三角分解法解线性方程组
Guass列选主元消去法和三角分解法
Guass列选主元消去法和三⾓分解法 最近数值计算学了Guass列主消元法和三⾓分解法解线性⽅程组,具体原理如下:1、Guass列选主元消去法对于AX =B1)、消元过程:将(A|B)进⾏变换为,其中是上三⾓矩阵。
即:k从1到n-1a、列选主元选取第k列中绝对值最⼤元素作为主元。
b、换⾏c、归⼀化d、消元2)、回代过程:由解出。
2、三⾓分解法(Doolittle分解)将A分解为如下形式由矩阵乘法原理a、计算U的第⼀⾏,再计算L的第⼀列b、设已求出U的1⾄r-1⾏,L的1⾄r-1列。
先计算U的第r⾏,再计算L的第r列。
a)计算U的r⾏b)计算L的r列C#代码: 代码说明:Guass列主消元法部分将计算出来的根仍然储存在增⼴矩阵的最后⼀列,⽽Doolittle分解,将分解后的结果也储存⾄原来的数组中,这样可以节约空间。
using System;using System.Windows.Forms;namespace Test{public partial class Form1 : Form{public Form1(){InitializeComponent();}private void Cannel_Button_Click(object sender, EventArgs e){this.textBox1.Clear();this.textBox2.Clear();this.textBox3.Clear();boBox1.SelectedIndex = -1;}public double[,] GetNum(string str, int n){string[] strnum = str.Split(' ');double[,] a = new double[n, n + 1];int k = 0;for (int i = 0; i < n; i++){for (int j = 0; j < strnum.Length / n; j++){a[i, j] = double.Parse((strnum[k]).ToString());k++;}}return a;}public void Gauss(double[,] a, int n){int i, j;SelectColE(a, n);for (i = n - 1; i >= 0; i--){for (j = i + 1; j < n; j++)a[i, n] -= a[i, j] * a[j, n];a[i, n] /= a[i, i];}}//选择列主元并进⾏消元public void SelectColE(double[,] a, int n){int i, j, k, maxRowE;double temp; //⽤于记录消元时的因数for (j = 0; j < n; j++){maxRowE = j;for (i = j; i < n; i++)if (System.Math.Abs(a[i, j]) > System.Math.Abs(a[maxRowE, j]))maxRowE = i;if (maxRowE != j)swapRow(a, j, maxRowE, n); //与最⼤主元所在⾏交换//消元for (i = j + 1; i < n; i++){temp = a[i, j] / a[j, j];for (k = j; k < n + 1; k++)a[i, k] -= a[j, k] * temp;}}return;}public void swapRow(double[,] a, int m, int maxRowE, int n){int k;double temp;for (k = m; k < n + 1; k++){temp = a[m, k];a[m, k] = a[maxRowE, k];a[maxRowE, k] = temp;}}public void Doolittle(double[,] a, int n){for (int i = 0; i < n; i++){if (i == 0){for (int j = i + 1; j < n; j++)a[j, 0] = a[j, 0] / a[0, 0];}else{double temp = 0, s = 0;for (int j = i; j < n; j++){for (int k = 0; k < i; k++){temp = temp + a[i, k] * a[k, j];}a[i, j] = a[i, j] - temp;}for (int j = i + 1; j < n; j++){for (int k = 0; k < i; k++){s = s + a[j, k] * a[k, i];}a[j, i] = (a[j, i] - s) / a[i, i];}}}}private void Exit_Button_Click(object sender, EventArgs e){this.Close();}private void Confirm_Button_Click(object sender, EventArgs e){if (this.textBox2.Text.Trim().ToString().Length == 0){this.textBox2.Text = this.textBox1.Text.Trim();}else{this.textBox2.Text = this.textBox2.Text + "\r\n" + this.textBox1.Text.Trim();}this.textBox1.Clear();}private void Calculate_Button_Click(object sender, EventArgs e){string str = this.textBox2.Text.Trim().ToString();string myString = str.Replace("\n", " ").Replace("\r", string.Empty);double[,] a = new double[this.textBox2.Lines.GetUpperBound(0) + 1, this.textBox2.Lines.GetUpperBound(0) + 2];a = GetNum(myString, this.textBox2.Lines.GetUpperBound(0) + 1);if (boBox1.Text == "Guass列主消元法"){Gauss(a, this.textBox2.Lines.GetUpperBound(0) + 1);for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++){this.textBox3.Text = this.textBox3.Text + "\r\nX" + (i + 1) + "=" + a[i, this.textBox2.Lines.GetUpperBound(0) + 1]; }}else if (boBox1.Text == "Doolittle三⾓分解法"){this.textBox3.Enabled = true;Doolittle(a, this.textBox2.Lines.GetUpperBound(0) + 1);bel3.Text = "分解后的结果:";this.textBox3.Clear();this.textBox3.Text += "L矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j < i){this.textBox3.Text += a[i, j].ToString() + "\t";}else if (i == j){this.textBox3.Text += "1\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}this.textBox3.Text += "\r\nU矩阵:\r\n";for (int i = 0; i < this.textBox2.Lines.GetUpperBound(0) + 1; i++) {for (int j = 0; j < this.textBox2.Lines.GetUpperBound(0) + 1; j++) {if (j >= i){this.textBox3.Text += a[i, j].ToString() + "\t";}else{this.textBox3.Text += "0\t";}}this.textBox3.Text += "\r\n";}}}private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode == Keys.Enter){if (this.textBox1.Text.Trim().ToString().Length == 0){Calculate_Button_Click(sender, e);}else{Confirm_Button_Click(sender, e);}}}private void button1_Click(object sender, EventArgs e){this.textBox2.Enabled = true;}}} 运⾏截图: ⾄此完毕。
范数-摆脱课本繁琐的公式,比较好懂
p
范数的特殊情况。 注:前三种范数都是p—范数的特殊情况。其中 前三种范数都是 范数的特殊情况
|| X ||∞ = lim || X || p
p →∞
计算方法三 计算方法三⑤
向量范数的连续性: 向量范数的连续性
5/35
定理3.3 设f(X)=||X||为Rn上的任一向量范数 则f(X) 定理 为 上的任一向量范数,则 的分量x 的连续函数. 为X的分量 1,x2,…,xn的连续函数 的分量
lim x i = xi (i = 1,2,..., n)
(k ) k →∞
则称向量X= (x1,x2,...,xn)T为向量序列 则称向量 , {X(k)}的极限,或者说向量序列 (k)}收敛 的极限, 的极限 或者说向量序列{X 收敛 于向量X, 于向量 ,记为
lim X
k →∞
(k )
=X 或 X
(k )
→ X (k → ∞)
计算方法三 计算方法三⑤
计算方法三 计算方法三⑤
x1 (k ) ( k ) x2 X = ………… M x (k ) n (k ) x1 x1 (k ) x2 ( k ) x2 X = → = M M x (k ) x n n
几种常用的矩阵范数: 几种常用的矩阵范数:
n
13/35
a11 a21 设 A= ⋅⋅⋅ a n1
a12 ⋅⋅⋅ a1n A 1 = max∑aij 列范数 1≤j≤n i=1 n a22 ⋅⋅⋅ a2n A ∞ = max∑aij 行范数 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ 1≤i≤n j=1 T an2 ⋅⋅⋅ ann A 2 = λ (A A) max AF =
用直接三角分解法解线性方程组
三角阵。等式左边是单位下三角阵,右边是上三角阵,要使等式
成则立L , L只1 ,能U等于U单1,位即矩此阵三I。角于分是解L唯1一L1。
UU
1 1
I,
1 2 1
1 2 1
例7 解:
设 A 3 7
1
,试将A进行三角分解。
1 1 3
由高斯消去法得到
m21
3 1
3,m31
1 1
1
m 32
L1
1 1
0 0 1 2
例:
求
0 1 2
0 1 0
3 0 1
103的PLU分 解 。
解:用1,2, ,n的排列表示n阶置换阵P,其中排列的第i个元素
j,表示P的i行非零元素位于j列。则分解过程如下:
1 0 0 1 2
3 1 1 0 1
3 1 1 0
2 0
43
1 2
0 1 0
3 0 1
0 1 3
Ux j y j
Ly
j
bj
n1
k
n(n 1)
n2
n 次乘法
k 1
2
22
Ux j y j n k n(n 1) n2 n 次乘除法
k 1
2
22
即共需n 2 次乘除法运算。
n 2 次 乘 除 法
三角分解法的存放元素的方法:
以A (a ij )33 为例,
a11 A a21
1 mk1,k 1
k,
Lk1
1 mk1,k 1
k
mnk
1
mn,k
1
A ( L11 L21
L1 n1
)U
LU,1
a (1) 11
线性方程组的数值算法C语言实现(附代码)
线性方程组AX=B 的数值计算方法实验一、 实验描述:随着科学技术的发展,线性代数作为高等数学的一个重要组成部分,在科学实践中得到广泛的应用。
本实验的通过C 语言的算法设计以及编程,来实现高斯消元法、三角分解法和解线性方程组的迭代法(雅可比迭代法和高斯-赛德尔迭代法),对指定方程组进行求解。
二、 实验原理:1、高斯消去法:运用高斯消去法解方程组,通常会用到初等变换,以此来得到与原系数矩阵等价的系数矩阵,达到消元的目的。
初等变换有三种:(a)、(交换变换)对调方程组两行;(b)、用非零常数乘以方程组的某一行;(c)、将方程组的某一行乘以一个非零常数,再加到另一行。
通常利用(c),即用一个方程乘以一个常数,再减去另一个方程来置换另一个方程。
在方程组的增广矩阵中用类似的变换,可以化简系数矩阵,求出其中一个解,然后利用回代法,就可以解出所有的解。
2、选主元:若在解方程组过程中,系数矩阵上的对角元素为零的话,会导致解出的结果不正确。
所以在解方程组过程中要避免此种情况的出现,这就需要选择行的判定条件。
经过行变换,使矩阵对角元素均不为零。
这个过程称为选主元。
选主元分平凡选主元和偏序选主元两种。
平凡选主元:如果()0p pp a ≠,不交换行;如果()0p pp a =,寻找第p 行下满足()0p pp a ≠的第一行,设行数为k ,然后交换第k 行和第p 行。
这样新主元就是非零主元。
偏序选主元:为了减小误差的传播,偏序选主元策略首先检查位于主对角线或主对角线下方第p 列的所有元素,确定行k ,它的元素绝对值最大。
然后如果k p >,则交换第k 行和第p 行。
通常用偏序选主元,可以减小计算误差。
3、三角分解法:由于求解上三角或下三角线性方程组很容易所以在解线性方程组时,可将系数矩阵分解为下三角矩阵和上三角矩阵。
其中下三角矩阵的主对角线为1,上三角矩阵的对角线元素非零。
有如下定理:如果非奇异矩阵A 可表示为下三角矩阵L 和上三角矩阵U 的乘积: A LU = (1) 则A 存在一个三角分解。
解线性方程组的三角分解法
⎛1 0 ⎛1 3 2 1 ⎞ ⎜3 1 ⎜ ⎟ ⎜ 3 13 12 9 ⎜ ⎟ = ⎜2 3 ⎜ 2 12 29 15 ⎟ ⎜ 2 ⎜ ⎟ ⎜ 1 9 15 34 3 ⎝ ⎠ ⎜1 ⎜ 2 ⎝ ⎛1 ⎜ ⎜3 =⎜ ⎜2 ⎜ ⎜ ⎜1 ⎝ 0 1 3 2 3 2 0⎞ ⎟ 0⎟⎛1 ⎜ ⎟⎜0 1 0⎟⎜ 0 ⎟⎜ 1 ⎟ 0 1⎟⎝ 4 ⎠ 0 0
⎛1⎞ 0 0 0 ⎞ ⎛ y1 ⎞ ⎛ 1 ⎞ ⎛ y1 ⎞ ⎜ 5 ⎟ ⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ y 4 0 0 ⎟ ⎜ y2 ⎟ ⎜ 10 ⎟ 2 ⎟。 = ,得到 ⎜ 2 ⎟ = ⎜ ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟ y3 0 16 0 y3 24 3⎟ ⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ ⎟ 0 0 25 ⎠ ⎝ y4 ⎠ ⎝ 50 ⎠ ⎝ y4 ⎠ ⎜ 2 ⎟ ⎜2⎟ ⎝ ⎠
⎛ 1 0 0 0⎞ ⎜ ⎟ 6 ⎞ ⎜ 2 1 0 0⎟⎛3 ⎟ห้องสมุดไป่ตู้⎟⎜0 6 ⎟ ⎜3 ⎜ ⎟⎜ = 1 8⎟ ⎜ 0 1 0⎟⎜0 ⎟ ⎜3 ⎟⎜ 12 ⎠ ⎜ ⎟⎝0 4 1 0 1 ⎜ ⎟ ⎝3 ⎠
6 3 6⎞ ⎟ 1 0 2⎟ 0 2 6⎟ ⎟ 0 0 2⎠
解方程组
⎛ 1 0 0 0⎞ ⎜ ⎟ ⎜ 2 1 0 0 ⎟ ⎛ y1 ⎞ ⎛ 9 ⎞ ⎜3 ⎟⎜ y ⎟ ⎜ 7 ⎟ ⎜1 ⎟⎜ 2 ⎟ = ⎜ ⎟ 0 1 0 ⎟ ⎜ y3 ⎟ ⎜ 1 ⎟ ⎜ ⎜3 ⎟⎜ ⎟ ⎜ ⎟ ⎜4 ⎟ ⎝ y4 ⎠ ⎝13 ⎠ 1 0 1⎟ ⎜ ⎝3 ⎠
⎛3 ⎜ ⎜2 ⎜1 ⎜ ⎝4
6 3 5 2 2 3
6 6 8
1 0 0 0 1 0 0 0 1
9 4 12 0 0 0
2 3 1 0 2 6 − 3 4 1 0 4 − 3 1 0 2 −
三角分解法解线性方程组
三角分解法解线性方程组#include<iostream.h>#include<iomanip.h>#include<stdlib.h>//----------------------------------------------全局变量定义区 const int Number=15; //方程最大个数doublea[Number][Number],b[Number],copy_a[Number][Number],copy_b[Number]; // 系数行列式int A_y[Number]; //a[][]中随着横坐标增加列坐标的排列顺序,如a[0][0],a[1][2],a[2][1]...则A_y[]={0,2,1...}; int lenth,copy_lenth;//方程的个数char * x; //未知量a,b,c的载体int i,j;//----------------------------------------------函数声明区 voidinput(); //输入方程组void print_menu(); //打印主菜单int Doolittle_check(double a[][Number],double b[Number]); //判断是否行列式>0,若是,调整为顺序主子式全>0void xiaoqu_u_l(); //将行列式Doolittle分解 void calculate_u_l(); //计算Doolittle结果 void exchange(int m,int i); //交换A_y[m],A_y[i] void exchange_lie(int j); //交换a[][j]与b[]; void exchange_hang(int m,int n);//分别交换a[][]和b[]中的m与n两行 void exchange_a_lie(int m,int n); //交换a[][]中的m和n列 void exchange_x(int m,int n); //交换x[]中的x[m]和x[n] //函数定义区void print_menu(){system("cls");cout<<"------------方程系数和常数矩阵表示如下:\n"; for(intj=0;j<lenth;j++)cout<<"系数"<<j+1<<" ";cout<<"\t常数";cout<<endl;for(int i=0;i<lenth;i++){for(j=0;j<lenth;j++)cout<<setw(8)<<setiosflags(ios::left)<<a[i][j];cout<<"\t"<<b[i]<<endl; }}void input(){int i,j;cout<<"方程的个数:";cin>>lenth;if(lenth>Number){cout<<"It is too big.\n";return;}x=new char[lenth];for(i=0;i<lenth;i++)x[i]='a'+i;//输入方程矩阵//提示如何输入cout<<"====================================================\n";cout<<"请在每个方程里输入"<<lenth<<"系数和一个常数:\n"; //输入每个方程for(i=0;i<lenth;i++){cout<<"输入方程"<<i+1<<":";for(j=0;j<lenth;j++)cin>>a[i][j];cin>>b[i];}}void Doolittle() //Doolittle消去法计算方程组 {double temp_a[Number][Number],temp_b[Number];int i,j,flag;for(i=0;i<lenth;i++)for(j=0;j<lenth;j++)temp_a[i][j]=a[i][j]; flag=Doolittle_check(temp_a,temp_b);if(flag==0) cout<<"\n行列式为零.无法用Doolittle求解."; xiaoqu_u_l();calculate_u_l();cout<<"用Doolittle方法求得结果如下:\n";for(i=0;i<lenth;i++) //输出结果{for(j=0;x[j]!='a'+i&&j<lenth;j++);cout<<x[j]<<"="<<b[j]<<endl;}}void calculate_u_l() //计算Doolittle结果{ int i,j;double sum_ax=0; for(i=0;i<lenth;i++){for(j=0,sum_ax=0;j<i;j++)sum_ax+=a[i][j]*b[j];b[i]=b[i]-sum_ax;}for(i=lenth-1;i>=0;i--){for(j=i+1,sum_ax=0;j<lenth;j++)sum_ax+=a[i][j]*b[j];b[i]=(b[i]-sum_ax)/a[i][i]; }}void xiaoqu_u_l() //将行列式按Doolittle分解{ int i,j,n,k;double temp; for(i=1,j=0;i<lenth;i++)a[i][j]=a[i][j]/a[0][0]; for(n=1;n<lenth;n++){ //求第n+1层的上三角矩阵部分即Ufor(j=n;j<lenth;j++){ for(k=0,temp=0;k<n;k++)temp+=a[n][k]*a[k][j];a[n][j]-=temp;}for(i=n+1;i<lenth;i++) //求第n+1层的下三角矩阵部分即L{ for(k=0,temp=0;k<n;k++)temp+=a[i][k]*a[k][n];a[i][n]=(a[i][n]-temp)/a[n][n];}}}int Doolittle_check(double temp_a[][Number],double temp_b[Number]) //若行列式不为零,将系数矩阵调整为顺序主子式大于零{int i,j,k,maxi;double lik,temp;for(k=0;k<lenth-1;k++){j=k;for(maxi=i=k;i<lenth;i++)if(temp_a[i][j]>temp_a[maxi][j]) maxi=i;if(maxi!=k){ exchange_hang(k,maxi);for(j=0;j<lenth;j++){ temp=temp_a[k][j];temp_a[k][j]=temp_a[maxi][j];temp_a[maxi][j]=temp;}}for(i=k+1;i<lenth;i++){lik=temp_a[i][k]/temp_a[k][k];for(j=k;j<lenth;j++)temp_a[i][j]=temp_a[i][j]-temp_a[k][j]*lik;temp_b[i]=temp_b[i]-temp_b[k]*lik;}}if(temp_a[lenth-1][lenth-1]==0) return 0;return 1;}void exchange_hang(int m,int n) //交换a[][]中和b[]两行 { int j; double temp;for(j=0;j<lenth;j++){ temp=a[m][j];a[m][j]=a[n][j];a[n][j]=temp;}temp=b[m];b[m]=b[n];b[n]=temp;}void exchange(int m,int i) //交换A_y[m],A_y[i] { int temp;temp=A_y[m];A_y[m]=A_y[i];A_y[i]=temp;}void exchange_lie(int j) //交换未知量b[]和第i列 { double temp;int i; for(i=0;i<lenth;i++){ temp=a[i][j];a[i][j]=b[i];b[i]=temp;}}void exchange_a_lie(int m,int n) //交换a[]中的两列{ double temp;int i; for(i=0;i<lenth;i++) { temp=a[i][m];a[i][m]=a[i][n];a[i][n]=temp;}}void exchange_x(int m,int n) //交换未知量x[m]与x[n] { char temp;temp=x[m];x[m]=x[n];x[n]=temp;}//主函数void main(){int flag=1;input(); //输入方程while(flag){print_menu(); //打印主菜单cout<<"用Doolittle方法求得结果如下:\n";for(i=0;i<lenth;i++) //输出结果{for(j=0;x[j]!='a'+i&&j<lenth;j++);cout<<x[j]<<"="<<b[j]<<endl;}}}。
doolittle分解法求解方程组
doolittle分解法求解方程组
Doolittle分解法是一种求解多元一次方程组的数学工具,它把方程组转变为
三角形阵。
它可以确定一个线性方程组的解,而且不需要进行迭代法。
doolittle
分解法也被称为LU分解法,因为它将一个方程组拆分为两种分解法:一种是费马
整体分解法,即上三角阵分解法;另一种是克莱斯勒整体分解法,即下三角阵分解法。
Doolittle分解法依赖实际情况。
如果一个线性方程组有一个解,这种方法便
可以帮助计算出这个解。
同时,这种分解方法可以使方程组更具健壮性,有助于更大限度地计算出方程组的解。
在使用Doolittle分解法求解方程组时,首先将要求解的方程组表示为一个线
性方程组,比如Ax=B,其中A为系数矩阵,B为常数向量,以及x为一个未知向量。
其中,A矩阵将被进行LU分解法法。
接下来,你需要检查矩阵A是否可逆,即求
解Ax=b是否有唯一解。
接着,采用LU分解法,我们可以把矩阵A拆分成上三角阵U和下三角阵L,
即A=LU。
这两个三角阵的乘积是原始矩阵A,这两个拆分的三角阵可以用足够多的
0填充。
接着,我们可以先求解L向量,然后求解U。
最后,将得到的L向量和U
向量求积,得出答案。
总之,Doolittle分解法是一种求解多元一次方程组的有效数学工具,通过将
线性方程拆分成L和U,可以节省计算时间,得到高效的解。
列主元高斯消去法和列主元三角分解法解线性方程
计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。
三角分解解线性方程组的公式47页
8/30/2019
6
平方根法(Cholesky分解)
续1
AT ALT D R T D R T L T R T ( D T ) L ( D ) R
由Doolittle分解的唯一性有
R T L DLT DR
(D可逆)
L R
9
平方根法(Cholesky分解)
k1
aikk1lim lk m
l11 l21 ln1
l22
ln1
lnn
lnn
第一步 : a11l121l11 a11
ai1 l11li1li1 ai1/l11
i2,3 n
设L前k-1列元素已求出,则 第k步
n
k1
ak k lk m lk m lk2mlk2k
续2
L LD
这时 L 为一般的下三角矩阵,故 ALLT,若 L 的对角 元全为正时,由Doolittle分解的唯一性及上述分解 的推理过程,可以得到Cholesky分解的唯一性。
8/30/2019
8
平方根法(Cholesky分解): 分解公式
l11
Al21 l22
8/30/2019
5
平方根法(Cholesky分解) 定理证明
证明:因为 A对称正定,故其顺序主式 k0 k 1 ,2 , n,
1
u11 u1n
Al21
ln1 1
m1
m1
k1
lkk akk lk2m m1
i k n
a ik lim l km m 1
数值分析-第二章-学习小结
第2章线性方程组的解法--------学习小结一、本章学习体会本章主要学习的是线性方程组的解法。
而我们则主要学习了高斯消去法、直接三角分解法以及迭代法三种方法。
这三种方法的优缺点以及适用范围各有不同。
高斯消去法中,我们又学习了顺序高斯消去法以及列主元素高斯消去法。
顺序高斯消去法可以得到方程组的精确解,但要求系数矩阵的主对角线元素不为零,而且该方法的数值稳定性没有保证。
但列主元素高斯消去法因为方程顺序的调整,其有较好的数值稳定性。
直接三角分解法中,我们主要学习了Doolitte分解法与Crout分解法。
其思想主要是:令系数矩阵A=UL,其中L为下三角矩阵,U是上三角矩阵,为求AX=b 的解,则引进Ly=b,Ux=y 两个方程,以求X得解向量。
这种方法计算量较小,但是条件苛刻,且不具有数值稳定性。
迭代法(逐次逼近法)是从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。
该方法要求迭代收敛,而且只经过有限次迭代,减少了运算次数,但是该方法无法得到方程组的精确解。
二、本章知识梳理针对解线性方程组,求解线性方程组的方法可分为两大类:直接法和迭代法,直接法(精确法):指在没有舍入误差的情况下经过有限次运算就能得到精确解。
迭代法(逐次逼近法):从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是所求问题的精确解,只经过有限次运算得不到精确解。
我们以前用的是克莱姆法则,对于计算机来说,这种方法运算量比较大,因此我们学习了几种减少运算次数的方法,有高斯消去法、直接三角分解法,同时针对病态方程组,也提出了几种不同的解法。
Gauss消去法Gauss消去法由消元和回代两个过程组成,消元过程是指针对方程组的增广矩阵,做有限次初等行变化,使它系数矩阵变为上三角矩阵。
顺序Gauss消去法消元过程:对于K=1,2,3…,n-1执行(1)如果a aa(a)=0,则算法失效,停止计算;否则转(2)(2)对于a=a+1,a+2,…,a计算a aa=a aa(a)a aa(a)⁄a aa(a+1)=a aa(a)−a aa a aa(a) (a=a+1,a+2,…,a)a a(a+1)=a a(a)−a aa a a(a)回代过程:a a=a a(a)a aa(a)⁄a a=(a a(a)−∑a aa(a)a aaa=a+1)a aa(a)⁄ (a=a−1,a−2, (1)综上:顺序Gauss消去法的数值稳定性是没有保证的。
一基本的三角分解法LU分解
0 0 u33 u34 0 0 3 /11 2 /11 lir
k 1
urr
0 0 1 l43 T 0 0 1 9T
0 0 0 u44 0 0 0 4
解Ly b,得
y1 b1
j 1
yr br lrj y j
r1
y1 y2 y3 y4 T 10 20 17 /11 16T
li 1
ai 1 l11
r 1
lrr arr lr2k k 1
r 1
air lik lrk
lir
k 1
lrr
i 2,3, , n -------------(4)
r 2, ,n
i r 1, , n
对于线性方程组 Ax b
-------------(5)
其中A为n阶对称正定矩阵 则存在主对角元为正数的下三角阵L, 使得
u1r
urr
u1n
urn
unn
证明略
根据矩阵的乘法原理
,
A的第一行元素
a1
为
j
a1 j u1 j j 1,2, , n A的第r行元素主对角线以右元 素arj ( j r, , n)为
同样
r
arj lrkukj k 1
j r, ,n r 1,2, , n
可知A的第r列元素主对角线以下元 素 air (i r 1, , n)为
1 l21 l31 l41 T 1 1.5 0.5 2T 0 u22 u23 u24 0 11 12 8.5
u1 j a1 j
li 1
ai 1 u11
r 1
urj arj lrkukj k 1
0 1 l32 l42 T 0 1 3 /11 6 /11T
数值计算课后答案3教学提纲
习 题 三 解 答1、用高斯消元法解下列方程组。
(1)12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③解:⨯4②+(-)①2,12⨯③+(-)①消去第二、三个方程的1x ,得:1232323231425313222x x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩④⑤⑥ 再由52)4⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:1232332314272184x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩回代,得:36x =-,21x =-,19x = 所以方程组的解为(9,1,6)T x =--注意:①算法要求,不能化简。
化简则不是严格意义上的消元法,在算法设计上就多出了步骤。
实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。
无论是顺序消元法还是选主元素消元法都是这样。
②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。
要通过练习熟悉消元的过程而不是矩阵变换的技术。
矩阵形式错一点就是全错,也不利于检查。
一般形式或分量形式:12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③矩阵形式123213142541207x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭向量形式123213142541207x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭③必须是方程组到方程组的变形。
三元方程组的消元过程要有三个方程组,不能变形出单一的方程。
④消元顺序12x x →→L ,不能颠倒。
按为支援在方程组中的排列顺序消元也是存储算法的要求。
实际上,不按顺序消元是不规范的选主元素。
⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。
(2)1231231231132323110221x x x x x x x x x --=⎧⎪-++=⎨⎪++=-⎩①②③解:⨯23②+()①11,111⨯③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ⎧--=⎪⎪⎪-=⎨⎪⎪+=-⎪⎩④⑤⑥ 再由2511)5211⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:123233113235235691111111932235252x x x x x x ⎧⎪--=⎪⎪-=⎨⎪⎪=-⎪⎩回代,得:32122310641,,193193193x x x =-==, 所以方程组的解为 41106223(,,)193193193Tx =-2、将矩阵1020011120110011A ⎛⎫⎪⎪= ⎪-⎪⎝⎭作LU 分解。
num_2.3直接三角分解法
u 12 a 22 a 32 a 42 u 12 u 22 l 32 l 42
u 13 a 23 a 33 a 43 u 13 u 23 u 33 l 43
u 14 a 24 a 34 a 44 u 14 u 24 u 34 a 44
y1 b2 r 2 b3 b4 y1 y2 r4 y 3 b4
ai2
l
k 1
2
ik
uk2
→
a i 2 l i 1 u 12 l i 2 u 22
li 2
a i 2 l i 1 u 12 u 22
a 11 A ar1 a n1
a1r a rr a nr
a1n a rn a nn
u
jr1
n
rj
xj
r n 1 , n 2 , , 2 ,1
u rr
上述解线性方程组的方法称为 直接三角分解法的 Doolittle法( A=LU ) 例1. 用Doolittle法解方程组
2 3 1 4 10 4 2 14 0 12 3 9 3 13 4 13
T
ቤተ መጻሕፍቲ ባይዱ1 .5
0 .5
2
T
0
0
u 22
u 23
u 24 0
11
12
8 .5
u rj a rj
T
l
k 1
r1
rk
u kj
1
0
l 32
u 33
l 42
T
0
MATLAB实验一 解线性方程组的直接法
输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0
第2章解线性方程组的直接方法5_6
~ ~ ~ = ∏ uii ⋅ ukk = det Ak −1 ⋅ u kk det Ak
i =1
k −1
~ = det Ak > 0 u kk det Ak −1
(记 det A0 = 1)
以上 k = 1 ,2 , ⋯ , n
2
因此 ~ u11 ~ U= ~ u11 =
4. 解LTx = y:
4.1 xn = yn / ann
4.2 for i=n-1,n-1,…,1 do
xi = ( yi −
k = i +1
∑a
n
ki k
x ) / aii
11
例1.
用平方根法解对称正定方程组
6 7 5 x1 9 7 13 8 x2 = 10 5 8 6 x 9 3
事实上,对称正定方程组也可以用顺序Gauss消去法求解 而不必加入选主元步骤
16
§2.6
对角占优矩阵: 对角占优矩阵
追赶法(Thomas算法 算法) 追赶法 算法 补充
i = 1 ,2 ,⋯ , n
若矩阵A = ( aij )n× n 满足
|aii |> ∑|aij |
j =1 j ≠i
n
则称A为严格对角占优矩阵. 若矩阵A = ( aij )n× n 满足
|aii | ∑|aij | ≥
j =1 j ≠i
n
i = 1 ,2 ,⋯ , n
17
则称A为弱对角占优矩阵.
有一类方程组,在今后要学习的插值问题和边值问题中 有一类方程组 在今后要学习的插值问题和边值问题中 有着重要的作用,即三对角线方程组 其形式为: 即三对角线方程组,其形式为 有着重要的作用 即三对角线方程组 其形式为
研究生数值分(8)直接三角分解法
(b) 对k+2,3,…,n 按计算公式(3),(4)依次
计算U的第k行元素 uki (i k, k 1, , n) 与L的第
k列元素 lik (i k 1, , n; k n)
20 求解三角形方程组LY=b,即按计算公
(i k, k 1, , n) (3)
k 1
lik (aik liju jk ) / ukk j 1
(i k 1, , n; k n) (4)
在我们利用杜利特尔矩阵分解解线性方程 组AX=b时,只要实现矩阵分解A=LU,依次解三角 形方程组LY=b与UX=Y即可。
计算公式:
y1
yk
对那些明确是1或是0的元素不再求。 由矩阵乘法规则与相等条件,
利用 aij 在上述计算过程中,
导出计算 lij 或 uij 的公式。
例如
第一步计算由 ai1 li1u11 得
u1i a1i (i 1,2, ,n)
第二步计算由 a1i u1i 得 li1 ai1 / u11 (i 2,3, ,n)
, n 1)
因此有 1 c1 / a1且0 1 1 由 a2 b2 a21 b2 a2 1 b2 a2 c2 0 有 2 c2 / a2且0 2 1
一般地,用归纳法可以证明
ai ci 0 (即0 i 1) (i 1, 2, , n 1)
因此我们从关系式(2)解出待定系数为
5 3 2, 2 3 5
3
2
3
4
b 7
1
0
2、用追赶法求方程组的解
4 1 0 0 x1 3
1
4
1
直接三角分解法
• 直接三角分解法简介 • 直接三角分解法的算法原理 • 直接三角分解法的实现过程 • 直接三角分解法的应用案例 • 直接三角分解法的优化与改进
01
直接三角分解法简介
定义与特点
定义
高效
直接三角分解法是一种线性代数中的方法 ,用于将一个矩阵分解为一个下三角矩阵 和一个上三角矩阵的乘积。
计算分解矩阵
根据所选方法计算出左奇 异矩阵、右奇异矩阵和奇 异值矩阵。
提取关键信息
从分解矩阵中提取关键信 息,如主成分或特征向量, 用于后续分析。
结果
可视化结果
将分解结果以图表、图像等形式呈现,便于直观 理解。
量化分析
对分解结果进行量化分析,如计算各主成分的贡 献率或方差解释率。
决策建议
根据分析结果提供决策建议,指导后续工作。
图像修复
通过直接三角分解法,可以将图像中的损坏或缺失部分进行修复或替 换,从而得到完整的图像。
05
直接三角分解法的优化与改进
算法优化
减少计算量
通过选择合适的算法和数据结构,减少不必要的计算和重复计算, 提高算法的效率。
并行化处理
将算法中的计算任务分解为多个子任务,并利用多核处理器或多 线程技术并行处理,加快计算速度。
利用三角分解法,可以方便地计算矩阵的逆和行列式,对于解决一些数学问题具有重要意义。
在机器学习中的应用
矩阵分解
在推荐系统和协同过滤等机器学习算法中,矩阵分解是一种常见的方法。通过直接三角分 解法,可以将矩阵分解成低秩矩阵和稀疏矩阵,从而更好地表示用户和物品之间的关系。
降维处理
在处理高维数据时,直接三角分解法可以用于降维处理,将高维数据投影到低维空间,保 留主要特征,降低计算复杂度。
线性代数方程组的解法
线性代数方程组的解法关键词:线性代数方程组;高斯消元法;列主元消元法;三角分解法;杜立特尔分解法;迭代法;雅可比迭代法;高斯-赛德尔迭代法1引言目前,解线性代数方程组在计算机上常用的的方法大致把它分为两类:“直接法”与“迭代法”.在线性代数中曾指出阶线性代数方程组有唯一的解,并且可以用克拉默法则求方程组的解,初次看来问题已经解决,但从使用效果看并不是这样的.因为求阶线性代数方程组,如果用克拉默法则,需要计算个阶行列式,每个阶行列式为项之和,每项又是个元素的乘积,所以计算中仅乘法次数就高达次,当较大时,它的计算量是非常惊人的.因为现在所碰到的很多问题都需要很大的计算量,故需要好用的算法来求解.先来回顾一下回代过程和迭代过程.(1)是一个三角形方程组,当有唯一解时,可以用反推的方式求解,也就是先从第个方程解得, (2)然后代入第个方程,可得到, (3)如此继续下去,假设已得到,, , ,代进第个方程即得的计算, (4)上述求解的过程叫做回代过程.定义1[1] (向量的范数) 若向量的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对,总是有.那么上向量的范数(或模)就是 .下面给几个最常遇到的向量范数.向量的“1”范数:(5)向量的“2”范数:(6)向量的范数:(7)例1设求 , , .解由式(5),(6)及(7)知.定义2若矩阵的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对总有;1.矩阵的乘法不等式,即对总有,那么称为上矩阵的范数(或模).表 1是矩阵几个常用算子范数的定义与算式.表 1范数名称记号定义计算公式“1”范数(又名列模)“2”范数(又名谱模)“”范数(又名行模)的极限就是方程组的解向量,这时候在给定允许的误差内,只要适当的大,就可以作为方程组在满足精度要求条件下的近似解.这种求近似解的方法就是解线性方程组的一类基本的迭代解法,其中称为迭代矩阵,公式(9)称迭代公式(或迭代过程),由迭代公式得到的序列叫做迭代序列.如果迭代的序列是收敛的,则称为迭代法收敛;如果迭代的序列是不收敛,则称它是迭代法发散.定理3设 .如果约化主元素,则可以利用高斯消元的方法把方程组约化成三角形方程组来求解,其计算公式如下:(1)消元计算:对依次计算(2)回代计算:3用高斯消元法与列主元消元法解线性代数方程组(重点)!3.1 高斯消元法解方程组用高斯消元的方法求线性代数方程组的解的整个计算过程可分为两个环节,也就是利用按照次序消去未知数的方法,把原来的方程组转化成跟它同解的三角形方程组(这个转化的过程叫消元过程),再通过回代过程求三角形方程组的解,最终得到原来方程组的解.其中按照方程的顺进行消元的高斯消元法,又叫顺序消元法.3.2列主元消元法解方程组列主元消元法实际上是一种行交换的消元法,它跟顺序消元法比较而言,主要特点是在进行第次消元前,不管的值是否等于零,都在子块的第一列中选择一个元,使,并将中的第行元与第行元互相变换(相当于交换同解方程组中的第个方程),然后再进行消元计算得到结果.注:列主元素法的精度虽然稍低于全主元素法[1],但它计算简单,相对比全主元素法它的工作的量大大减少,并且从计算经验和理论分析都可以表明,它与全主元素法同样拥有很好的值稳定性,列主元素法是求解中小型浓密型方程组的最好的方法之一.4用三角分解法解线性代数方程组4.1 矩阵的三角分解定义4把一个阶矩阵分解成两个三角矩阵相乘的形式称为矩阵的三角分解.常见的矩阵三角分解是其中是下三角形的矩阵,是上三角形的矩阵.定理5[1](矩阵三角分解基本定理)设 .若的顺序主子式,那么存在唯一的杜利特尔分解其中是单位下三角形矩阵,为非奇异的上三角形矩阵.如果是单位下三角形的矩阵,是上三角形的矩阵,那么把这种分解法称为杜利特尔分解法,其中杜利特尔分解法是这种三角分解的一种特例,下面主要介绍利用杜利特尔分解法来求方程组的解.4.2 用杜利特尔分解法解线性代数方程组用杜利特尔分解法解方程组的步骤可以把它归纳为(1)实现分解,也就是1.按算式(11)(12)依次计算的第一行元与的第一列元;1.对按算式(13)(14)依次计算的第行元与的第列元.(2)求解三角形方程组,即按算式依次计算 .(3)求解三角形方程组,即按算式依次计算.利用杜利特尔分解法解方程组与高斯消元法是相似的,它重要的优点是:在利用分解,解有相同的系数矩阵的方程组时,用杜利特尔分解法非常方便,只用两个式子就可以得到方程组的解.5用迭代法解线性代数方程组用迭代法求方程组的解,需要考虑迭代过程的收敛性,在下面的讨论中,都假设方程组的系数矩阵的对角阵是不为零的.5.1 用雅可比迭代法解方程组对于一般线性方程组,如果从第个方程解出,就可以把它转化成等价的方程组. (15)从而可以得到对应的迭代公式(16)这就是解一般方程组的分量形式的雅可比(Jacobi)迭代公式.如果把它改成(17)并把系数矩阵表示成(18)其中则可以看出式的左右两端分别是向量和的第个分量,故因为可逆,所以于是就可以得到是雅可比迭代的公式.其中(称为雅可比迭代矩阵), .5.2 用高斯-赛德尔迭代法解方程组高斯-赛德尔迭代法也是常用的迭代法,设线性代数方程组为,则高斯-赛德尔迭代法的迭代公式为(19)其中迭代法(19)就称为高斯-赛德尔迭代法.通过雅可比迭代法类似的途径,就可以得到矩阵的表达式其中(称为高斯-赛德尔迭代矩阵), .高斯-赛德尔迭代法与雅可比迭代法都有算式简单、容易在计算机上实现等优点,但是用计算机来计算时,雅可比迭代法需要两组工作单元用来寄存与的量,而高斯赛-德尔迭代法只需一组工作单元存放或的分量.对于给定的线性方程组,用这两种方法求解可能都收敛或者都不收敛,也可能一个收敛另一个不收敛,两种方法的收敛速度也不一样.5.3 迭代法的收敛条件与误差分析定义6[1]矩阵全部的特征值的模的最大值,叫做矩阵的谱半径,记作 ,即.定理7[1]对任意初始向量迭代过程收敛的充要条件是;当时,越小,那么其收敛的速度是越快的.由定理7可知,用雅可比迭代法求解时,其迭代的过程是收敛的,而用高斯-赛德尔迭代法来求解,其迭代的过程是发散的.在不同条件下,收敛的速度是不同的,对同一矩阵,一种方法是收敛的,一种方法发散.第 7 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角分解法解线性方程组
线性方程组是数学中一类重要的方程组,它包含了一系列线性方程。
在实际问题中,线性方程组有时需要通过三角分解法进行求解。
三角分解
法是一种常用的线性方程组求解方法,它通过将方程组转化为上、下三角
形矩阵进行分解,从而求解出未知数的值。
本文将详细介绍三角分解法的
步骤及实际案例。
首先,我们来介绍三角矩阵的概念。
上三角矩阵是指除了主对角线上
方的元素均为0的矩阵,下三角矩阵则是指除了主对角线下方的元素均为
0的矩阵。
我们的目标是将线性方程组转化为上、下三角形矩阵进行求解。
步骤1:将线性方程组表示为矩阵形式,即AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
步骤2:进行三角分解,将系数矩阵A分解为一个上三角矩阵U和一
个下三角矩阵L,即A=LU。
其中L为下三角矩阵,U为上三角矩阵。
步骤3:将方程组AX=B进行变量代换,令Y=UX。
此时,方程组变为
LY=B。
步骤4:解得矩阵Y,再通过回代法求解出未知数向量X。
下面我们通过一个实际案例来详细说明三角分解法的应用。
案例:有三个变量x,y,z的线性方程组:
2x+y+z=4
x+3y+2z=13
3x+2y+3z=15
首先将该方程组表示为矩阵形式:
⎛211⎛⎛x⎛⎛4⎛
⎛132⎛⎛y⎛=⎛13⎛
⎛323⎛⎛z⎛⎛15⎛
然后进行三角分解,将系数矩阵A分解为上三角矩阵U和下三角矩阵L:
A=⎛211⎛=⎛100⎛⎛211⎛
⎛132⎛⎛110⎛⎛021⎛
⎛323⎛⎛321⎛⎛001⎛
接下来,将方程组AX=B进行变量代换,令Y=UX,即LY=B:
⎛100⎛⎛Y₁⎞⎛4⎛
⎛110⎛⎛Y₂⎟=⎛13⎛
⎛021⎛⎛Y₃⎠⎝15⎛
我们可以通过高斯消元法求解上述方程组,得到Y的解:
Y₁=4
Y₂=9
Y₃=-2
最后,通过回代法求解未知数向量X:
X₃=Y₃=-2
X₂=Y₂-2X₃=9-2(-2)=13
X₁=Y₁-X₂=4-13=-9
因此,该线性方程组的解为:x=-9,y=13,z=-2
三角分解法是一种常用且有效的线性方程组求解方法。
通过将方程组转化为上、下三角形矩阵进行分解,可以简化计算过程并得到解析解。
同时,三角分解法还可以广泛应用于其他数学领域中,如数值计算、优化问题等。
在实际问题中,我们常常可以利用三角分解法求解复杂的线性方程组,以得到问题的解析解。