五年级数学奥数专题组合图形面积
五年级奥数专题组合图形面积
![五年级奥数专题组合图形面积](https://img.taocdn.com/s3/m/98eada396d175f0e7cd184254b35eefdc8d315de.png)
五年级奥数专题组合图形面积(一)1、一根铁丝长12厘米,要围成两个整厘米数的正方形,这两个正方形的面积分别是多少?1、有两个相同的长方形,长7厘米,宽3厘米,把它们按下图的样子重叠在一起,这个图形的面积是多少?3、有一个梯形,它的上底是6厘米,下底8厘米,如果只把上底增加4厘米,那么面积就增加6平方厘米。
求原来梯形的面积。
4、求下图长方形ABCD的面积。
(单位:厘米)5、如图,已知四条线段的长度分别是:AB=4厘米,CE=12厘米,CD=10厘米,AF=8厘米,并且有两个直角。
求四边形ABCD的面积。
6、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
7、图中,ABCD是长方形,E、F分别是AB、DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是多少平方厘米?组合图形面积(二)【一】一个正方形被分成3个大小、形状完全一样的长方形,每个小长方形的周长都是24厘米,求这个正方形的面积。
练习1、一个正方形被分成6个大小、形状完全一样的长方形,每个长方形的周长都是14厘米。
原来正方形的面积是多少?2、一块长方形布,周长是18米,长比宽多1米。
这块布的面积是多少?【二】下图是由6个相等的三角形拼成的图形,求这这图像的面积。
练习1、ABCD是正方形,求阴影部分的面积。
(单位:厘米)2、下图中,E、F分别是长和宽的中点,求阴影部分的面积。
(单位:厘米)【三】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1、求下图中阴影部分的面积和。
2、求下图中阴影部分的面积。
(单位:厘米)【四】下图中,边长为10和15的两个正方形并放在一起,求三角形ABC(阴影部分)的面积。
练习1、下图中,三角形ABC的面积是72平方厘米,三角形ABE与三角形AEC面积相等,如果AB=18厘米,FB=FE,求三角形AFE的面积。
五年级奥数11组合图形的面积
![五年级奥数11组合图形的面积](https://img.taocdn.com/s3/m/133b905d19e8b8f67d1cb976.png)
五年级奥数11组合图形的面积第十一讲 组合图形的面积教学目标1、 切实掌握有关简单图形的概念、面积公式,牢固建立空间观念 ;2、 切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,教学重难点在组合图形中,三角形的面积出现的机会很多,解题时我们要记住下面三点 :1、 两个三角形等底、等高,其面积相等;2、 两个三角形底相等,高成倍数关系,面积也成倍数关系 ;3、 两个三角形高相等,底成倍数关系,面积也成倍数关系。
新课导入组合图形是由两个或两个以上的简单的几何图形组合成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得 问题的解决无从下手。
今天我们就一起来学习组合图形的面积的计算方法。
新知传授例题1 一个等腰直角三角形,最长的边是 12厘米,这个三角形的面积是多少 解:由于此三角形中只知道最长的边是 12厘米,所以,不能用三角形的面积公 式来计算它的面积。
我们可以假设有 4个这样的三角形,且拼成了下图正方形。
显然,这个正方形的面积是12X12.那么,一个三角形的面积就是12X 12?4=36平方厘米。
练习1正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
解:图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。
这两个正方形的边长分别是12?(1,2)=4(厘米)和4 X 2=8(厘米)。
中间长方形的面积只要用总面积减去这两个拼起来的正方形的面积就可以得到。
即:12 X 12,(4 X 4,8X 8)=64(平方厘米)例题2四边形ABC丙四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH勺面积是多少平方厘米,解:设大正方形的边长是a,小正方形的边长是b o(1)梯形EFAM面积是(a+b) X b?2.三角形EFC的面积也是(a+b) X b?2。
五年级奥数举一反三专题 第19周 组合图形的面积
![五年级奥数举一反三专题 第19周 组合图形的面积](https://img.taocdn.com/s3/m/5a319009ae45b307e87101f69e3143323968f5d3.png)
第十九周组合图形的面积专题简析:在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1,两个三角形等底、等高,其面积相等;2,两个三角形底相等,高成倍数关系,面积也成倍数关系;3,两个三角形高相等,底成倍数关系,面积也成倍数关系。
例题1 如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)分析按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。
其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。
面积是:6×3÷2=9平方厘米。
练习一1,求下图中阴影部分的面积。
2,求图中阴影部分的面积。
(单位:厘米)3,下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
例题2 下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
分析三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。
阴影部分的面积是:7.5÷(1+1.5)×1.5=45。
练习二1,下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2,图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3,图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
例题3 两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)分析1,因为三角形ABD与三角形ACD等底等高,所以面积相等。
因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。
五年级奥数组合图形的面积一ppt课件
![五年级奥数组合图形的面积一ppt课件](https://img.taocdn.com/s3/m/39094b07e418964bcf84b9d528ea81c759f52e64.png)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习三
1,图中两个正方形的边长分别是6厘米和4厘 米,求阴影部分的面积。
2,下图中两个完全一样的三角形重叠在一起, 求阴影部分的面积。 (单位:厘米)
3,下图中,甲三角形的面积比乙三角形的面 积大多少平方厘米?
分析 :
要求梯形的面积,关键是要求出上底 FD的长度。连接FC后就能得到一个 三角形EFC,用三角形EBC的面积减 去三角形FBC的面积就能得到三角形 EFC的面积: 8×20÷2-8×8÷2=48平方厘米。 FD=48×2÷20=4.8厘米, 所求梯形的面积就是: (4.8+8)×8÷2=51.2平方厘米。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
专题简析:组合图形是由两个或两个以上的
简单的几何图形组合而成的。组合的形式分为两种: 一是拼合组合,二是重叠组合。由于组合图形具有 条件相等的特点,往往使得问题的解决无从下手。 要正确解答组合图形的面积,应该注意以下几点: 1,切实掌握有关简单图形的概念、公式,牢固建立 空间观念; 2,仔细观察,认真思考,看清所求图形是由哪几个 基本图形组合而成的; 3,适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题 变得简单。
练习一
1,求四边形ABCD的面积。 (单位:厘米)
2,已知正方形ABCD的边长是7厘米, 求正方形EFGH的面积。
3,有一个梯形,它的上底是5厘米,下底7厘米。如 果只把上底增加3厘米,那么面积就增加4.5平方厘 米。求原来梯形的面积。
五年级奥数组合图形的面积
![五年级奥数组合图形的面积](https://img.taocdn.com/s3/m/49268fcd770bf78a6529543c.png)
五年级奥数组合图形的面积3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
问原来的三角形的面积是多少平方米?组合图形的面积作业1.在右图中,三角形EDF 的面积比三角形ABE 的面积大75平方厘米,已知正方形ABCD 的边长为15厘米,DF 的长是多少厘米?2.如图,ABCD 是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE 的面积。
13.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中阴影部分的面积是多少?4.如图,A、B两点是长方形长和宽的中点,那么阴影部分占长方形的面积是多少?5.如图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且平行四边形的面积为54平方厘米,求S。
△BEF6.计算右边图形的面积。
(至少用3种方法)(单位:米)。
五年级奥数组合图形面积
![五年级奥数组合图形面积](https://img.taocdn.com/s3/m/92bafe69dc36a32d7375a417866fb84ae45cc31c.png)
挑战练习题
总结词
思维训练与难题攻克
详细描述
挑战练习题旨在培养学生的思维能力和解题 技巧,题目难度较大,需要学生具备一定的 数学思维和创新能力。这类题目通常涉及多 个知识点的综合运用,需要学生通过观察、
分析、推理等手段寻找解题思路。
感谢您的观看
THANKS
五年级奥数组合图形面积
汇报人: 202X-01-03
目录
• 组合图形面积概述 • 常见组合图形及面积计算 • 组合图形面积的解题技巧 • 组合图形面积的实际应用 • 练习与巩固
01
组合图形面积概述
组合图形的定义
01
组合图形是由两个或两个以上的 基本图形通过一定的方式组合而 成的图形。
02
常见的组合图形有平行四边形、 三角形、梯形等。
03
组合图形面积的解题技巧
分割法
总结词
将复杂的组合图形分割成几个简单的规 则图形,分别求出各部分的面积,最后 相加。
VS
详细描述
分割法是解决组合图形面积问题的一种常 用方法。通过合理分割,将复杂的图形拆 分成几个简单的图形,如三角形、长方形 、平行四边形等,这些图形的面积计算相 对简单。在分割后,分别计算各部分的面 积,最后将各部分面积相加即可得到整个 组合图形的面积。
填补法
总结词
将组合图形补全为一个完整的规则图形,然后计算整个图形的面积,再减去填补的部分。
详细描述
填补法是通过将组合图形补全为一个完整的规则图形,如长方形、平行四边形等,然后计算整个图形的面积。再 从总面积中减去填补的部分,即可得到组合图形的面积。这种方法适用于不规则图形,通过填补的方式将其转化 为规则图形,便于计算。
02
常见组合图形及面积计算
五年级数学奥数专题组合图形面积
![五年级数学奥数专题组合图形面积](https://img.taocdn.com/s3/m/a116bb91767f5acfa1c7cde5.png)
组合图形面积(一)【知识点击】组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
【典型例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?【对点演练1】1.求四边形ABCD的面积。
(单位:厘米)2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
【典型例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
【对点演练2】1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
【典型例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH 的面积是多少平方厘米?【对点演练3】1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
(单位:厘米)【典型例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?【对点演练4】1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)【典型例题5】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,AB=4厘米,BC=6厘米。
五年级奥数-组合图形的面积(一)
![五年级奥数-组合图形的面积(一)](https://img.taocdn.com/s3/m/dbb88ea969dc5022aaea005e.png)
分析 :
要求梯形的面积,关键是要求出上底 FD的长度。连接FC后就能得到一个 三角形EFC,用三角形EBC的面积减 去三角形FBC的面积就能得到三角形 EFC的面积: 8×20÷2-8×8÷2=48平方厘米。 FD=48×2÷20=4.8厘米, 所求梯形的面积就是: (4.8+8)×8÷2=51.2平方厘米。
练 习 五
1,如图,平行四边形BCEF中,BC=8厘米, 直角三角形中,AC=10厘米,阴影部分面积比 三角形ADH的面积大8平方厘米。 求AH长多少厘米?
2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求 图中阴影部分的面积。
3,正方形的边长是2(a+b),已知图中阴影部分B的面积是7 平方厘米,求阴影部分A和C的和 是多少平方厘米?
专题简析:组合图形是由两个或两个以上的
简单的几何图形组合而成的。组合的形式分为两种: 一是拼合组合,二是重叠组合。由于组合图形具有 条件相等的特点,往往使得问题的解决无从下手。 要正确解答组合图形的面积,应该注意以下几点: 1,切实掌握有关简单图形的概念、公式,牢固建立 空间观念; 2,仔细观察,认真思考,看清所求图形是由哪几个 基本图形组合而成的; 3,适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题 变得简单。
例5 、 图中ABCD是长方形,三
角形EFD的面积比三角形ABF的面 积大6平方厘米,求ED的长。
分析: 因为三角形EFD的面积比三角形ABF 的面积大6平方厘米,所以,三角形 BCE的面积比长方形ABCD的面积大 6平方厘米。三角形BCE的面积是 6×4+6=30平方厘米,EC的长则是 30×2÷6=10厘米。 因此,ED的长是10-4=6厘米。
例1 、一个等腰直角三角 形,最长的边是12厘米, 这个三角形的面积是多少 平方厘米?
(完整)五年级奥数组合图形的面积
![(完整)五年级奥数组合图形的面积](https://img.taocdn.com/s3/m/148352a2551810a6f52486d0.png)
组合图形的面积1.基本平面图形特征及面积公式特征面积公式正方形①四条边都相等。
②四个角都是直角。
③有四条对称轴。
S=a2长方形①对边相等。
②四个角都是直角。
③有二条对称轴。
S=ab平行四边形①两组对边平行且相等。
②对角相等,相邻的两个角之和为180°③平行四边形容易变形。
S=ah三角形①两边之和大于第三条边。
②两边之差小于第三条边。
③三个角的内角和是180°。
④有三条边和三个角,具有稳定性。
S=ah ÷2梯形①只有一组对边平行。
②中位线等于上下底和的一半。
S=(a+b)h÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
2.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
问原来的三角形的面积是多少平方米?1米组合图形的面积作业1.在右图中,三角形EDF的面积比三角形ABE的面积大75平方厘米,已知正方形ABCD的边长为15厘米,DF的长是多少厘米?2.如图,ABCD是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE的面积。
五年级奥数-组合图形的面积(一)
![五年级奥数-组合图形的面积(一)](https://img.taocdn.com/s3/m/e44d702331126edb6f1a1053.png)
分析 :
设大正方形的边长是a,小正方形的边长是b。 (1)梯形EFAD的面积是(a+b)×b÷2,三角形 EFC的面积也是(a+b)×b÷2。所以,两者的面 积相等。 (2)因为三角形AFH的面积=梯形EFAD的面积- 梯形EFHD的面积,而三角形CDH的面积=三角形 EFC的面积-梯形EFHD的面积,所以,三角形 CDH的面积与三角形AFH的面积相等,也是7平方 厘米。
练 习 五
1,如图,平行四边形BCEF中,BC=8厘米, 直角三角形中,AC=10厘米,阴影部分面积比 三角形ADH的面积大8平方厘米。 求AH长多少厘米?
2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求 图中阴影部分的面积。
3,正方形的边长是2(a+b),已知图中阴影部分B的面积是7 平方厘米,求阴影部分A和C的和 是多少平方厘米?
练 习 二
1,(如下图)已知大正方形的边长是12厘米,求中 间最小正方形的面积。
2,如下图长方形ABCD的面积是16平方厘米,E、F 都是所在边的中点,求三角形AEF的面积。
3,求下图长方形ABCD的面积(单位:厘米)。
例3、四边形ABCD和四边形
DEFG都是正方形,已知三角形 AFH的面积是7平方厘米。三角 形CDH的面积是多少平方厘米?
练 习 三
1,图中两个正方形的边长分别是6厘米和4厘 米,求阴影部分的面积。
2,下图中两个完全一样的三角形重叠在一起, 求阴影部分的面积。 (单位:厘米)
3,下图中,甲三角形的面积比乙三角形的面 积大多少平方厘米?
例4 、下图中正方形的边长为8
厘米,CE为20厘米,梯形BCDF 的面积是多少平方厘米?
例1 、一个等腰直角三角 形,最长的边是12厘米, 这个三角形的面积是多少 平方厘米?
秋季五年级奥数第六讲--组合图形的面积
![秋季五年级奥数第六讲--组合图形的面积](https://img.taocdn.com/s3/m/4c251bdd52ea551811a6870a.png)
2015年秋季五年级奥数第六讲---组合图形面积(一)专题简析:组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3,适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?分析与解答由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。
我们可以假设有4个这样的三角形,且拼成了下图正方形。
显然,这个正方形的面积是12 X 12,那么,一个三角形的面积就是12X 12十4=36平方厘米。
练习1, 求四边形ABCD勺面积。
(单位:厘米)P12, 已知正方形ABCD勺边长是7厘米,求正方形EFGH勺面积。
3, 有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加 4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
分析与解答 图中的两个小三角形平移后可拼得一个小正方形,两个大三角形平移后可拼得一个大正方形。
这两个 正方形的边长分别是 12+( 1 + 2) =4 (厘米)和4X 2=8 (厘米)。
中间长方形的面积只要用总面积减去这两个拼起 来的正方形的面积就可以得到。
即:12X 12—( 4X 4 + 8X 8) =64 (平方厘米)例3四边形ABCD 和四边形DEFG 都是正方形,已知三角形 AFH 的面积是7平方厘米。
三角形 CDH 勺面积是多少平 方厘米?分析设大正方形的边长是 a ,小正方形的边长是 b 。
五年级数学《组合图形的面积》试题及答案
![五年级数学《组合图形的面积》试题及答案](https://img.taocdn.com/s3/m/177bfab17c1cfad6195fa7df.png)
五年级数奥数:《组合图形的面积》1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×÷2 12×3÷2= 20×÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积: 85-18=67(cm2)2、校园里有两块花圃(如图),你能计算出它们的面积吗(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2) = 51(m2)3、下图直角梯形的面积是49平方分米,求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14×2 = 42÷2= ×2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
直角梯形的高=直角三角形的高梯形面积=(5+12)×÷2= 45÷12×2 = 17×÷2= ×2 = ÷2= (cm2) = (cm2)阴影部分面积=梯形面积–空白部分面积: - 45 = (cm2)5、阴影部分面积是40平方米,求空白部分面积。
(单位:米)梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2= 40÷10×2 = 16×8÷2= 4×2 = 128÷2= 8(m2) = 64(m2)空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)6、如图,平行四边形面积240平方厘米,求阴影部分面积。
五年级奥数组合图形的面积一.完整版PPT文档
![五年级奥数组合图形的面积一.完整版PPT文档](https://img.taocdn.com/s3/m/c08376b8be23482fb5da4c38.png)
例56平方厘米,求ED的长。
分析:
因为三角形EFD的面积比三角形ABF 的面积大6平方厘米,所以,三角形 BCE的面积比长方形ABCD的面积大 6平方厘米。三角形BCE的面积是 6×4+6=30平方厘米,EC的长则是 30×2÷6=10厘米。 因此,ED的长是10-4=6厘米。
例1 、一个等腰直角三角 形,最长的边是12厘米, 这个三角形的面积是多少 平方厘米?
分析与解答:
由于此三角形中只知道最长的边是12厘米, 所以,不能用三角形的面积公式来计算它的 面积。我们可以假设有4个这样的三角形,且 拼成了下图正方形。显然,这个正方形的面 积是12×12,那么,一个三角形的面积就是 12×12÷4=36平方厘米。
练习二
1,(如下图)已知大正方形的边长是12厘米,求中 间最小正方形的面积。
2,如下图长方形ABCD的面积是16平方厘米,E、F 都是所在边的中点,求三角形AEF的面积。
3,求下图长方形ABCD的面积(单位:厘米)。
例3、四边形ABCD和四边形
DEFG都是正方形,已知三角形 AFH的面积是7平方厘米。三角 形CDH的面积是多少平方厘米?
五年级奥数组合图形的面积一
专题简析:组合图形是由两个或两个以上的
简单的几何图形组合而成的。组合的形式分为两种: 一是拼合组合,二是重叠组合。由于组合图形具有 条件相等的特点,往往使得问题的解决无从下手。 要正确解答组合图形的面积,应该注意以下几点: 1,切实掌握有关简单图形的概念、公式,牢固建立 空间观念; 2,仔细观察,认真思考,看清所求图形是由哪几个 基本图形组合而成的; 3,适当采用增加辅助线等方法帮助解题; 4,采用割、补、分解、代换等方法,可将复杂问题 变得简单。
的面积。 要正确解答组合图形的面积,应该注意以下几点:
五年级数学奥数第2讲:组合图形的面积-课件
![五年级数学奥数第2讲:组合图形的面积-课件](https://img.taocdn.com/s3/m/452d23ebd0f34693daef5ef7ba0d4a7303766c55.png)
正方形面积:12×12=144(平方厘米) 小正方形边长为:
12÷(1+2)=4(厘米) 大正方形边长为:
12-4=8(厘米)
12cm
长方形面积为: 144-(4×4+8×8)=64(平方厘米)
答:中间长方形的面积为64平方厘米。
一个正方形中套着一个长方形,已知正方形的边长是16分 米,长方形的四个角的顶点恰好把正方形四条边都分成两段, 其中长的一段是短的3倍。阴影部分面积是多少?
绩 ,
joy!
八 分
方
法
。
愿
全
天
下
所
有
父
母
我们,还在路上……
答:涂色部分的面积为32平方厘米。
下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积
是多少平方厘米?
E ∆FEC面积:=∆EBC-∆FBC
20×8÷2=80(平方厘米)
8×8÷2=32(平方厘米) ∆FEC面积=80-32=48(平方厘
? AF D
米FD)= 48×2÷20=4.8(厘米)
下图是由一个边长为6厘米的小正方形和一个边长为8厘米 的大正方形组成,请你计算图中阴影部分的面积。
图形总面积为: 6×6+8×8=100(平方厘米)
阴影部分面积=总面积-空白面积 空白面积为:
6×(6+8)÷2+8×8÷2=74(平方厘米) 阴影部分面积: 100-74=26(平方厘米)
答:图中阴影部分的面积为26平方厘米。
答:三角形DEF的面积为54平方厘米。
求组合图形阴影部分的面积时,可以通 过整体面积减去空白部分面积。也可以通过 代换法去求得面积。
1.(如下图)已知大正方形的边长是12厘米,求中间最小正 方形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合图形面积(一)
【知识点击】
组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:
1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;
2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;
3.适当采用增加辅助线等方法帮助解题;
4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
【典型例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
【对点演练1】1.求四边形ABCD的面积。
(单位:厘米)
2.已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
【典型例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
【对点演练2】1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2.正图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
【典型例题3】四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH 的面积是多少平方厘米?
【对点演练3】1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
(单位:厘米)
【典型例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?
【对点演练4】1.如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)
【典型例题5】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,AB=4厘米,BC=6厘米。
求ED的长。
【对点演练5】1.如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?
2.图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
【答记者问】大家还有什么疑问吗?
【学以致用】
1.有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
2.求下图(上右图)长方形ABCD的面积(单位:厘米)。
3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?
4.图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面
积。
5.正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C的和是多少平方厘米?
D B。