第2讲 平面向量基本定理及坐标表示
第二节向量基本定理及坐标表示
2. 平面向量基本定理及坐标表示 (1)平面向量基本定理 不共线 向量,那么对于这一 定理:如果e1,e2是同一平面内的两个 平面内的任意向量a, 有且只有 一对实数λ1、λ2,使 a=λ1e1+λ2e2 .其中, 不共线的向量e1,e2 叫做表示这一平面内 所有向量的一组基底. (2)平面向量的正交分解 把一个向量分解为两个互相垂直 的向量,叫做把向量正交分解. (3)平面向量的坐标表示 ①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位 向量i,j作为基底.对于平面内的一个向量a,有且只有一对实数x、 y,使a=xi+yj.把有序数 (x,y) 对叫做向量a的坐标,记作a= , (x,y) 叫a在x轴上的坐标, y x 其中 叫a在y轴上的坐标. ②设OA=xi+yj,则 向量OA的坐标(x,y) 就是终点A的坐标,即若 (x,y) ,反之亦成立(O是坐标原点). OA=(x,y),则A点坐标为
1 )b, 3
)=
1 9
,
∴
1 (m+n)=mn,即 3
1 1 m n
=3.
题型二 平面向量的坐标运算
【例2】已知O(0,0)、A(1,2)、B(4,5)及OP=OA+tAB,试 问: (1)当t为何值时,P在x轴上?P在第二象限? (2)四边形OABP能否构成平行四边形?若能,求出相应的t 值;若不能,请说明理由.
第二节 平面向量的基本定理及坐标表示
基础梳理
1. 两个向量的夹角 (1)定义 非零 向量a和b,作OA=a,OB=b,则∠AOB=θ叫做 已知两个 向量a与b的夹角. (2)范围 向量夹角θ的范围是 0°≤θ≤180° ,a与b同向时, 夹角θ= 0° ;a与b反向时,夹角θ= 180° . (3)向量垂直 如果向量a与b的夹角是 90°,则a与b垂直,记作 a⊥b .
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT
设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
平面向量的基本定理及坐标表示课件
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
已知 a=(1,0),b=(2,1), (1)当 k 为何值时,ka-b 与 a+2b 共线. → → (2)若AB=2a+3b,BC=a+mb 且 A、B、C 三点共线,求 m 的值.
解析: (1)ka-b=k(1,0)-(2,1)=(k-2,-1). a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b 与 a+2b 共线, ∴2(k-2)-(-1)×5=0, 1 即 2k-4+5=0,得 k=- . 2
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → (2)∵CA=(-2,-4),BC=(1,1), → → → → → ∴MN=CN-CM=-2BC-3CA =(-2,-2)-(-6,-12)=(4,10). 设 M(x1,y1),N(x2,y2), → → 则CM=(x1-3,y1-2),CN=(x2-3,y2-2), → → → → ∵CM=3CA,CN=-2BC, ∴(x1-3,y1-2)=(-6,-12).
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → → → 1 解析: ∵2DC=AB,∴2DC=e2,∴DC= e2. 2 → → → → 又∵BC=BA+AD+DC, → 1 1 ∴BC=-e2+e1+2e2=e1-2e2. → → → → 又由MN=MA+AB+BN得 → 1→ → 1→ MN=2DA+AB+2BC 1 3 1 1 =- e1+e2+ e1-2e2= e2. 2 2 4
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
(x2-3,y2-2)=(-2,-2),
x1-3=-6 x2-3=-2 ∴ , , y1-2=-12 y2-2=-2 x1=-3 x2=1 ∴ , , y1=-10 y2=0
4-2第二节 平面向量基本定理及其坐标运算(52张PPT)
T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3
平面向量的基本定理及坐标表示 课件
d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:
点
(x, y)
?
向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a
平面向量基本定理及坐标表示知识点
平面向量基本定理及坐标表示知识点一、平面向量基本定理。
1. 定理内容。
- 如果B e_1,B e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量B a,有且只有一对实数λ_1,λ_2,使B a=λ_1B e_1+λ_2B e_2。
其中B e_1,B e_2叫做表示这一平面内所有向量的一组基底。
2. 基底的要求。
- 不共线:这是基底的重要条件。
若两个向量共线,则不能作为基底来表示平面内的所有向量。
例如,在平面内,如果B e_1与B e_2共线,那么对于与B e_1不共线的向量B a,就无法用B e_1和B e_2的线性组合来表示。
3. 唯一性。
- 对于给定的基底B e_1,B e_2和向量B a,实数对λ_1,λ_2是唯一确定的。
这可以通过反证法来证明,如果存在两组不同的实数对(λ_1,λ_2)和(μ_1,μ_2)使得B a=λ_1B e_1+λ_2B e_2=μ_1B e_1+μ_2B e_2,那么(λ_1-μ_1)B e_1+(λ_2-μ_2)B e_2=B0,由于B e_1,B e_2不共线,所以λ_1=μ_1且λ_2=μ_2。
二、平面向量的坐标表示。
1. 向量的坐标定义。
- 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量B i,B j 作为基底。
对于平面内的一个向量B a,由平面向量基本定理可知,有且只有一对实数x,y,使得B a=x B i+y B j,我们把有序数对(x,y)叫做向量B a的坐标,记作B a=(x,y)。
2. 坐标运算。
- 加法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a+B b=(x_1+x_2,y_1+y_2)。
- 减法运算:若B a=(x_1,y_1),B b=(x_2,y_2),则B a-B b=(x_1-x_2,y_1-y_2)。
- 数乘运算:若B a=(x,y),λ∈ R,则λB a=(λ x,λ y)。
高二数学课件:第四章 第二节 平面向量的基本定理及向量坐标运算
0°≤θ ≤180° ②范围:向量a与b的夹角的范围是_____________.
同向 ③当θ =0°时,a与b_____. 反向 当θ =180°时,a与b_____. 垂直 当θ =90°时,a与b_____.
【即时应用】
(1)已知a=(-1,3),b=(x,-1),且a、b共线,则x=_______. (2)设a=(1,1),b=(-1,0),若向量λ a+b与向量c=(2,1)共线,则 λ =_________.
【解析】(1)∵a∥b,∴(-1)2-3x=0,∴x= . (2)∵λa+b=λ(1,1)+(-1,0)=(λ-1,λ), 又∵(λa+b)∥c,∴(λ-1)·1-2λ=0,∴λ=-1.
两向量a=(x1,y1),b=(x2,y2)相等的充要条件是它们的对应坐标
x1 x 2 分别相等,即 利用向量相等可列出方程组求其中的未 , y y 2 1
知量,从而解决求字母取值、求点的坐标及向量的坐标等问题.
uuu r uuu r 【例2】(1)(2012·广东高考)若向量 BA 2,3 ,CA 4,7 ,
∴ a d c, 代入②
方法二: 设 AB a,AD b, 因为M,N分别为CD,BC的中点,
1 1 所以 BN b, DM a, 2 2 2 1 a (2d c) c b a 3 2 ⇒ 因而 b 2 (2c d ) d a 1 b 3 2 4 4 2 2 即 AB d c, AD c d. 3 3 3 3
p q 3 p 1 ∴ , ∴ . 2p q 2 q 4 1 答案:(1)( 3 , (2)(5,4) ) 2 2
第二节 平面向量基本定理及坐标运算(知识梳理)
第二节平面向量基本定理及坐标运算复习目标学法指导1.平面向量基本定理(1)平面向量基本定理.(2)平面内所有向量的一组基底.(3)向量夹角的概念.2.平面向量的正交分解及坐标表示(1)正交分解的概念.(2)向量的坐标表示.3.平面向量的加、减与数乘运算的坐标表示.4.平面向量共线的坐标表示. 1.平面向量基本定理在平面图形中的应用主要是利用线性法则进行向量的加法减法和数乘运算.2.数形结合,将平面向量转化为基底的和,要注意把握几何图形,了解几何图形中点的位置关系.3.学会转化常用基底,如三角形和平行四边形相邻的两边等.4.建立坐标系目的是几何图形运算转化为代数运算,建立合适的坐标系能将复杂问题简单化.5.注重对问题的转化,将不熟悉的基底转化成熟悉的基底方便运算.一、平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.1.概念理解(1)平面内的基底是不唯一的,同一向量在不同基底下的表示不相同,但基底确定后,表示唯一,即λ1和λ2唯一确定.(2)用平面向量基本定理可以将平面内任一向量分解成a=λ1e1+λ2e2的形式,这是线性运算的延伸.(3)可将向量的基本定理和物理中“力的分解”相联系,加深理解.2.与平面向量基本定理相关联的结论(1)0不能作为基底.(AB+AC).(2)△ABC中,D为BC的中点,则AD=12二、平面向量的正交分解1.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,由平面向量基本定理知,有且只有一对实数x,y,使得a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(2)若A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1).1.概念理解(1)正交分解是向量的一种特殊分解,是向量基本定理的一种特殊 情况.(2)正交分解是将基底看作x 轴正方向和y 轴正方向上的单位向量,体现数学中将一般结论特殊化的思想. 2.与向量的坐标表示相关联的结论 (1)若AB =(x 1,y 1),则BA =(-x 1,-y 1). (2)0=(0,0).(3)a=(x 1,y 1),则与a 方向相同的单位向量e=a a=(12211x x y+,12211y x y+).三、平面向量的坐标运算及共线向量的坐标表示 1.平面向量的坐标运算(1)若a=(x 1,y 1),b=(x 2,y 2),则a ±b=(x 1±x 2,y 1±y 2). (2)若a=(x,y),则λa=(λx,λy). 2.向量共线的充要条件的坐标表示若a=(x 1,y 1),b=(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.概念理解(1)向量共线常常解决交点坐标问题和三点共线问题,向量共线的充要条件表示为x 1y 2-x 2y 1=0,但不能表示为12x x =12yy .(2)向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系,两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.在平面直角坐标系中,O 为坐标原点,A,B,C 三点满足OC =23OA +13OB ,则AC AB= .解析:不妨设A(1,0),B(0,1), 所以OC =(23,13),所以|AC |=221133⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=23,|AB |=2,所以AC AB=13. 答案:13考点一 平面向量基本定理概念理解 [例1] (1)下列命题:①平面内的任何两个向量都可以作为一组基底. ②在△ABC 中,向量AB ,BC 的夹角为∠ABC.③若a,b 不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2. 其中错误的是 .(2)如图,在△ABC 中,AD=2DB,AE=12EC,BE 与CD 相交于点P,若AP =x AB +y AC (x,y ∈R),则x= ,y= .解析:(1)只有不共线的向量才能作为基底,所以①错误,②中两个向量的夹角指的是同起点两个向量之间的角,②错误,③正确. 解析:(2)由向量的三角形加法法则可知AP=AD+DP=AD+λDC=AD+λ(BC-BD )=23AB+λ(AC-AB-13BA)=23(1-λ)AB+λAC,同理AP=AE+EP=AE+μEB=AE+μ(CB-CE)=13AC+μ(AB -AC -23CA)=μAB +13(1-μ) AC ,所以可得2(1),31(1)3λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩⇒1,74,7λμ⎧=⎪⎪⎨⎪=⎪⎩所以AP=47AB+17AC,所以x=47,y=17.答案:(1)①②(2)471 7(1)平面向量基本定理中,作为基底的向量必须是不共线的;(2)基底选取的不同,要注意向量的表示也不相同,在平时的应用中,注意选取合理的基底能简化运算.已知点O是△ABC的重心,点P是OC上异于端点的任意一点,且OP=m OA+n OB,则m+n的取值范围是.解析:由题意知OA+OB+OC=0,设OP=λOC=λ(-OA-OB)(0<λ<1),OP=m OA+n OB,所以m+n=-2λ∈(-2,0).答案:(-2,0)考点二平面向量基本定理的应用[例2] 已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x,y,使得AO=x AB+y AC,且x+2y=1,则cos∠BAC 的值为( )(A)23(B)33(C)23(D)13解析:设M为AC的中点,则AO=x AB+y AC=x AB+2y AM,又x+2y=1,所以O,B,M三点共线,又O是△ABC的外接圆圆心,因此BM⊥AC,从而cos∠BAC=23.故选A.用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用该基底将条件和结论表示成向量形式通过向量的运算解决问题.(2)基底未给出时,合理地选择基底.在矩形ABCD中,AB=2,AD=4,AB⊥AD,点P满足AP=x AB+y AD,且x+2y=1,点M在矩形ABCD内(包含边)运动,且AM=λAP,则λ的最大值等于( C )(A)1 (B)2 (C)3 (D)4解析:由题意知,设AD的中点为E.如图所示,AP=x AB+y AD=x AB+2y·(12AD)=x AB+2y AE,因为x+2y=1,所以P,B,E三点共线,即点P在线段BE上运动,又AM=λAP,所以A,M,P三点共线,显然当M点与C点重合时,λ达到最大值,此时CPAP =CBAB=2,所以λ=3,故选C.考点三平面向量的坐标运算[例3] (2018·全国Ⅲ卷)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ= .解析:由题易得2a+b=(4,2),因为c ∥(2a+b),所以4λ=2,得λ=12.答案:12(1)向量的坐标表示是向量的代数表示,其中坐标运算法则是运算的关键.(2)要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两个信息,两向量共线有方向相同和相反两种情况.(3)两向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0;②若a∥b(b≠0),则a=λb.(4)向量共线的坐标表示既可以判定两向量平行,也可由平行求参数,当两向量坐标均非零时,也可利用坐标对应比例来求解.在梯形ABCD中,AB∥CD,且DC=2AB,三个顶点 A(1,2),B(2,1),C(4,2),则点D的坐标为.解析:由题意知DC=2AB,AB∥CD,所以DC =2AB .设点D 的坐标为(x,y), 则DC =(4-x,2-y),AB =(1,-1), 所以(4-x,2-y)=2(1,-1), 即(4-x,2-y)=(2,-2),42,22,x y -=⎧⎨-=-⎩解得2,4,x y =⎧⎨=⎩ 故点D 的坐标为(2,4). 答案:(2,4)类型一 平面向量基本定理的理解1.若α,β是一组基底,向量γ=x α+y β(x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量a 在基底p=(1,-1),q=(2,1)下的坐标为(-2,2),则a 在另一组基底m=(-1,1),n=(1,2)下的坐标为( D )(A)(2,0) (B)(0,-2) (C)(-2,0) (D)(0,2) 解析:因为a 在基底p,q 下的坐标为(-2,2), 即a=-2p+2q=(2,4), 令a=xm+yn=(-x+y,x+2y),所以2,24,x y x y -+=⎧⎨+=⎩即0,2.x y =⎧⎨=⎩ 所以a 在基底m,n 下的坐标为(0,2). 故选D.2.非零不共线向量OA ,OB ,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则点Q(x,y)的轨迹方程是( A ) (A)x+y-2=0 (B)2x+y-1=0 (C)x+2y-2=0 (D)2x+y-2=0 解析:PA =λAB , 得OA -OP =λ(OB -OA ), 即OP =(1+λ) OA -λOB . 又2OP =x OA +y OB ,所以22,2,x y λλ=+⎧⎨=-⎩ 消去λ得x+y-2=0.故选A. 类型二 平面向量基本定理的应用3.正三角形ABC 内一点M 满足CM =m CA +n CB (m,n ∈R),∠MCA=45°,则m n的值为( D )-1解析:令m CA =CD ,n CB =CE ,由已知CM =m CA +n CB 可得CM =CD +CE .根据向量加法的平行四边形法则可得四边形CDME 为平行四边形. 由已知可得△MCD 中∠MCD=45°,∠CMD=60°-45°, 由正弦定理可得CDMD=()sin 6045sin 45︒︒︒-=sin 60cos45cos60sin 45sin 45︒︒︒︒︒-,即CDCE. 由m CA =CD ,n CB =CE ,得m=CD CA,n=CE CB,所以m n=CDCA CE CB=CD CE·CBCA ·CBCA,因为△ABC 为正三角形,所以CB=CA.所以m n.故选 D.类型三 平面向量的坐标运算4.已知向量OA =(-1,3),OB =(1,2),OC =(2,-5),若G 是△ABC 的重心,则OG 的坐标是 .解析:设D 是BC 中点,则GB +GC =2GD =-GA , 即(OB -OG )+(OC -OG )=OG -OA ,所以OG =3OA OB OC ++=(1,3)(1,2)(2,5)3-++-=(23,0). 答案:(23,0)。
第2讲 平面向量基本定理及坐标表示
A. B. C. D.
解析:选A.由题意知 .故选A.
√
2.如图,在梯形中,, ,,分别为,的中点,若 ,其中,,则 的值为__.
解析:由题意知,, ,而 ,所以 ,① ,②联立①②得,与不共线,所以, ,所以 .
例2 (一题多解)如图,在直角梯形中, ,,,为 的中点,若,则 ( )
PART
1
第五章
必备知识 自主排查
1.判断正误(正确的打“√”,错误的打“×”)
(1)平面内的任意两个向量都可以作为一个基底. ( )
×
(2)若,不共线,且,则, . ( )
√
(3)平面向量不论经过怎样的平移变换之后其坐标不变. ( )
√
2.下列各组向量中,可以作为基底的是( )
1.已知,,若,则点 的坐标为( )
A. B. C. D.
解析:选D.设,则,,根据 ,得 ,即解得所以点的坐标为 .
√
2.已知向量,, 在正方形网格中的位置如图所示,用基底{,}表示,则 ( )
B. C. D.
解析:选D.如图,建立平面直角坐标系,设正方形网格的边长为1,则,,, ,所以,, ,设向量 ,
A., B., C., D.,
解析:选D.由于选项A,B,C中向量, 都共线,故不能作为基底.而选项D中的向量, 不共线,故可作为基底.
√
3.(人教A版必修第二册P26例1改编)在中,点满足 ,则( )
A. B. C. D.
解析:选A.如图所示, .故选A.
√
4.(人教A版必修第二册P30例5改编)已知的顶点 ,,,则顶点 的坐标为______.
2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt
)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,
平面向量的坐标与基本定理
平面向量的坐标与基本定理平面向量是解决平面几何问题的重要工具之一。
在平面直角坐标系中,我们可以用坐标表示平面中的向量,并且可以利用向量的坐标进行运算和推导。
本文将介绍平面向量的坐标表示方法以及基本定理的应用。
一、平面向量的坐标表示方法1. 平面直角坐标系在平面直角坐标系中,我们通常将横轴称为x轴,纵轴称为y轴。
一个平面向量可以用其在x轴和y轴上的投影(即坐标)表示。
例如,一个向量a在x轴上的投影为aₓ,在y轴上的投影为aᵧ。
那么向量a的坐标表示为(aₓ,aᵧ)。
2. 向量的坐标运算(1)向量的加法运算:设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),则它们的和向量c=a+b的坐标表示为(cₓ,cᵧ),其中cₓ=aₓ+bₓ,cᵧ=aᵧ+bᵧ。
(2)向量的数乘运算:设有一个向量a=(aₓ,aᵧ)和一个实数k,那么向量ka的坐标表示为(kaₓ,kaᵧ),其中kaₓ=kaₓ,kaᵧ=kaᵧ。
二、平面向量的基本定理1. 向量共线定理如果有两个非零向量a和b,它们的坐标表示分别为(aₓ,aᵧ)和(bₓ,bᵧ),那么a与b共线的充要条件是存在一个不为零的实数k,使得ka=b。
即a与b共线的条件是:aₓ/bₓ=aᵧ/bᵧ。
2. 平行四边形定理设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),那么以a和b为邻边的平行四边形的面积S等于向量a和b的叉乘的模长。
即S=|a×b|=|aₓbᵧ-aᵧbₓ|。
3. 向量的数量积向量的数量积是指两个向量之间的乘积。
设有两个向量a=(aₓ,aᵧ)和b=(bₓ,bᵧ),那么向量a和b的数量积a·b等于aₓbₓ+aᵧbᵧ。
三、平面向量的应用1. 判断向量共线根据向量共线定理,我们可以通过计算向量的坐标比值来判断向量是否共线。
如果两个向量的坐标比值相等,则它们共线;否则,它们不共线。
2. 计算平行四边形的面积根据平行四边形定理,我们可以通过计算向量的叉乘的模长来求平行四边形的面积。
第2讲-平面向量基本定理及向量的坐标表示
平面向量基本定理及其坐标表示学习目标1、掌握平面向量的基本定理2、掌握平面向量的坐标表示及相关运算3、掌握向量平行、垂直的坐标法定义及三点共线的基本性质4、掌握函数图像平移中的按向量平移1.向量的坐标表示我们知道:两个向量如果长度相等,方向相同,则可将他们视为同一个向量。
因此,对于平面上任意一个向量a ,我们过坐标原点O 作一个向量OA ,使得OA a =,此时,如果A 点的坐标为(,)x y ,我们就记(,)a x y =,这就是向量a 的坐标表示。
显然(1) 如(,)a x y =,则22||a x y =+(2) 如1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--2.基于坐标表示的向量之运算规则。
如1122(,),(,)a x y b x y ==,则(1)1212(,)a b x x y y ±=±± (2)11(,)a x y λλλ=3.向量的共线与垂直设1122(,),(,)a x y b x y ==为两个非零向量,则(1)//a b 12210x y x y ⇔-=; (2)a b ⊥12120x x y y ⇔+=;证明:(1)//a b ⇔存在实数λ,使得a b λ=,即1122(,)(,)x y x y λ=,也即1212,x x y y λλ==,故122122220x y x y x y x y λλ-=-=(2)不妨设,OA a OB b ==,即1122(,),(,)A x y B x y ,不妨设120x x ≠a b ⊥12121212110OA OB y y OA OB k k x x y y x x ⇔⊥⇔=-⇔⨯=-⇔+=; 120x x =时的特殊情况留给读者自己证明。
4.平面向量基本定理如果12,e e 是同一平面内的两个不共线向量,那么对于该平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,向量12,e e 叫表示这一平面内所有向量的一组基底.5.基于坐标表示的向量的内积设1122(,),(,)a x y b x y ==,则:1212a b x x y y ⋅=+读者可利用向量余弦定理自行证明:这里定义的内积跟前面定义的内积||||cos a b a b α⋅=⋅(其中α为,a b 的夹角)是一致的。
高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版
设 a=(x1,y1),b=(x2,y2),其中 a≠b 则 a∥b⇔ _x_1_y_2-__x_2_y_1=__0___.
第三页,共18页。
1.对平面向量基本(jīběn)定理的理 解
(1)平面内的任何两个向量都可以作为一组基底.( ) (2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( ) (3)(2013·广东卷改编)已知 a 是已知的平面向量且 a≠0.关于向量 a
1234 A.5 B.5 C.5 D.5
解析 因为A→B=A→N+N→B =A→N+C→N (x=jiīě)A→N+(C→A+A→N)=2A→N+C→M+M→A
=所2A以→NA→-B=14A→85BA→-NA-→M45A,→M, 所以 λ+μ=45. 答案 D
第十页,共18页。
平面(píngmiàn)向量的
考
坐标运算
点
【例 2】已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,
B→C=b, C→A=c,且C→M=3c, C→N=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
(3)求 M,N 的坐标及向量M→N的坐标.
解析 由已知得 a=(5,-5), b=(-6,-3), c=(1,8)
点
【例 3】平面内给定三个向量 a=(3,2),
审题路线
b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数 k;
(1)分别求出(a+kc)
(2)若 d 满足(d-c)∥(a+b),且|d-c|= 5, 与(2b-a)的坐标
求 d 的坐标.
平面向量的基本定理及坐标表示
∵A,B,C三点共线,∴―A→B ,―A→C 共线,
∴-2×(4-k)=-7×(-2k),
解得k=-23.
课前·双基落实
答案:A
课·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
2.(2017·贵阳监测)已知向量m=(λ+1,1),n=(λ+2,2),若 (m+n)∥(m-n),则λ=________. 解析:因为m+n=(2λ+3,3),m-n=(-1,-1),又 (m+n)∥(m-n),所以(2λ+3)×(-1)=3×(-1),解得 λ=0. 答案:0
a∥b⇔ x1y2-x2y1=0 .
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[小题体验] 1.已知a=(4,2),b=(-6,m),若a∥b,则m的值为______.
答案:-3 2.(教材习题改编)已知a=(2,1),b=(-3,4),则3a+4b=_____.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
[谨记通法]
平面向量坐标运算的技巧 (1)向量的坐标运算主要是利用向量加、减、数乘运算的法 则来进行求解的,若已知有向线段两端点的坐标,则应先求向 量的坐标. (2)解题过程中,常利用向量相等则其坐标相同这一原则, 通过列方程(组)来进行求解.
课前·双基落实 课堂·考点突破
课后·三维演练
平面向量的基本定理及坐标表示 结 束
考点二 平面向量的坐标运算
[题组练透]
1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为( )
A.(-3,4)
B.(3,4)
C.(3,-4)
第2节 平面向量基本定理及坐标表示
第2节 平面向量基本定理及坐标表示知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.1.平面内不共线向量都可以作为基底,反之亦然.2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) (4)平面向量不论经过怎样的平移变换之后其坐标不变.( ) 答案 (1)× (2)√ (3)× (4)√ 解析 (1)共线向量不可以作为基底. (3)若b =(0,0),则x 1x 2=y 1y 2无意义.2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)答案 A解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3), 设P (x ,y ),则(x -1,y -3)=(1,-1), 所以x =2,y =2,则点P (2,2).3.已知向量a =(-1,3),b =(2,1),则3a -2b =( ) A.(-7,7) B.(-3,-2) C.(6,2)D.(4,-3)答案 A解析 3a -2b =(-3,9)-(4,2)=(-7,7).4.(2020·长沙调研)已知向量a =(m ,1),b =(3,m -2),则m =3是a ∥b 的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充要条件 答案 A解析 ∵a =(m ,1),b =(3,m -2),若a ∥b ,则m (m -2)-3=0, 得m =3或m =-1,所以“m =3”是“a ∥b ”的充分不必要条件.5.(2020·合肥质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( ) A.⎝ ⎛⎭⎪⎫-65,85 B.(-6,8)C.⎝ ⎛⎭⎪⎫65,-85 D.(6,-8)答案 D解析 因为向量b 与a 方向相反,则可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=5|λ|=10,∴λ=-2,b =(6,-8).6.(2021·济南模拟)如图,在平行四边形ABCD 中,F 是BC 的中点,CE →=-2DE →,若EF→=xAB →+yAD →,则x +y =( )A.1B.6C.16D.13答案 C解析 因为四边形ABCD 是平行四边形, 所以AB→=DC →,AD →=BC →,因为CE→=-2DE →,所以ED →=-13DC →=-13AB →, 连接AF ,在△AEF 中,所以EF→=EA →+AF →=ED →-AD →+AB →+BF →=-13AB →-AD →+AB →+12BC →=23AB →-12AD →, 又因为EF→=xAB →+yAD →,所以x =23,y =-12,故x +y =16.考点一 平面向量的坐标运算1.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝ ⎛⎭⎪⎫2,72 B.⎝ ⎛⎭⎪⎫2,-12 C.(3,2)D.(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,所以⎩⎨⎧4=2x ,3=2(y -2),解得⎩⎪⎨⎪⎧x =2,y =72,故选A.2.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,∴λμ=-2-12=4.3.(2020·西安调研)在平面直角坐标系中,O 为坐标原点,OA→=⎝ ⎛⎭⎪⎫32,12,若OA →绕点O 逆时针旋转60°得到向量OB →,则OB →=( )A.(0,1)B.(1,0)C.⎝ ⎛⎭⎪⎫32,-12D.⎝ ⎛⎭⎪⎫12,-32答案 A解析 ∵OA→=⎝ ⎛⎭⎪⎫32,12,∴OA →与x 轴的夹角为30°, 依题意,向量OB →与x 轴的夹角为90°, 则点B 在y 轴正半轴上,且|OB →|=|OA →|=1,∴点B (0,1),则OB→=(0,1).4.(2021·重庆检测)如图,原点O 是△ABC 内一点,顶点A 在x 轴上,∠AOB =150°,∠BOC =90°,|OA →|=2,|OB →|=1,|OC →|=3,若OC→=λOA →+μOB →,则μλ=( )A.-33B.33C.-3D.3答案 D解析 由三角函数定义,易知A (2,0),B ⎝ ⎛⎭⎪⎫-32,12,C (3cos 240°,3sin 240°),即C ⎝ ⎛⎭⎪⎫-32,-332, 因为OC→=λOA →+μOB →,所以⎝ ⎛⎭⎪⎫-32,-332=λ(2,0)+μ⎝ ⎛⎭⎪⎫-32,12, 所以⎩⎪⎨⎪⎧2λ-32μ=-32,12μ=-332,解得⎩⎨⎧λ=-3,μ=-3 3.所以μλ= 3.感悟升华 1.向量的坐标表示把点与数联系起来,实际上是向量的代数表示,即引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.2.向量的坐标运算主要是利用向量的加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用. 考点二 平面向量基本定理及其应用【例1】如图所示,已知在△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB→=b . (1)用a 和b 表示向量OC →,DC →;(2)若OE→=λOA →,求实数λ的值. 解 (1)依题意,A 是BC 的中点,∴2OA→=OB →+OC →,即OC →=2OA →-OB →=2a -b . DC→=OC →-OD →=OC →-23OB → =2a -b -23b =2a -53b . (2)设OE→=λOA →(0<λ<1), 则CE→=OE →-OC →=λa -(2a -b )=(λ-2)a +b . ∵CE→与DC →共线, ∴存在实数k ,使CE→=kDC →, (λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45.感悟升华 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【训练1】 (1)在△ABC 中,M ,N 分别是边AB ,AC 的中点,点O 是线段MN 上异于端点的一点,且满足λOA →+3OB →+4OC →=0(λ≠0),则λ=________.(2)(多选题)(2021·威海调研)设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题(向量b ,c 和a 在同一平面内且两两不共线),则真命题是( ) A.给定向量b ,总存在向量c ,使a =b +cB.给定向量b 和c ,总存在实数λ和μ,使a =λb +μcC.给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μcD.给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc 答案 (1)7 (2)AB解析 (1)法一 由已知得OA →=-3λOB →-4λOC →,① 由M ,O ,N 三点共线,知∃t ∈R ,使OM →=tON →,故2OM →=2tON →,故OA →+OB →=t (OA →+OC →), 整理得OA→=1t -1OB →+t 1-tOC →,② 对比①②两式的系数,得⎩⎪⎨⎪⎧-3λ=1t -1,-4λ=t 1-t ,解得⎩⎪⎨⎪⎧t =-43,λ=7. 法二 因为M 是AB 的中点,所以OM→=12(OA →+OB →),于是OB→=2OM →-OA →,同理OC →=2ON →-OA →, 将两式代入λOA→+3OB →+4OC →=0,整理得(λ-7)OA→+6OM →+8ON →=0,因为M ,O ,N 三点共线,故∃p ∈R ,使得OM →=pON →,于是(λ-7)OA→+(6p +8)ON →=0,显然OA→,ON →不共线,故λ-7=6p +8=0,故λ=7. (2)∵向量b ,c 和a 在同一平面内且两两不共线,∴b ≠0,c ≠0, 给定向量a 和b ,只需求得其向量差a -b ,即为所求的向量c ,故总存在向量c ,使a =b +c ,故A 正确;当向量b ,c 和a 在同一平面内且两两不共线时,向量b ,c 可作基底, 由平面向量基本定理可知结论成立,故B 正确; 取a =(4,4),μ=2,b =(1,0),无论λ取何值,向量λb 都平行于x 轴,而向量μc 的模恒等于2, 要使a =λb +μc 成立,根据平行四边形法则,向量μc 的纵坐标一定为4, 故找不到这样的单位向量c 使等式成立,故C 错误;因为λ和μ为正数,所以λb 和μc 代表与原向量同向的且有固定长度的向量, 这就使得向量a 不一定能用两个单位向量的组合表示出来, 故不一定能使a =λb +μc 成立,故D 错误.故选AB. 考点三 平面向量共线的坐标表示角度1 利用向量共线求向量或点的坐标【例2】已知点A (4,0),B (4,4),C (2,6),O 为坐标原点,则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).角度2 利用向量共线求参数【例3】 (1)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)(2021·福州联考)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,且a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( ) A.8B.9C.6D.4答案 (1)12 (2)A解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12.(2)由题意知AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).因为A ,B ,C 三点共线,设AB →=λAC →,则(a -1,1)=λ(-b -1,2).∴⎩⎨⎧a -1=λ(-b -1),1=2λ,得2a +b =1. 又a >0,b >0,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=2+2+b a +4ab ≥4+2b a ·4ab =8,当且仅当b a =4ab ,即a =14,b =12时,等号成立. ∴1a +2b 的最小值为8.感悟升华 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (b ≠0),则a =λb .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【训练2】 (1)(2020·太原联考)已知向量e 1=(1,1),e 2=(0,1),若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ=________.(2)(2021·安徽江南十校调研)在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上,且|OC →|=310,则向量OC →的坐标为________.答案 (1)-32 (2)(-3,9)解析 (1)由题意知a =e 1+λe 2=(1,1+λ), b =-(2e 1-3e 2)=(-2,1).由于a ∥b ,所以1×1+2(1+λ)=0,解得λ=-32. (2)因为点C 在∠AOB 的平分线上,所以存在λ∈(0,+∞),使得OC →=λ⎝ ⎛⎭⎪⎪⎫OA →|OA →|+OB →|OB →|. ∴OC→=λ(0,1)+λ⎝ ⎛⎭⎪⎫-35,45=⎝ ⎛⎭⎪⎫-35λ,95λ, 又|OC→|=310,所以⎝ ⎛⎭⎪⎫-35λ2+⎝ ⎛⎭⎪⎫95λ2=(310)2,解得λ=5.故向量OC→=(-3,9).A 级 基础巩固一、选择题1.设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB →+AC →等于( )A.-2AD →B.2AD→ C.-3AD →D.3AD→ 答案 C解析 由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.2.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6C.7D.8答案 B解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎨⎧λ=5,λm =5,解得λ=5,m =1,∴λ+m =6.3.(2020·郑州质检)已知向量AB →=(1,4),BC →=(m ,-1),若AB →∥AC →,则实数m的值为( ) A.14 B.-4C.4D.-14答案 D解析 ∵向量AB →=(1,4),BC →=(m ,-1), ∴AC→=AB →+BC →=(1+m ,3), 又AB →∥AC →,所以1×3-4(1+m )=0,解得m =-14. 4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为第一象限内一点,且∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( ) A.22 B.2C.2D.42答案 A解析 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.(2021·济南调研)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB→+25AC →,则实数m 的值为( ) A.-4 B.-1C.1D.4答案 B解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB→+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.6.(2021·东北师大附中等五校联考)已知向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),α∈⎝ ⎛⎭⎪⎫π2,π,且a ∥b ,则sin ⎝ ⎛⎭⎪⎫α-π2=( )A.-13B.13C.223D.-223答案 C解析 向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,则13=tan α·cos α=sin α, 又α∈⎝ ⎛⎭⎪⎫π2,π,知cos α=-223,所以sin ⎝ ⎛⎭⎪⎫α-π2=-cos α=223.7.(2020·西安质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD→=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C.3D.23答案 A解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m >0).AD→=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m , 所以λμ=233.8.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 由m ∥n 得b cos B -a cos A =0,即sin B cos B =sin A cos A ,可得sin 2B =sin 2A ,因为角A ,B ,C 分别是△ABC 的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,可得△ABC 是等腰三角形或直角三角形. 因此,由“m ∥n ”不能推出“△ABC 是等腰三角形”.因为由“△ABC 是等腰三角形”不能推出“A =B ”,所以由“△ABC 是等腰三角形”也不能推出“m ∥n ”.故“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件. 二、填空题9.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________. 答案 (8,-15)解析 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP→=32BP →,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.所以点P 的坐标为(8,-15).10.(2021·武汉联考)已知非零向量a =(2x ,y ),b =(1,-2),且a ∥b ,则x y =________. 答案 -14解析 因为a =(2x ,y ),b =(1,-2),且a ∥b ,所以2x ·(-2)-y ·1=0,所以xy =-14.11.已知矩形ABCD 的两条对角线交于点O ,点E 为线段AO 的中点,若DE →=mAB →+nAD→,则m +n 的值为________.答案 -12解析 如图所示,因为点E 为线段AO 的中点, 所以DE→=12(DA →+DO →)=12DA →+14DB → =-12AD →+14AB →-14AD →=14AB →-34AD →. 又DE→=mAB →+nAD →, 所以m =14,n =-34,故m +n =-12.12.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________. 答案 k ≠1解析 若点A ,B ,C 能构成三角形, 则向量AB→,AC →不共线.∵AB→=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.B 级 能力提升13.(多选题)(2021·济南调研)已知向量e 1,e 2是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当OP →=x e 1+y e 2时,则称有序实数对(x ,y )为点P 的广义坐标.若平面α内的点A ,B 的广义坐标分别为(x 1,y 1),(x 2,y 2),则下列命题正确的是( )A.线段AB 的中点的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22B.A ,B 两点间的距离为(x 1-x 2)2+(y 1-y 2)2C.向量OA →平行于向量OB →的充要条件是x 1y 2=x 2y 1D.向量OA →垂直于向量OB →的充要条件是x 1y 2+x 2y 1=0 答案 AC解析 设线段AB 的中点为M ,则OM →=12(OA →+OB →)=12(x 1+x 2)e 1+12(y 1+y 2)e 2,所以点M 的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,知A 正确;由于该坐标系不一定是平面直角坐标系,因此B 错误;由向量平行得OA →=λOB →,即(x 1,y 1)=λ(x 2,y 2),所以x 1y 2=x 2y 1,得C 正确;OA →与OB →垂直,则OA →·OB →=0,所以x 1x 2e 21+(x 1y 2+x 2y 1)e 1·e 2+y 1y 2e 22=0,即x 1y 2+x 2y 1=0不是OA→与OB →垂直的充要条件,因此D 不正确.故选AC. 14.(多选题)(2021·日照调研)如图1,“六芒星”由两个全等的正三角形组成,中心重合于点O 且三组对边分别平行,点A ,B 是“六芒星”(如图2)的两个顶点,动点P 在“六芒星”上(包含内部以及边界),若OP →=xOA →+yOB →,则x +y 的取值可能是( )A.-6B.1C.5D.9答案 BC解析 设OA →=a ,OB →=b ,求x +y 的范围,只需考虑图中6个向量的情况即可,讨论如下:(1)若P 在A 点,∵OA→=a ,∴(x ,y )=(1,0);(2)若P 在B 点,∵OB→=b ,∴(x ,y )=(0,1); (3)若P 在C 点,∵OC→=OA →+AC →=2b +a ,∴(x ,y )=(1,2);(4)若P 在D 点,∵OD →=OA →+AE →+ED →=a +b +(2b +a )=2a +3b ,∴(x ,y )=(2,3);(5)若P 在E 点,∵OE→=OA →+AE →=a +b ,∴(x ,y )=(1,1);(6)若P 在F 点,∵OF →=OA →+AF →=a +3b ,∴(x ,y )=(1,3).∴x +y 的最大值为2+3=5.根据对称性,可知x +y 的最小值为-5. 故选BC.15.已知点P 为四边形ABCD 所在平面内一点,且满足AB →+2CD →=0,AP →+BP →+4DP →=0,AP →=λAB →+μBC →(λ,μ∈R ),则λμ=________. 答案 13解析 如图,取AB 的中点O ,连接DO . 由AB→+2CD →=0,知AB ∥CD ,AB =2CD , 所以CD 綉OB ,所以四边形OBCD 为平行四边形. 又由AP→+BP →+4DP →=0,得-2PO →+4DP →=0, 即PO →=2DP →,所以D ,P ,O 三点共线,且P 为OD 上靠近D 的三等分点, 所以AP→=AO →+OP →=12AB →+23OD →=12AB →+23BC →, 所以λ=12,μ=23,所以λμ=13.16.在△ABC 中,点D ,E 是线段BC 上的两个动点,且AD →+AE →=xAB →+yAC →,则xy 的最大值为________. 答案 1解析 设DE 的中点为M ,连接AM (如图). 则AD→+AE →=2AM →=xAB →+yAC →, 所以AM→=x 2AB →+y 2AC →, 又B ,C ,M 三点共线, 所以x +y =2,且x >0,y >0,又x +y ≥2xy ,当且仅当x =y =1时,取等号,∴xy≤1,即xy的最大值为1.。
平面向量的基本定理及坐标表示
例3、已知 ABCD的三个顶点 A、B、C的坐标分别为(2,1)、 (1,3)、(3, 4),求顶点D的坐标.
巩固练习: 已知A(1,1)、B(3, 0)、C(2, 5)是 平行四边形的三个顶点,求第 四个顶点D的坐标.
四、向量平行的坐标表示
设a (x1, y1),b (x2, y2 ),其 中b 0,则a b的充要条件是
a b x1 x2且y1 y2
4、向量平行的坐标表示
a b x1y2 x2 y1 0
六、作业
➢习题5.4第3、4、 7、8题.
➢ 完成《三维设计》
谢谢同学们
再 见
例1、如图,用基底i、j表示向量a、
b、c、d,并求出它们的坐标.A2 5 Nhomakorabea4
b
a
3
2
A
1 j -4 -3 -2 -1 o i 1 2 3
-1
-2
c
-3 d
-4
B
A1 4x
-5
三、平面向量的坐标运算
已知a (x1, y1),b (x2, y2 ),则
a b __(x_1___x_2_, _y_1 __y_2_)_____;
一、复 习 引 入
1、平面向量基本定理
已知e1、e2是同一平面内的两不共线向量, 那么对这一平面内的任意向量a,有且
只有一对实数1、2,使a 1e1 2 e2.
2、什么是平面向量的基底?
不共线向量e1、e2叫做这一平面内所有 向量的一组基底.
二、平面向量的坐标表示
在直角坐标系中,我们分别取与x轴、
a b _(_x_1___x_2_, _y_1 ___y_2 )_____; a ___(__x_1_, __x_2 )__________ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.共线向量定理应关注的两点(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定. 2.两个结论(1)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.(2)已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33. 二、教材衍化1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =( )A .-12B .12C .-2D .2解析:选A .由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A .2.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.解析:设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x ,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.答案:(1,5)一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )(5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B .平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A .法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A . 法二:AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .考点一 平面向量基本定理的应用(基础型) 复习指导| 了解平面向量的基本定理及其意义.核心素养:数学运算(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A .13a +512bB .13a -1312bC .-13a -512bD .-13a +1312b(2)(2020·郑州市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.【解析】 (1)DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b解析:选A .由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a+13b ,故选A . 2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →,所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →,又因为OP →=mOA →+OB →,所以OB →=OB →+(m +1)OA →, 依题意OA →,OB →是非零向量且不共线, 所以m +1=0,解得m =-1. 考点二 平面向量的坐标运算(基础型) 复习指导| 1.掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加、减与数乘运算. 核心素养:数学运算已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b , 所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A .3a -2b +c =(23+x ,12+y )=0,故x =-23,y =-12,故选A . 2.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是________.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7).答案:(4,7)3.如图所示,以e 1,e 2为基底,则a =________.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2考点三 平面向量共线的坐标表示(基础型) 复习指导| 理解用坐标表示的平面向量共线的条件.核心素养:数学运算角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B .43C .12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ). 因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0, 即2m -3=0,所以m =32.[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D .因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D .2.(2020·河南新乡三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A .13B .-13C .-3D .3解析:选B .法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B .法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B .3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A .⎝⎛⎭⎫-23,-23B .⎝⎛⎭⎫-13,-13C .⎝⎛⎭⎫13,13D .⎝⎛⎭⎫23,23 解析:选A .易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎨⎧x =-23,y =-23,所以E ⎝⎛⎭⎫-23,-23. 4.(2020·河北豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .2 3解析:选A .如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.(多选)(2021·预测)已知等边三角形ABC 内接于⊙O ,D 为线段OA 的中点,则BD →=( )A .23BA →+16BC →B .43BA →-16BC →C .BA →+13AE →D .23BA →+13AE →解析:选AC .如图所示,设BC 的中点为E ,则BD →=BA →+AD →=BA →+13AE →=BA →+13(AB →+BE →)=BA →-13BA →+13×12BC →=23BA →+16BC →.故选AC .6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎨⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 所以A ,B ,M 三点共线.10.如图,在△OBC 中,点A 是线段BC 的中点,点D 是线段OB 上一个靠近点B 的三等分点,设AB →=a ,AO →=b .(1)用向量a 与b 表示向量OC →,CD →;(2)若OE →=35OA →,判断C ,D ,E 三点是否共线,并说明理由.解:(1)因为点A 是线段BC 的中点,点D 是线段OB 上一个靠近点B 的三等分点,所以AC →=-AB →,CB →=2AB →,BD →=13BO →.因为AB →=a ,AO →=b ,所以OC →=OA →+AC →=-AO →-AB →=-a -b ,CD →=CB →+BD →=2AB →+13BO →=2AB →+13(BA →+AO →)=53AB →+13AO →=53a +13b .(2)C ,D ,E 三点不共线. 因为OE →=35OA →,所以CE →=CO →+OE →=CO →+35OA →=-OC →-35AO →=a +b -35b =a +25b ,由(1)知CD →=53a +13b ,所以不存在实数λ,使得CE →=λCD →. 所以C ,D ,E 三点不共线.[综合题组练]1.(多选)已知向量OA →=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1解析:选ABD .各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点即可构成三角形,故选ABD .2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B . 2C . 3D .2解析:选B .因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且P A →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由P A →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=05.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB →|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3. 法二:由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB →=1×1×⎝⎛⎭⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n②,联立①②,解得⎩⎨⎧m =54,n =74.所以m +n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线.(1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x +2y的值,并说明理由. 解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y=3.。