可以在起点第一次相遇.33.解:8×6+(8×3+6×3)×2﹣12=48+(24+18)×2﹣12=48+84﹣12=120(平方米)120×4=480(元)答:需要粉刷的面积是120平方米,如果每平方米用4元的涂料费,粉刷这间教室要480元.34.解:37﹣5=3232=32×1=16×2=8×4这个带分数只能是1或2或4,1=2=4=答:这个假分数是或或.。
2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷
![2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷](https://img.taocdn.com/s3/m/ba0ff05ea55177232f60ddccda38376baf1fe00d.png)
盐城市盐都区第一共同体七年级第二学期5月份数学试题时间:100分钟分值:120分一、选择题(本大题共8小题,每小题3分,共24分)1.化简(a4)3的结果为····························································()A.a7B.a12C.a11D.a82. 下列各式从左到右的变形不属于...因式分解的是·····································()A.a2+2ab+b2=(a+b)2B.xy−4x+y−4=(x+1)(y−4)C.x2+6x−9=(x+3)(x−3)+6xD.x2+3x−10=(x+5)(x−2)3.已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是····()A.6B.7C.8D.94.一块含45°角的直角三角板与一把直尺如图放置,若∠1=60°,则∠2度数是··········()A.85°B.75°C.60°D.45°第4题第5题第8题5.如图,下列结论不正确...的是······················································()A.若AD∥BC,则∠1=∠BB.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CDD.若AE∥CD,则∠1+∠3=180°6.已知二元一次方程x+y=1,下列说法正确..的是····································()A.它有一组正整数解B.它只有有限组解C.它只有一组非负整数解D.它的整数解有无穷多组7.在△ABC中,∠A+∠B=141°,∠C+∠B=165°,则△ABC的形状是·····················()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形8. 如图,∠A0B=70°,点M,N分别在OA,OB上运动(不与点O重合〉,ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M, N的运动过程中,∠F的度数·······························()A.变大B.变小C.等于55°D.等于35°二、填空题(本大题共10小题,每小题2分,共20分)9.新冠病毒“奥密克戎”的直径约为0.00000011m,用科学记数法可表示为m.10.六边形的内角和是°.11.使等式a 0 = 1成立的条件是.12.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上).若∠B=55°,∠C=100°,则∠AB′A′的度数为 .13.已知a =−(0.2)2,b =−2−2,c =(−12)−2,则a ,b ,c 从小到大....的排序是 . 14.关于x 的不等式2ax+3x >2a+3的解集为x <1,则a 的取值范围是 . 15.已知 ax +by =16bx −ay =−12的一组解为 x =2y =4,则a 、b 分别为 .16.已知关于x 的不等式组 x −a >0 3−2x ≥−11 的整数解共有5个,则a 的取值范围是 .17.定义:对于任何数a ,符号[a ]表示不大于a 的最大整数.例:[5.7]=5,[5]=5,[﹣1.5]=﹣2.如果[554-x ]=﹣5,满足条件的所有整数x 是 . 18.如图,AB//CD ,则∠1+∠2+∠3+……+∠n-1+∠n= .三、解答题(本大题共10小题,共76分)19.(本题满分6分)计算: (1)()()11322π--+-- (2)()326323a a a a a -⋅+÷20.(本题满分6分)因式分解:(1)2436x - (2)x 3−2x 2y +xy 221.(本题满分6分)解不等式组()211113x x x x ⎧--≤⎪⎨+>-⎪⎩,并把解集在数轴上表示出来第12题第18题22.(本题满分6分)解方程组:(1)213417x yx y=-⎧⎨+=⎩(2)20325x yx y-=⎧⎨-=⎩23.(本题满分6分)先化简,再求值:(a−1)2−a(a+3)+2(a+2)(a−2),其中a=−2.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫做格点. (1)画出△ABC先向右平移4个单位,再向上平移两个单位后得到的△A1B1C1;(2)画出△A1B1C1的高C1H;(3)连结AA1 、CC1,求四边形ACC1A1 的面积.25.(本题满分8分)如图,△ABC中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA延长线于点E,AD平分∠BAC.求证:∠E=∠BGF.26.(本题满分10分)某电器超巿销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:((1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.(本题满分10分)【项目学习】“我们把多项式a2+2ab+b2及a2―2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解: a2+6a+8=a2+6a+32—32+8=(a+3 )2—1因为(a+3)2≥0,所以a2+6a+8≥—1,因此,当a=―3时,代数式α2+6a+8有最小值,最小值是-1.【问题解决】利用配方法解决下列问题:(1))当x= 时,代数式x2—2x一1有最小值,最小值为.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2—4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2α十5、3α十2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.28.(本题满分12分)已知∠MON=40°,0E平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C 不与点O重合),连接AB,连AC交射线OE于点D,设∠BAC=α.(1)如图1,若AB∥ON,①∠ABO的度数是° ;②当∠BAD=∠ABD时,∠0AC的度数是°;当∠BAD=∠BDA时,∠0AC的度数是°;( 2 )在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB⊥OM,延长AB交射线ON于点F,当四边形DCFB为“完美四边形”时,求α的值.图1 图2 备用图。
江苏省无锡市天一实验学校2023-2024学年七年级下学期数学5月月考试题
![江苏省无锡市天一实验学校2023-2024学年七年级下学期数学5月月考试题](https://img.taocdn.com/s3/m/f74e2379b5daa58da0116c175f0e7cd184251892.png)
江苏省无锡市天一实验学校2023-2024学年七年级下学期数学5月月考试题一、单选题1.如图,由图形a 通过平移可以得到的图形是( )A .B .C .D .2.下列各式中计算正确的是( )A .(﹣2x 2)3=﹣6x 6B .x 3﹣x 2=xC .x 4÷x 2=x 2D .x 3⋅x 3=x 9 3.下列各式中,能用平方差公式进行计算的是( )A .()()22a b b a -+-B .()()a b b a ---C .()()22b a a b +-D .()()a b b a --+4.如图所示,在ABC V 中,90ACB ∠>︒,AD BD BE AE CF AB ⊥⊥⊥,,,垂足分别是D ,E ,F ,则下列说法错误的是( )A .AD 是ABD △的高B .CF 是ABC V 的高 C .BE 是ABC V 的高D .BC 是BCF △的高5.20232024122⎛⎫-⨯ ⎪⎝⎭的值为( )A .2-B .12-C .2D .126.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银(注:这里的斤是指市斤,1市斤10=两)设共有x 人,y 两银子,下列方程组中正确的是( )A .6x 6y 5x 5y +=⎧⎨-=⎩B .6x 6y 5x 5y +=⎧⎨+=⎩C .6x 6y 5x 5y -=⎧⎨-=⎩D .6x 6y 5x 5y -=⎧⎨+=⎩7.以下四个说法:①两条直线被第三条直线所截,内错角相等;②方程37x y +=有无数个整数解;③ABC V 在平移过程中,对应线段一定平行;④当x 为任意有理数时,2610x x -+的值一定大于1;其中错误的个数为( )A .1B .2C .3D .48.对有序数对(),m n 定义“f 运算”:()(),,f m n am bn am bn =+-,其中a ,b 为常数,f 运算的结果是一个有序数对.如:当1a =,1b =时,()()2,31,5f -=-,若()()3,28,4f -=,则2ab 的值是( )A .2B .1-C .4D .3-9.如图,点A 是直线l 外一点,点B 、C 是直线l 上的两动点,且4BC =,连接AB 、AC ,点D 、E 分别为AC 、BC 的中点,AF 为ABD △的中线,连接EF ,若四边形AFEC 的面积为10,则AB 的最小值为( )A .6B .7C .8D .910.如图所示,两个正方形的边长分别为a 和b ,如果12a b +=,28ab =,那么阴影部分的面积是( )A .40B .44C .32D .50二、填空题11.福岛第一核电站核废水即便被海水稀释后放射量仍达到0.000000109贝克勒尔,数据0.000000109用科学记数法表示为.12.若关于x 、y 的方程355n m n x y -++=是二元一次方程,则mn 的值是.13.已知()()242x ax x b +-+的展开式中不含2x 项,常数项是8-,则b a -=.14.如果不等边三角形的三边长分别是2、7、1x -,那么整数x 的取值是.15.关于x 、y 的方程组363524x y bx ay -=⎧⎨+=-⎩与218x y ax by +=-⎧⎨-=⎩有相同的解,则a b -的值是. 16.在ABC V 中,AD 是BC 边上的高,BE 是ABC ∠的角平分线,直线BE 与高AD 交于点F ,若52ABC ∠=︒,28CAD ∠=︒,则FEC ∠的度数为度.17.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120︒,40︒,20︒的三角形是“灵动三角形”.如图36MON ∠=︒,在射线OM 上找一点A ,过点A 作AB OM ⊥交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定060OAC ︒<∠<︒).当ABC V 为“灵动三角形”时,OAC ∠的度数为度.18.如图,ABC V 沿EF 折叠使点A 落在点A '处,、BP CP 分别是ABD ACD ∠∠、平分线,若3016P A EB '∠=︒∠=︒,,则A FC '∠=︒.三、解答题19.计算: (1)011(2024)22-+-+. (2)()()2a b a b -+.20.(1)因式分解:228y -,(2)解方程组:33814x y x y =+⎧⎨-=⎩. 21.如图,已知线段AB ,CD 相交于点O ,OE 平分AOC ∠,交AC 于点E ,180BOE D ∠+∠=︒.(1)求证:OE AD ∥;(2)若80AEO ∠=︒,55B D ∠=∠=︒,ACD ∠的度数.22.画图并填空:如图,在方格纸内将ABC V 经过平移后得到A B C '''V ,图中标出了点B 的对应点B ',解答下列问题。
山东省临沂市费费县2023-2024学年下学期5月月考九年级数学质量检测试题(含答案)
![山东省临沂市费费县2023-2024学年下学期5月月考九年级数学质量检测试题(含答案)](https://img.taocdn.com/s3/m/dea156adaff8941ea76e58fafab069dc502247aa.png)
山东省临沂市费费县2023-2024学年下学期5月月考九年级数学质量检测试题注意事项:1. 答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。
2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3. 非选择题必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.下面四个数中,比1小的正无理数是( )A .B .C .D .2.在直角坐标系中,把点先向右平移1个单位,再向上平移3个单位得到点.若点的横坐标和纵坐标相等,则( )A .2B .3C .4D .53.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为( )A .B .C .D .4.(2023·吉林长春·统考中考真题试卷)下图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A.面①B.面②C.面⑤D.面⑥5 . 如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β则正确的是()A.α-β=0B.α-β<0C.α-β>0D.无法比较α与β的大小6.化简的结果是()A.1B.C.D.7.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数8.已知,则下列结论正确的是()A.B.C.D.9.已知∠AOB=45°,求作∠AOP=22.5°,作法:(1)以O为圆心,任意长为半径画弧分别交OA,OB于点N,M;(2)分别以N,M为圆心,以OM长为半径在角的内部画弧交于点P;(3)作射线OP,则OP为∠AOB的平分线,可得∠AOP=22.5°根据以上作法,某同学有以下3种证明思路:①可证明△OPN≌△OPM,得∠POA=∠POB,可得;②可证明四边形OMPN为菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;③可证明△PMN为等边三角形,OP,MN互相垂直平分,从而得∠POA=∠POB,可得.你认为该同学以上3种证明思路中,正确的有( )A.①②B.①③C.②③D.①②③10.规定:如果关于x的一元二次方程ax2+bx+c=0 (a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”. 现有下列结论:①方程x2+2x-8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2-6ax+c=0 (a≠0)是倍根方程,则抛物线y=ax2-6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()个A.1B.2C.3D.42、填空题:本题共6小题,每小题3分,共18分.11.计算的结果等于__________12.如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC的延长线上.若∠ADE=30°,∠ACF=115°,则∠A=.13.已知关于x的一元二次方程有两个实数根,则实数k的取值范围是____________.14.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A,曲线终点为B,过点A,B 的两条切线相交于点C,列车在从A到B行驶的过程中转角α为60°.若圆曲线的半径OA=2 km,则这段圆曲线的长为____________.15.如图,小明探究课本“综合与实践”版块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“”字高度为72.7 mm,当测试距离为3 m时,最大的“”字高度为___________ mm.16.如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:;;;;…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n1个数对:.三、解答题:本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.(本题每小题4分.满分8分)(1)解不等式组,解集在数轴上表示.(2)先化简,再求值:,其中,.18.(本小题满分8分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.请结合以上信息回答下列问题:(1)m=__________,并补全频数直方图;(2)数据统计完成后,小明发现有两个数据不小心丢失了.请根据图表信息找回这两个数据.若a<b,则a=__________,b=__________;(3)根据调查结果,请估计该校2000名学生在这一周劳动时间不少于3小时的人数.20.(本小题满分8分)如图,某校综合实践小组在两栋楼之间的水平地面E处放置一个测角仪,经测量,∠AEB=53°,∠CED=45°,已知BE=60米,ED=20米.求两栋楼楼顶A,C之间的距离(参考数据:sin53°≈,cos53°≈,tan53°≈,测角仪的高度忽略不计).21.(本小题满分9分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后,继续生长大约多少天,开始开花结果?22.(本小题满分9分)如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是的中点,过点C作CE⊥AD交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若BC=6,AC=8,求CE,DE的长.23.(本小题满分10分)【发现问题】某景观公园内圆形人工湖中心有一喷泉,在人工湖中央垂直于水面安装一个柱子,安置在柱子顶端的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.爱思考的小敏发现,如果设距喷水柱子的水平距离为d米,喷出的抛物线形水线距离湖面高度为h米,h与d的数量变化有一定规律.【提出问题】喷出的抛物线形水线距离湖面高度为h米与距喷水的柱子的水平距离d米,h与d之间有怎样的函数关系?【分析问题】小敏对某个方向喷水的路径测量和计算得出如下数据:d(米)…01234…h(米)…22…【解决问题】(1)在建立如图1所示的平面直角坐标系,根据已知数据描点,并用平滑曲线连接;(2)结合表中所给数据和所画出的图象,验证前面的抛物线形状的判断,并求出h与d 之间的函数关系式;(3)现公园想通过喷泉设立一个新的游玩项目,使公园的平顶游船能从喷泉最高点的正下方通过.如果游船宽度为2.4米,顶棚到水面的高度为2米,为了避免游船被淋到,顶棚到水柱的垂直距离不小于0.8米,问游船在能否顺利通过?说明理由.(4)如图2,若从安全的角度考虑,需要在这个喷泉外围设立一圈圆形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1 m,请通过计算说明公园至少需要准备多少米的护栏?(结果保留π)24.(本小题满分12分)已知在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针方向旋转,得到△ADE,旋转角为α(0°<α<90°),直线BD与CE交于点F.(1)如图1,当α=45°时,求证:CF=EF;(2)如图2,在旋转过程中,当α为任意锐角时,①∠CFB的度数是否变化?若不变,请求出它的度数;②结论“CF=EF”,是否仍然成立?请说明理由.数学答案一.选择题:(本大题共10小题,每小题3分,共30分)1-5 ACCCA 6-10 BDBAB二.填空题:(本大题共6小题,每小题3分,共18分)11. -1;12. 85°; 13. k>且k≠0; 14. ; 15. 43.62; 16. (n2-n+1,n2+1) 三.解答题(本大题共8小题,共72分。
2024-2025年第一学期五年级数学第三次月考试题
![2024-2025年第一学期五年级数学第三次月考试题](https://img.taocdn.com/s3/m/6fa91ed9f021dd36a32d7375a417866fb84ac0a5.png)
乡(镇) 学校 班级 姓名 考场 考号 密 封 线 密 封 线 内 不 准 答 题2024-2025年第一学期五年级第三次月考检测试题(卷)数学(满分100分 考试时间80分钟)同学们,开始做题了,书写工整,卷面5分,相信你一定能取得好成绩!一、我会填。
(16分)1. 根据56×125=7000,可以推出0.56×125= ( ), 560×12.5=( )2.已知两数之积是9.6,其中一个乘数是0.12,另一个乘数是( )3.计算 1.8÷0.96时,先把 1.8÷0.96转化成( )÷( )4.我们在计算24÷[(1.68-0.72)×0.25]时,要先算( )法,再算( )法,最后算( )法,结果是( )。
5.在里填上“>”“<”或“=”。
6.49÷1.3 6.49 2.7×1.012.7 0.89×8.978.97 8.5×0.988.5÷0.986.38.3的小数点向右移动两位,再向左移动三位后是 ( ) 。
7.一个三位小数,用四舍五入法取得近似数是 5.80,这个三位小数最大是( ) ,最小是 ( )。
二.判断(10分)1. 0.93×201=0.93×200+1。
( )2. 两个小数相乘,乘得的积的末尾有0的先去掉0,再点上小数点。
. ( )3. 一个数乘一个比1小的数,乘得的积一定小于它本身。
( )4. 大于2.5小于2.6的两位小数有9个。
( )5. 4.3和4.30的大小相等,计数单位不同。
( ) 三、对号入座。
( 12分 )1. 0.72÷ ( ) =6, 里应填( )。
A. 0.12 B. 4.32 C.1.22.在 2.5 的末尾添上2个“0”,这个数( )。
A.扩大到原来的 100倍B.缩小到原来的C.大小不变 3.一个两位小数,精确到十分位是6.0,这个数最小是( ) A. 5.99 B. 5.95 C.6.01 4. 下列算式中,商最大的是( )。
高二数学下学期第二次5月月考试题 文 试题
![高二数学下学期第二次5月月考试题 文 试题](https://img.taocdn.com/s3/m/7b0829928662caaedd3383c4bb4cf7ec4afeb6c4.png)
泉港一中2021-2021学年度高二下学期第二次月考单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明数学试题〔文科〕〔考试时间是是:120分钟 总分:150分〕第一卷〔选择题 一共60分〕一.选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设}2|{->∈=x Q x A ,}2|{<∈=x R x B ,,那么以下结论中正确的选项是 ( )A .A ∈2B .)2,2(-=⋂B AC .R B A =⋃D .B A ⋂∈1 2. a R ∈,那么“1a〞是“11<a〞的 〔 〕 A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件 3.命题02,:>∈∀xR x P ,那么命题p ⌝是〔 〕A .02,00≤∈∃xR x B .02,≤∈∀xR x C .02,0<∈∃xR x D .02,<∈∀xR x 4.假设函数x y a log =的图像经过点〔3,2〕,那么函数1+=x a y 的图像必经过点( ) A.〔2,2〕 B.〔2,3〕 C. 〔3,3〕 D.〔2,4〕 5. 以下函数中,在(0)+∞,上单调递增又是偶函数的是 〔 〕A.3y x =B. y ln x =C.21y x=D.1-=x y 6. 以下命题中,假命题是 ( ) A .命题“面积相等的三角形全等〞的否命题B.,s i n x R x ∃∈C .假设xy=0,那么|x|+|y|=0〞的逆命题D .),,0(+∞∈∀x 23xx< 7.设0.3113211l o g2,l o g ,32a b c ⎛⎫=== ⎪⎝⎭,那么 ( )A 、a b c << B 、 b a c << C 、b c a << D 、a c b << 8. 方程4=+x e x的解所在的区间是 〔 〕 A .()1,0- B . ()0,1 C .()1,2 D .()2,39.函数y =|x|axx(a>1)的图像的大致形状是 ()10. 定义在R 上的函数⎩⎨⎧>---≤-=0)2()1(0)1(log )(2x x f x f x x x f ,那么)2018(f 的值是〔 〕 A .-11.假设函数()y f x =〔R x ∈〕满足()()1f x f x +=-,且[]1,1x ∈-时,()21f xx =-,函数()lg ,01,0x x g x x x>⎧⎪=⎨-<⎪⎩,那么函数()()()h x f x g x =-在区间[-4,5]内的零点的个数为 A .7 B .8 C .9 D .1012. 函数,log )31()(2xx x f -=实数c b a ,,满足)0(0)()()(c b a c f b f a f<<<<⋅⋅假设实数0x 为方程0)(=x f 的一个解,那么以下不等式中,不可能...成立的是 〔 〕 A .0x a < B . 0x b > C .0x c < D .0x c >第二卷〔非选择题 一共90分〕二.填空题:一共4小题,每一小题5分,一共20分,将答案写在答题纸的相应位置. 13二次函数4)(2++=mx x x f ,假设)1(+x f 是偶函数,那么实数m = . 14. 3log 1552245log 2log 2+++______.15.函数()()()()3141l o g 1a a x a x f x x x -+≤⎧⎪=⎨>⎪⎩是R 上的单调递减函数,那么a 的取值范围是________.16.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,假设对任意[],x a b ∈,都有 |()()|1f x g x -≤成立,那么称()f x 和()g x 在[],a b 上是“亲密函数〞,区间[],a b 称为“亲密区间〞.假设2()34f x x x =-+与()23g x x =-在[],a b 上是“亲密函数〞,那么其“亲密区间〞可以是_________.①[1.5,2] ②[2,2.5] ③[3,4] ④ [2,3]三.解答题:本大题有6小题,一共70分,解容许写出文字说明,证明过程或者演算步骤. 17.(本小题满分是10分)a >0,a ≠1,设p :函数2+=x a y 在(0,+∞)上单调递增,q :函数y =x 2+(2a -3)x +1的图像与x 轴交于不同的两点.假如p ∧q 真,务实数a 的取值范围.18.(本小题满分是12分)函数)1(log )(2-=x x f 的定义域为A ,函数)32(12)(≤≤-=x x x g 的值域为B.(I )求B A ⋂;(II )假设}12|{-≤≤=a x a x C ,且B C ⊆,务实数a 的取值范围.19.〔本小题满分是12分〕 幂函数)()(*322N m xx f m m ∈=--的图象关于y 轴对称,且在〔0,+∞〕上是减函数. 〔1〕求m 的值和函数f 〔x 〕的解析式 〔2〕解关于x 的不等式)21()2(x f x f -<+20.〔本小题满分是12分〕某公司对营销人员有如下规定(1)年销售额x 在8 万元以下,没有奖金,(2) 年销售额x (万元), ]64,8[∈x ,奖金y 万元, x y y a log ],6,3[=∈,且年销售额x 越大,奖金越多,(3) 年销售额超过64万元,按年销售额x 的10%发奖金. (1) 确定a 的值,并求奖金y 关于x 的函数解析式.(2) 某营销人员争取年奖金]10,4[∈y (万元),年销售额x 在什么范围内?21.〔本小题满分是12分〕函数 2()21(0)g x a x a x b a =-++>在区间[2,3]上有最大值4和最小值1。
长郡中学2024届高三上学期月考(五)数学试题(原卷版)
![长郡中学2024届高三上学期月考(五)数学试题(原卷版)](https://img.taocdn.com/s3/m/ae0b7f43a66e58fafab069dc5022aaea988f4101.png)
英才大联考长郡中学2024届高三月考试卷(五)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2|60Ax xx =−−<,集合{}2|lo 1g Bx x =<,则A B ∪=A.()2,3− B.(),3−∞ C.()2,2− D.()0,2(2022.广州二模)2.下列函数中,既是偶函数又在()0,+∞上单调递增的是( )A.12xy =B.2yx x =−C.1y x =− D.1y x x=−3.已知像2,3,5,7这样只能被1和它本身整除的正整数称为素数(也称为质数),设x 是正整数,用()x π表示不超过x 的素数个数,事实上,数学家们已经证明,当x 充分大时,()ln xx xπ≈,利用此公式求出不超过10000的素数个数约为(lg e 0.4343)≈( ) A.1086B.1229C.980D.10604.2021年10月12日,习近平总书记在《生物多样性公约》第十五次缔约方大会领导人峰会视频讲话中提出:“绿水青山就是金山银山.良好生态环境既是自然财富,也是经济财富,关系经济社会发展潜力和后劲.”某工厂将产生废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为()0e 0ktP P t −=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前4个小时废气中的污染物恰好被过滤掉90%,那么再继续过滤2小时,废气中污染物的残留量约为原污染物的( )A.5%B.3%C.2%D.1%(2022.苏北七市三模) 5.函数()()2,,R ax bf x a b c x c+=∈+的图象可能是()的AB.C. D.6. 现有长为89cm 的铁丝,要截成n 小段(2)n >,每段的长度为不小于1cm 的整数,如果其中任意三小段都不能拼成三角形,则n 的最大值为( ) A. 8B. 9C. 10D. 117. 已知函数211()sin sin (0)222xf x x ωωω=+−>,x R ∈.若()f x 在区间(,2)ππ内没有零点,则ω的取值范围是 A. 10,8B. 150,,148∪C. 50,8D. 1150,,848∪8. 已知函数22()42af x x x x =−−−在区间(),2−∞−,)+∞上都单调递增,则实数a 的取值范围是( )A. 0a <≤B. 04a <≤C. 0a <≤D. 0a <≤二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 同学们,你们是否注意到;自然下垂的铁链;空旷田野上,两根电线杆之间的电线;峡谷的上空,横跨深涧的观光索道的钢索.这些现象中都有相似的曲线形态.这些曲线在数学上常常被称为悬链线.悬链线相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数表达式可以为()x x f x ae be −=+(其中a ,b 是非零常数,无理数e=2.71828…),对于函数()f x ,以下结论正确的是( )A. 如果a=b ,那么()f x 奇函数B. 如果0ab <,那么()f x 为单调函数C. 如果0ab >,那么()f x 没有零点D. 如果1ab =,那么()f x 的最小值为2.为10. 由两个全等的正四棱台组合而得到的几何体1如图1,沿着1BB 和1DD 分别作上底面的垂面,垂面经过棱,,,EP PH HQ QE 的中点,,,F G M N ,则两个垂面之间的几何体2如图2所示,若2EN AB EA ===,则()A. 1BB =B. //FG ACC. BD ⊥平面1BFB GD. 几何体2的表面积为811. 已知函数e x y x =+的零点为1x ,ln y x x =+的零点为2x ,则( ) A. 120x x +> B. 120x x < C. 12ln 0xe x +=D. 12121x x x x −+<12. 已知0ab ≠,函数()2e axf x x bx =++,则( ) A. 对任意a ,b ,()f x 存在唯一极值点B. 对任意a ,b ,曲线()y f x =过原点的切线有两条C. 当2a b +=−时,()f x 存在零点D. 当0a b +>时,()fx 最小值为1三、填空题:本题共4小题,每小题5分,共20分.13. 已知sin 3cos 0αα−=,则cos 2tan αα+=________. 14. 函数()1293xxf x −=+的最小值是___________.15. 写出一个同时具有下列性质①②③的函数()f x =___________.①()f x 是定义域为R 的奇函数;②()()11f x f x +=−;③()12f =.16. 函数()sin ln 23f x x x π=−−的所有零点之和为__________.的四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()222(sin sin sin )1cos2.a A c C b B a C +−=− (1)求B.(2)是否存在()0,A π∈,使得2a c b +=,若存在,求;A 若不存在,说明理由.18. 已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最大? 19. 函数22()ln ,()(2) 2.71828...x f x a x x g x x e x m x e =−=−−+=+(其中). (1)当0a ≤时,讨论函数()f x 的单调性;(2)当1a =−时,(0,1]x ∈时,()()f x g x >恒成立,求正整数m 最大值.20. 已知函数()()ln f x a x a x =+−.(1)讨论()f x 的单调性;(2)证明:当0a >时,()2e af x a <.21. 已知函数()ln 1f x x x x =−−. (1)证明:()0;f x ≤ (2)若e 1x ax ≥+,求a .22. 设函数()()2e sin 1xf x a x ax a x =+−−+.(1)当0a ≤时,讨论()f x 的单调性; (2)若()f x 在R 上单调递增,求a.的。
黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷
![黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷](https://img.taocdn.com/s3/m/7f61b50582c4bb4cf7ec4afe04a1b0717ed5b357.png)
黑龙江大庆市第三十五中学2024届高三下学期第三次月考(5月)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数22cos 128x y π⎛⎫=+- ⎪⎝⎭的图像向左平移()0m m >个单位长度后,得到的图像关于坐标原点对称,则m 的最小值为( ) A .3πB .4π C .2π D .π2.函数()y f x =在区间,22ππ⎛⎫- ⎪⎝⎭上的大致图象如图所示,则()f x 可能是( )A .()ln sin f x x =B .()()ln cos f x x =C .()sin tan f x x =-D .()tan cos f x x =-3.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .B .2C .1-D .15.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ) A .33B .23C .22D .16.双曲线C :22221x y a b-=(0a >,0b >)的离心率是3,焦点到渐近线的距离为2,则双曲线C 的焦距为( )A .3B .32C .6D .627.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6 D .88.函数52sin ()([,0)(0,])33x xx xf x x -+=∈-ππ-的大致图象为A .B .C .D .9.已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( ) A .(,1)-∞B .(,1]-∞C .(1,)+∞D .[1,)+∞10.设椭圆E :()222210x y a b a b+=>>的右顶点为A ,右焦点为F ,B 、C 为椭圆上关于原点对称的两点,直线BF交直线AC 于M ,且M 为AC 的中点,则椭圆E 的离心率是( ) A .23B .12C .13D .1411.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则M N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞12.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A .21+B .31+C .2D .5二、填空题:本题共4小题,每小题5分,共20分。
月考试卷(试题)2024-2025学年五年级上册数学人教版
![月考试卷(试题)2024-2025学年五年级上册数学人教版](https://img.taocdn.com/s3/m/2cbd6d02302b3169a45177232f60ddccda38e698.png)
月考试卷(1~2单元)2024-2025学年五年级上册数学人教版考试时间:90分钟满分:100分题号一二三四五总分评分1.(2分)乐乐的爸爸从美国买来一本故亦书花了6.5美元,按1美元折合人民币6.41元计算,这本故事书折合人民币是元。
(结果保留两位小数)2.(6分)0.06×92.5 的积是位小数,保留一位小数是,保留整数是。
3.(2分)《中国居民膳食指南(2022)》推荐,成年人每天应摄入薯类食物0.05~0.1 kg。
某公司现有58名员工,该公司员工食堂每天至少需要kg薯类食物。
(结果保留整数)4.(4分)五子棋是一种有趣的棋类游戏,黑方或白方率先将五子连成一线即为获胜。
下五子棋时,如果一方落下的棋子同时形成两个或两个以上的四子连线,这步棋就称为“四四禁手”。
如下面左图中两种情况,黑棋落在“×”的位置,就形成了“四四禁手”的棋面。
右图是对战中五子棋的棋面图,这时黑子下的位置,白子下的位置,都能形成“四四禁手”棋面。
5.(4分)如图直线l是两个三角形的对称轴,已知C点用数对(8,2)表示,那么,A点用数对表示为,B点用数对表示为。
6.(2分)在同一张方格纸上,甲的位置用数对表示是(1,1),乙的位置用数对表示是(2,1),如果甲的位置用数对表示是(0,0),那么乙的位置用数对表示是。
7.(2分)一根绳子对折2次,每段长2.25m,这根绳子原来长m。
二、单选题(共5题;共10分)8.(2分)小明在教室里的位置是第5列第4行,用数对表示是(5,4),他前面一位同学的位置用数对表示是()。
A.(5,5)B.(4,4)C.(6,5)D.(5,3)9.(2分)小机灵在用计算器计算4.9×8时,发现计算器的键“4”坏了,他想到了4种不用按键“4”的输入方法,其中()方法的结果肯定是错误的。
A.0.7×7×8B.9.8×8÷2C.5×8-8D.2×2×8+0.9×810.(2分)与20.23×1.3结果相等的式子是()。
2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷
![2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷](https://img.taocdn.com/s3/m/79f2a8be85868762caaedd3383c4bb4cf7ecb793.png)
2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+2.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C .53D .743.已知函数()cos sin 2f x x x =,下列结论不正确的是( ) A .()y f x =的图像关于点(),0π中心对称 B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称D .()y f x =的最大值是324.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .835.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( ) A .22y x =B .24y x =C .28y x =D .210y x =6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( ) A .12种B .24种C .36种D .48种7.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN 的面积为( ) A .22B .32C .42D .3228.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( ) A .2B .3C .5D .69.若集合{|2020}A x N x =∈=,22a =,则下列结论正确的是( )A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉10.双曲线的离心率为,则其渐近线方程为 A .B .C .D .11.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( ) A .3)B .(3,2)C .(5,0)D .(4,1)12.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .15二、填空题:本题共4小题,每小题5分,共20分。
陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案
![陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案](https://img.taocdn.com/s3/m/cd0d4d03ef06eff9aef8941ea76e58fafab045ae.png)
陕西省西安市西咸新区2022-2023学年高二下学期5月月考理科数学试题(时间:100分钟满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共12小题,每题3分,共36分)1.设X 是一个离散型随机变量,其分布列为则q 等于()A .1B .12C.12-D.12.已知363434C C xx -=,则x =()A .3或10B .3C .17D .3或173.如图,一条电路从A 处到B 处接通时,可构成线路的条数为()A .8条B .6条C .5条D .3条4.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A .12B .36C .24D .725.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有()A .C 32197·C 23B .C 33C 2197+C 23C 3197C .C 5200-C 5197D .C 5200-C 13C 4197X1-01P1212q-2q6.6211(1)x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为()A .25B .20C .14D .287.在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -8.把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法()A .10种B .24种C .36种D .60种9.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为()A .720种B .420种C .120种D .15种10.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为()A .96B .160C .180D .6011.已知()727012752x a a x a x a x -=++++ ,则0127a a a a ++++= ()A .128B .2187C .78125D .82354312.下列等式不正确的是()A .111m mn n m C C n ++=+B .12111m m m n n n A A n A +-+--=C .11m m n n A nA --=D .()11k k kn n nnC k C kC +=++二、填空题(共4小题,每题4分,共16分)13.二项式841⎫⎝的展开式中含x 项的系数为__________.14.从一批含有13件正品、2件次品的产品中,不放回地任取3件,设取得的次品数为X ,则(1)P X <=________.15.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为______16.由海军、空军、陆军各3名士兵组成一个有不同编号的33⨯的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法。
重庆市第一中学校2024届高三下学期5月月考测试数学试题(含答案与解析)_6502
![重庆市第一中学校2024届高三下学期5月月考测试数学试题(含答案与解析)_6502](https://img.taocdn.com/s3/m/f8ace4a9c9d376eeaeaad1f34693daef5ef713bc.png)
重庆第一中学2024届高三下期5月月考试题数 学本试卷满分150分,考试时间120分钟注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.作答时,务必将答案写在答题卡上,写在本卷或者草稿纸上无效.3.考试结束后,请将本试卷和答题卡一并交回.满一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,32. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3B. 3-或3C. 9D. 9-或93. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3πB. 12πC. 27πD. 48π4. 已知定义在R 上函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1B. 1-C. 2D. 2-5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 1206. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8B. 9C. 10D. 12的7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0B. 1C. 2D. e8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( )A.12B.C.D. 2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2的的11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan2ϕ=___________.14. 如图,已知棱长均为4正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;的(2)若sin 3sin C B =,BC 边上的中线AD,求ABC 的面积.16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系. (1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户的概率. 17. 如图,直三棱柱111ABC A B C -侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.(1)证明:平面DEF ⊥平面11ACC A ;(2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x=-,的()(]()()ln ,0,e ,e,xx h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e=a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,3【答案】D 【解析】【分析】解对数不等式求出集合B ,然后由集合的补集运算和交集运算可得. 【详解】由2log 1x <解得()0,2B =,所以(][),02,B ∞∞=-⋃+R ð, 所以{}0,2,3A B ⋂=R ð. 故选:D2. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3 B. 3-或3C. 9D. 9-或9【答案】C 【解析】【分析】由等比中项的性质即可求解.【详解】由等比中项可得,242681a a a ==,又22420a a q q ==>, 于是49a =. 故选:C.3. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3π B. 12πC. 27πD. 48π【答案】B 【解析】【分析】由轴截面正三角形可得2,l r h ==,进而由圆锥的侧面积数值与其体积数值相等可求半径,从而可得圆锥的底面积. 【详解】几何体如图所示:因为轴截面PAB 是正三角形,所以2,l r h ==.圆锥的侧面积等于2π2πrl r =,圆锥的体积等于231π3r h r =,由圆锥的侧面积数值与其体积数值相等,得232ππr r =,得r =. 故圆锥的底面积为2π12πr =. 故选:B.4. 已知定义在R 上的函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1 B. 1-C. 2D. 2-【答案】B 【解析】【分析】定义在R 上的函数()f x 是奇函数,所以()00f =,由此可得a 的值,进而由()3f 可得()3f -的值.【详解】因为()f x 是定义在R 上的奇函数,所以()2log 003a f =+=, 解得2log 3a =-,则()()22log 3lo 3g f x x =+-,()222log log 1o 3632l g f ===-,所以()()331f f -=-=-. 故选:B.5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 120【答案】A 【解析】【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果. 【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=. 故选:A.6. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8 B. 9C. 10D. 12【答案】B 【解析】【分析】将111a b +=变形为ab a b =+,代入3ab b +,再通过常数代换和基本不等式可得. 【详解】因为111a b+=,所以ab a b =+,所以()114344559b a ab b a b a b a b a b ⎛⎫+=+=++=++≥+= ⎪⎝⎭,当且仅当33,2a b ==时,等号成立,所以3ab b +的最小值为9.故选:B7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0 B. 1 C. 2 D. e【答案】C 【解析】【分析】设切点为()00,Q x y ,根据切点在切线和曲线上,以及切点处的导数等于切线斜率,联立求解可得1a b +=,则e e 1a a b a +=-+,构造函数()e 1xf x x =-+,利用导数求最小值即可.【详解】设直线y x =与函数()ln y x a b =++的图象相切于点()00,Q x y ,则()0000ln y x y x a b =⎧⎨=++⎩,所以()00ln x a b x ++=,又()1ln x a b x a '⎡⎤++=⎣⎦+,所以011x a =+,即01x a +=,所以0ln1b x +=,即0b x =,所以1a b +=,所以e e 1a a b a +=-+, 令()e 1xf x x =-+,则()e 1xf x '=-,当0x <时,()0f x '<,()f x 在(),0∞-上单调递减; 当0x >时,()0f x '>,()f x 在()0,∞+上单调递增. 所以,当0x =时,()f x 取得最小值()()min 02f x f ==, 所以e a b +的最小值为2. 故选:C8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( ) 的A.12B.C.D. 2【答案】C 【解析】【分析】设(),P x y ,根据双纽线的定义求出点P 的轨迹方程,设,OP r POB θ=∠=,则()cos ,sin P r r q q ,代入方程求出OP ,再在POB 中,利用余弦定理求出PB ,即可得解.【详解】()()1,0,1,0A B -,设(),P x y , 由双纽线的定义得1PA PB ⨯=,1=,化简得()()222222x y x y +=-,显然1OB =,设,OP r POB θ=∠=,则()cos ,sin P r r q q , 代入方程()()222222x y x y +=-,得()422222cos sin 2cos 2r r r θθθ=-=,所以()22912cos 222cos 1221164r θθ⎛⎫==-=⨯⨯-= ⎪⎝⎭,由余弦定理得22211312cos 1214242PB OP OB OP OB POB =+-∠=+-⨯⨯⨯=,所以PB =,所以1PA PB==. 故选:C.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确的是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-【答案】CD 【解析】【分析】根据2χ的意义可判断A ;根据平均数与方差的意义可判断B ;由二项分布的方差公式求解可判断C ;由正态分布的对称性可判断D .【详解】对于A ,2χ值越大,X 和Y 有关系的可能性就越大,则“X 与Y 独立”的把握越小,A 错误; 对于B ,平均数相等,数据的分散程度不一定相等,即方差不一定相等,B 错误; 对于C ,若1~9,3X B ⎛⎫ ⎪⎝⎭,则()129233D X =⨯⨯=,C 正确; 对于D ,若()2~0,Y N σ,则由正态分布的对称性可知()()11P Y P Y <=>-,D 正确.故选:CD10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P ,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2【答案】AD 【解析】【分析】根据题意,分双曲线的渐近线的斜率ba <和b a>2PF x =,结合余弦定理和双曲线的定义,求得x 的值,进而求得双曲线的离心率,得到答案.【详解】由题意,可得122F F c =,因为12PF F =,则1PF =,设2PF x =,①若双曲线的渐近线的斜率b a <,则2e =<,如图(1)所示,因为过2F 112π3PF F ∠=, 由余弦定理得2222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c +-=,解得2x c =或4x c =-(舍去),所以1221)a PF PF c =-=-,可得1)a c =-,所以离心率为2c e a ===<,满足题意,所以A 正确;②若双曲线的渐近线的斜率b a >2e =>,如图(1)所示,因为过2F 11π3PF F ∠=, 由余弦定理得222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c --=,解得4x c =或2x c =-(舍去),所以122(4a PF PF c =-=-,可得(2a c =,所以离心率为22c e a ===+>,满足题意,所以C 正确, 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=【答案】ABD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,,n ,再根据等差数列前n 项和公式即可判断A ;得出只要交换1次的序列的特征即可判断B ;确定元素1n +在新序列的位置,再分类讨论即可判断C ;结合C 选项,利用累加法即可判断D.【详解】不妨设序列的n 个元素为1,2,3,,n , 对于A ,交换次数最多的序列为{},1,,2,1n n - , 将元素n 冒泡到最右侧,需交换n 1-次, 将元素n 1-冒泡到最右侧,需交换2n -次,L故共需要()()()()()1111122122n n n n n n -+---+-+++== ,故A 正确;对于B ,只要交换1次的序列是将{}1,2,3,,n 中的任意相邻两个数字调换位置的序列,故有n 1-个这样的序列,即1n b n =-,故B 正确;对于C ,当n 个元素的序列顺序确定后,将元素1n +添加进原序列, 使得新序列(共1n +个元素)交换次数也是2, 则元素1n +在新序列的位置只能是最后三个位置, 若元素1n +在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素1n +在新序列的倒数第二个位置,则会增加1次交换,故原序列交换次数为1(这样的序列有1n b n =-个), 若元素1n +在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个), 因此111n n n c c n c n +=+-+=+,故C 错误; 对于D ,考虑3n =时,则序列有{}{}{}{}{}{}1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1共6种情况, 交换次数分别为0,1,1,2,2,3,故需要交换2次的序列有{}{}2,3,1,3,1,2共2个,因此32c =, 由C 知1n n c c n +=+,则()()()123121341n n n c c n c n n c n --=+-=+-+-==++++-()()()2122234122n n n n n +---=++++-==,故D 正确. 故选:ABD.【点睛】关键点点睛:在解根数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 【答案】i - 【解析】【分析】设i z a b =+,代入条件中,根据复数相等列方程组求解可得.【详解】设i,,z a b a b =+∈R ,则i z a b =-, 因为()50620244i i 1==,所以()()()2i i i i 1a b a b a b +=+-+,整理得2222i 1b a a b -+=++,所以221220a b b a ⎧++=-⎨=⎩,解得0,1a b ==-,所以i z =-.故答案为:i -13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan 2ϕ=___________.【答案】1- 【解析】【分析】先写出()f x 的展开式,然后利用辅助角公式求最大值,进而得sin 1ϕ=-,从而可得结果. 【详解】()()()cos 2sin cos cos sin 2sin f x x x x x ϕϕϕ=++=+-, 由辅助角公式可得()f x3=,化简得954sin ϕ-=,即sin 1ϕ=-,解得π2π,Z 2k k ϕ=-∈, 所以,()4tanta n 24n ta 1k k ϕππ⎛⎫⎛⎫π-=-=-∈Z ⎪ ⎪⎝⎝⎭=⎭. 故答案为:1-.14. 如图,已知棱长均为4的正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.【答案】【解析】【分析】取AP 中点为E ,取BC 中点为F ,易证明//PB 平面EMFN ,再通过取四等分点G ,可证明截的面就是五边形GEMFN ,最后通过证明四边形EMFN 是矩形,再来计算截面的面积即可.【详解】取AP 中点为E ,取BC 中点为F ,连结四点可得四边形EMFN , 结合题意可知//,//EM PB NF PB ,所以//EM NF ,同理://,//EN AC MF AC ,所以//EN MF ,即四边形EMFN 是平行四边形, 因为//,EM PB EM ⊂平面EMFN , PB ⊄平面EMFN ,所以//PB 平面EMFN , 设MF BD H = ,可得14HB BD =,再在PD 上取点G ,满足14PG PD =,此时//HG PB ,所以//////HG PB EM NF ,可得截面五边形GEMFN , 由正四棱锥可知:PO ⊥平面ABCD ,且MF ⊂平面ABCD ,所以PO MF ⊥,又因为BD MF ⊥,BD PO O = ,BD ⊂平面PBD ,PO ⊂平面PBD ,所以MF ⊥平面PBD , 又因为PB ⊂平面PBD ,所以MF PB ⊥,又因为//NF PB ,所以MF NF ⊥,从而可得四边形EMFN 是矩形,由正四棱锥所有棱长均为4,可知12MF AC ==122EM PB ==,所以四边形EMFN 的面积为2MF EM ⋅==, 再由14HB BD =,//HG PB ,可知:334HG PB ==又因为2EM =,所以三角形EMG 的面积为()32⨯-=12,所以截面五边形GEMFN 的面积为+=故答案为:四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;(2)若sin 3sin C B =,BC 边上的中线AD ,求ABC 的面积. 【答案】(1)2π3;(2) 【解析】【分析】(1)利用正弦定理边化角,结合sin sin cos cos sin B A C A C =+化简可得;(2)根据正弦定理角化边,由()12AD AB AC =+平方可得2b =,6c =,再由面积公式可得. 【小问1详解】由正弦定理边化角得1sin cos sin sin 2A C CB -=, 又()sin sin sin cos cos sin B A C A C A C =+=+,所以1sin cos sin sin cos cos sin 2-=+A C C A C A C ,即1sin cos sin 2C A C -=,因为()0,π,sin 0C C ∈>,所以1cos 2A =-,因为()0,πA ∈,所以2π3A =. 【小问2详解】由sin 3sin C B =得3c b =,因为()12AD AB AC =+,AD =, 所以()()2222117244AB AC AB AC c b bc =++⋅=+- , 所以2229328b b b +-=,即2b =,所以6c =,所以11sin 2622ABC S bc A ==⨯⨯= 16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系.(1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户概率. 【答案】(1)分布列见详解,()2E ξ=(2)43630【解析】【分析】(1)根据超几何分布的概率公式求出相应概率,即可得分布列,再由期望公式可得期望; (2)6次内确定所有潜在用户有:前4次抽到的全是潜在用户;前4次抽到3个潜在用户,第5次抽到一个潜在用户;前5次抽到3个潜在用户,第6次抽到一个潜在用户,共三种情况,根据组合知识结合古典概型概率公式可得. 【小问1详解】由题知,ξ服从超几何分布,可能取值有0,1,2,3,4,所以()()()504132646464555101010C C C C C C 15100,1,2C 42C 21C 21P P P ξξξ=========, ()()23146464551010C C C C 513,4C 21C 42P P ξξ======.得分布列为:ξ 01 2 3 4P142 521 1021 521 142所以()1510510123424221212142E ξ=⨯+⨯+⨯+⨯+⨯=. 【小问2详解】记确定所有潜在用户所需要的联系次数为X ,则()()()343544456101010C C C 1114,5,6C 210C 63C 21P X P X P X =========. 所以,6次内即可确定所有潜在用户的概率为111432106321630++=. 17. 如图,直三棱柱111ABC A B C -的侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.的(1)证明:平面DEF ⊥平面11ACC A ; (2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取AC 的中点O ,连接OB ,以点O 为原点建立空间直角坐标系,证明两个平面的法向量垂直即可;(2)建立空间直角坐标系,求出相关点的坐标,利用向量法求解即可. 【小问1详解】取AC 的中点O ,连接OB , 因为AB BC =,所以OB AC ⊥,如图,以点O 为原点,OA OB 所在直线为,x y 轴,在平面11ACC A 内过O 作垂线为z 轴, 建立空间直角坐标系,设OB b =, 则()11,,2,0,,1,,,02222b b D E b F ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,故()1,,1,1,0,222b DE DF ⎛⎫=-=- ⎪⎝⎭,设平面DEF 的法向量为(),,n x y z =,则有102220b n DE x y z n DF x z ⎧⋅=+-=⎪⎨⎪⋅=-=⎩,令2x =,则1,0z y ==, 所以()2,0,1n =,因为y 轴⊥平面11ACC A ,则可取平面11ACC A 的法向量为()0,1,0m =,则0n m ⋅= ,所以n m ⊥ ,所以平面DEF ⊥平面11ACC A ; 【小问2详解】 因为z 轴⊥平面ABC ,则可取平面ABC 的法向量为()0,0,1p =, 因为直线DE 与平面ABC 所成的角大小为π4,所以πcos ,sin4DE p DE p DE p⋅====b =,则()()12,,1,0,02D E A ⎛⎫-- ⎪ ⎪⎝⎭,故111,222DE AD ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面ADE 的法向量为()111,,q x y z =,则有1111111021202q DE x y z q AD x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=+=⎪⎩,令1x =111,0y z ==,所以()q =,所以cos ,n q n q n q ⋅===,由图可知二面角A DE F --锐二面角, 所以二面角A DE F --18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.【答案】(1)22195x y +=(2)证明见解析 (3)2,23⎛⎤ ⎥⎝⎦【解析】【分析】(1)利用坐标公式代入32PF d =得到C 的轨迹方程22195x y +=;(2)利用方程组思想,先求出交点1122(,),,()G x y H x y 满足的韦达定理,再利用这两个坐标写直线方程去求出交点()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭和()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,最后利用韦达定理去证明2MN K y y y +=,即可; (3)利用所求的坐标去表示()312=AMN S S S S -+ ,然后把312S S S +转化到韦达定理上来,可得到32221+31S m ⎛⎫= ⎪+⎝⎭,然后求出取值范围即可.小问1详解】为【由()2229329242PF d x y x ⎡⎤=⇒++=+⎣⎦,得到:()22294443681x x y x x +++=++, 即:22225945195x y x y +=⇒+=,所以C 的方程为22195x y +=; 【小问2详解】 证明:要证KN KM =,即证明K 为MN 的中点,如图:易知:1l 的斜率不为0,可设直线方程111222,(,),(,),l x my G x y H x y =-: 联立:221952x y x my ⎧+=⎪⎨⎪=-⎩,消元得:()225920250m y my +--=, 得到()222Δ=400100599009000m m m ++=+>,则1212222025,5959m y y y y m m -+==++, 可得AG 方程为()1133y y x x =--,令92x =-,得到()111523y y x =--, 所以()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭,同理:()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,即()()121212121515152323255M N y y y y y y x x my my ⎛⎫+=--=-+ ⎪----⎝⎭()()221212221212222520252515155959=52520252525255959m m my y y y m m m m m y y m y y m m m m -⎛⎫-⎛⎫ ⎪-+++=-=- ⎪ ⎪ ⎪--++ ⎪⎝⎭-+++⎝⎭, 直线()22l y m x =-+:,令92x =-,得到52K m y =, 所以有2M N K y y y +=,而M N K x x x ==,所以K 为MN 的中点,即KN KM =;【小问3详解】由()12121219191922224S S MK x NK x MN x x ⎛⎫⎛⎫+=+++=++ ⎪ ⎪⎝⎭⎝⎭, ()()3121219=322AMN S S S S MN S S ⎛⎫-+=+-+ ⎪⎝⎭ , 得:()()312121212193151522=11119594MN S S S x x m y y MN x x ⎛⎫+ ⎪⎝⎭-=-=-+++++++ ()2221559112031559m m m m m +=-=-+++ ()22222262322==1+313131m m m m m ++⎛⎫= ⎪+++⎝⎭, 因为22221+,2313m ⎛⎫⎛⎤∈ ⎪ ⎥+⎝⎭⎝⎦,所以3122,23S S S ⎛⎤∈ ⎥+⎝⎦. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x =-,()(]()()ln ,0,e ,e,x x h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e =a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 【答案】(1)证明见解析(2)2ee e +(3)证明见解析【解析】【分析】(1)要使得()e g x a ε-<,即e x a ε-<,再根据题意即可得证;(2)利用导数求出函数的单调区间,令()()12h x h x m ==,确定m 的范围,再将1112,x x x 分别用m 表示,构造函数,利用导数求出最大值即可;(3)有()e lim x f x A →=结合(1),对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩,0∀ε>,当0e x δ<-<时,有()()()()()()()e e f x g x A a f x A g x a +-+=-+-,即可得证.【小问1详解】要使得()e g x a ε-<,即()2e e a x a ε--<,即()e a x ε-<,即e x a ε-<,所以0∀ε>,存在整数a εδ=,当0e x δ<-<时,均有()()e e e g x a a x a x a a εε-=-=⋅-<⋅=,所以()elim e x g x a →=; 【小问2详解】 当0e x <≤时,()ln x h x x =,则()21ln 0x h x x '-=≥, 所以函数()h x 在(]0,e 上单调递增, 当e x >时,()()()221212e e e eh x g x x x ==-=-单调递减,因为()()12h x h x =,12x x <,所以120e x x <<<,令()()12h x h x m ==,因为()()1e e eh g ==,0x →时,()h x ∞→-,x →+∞时,()h x ∞→-, 所以1,e m ∞⎛⎫∈- ⎪⎝⎭,由()1h x m =,得11ln x m x =,得11ln x mx =,得()111e e x mx m x ==,得111e x m x =, 由()2h x m =,得222e e x m =-, 所以()11212e 2e e x m x x m ⋅=-, 令()()2e 2e e m p m m =-,1,e m ∞⎛⎫∈- ⎪⎝⎭, 则()()12e e e m p m m +=--',令()0p m '=,得21e m =-, 当21e m <-时,()0p m '>,当211e em -<<时,()0p m '<, 所以函数()p m 在2,1e ∞⎛⎫-- ⎪⎝⎭上单调递增,在211,ee ⎛⎫- ⎪⎝⎭上单调递减, 所以()2ee max21e e p m p +⎛⎫=-= ⎪⎝⎭, 即1112x x x ⋅的最大值为2e e e +;【小问3详解】 因为()elim x f x A →=, 所以10ε∀>,存在正数1δ,当10e x δ<-<时,均有()1f x A ε-<;由(1)知()elim e x g x a →=, 即20ε∀>,存在正数2δ,当20e x δ<-<时,均有()2e f x a ε-<,对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩, 0∀ε>,当0e x δ<-<时, 有()()()()()()()e e f x g x A a f x A g x a +-+=-+-()()12e f x A g x a εεε≤-+-=+=,所以()()()elim e x f x g x A a →+=+. 【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
2021学年广西梧州市六年级(下)第三次月考数学试卷(5月份)有答案
![2021学年广西梧州市六年级(下)第三次月考数学试卷(5月份)有答案](https://img.taocdn.com/s3/m/5d84a536c1c708a1294a44c1.png)
2021学年广西梧州市六年级(下)第三次月考数学试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 钢笔每支12元,圆珠笔每支7元,共买了6支,用了52元,钢笔买了()支。
A.2B.4C.32. 小红有一本书,已经读了全书的25%,如果再读70页,则已读的页数与未读的页数比是3:2,这本书一共有()页。
A.280B.200C.150D.1053. 20以内的质数共有()个。
A.7B.8C.9D.104. 一件衣服打九折出售,现在售价是180元,降低了()元。
A.20B.18C.162D.16.25. 水水家离学校200米,西西家离学校150米,那么水水家与西西家的距离不可能是()A.40米B.50米C.150米D.200米6. 一个数由6个百亿、500个万,8个千,40个十组成,这个数写作________,改写成万为单位的数写作________,省略亿后面的尾数是________.7. 一根绳子长4米,把它平均分成5段,每段是这根绳子的________,长________米,等于1米的________.8. 5千克230克=________千克;8.3分钟=________秒。
9. 一根长2米,横截面直径是6厘米的木棍,截成4段后表面积增加了________,它原来的体积是________.10. 16和24的最小公倍数是________,最大公约数是________,最大公约数是最小公倍数的________.11. 前进小学六年级有200个学生,其中有120个女生,男生与女生的人数的最简整数比是________,比值是________.12. 如图,已知D是BC上一点,∠C=62∘,∠CAD=32∘,则∠ADB=________度。
13. 陈老师出版了一本《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。
北京市海淀区2022-2023学年高三下学期5月月考模拟数学试题
![北京市海淀区2022-2023学年高三下学期5月月考模拟数学试题](https://img.taocdn.com/s3/m/494e48ddb9f67c1cfad6195f312b3169a451ea8a.png)
北京市海淀区2022-2023学年高三下学期5月月考模拟数学试题学校:___________姓名:___________班级:___________考号:___________1,2,,8i =×××),集合{|A y =存在{1,2,,8}i Î×××,使得}i y y =,则集合A 的元素个数可能为________(写出所有可能的值).在正方体1111ABCD A B C D -中,平面ABCD ^平面11CDD C ,11//A B 平面ABCD ,11//A B 平面11CDD C ;11//A D 平面ABCD ,11A D 与平面11CDD C 相交;11//C D 平面ABCD ,11C D Ì平面11CDD C .所以,直线l 平行于平面a ,平面b 垂直于平面a ,则直线l 与平面b 相交、平行或在平面内,故选D.【点睛】本题考查线面关系有关命题真假的判断,可以利用简单几何体作载体来进行判断,考查逻辑推理能力,属于中等题.3.C【分析】可设(,)P x y ,()11,A x y ()22,B x y , ()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++列出关系式,由P 的轨迹为圆,求出圆心坐标即可【详解】设(,)P x y ,()11,A x y ()22,B x y , ()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++得:222222222222112233112233()()()()()()x x y y x x y y x x y y x y x y x y -+-+-+-+-+-=+++++对命题Q:【分析】由题可知,方程的两根应为虚根,可设方程220x x a ++=的两复根为11x bi =-+,21x bi =--,根据条件可得OP OQ ^uuu r uuu r,列方程求解即可【详解】根据题意设方程220x x a ++=的两虚根为11x bi =-+,21x bi =--,b 为实数,Q 方程的两根在复平面上对应的点分别为P 和Q ,三角形POQ 是等腰直角三角形,\OP OQ ^uuu r uuu r ,\210OP OQ b ×=-=uuu r uuu r ,21b \=,21212a x x (bi )\==-=,a \的值为2.故答案为2.【点睛】本题考查复数的代数表示法及其几何意义,向量垂直对应的数量积的坐标关系,属于基础题11.2【分析】作出可行域后,观察图象利用直线的纵截距最大找到最优解,代入即可求得.【详解】作出不等式||||1x y +£所表示的平面区域,如图:令2z x y =+,则2y x z =-+,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明心镇2012年小学六年级五月月考数学试题
(80分钟完卷,满分100分)
一、“神机妙算”,我会算。
(共30分)
1.直接写出下面各题的结果(8分,每小题0.5分)
379+64= 2006-619= 3.7+6.3= 10-0.518=
0.92= 8.9÷10%= 3.2×32
3
= 18÷2.5=
8-87= 83+31= 83×154= 0÷9
8=
11×(9+111)= 7÷11+114= 1.25×0.16×8= 21 +21÷21 +2
1
=
2.求未知数X(4分,每小题2分)
① 321:X=0.5 :0.2 ②43
X -50%X=17.5
3.用递等式计算(能简算的请简算)(18分,每小题3分)
①2.54 + 64
3
+ 7.46 + 3.25 ②3.14×4.2 + 0.314×58
③3.47 - 8÷17-3×17
3
④3000÷24 + 103×32
⑤94
×(103÷53+52) ⑥187÷[54÷(75-141)]
二、“对号入座”我会填。
(在括号里填上适当的内容,27分,每空1分)
1、2010年“五.一”黄金周,某市共接待游客4395700人次,改写成用“万”作单位的数是( )人次;实现旅游收入一亿七千四百万,省略亿后面的尾数约是( )亿元。
2、( )%=4÷5=
()
24
=( ):10=( )(填小数)
3、有甲、乙两个非零自然数,已知甲的85等于乙的7
5
,甲数与乙数比较( )
大,甲数:乙数=( ),甲数与乙数成( 4今年32岁,身高173( ),体重71( ),我家距离公
司1( ),我步行到公司约需15( ),我家附近有块
占地约2( )的梨树林,成熟的梨子每个约重150( )左右,吃起来香甜可口,欢迎大家到我家做客。
5、右图是两个小圆面积是大圆面积的( )。
6、对于数据2,4,4,5,3,9,4,5,1,8,其众数是(中位数是( )。
7、把4
3
kg 糖果平均分成4份,每份重( ) kg,每份是这些糖果的( ).
8、有2元和5元的人民币共30张,合计75元,则5元的有( ) 张。
9、一个正方体的六个面上,有1个面上写“1”,2个面上写“2”,3 个面上写“3”,这个正方体数字3朝上的可能性是( )。
10、自来水管的内直径是2厘米,水管内水的流速是每秒8厘米,一位同学去洗手,走时忘记关掉水龙头,则5分钟浪费了( )升水。
11、有“3——12”十张依次排序的科技馆参观券。
要拿3张连续号数的券,一共有( )种不同的拿法。
12、.在农历中,依次用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪表示年号,即通常所说的属相。
如果2009年是牛年,那么2050( )年。
(填一属相)
13、右图的形体是由棱长为1厘米的小正方体搭拼成的,它 的表面积是( )平方厘米,它的体积是( )立方厘米,
三、“明辨是非”我会判。
(正确的在括号内打“√”,错的打“×”。
5分,每小题1分)
1、中国上海世博会于2010年举办,这一年有366天 。
( )
2、8个小球放到3个盒子里,至少有3个小球放在一个盒子里。
( )
3、a 和它的倒数成反比例。
( )
4、.如果1
a
﹤b 1(a 和b 均为自然数),那么10-a > 10-b 。
( )
5、在2
1
>x 5>83中,x 表示的自然数只有11。
( )
四、“择优录取”我会选。
(以下各题只有一个正确答案,请把正确答案的序号填在括号内。
5分,每小题1分。
)
1、2.有一种零件长4mm ,在设计图纸上的长度是8cm ,图纸的比例尺是( )。
A 、1:20 B 、20:1 C 、2:1
2、下面图形中不是轴对称图形的是 ( )
A 、 线段
B 、 角
C 、 圆形
D 、长方形
3、在一个圆形花坛内种了三种花(如下图表示),用条形统计图表示各种花占地面积的应该是( )
4、已知一个圆的周长是C ,那么它半圆的周长是( )
A 、2c +πc
B 、2c +πc 2
C 、2c
D 、π
c 2
5、我们学校举办数学竞赛,有27人参加,3人缺席,这次竞赛的参赛率是( )
A 、 3%
B 、27%
C 、 90%
D 、89%
得 分 评卷人
得 分 评卷人
五、“动手操作”我会做。
(7分,1题2分,2题5分)
得分评卷人
1、在下面的方格纸中画一个三角形和一个梯形,使它们的面积与图中的长方形
面积相等
2、如图,每个表格都是边长为1厘米的正方形。
Array
(1)请你写出三角形顶点A的数对()
(2)把三角形向右平移5厘米,画出平移后的三角形ABC,再写出平移后点B
1的数对()
顺时针旋转90度,画出旋转后的三角形ABC,(3)把平移后的三角形ABC绕点A
1
再写出点C的数对()
六、“解决问题”我会解。
(26分. 1、2、3、4小题各4分,5、6小题各5分)
1、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少?
2、买一辆车,分期付款购买要加价7%,如果改用现金购买可享受“九五折”优惠,王叔叔算了一下,发现分期付款比现金购买要多付7200元,你知道这辆汽车原价是多少元吗?
3、学校伙食团原来每天烧煤30千克,现在每天比原来节约5千克,原来烧20天的煤,现在可以多烧几天?
4.如图是某粮食仓库的储存情况统计图,已知仓库中玉米有4吨,那么小麦有多少吨?
5、把一个长、宽、高分别是9厘米、7厘米、3厘米的长方体铁块和一个棱长为5厘米的正方体铁块熔铸成一个底面直径为10厘米的圆锥形铁块,此圆锥铁块的高是多少厘米?
得 分 评卷人
6、为了保证学生的饮水卫生,学校给每个住校生配一个水杯,每只水杯5元,“红旗超市”则以90%的优惠价出售,“摩尔玛特购物中心”则以“买八送一”(即每买8个另外免费赠送1个相同的水杯)的优惠方式出售,学校想买360只水杯,请你当“参谋”,算一算,到哪家购买合算?
小学六年级五月月考数学试题
参 考 答 案
一、计算题 1、口算(略)
2、① x=1.4 ②x=70
3、 ①20 ②31.4 ③2.47 ④3421 ⑤
52 ⑥16
5 二、填空题
1、439.57万 2
2、 80 30 8 0.8
3、甲 8:7 正
4、厘米 千克 千米 分钟 公顷 克
5、5:9
6、4 4 4.5
7、163 41 8、5 9、2
1
10、7.536 11、8 12、马 13、22 5 三、判断题
1、×
2、√
3、×
4、×
5、× 四、选择题
1、B
2、B
3、D
4、A
5、C 五、操作题
1、略
2、 (1,2 ) (6,4) (6,0) 六、
1、96平方分米
2、60000元
3、4天
4、16吨
5、12厘米
6、 1600元<1620元 到“摩尔玛特购物中心”购买合算。