《《流体力学》学习报告[最终定稿]》
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学报告
流体力学报告每一门力学学科的建立,都需要建立模型,也就是把实际的问题抽象化,而抽象过程就是把现实中对所研究问题不重要的因素忽略掉,也就是模型假设,从而建立于这个问题相适应的模型进行研究,如果有意义有价值,也就慢慢深入研究,从而形成一门学科,它们都是随社会的发展而发展形成的.比如现如今最前沿的力学学科"纳米力学"就是如此。
我们土木工程常说的三大力学有:1.理论力学---分析力学,振动力学,水力学或称为流体力学(这些研究对材料都不太侧重 )2.材料力学---弹性力学,塑性力学(都是又材料特性而分的) 3.结构力学:就是分析复杂的结构的情形。
在此我重点叙述我对流体力学这门课学科的学习和认知。
一·流体的基本信息解释:流体,是与固体相对应的一种物体形态,是液体和气体的总称.由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。
流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。
当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。
是液压传动和气压传动的介质。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体的研究内容。
二·流体力学的阐述:流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。
可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。
对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。
流体力学综合实验报告
流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。
本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。
实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。
通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。
实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。
实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。
实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。
同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。
实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。
通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。
实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。
这表明不同液体的粘度是不同的。
实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。
实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。
同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。
结论:通过以上实验,我们深入了解了流体的性质和运动规律。
我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。
此外,我们还发现,流体的流量和流速之间存在一定的关系。
这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。
流体力学实验研究报告
流体力学实验研究报告一、引言流体力学是研究流体运动规律的科学。
随着科学技术的不断发展,流体力学已经成为了众多工程学科中不可或缺的基础学科之一。
而开展流体力学实验研究,则是深入了解流体运动规律,探索流体力学领域新知识的重要手段。
本篇报告将介绍我们进行的一项流体力学实验研究,旨在探究流体的力学特性以及流体的运动规律。
二、实验目的本次实验的主要目的是通过实验手段来研究流体的力学特性,了解流体的运动规律,并通过实验数据验证流体力学理论。
三、实验装置和方法本次实验主要采用的装置为一台流体力学实验设备,其中包括流体介质、流体容器、测量仪器等。
实验过程中,我们首先准备好实验装置,确保设备的正常运行。
然后,将流体介质注入流体容器中,并通过控制阀门来调节流体的流量和速度。
同时,我们利用测量仪器对流体的不同参数进行测量,如流速、压力、温度等。
最后,根据测量数据进行数据分析和处理,得出实验结果。
四、实验结果与分析在实验过程中,我们对不同流速下的流体力学特性进行了测量和分析。
通过对测得的实验数据的处理,我们得出以下实验结果:1. 流体速度与压力的关系:我们测得在一定流速范围内,流体速度与压力呈现正相关的关系。
随着流速的增加,体积流速也随之增加,因此压力也随之增加。
2. 流体速度与流量的关系:实验结果表明,在流体速率恒定的情况下,流量与流速呈线性相关。
随着流速的增加,流量也相应增加。
3. 流体速度与摩擦力的关系:通过测量流体运动的摩擦力,我们发现流速与摩擦力呈正相关。
随着流速的增加,摩擦力也随之增大。
基于以上实验结果,我们得出以下结论:1. 流体的速度与压力、流量、摩擦力等参数之间存在着一定的关系,通过合理调节流体速度,可以实现对流体特性的控制。
2. 在一定范围内,流体速度与压力、流量、摩擦力等参数之间存在正相关的关系。
这一结论符合流体力学的基本理论。
五、实验总结与展望通过本次流体力学实验研究,我们对流体的力学特性有了更深入的认识。
流体力学报告
阿基米德浮力原理摘要:浮力原理简述物体在液体中所获得的浮力,等于它所排出液体的重量,即:(式中为物体所受浮力,为物体排开液体所受重力)。
该式变形可得(式中为被排开液体密度,为当地重力加速度,为排开液体体积) 关键词:阿基米德、王冠、阿基米德桥两千年前(约公元前287年—公元前212年),阿基米德出生于西西里岛的叙拉古的一个贵族家庭。
他从小就善于思考,喜欢辩论。
早年游历过古埃及,曾在亚历山大城学习。
据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。
不幸的是在公元前212年,叙拉古被罗马军队占领,正在沙地上画着几何图形思考问题的阿基米德被闯进来的无知的罗马士兵杀死,终年75岁。
他一生献身科学,忠于祖国,受到人们的尊敬和赞扬。
阿基米德出生时,在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马共和国,也正不断的扩张势力;北非也有新的国家迦太基兴起。
阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角斗场所。
阿基米德是古希腊伟大的哲学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人。
他对待科学研究的态度是勇于革新、勇于创造而又严肃认真,曾在几何学、静力学以及机械的民明创造方面都取得了巨大的成就。
浮力定律是由阿基米德发现的。
浮力原理简述:物体在液体中所获得的浮力,等于它所排出液体的重量,即:(式中为物体所受浮力,为物体排开液体所受重力)。
该式变形可得(式中为被排开液体密度,为当地重力加速度,为排开液体体积) 浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠。
但是在做好后,国王疑心工匠做的金冠并非纯金,但这顶金冠确与当初交给金匠的纯金一样重。
工匠到底有没有私吞黄金呢?国王想检验金冠是否为纯金,但又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。
经一大臣建议,国王请来阿基米德检验。
流体力学实验报告(全)
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流体力学心得体会(同名91854)
流体力学心得体会篇一:《流体力学》学习报告《流体力学》学习报告————11土木二班47号胡智远通过一个学期的学习,让我懂得了:流体力学是研究流体平衡和机械运动规律及其应用的科学,是力学的一个重要分支。
它的任务是通过流体的运动规律,研究流体之间及流体与各种边界之间的相互作用力,并将它们应用于解决科研和实际工程问题。
在水力、动力、土建、航空、化工,机械等领域里,都日益广泛的应用流体力学,同时正是这些领域的发展,也推动了流体力学的发展和深入。
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。
等离子体在磁场作用下有特殊的运动规律。
流体力学报告
什么是风切变?
风切变是一种大气现象,是指大气中不同两点之 间的风速或风向的剧烈变化,风切变按风向可分 为:水平风切变、垂直风切变。 垂直风切变:指垂直于地表方向上风速或风向随 高度的剧烈变化, 水平风切变:则指与地面平行的方向上风向的急 速转变;
形成:
生风切变的原因主要有两大类,一类是大气运动本身的变 化所造成的;另一类则是地理、环境因素所造成的,有时 是两者综合而成(风切变可以出现在高空,也可以出现在 低空。出现在600米以下的叫低空风切变)。
经过CFD数值模拟、风洞试验
谢谢!!!
流体力学报告
电力系统中的流体力学
—曹东宇 20141292
我国目前的电力系统情况:
(1)随着我国国民经济的快速持续增长,涨,特别是对电力需求的快速增长,这种 局面造成了我国电力供需紧张。 (2)电网间由于不能有效的联网也加剧了电力供需的不平衡。尤其 是在经济相对发达的东南沿海地区,电力供应紧张的形势更加严峻。 (3)从我国的电力工业结构可以看到, “北煤西水”是中国电力布局 的基本格局。煤电占65.3%,水电占23%, 风电仅仅占7%。多少年来,中 国一直在搞“北煤南运”和“西电东输”,就是为了协调发电和用电的 布局矛盾。 (4)我国烟尘和二氧化硫的排放量其中70%和80%分别来自煤的燃 烧,我国也被国际社会批评没有采取有效措施以减少温室气体的排放, 因此,中国非常需要发展新能源和可再生能源来解决电力的紧张。
所以风力发电机的风切变问题也是低空风切变的一种。
测量:
1、模糊计算:z1,z2 为垂直高度(m);v1,v2 分 别为垂直高度z1,z2 处的风速(m/s);α 为风切变 指数。在平坦开阔的地形中推算风速的廓线时,风切 变指数的初值通常取0.143,称为1/7 幂律。
流体力学课程报告
流体力学在建筑工程中的应用姓名:杜科材班级:1033002 学号:1103300233摘要:简要介绍了流体力学的基本知识,针对计算流体力学计算的特点及模拟的目的, 对当前CFD 在建筑工程方向的研究进展进行了论述, 介绍了CFD的处理过程, 探讨了CFD 技术在建筑工程中的应用前景, 指出将理论分析、实验研究及数值模拟结合起来, 从而推动建筑工程的发展。
并结合实际的工程实例论述了计算流体力学在现代建筑消防设计中的应用。
关键词:流体力学;建筑工程;数值模拟;烟气流场模拟1 流体力学学科的研究方法流体力学是力学的一个重要分支, 是一门重要的技术基础课程.它是研究流体的机械运动规律以及运用这些规律解决实际工程问题的一门学科。
流体力学是一门既有较强理论性又有较强工程实际意义的课程, 几乎每本流体力学教科书的绪论中都提到: 流体力学是为解决实际问题而产生的,并随着社会的发展而进步的学科。
许多近现代科学的重大成就都源于流体力学的研究, 从上远古时期的治水工程, 到18世纪造船、航海的崛起, 从20 世纪的航空技术的发展, 到现在生物技术、环境科学的飞速进步, 无不渗透着流体力学的相关理论。
在整个流体力学课程的学习过程中, 大多数人都被深奥的理论、繁杂的概念和高阶偏微分方程所难倒。
这就要求学习者必须有扎实的高等数学知识、灵活的综合分析问题和处理问题能力。
特别是在21 世纪, 最激烈的竞争就是高素质人才的竞争。
而高校教育的任务就是要为国家培养造就一大批具有宽广、深厚、扎实的基础理论和技术基础理论, 具有创新性和创造性的高级工程技术人才以适应经济时代对人才的要求。
因此要求学生在拓宽基础知识面, 打好坚实的理论基础的基础上重点提高综合析和迅速解决问题的能力流体力学作为一门古老的学科, 其生命力在于不断同其它学科领域相结合, 用它自身的学科视角审视其它领域, 解决其中存在的有关问题, 同时其自身在解决各种矛盾问题当中得到不断的发展同。
《流体力学》实验报告书2
流体力学实验报告书编者xxxxx班级学号姓名指导老师xxxxxx建筑环境与设备工程实验室二O一O年六月流体力学实验报告书目录实验一静水压强特性实验 (2)实验二伯努利方程实验 (3)实验三文丘里流量计流量系数测定实验 (5)实验四动量定律实验 (7)实验五雷诺数实验 (9)实验六毕托管测流速实验 (10)实验七沿程水头损失实验 (11)实验八局部阻力损失实验 (14)实验一 静水压强特性实验实验时间 指导老师 组号一、实验数据记录及计算实验装置编号 数据记录计算用表见表1 表1 单位:mm实验条件序号水箱液面高度▽0开口管液面高度 ▽H静压强水头测压管水头o h ∆W h ∆w owO h h γγ∆∆=A H AP ∇-∇=γBH BP ∇-∇=γZ A + γAPZ B +γBPP=0 1 P>01 2 P<01 2注:表中基准面选在 ,A ∇= ,B ∇= 。
二、思考题1. 如果测压管(U 形管)管径太细,对测压管液面读数有何影响?2. 当P O <0时,试根据实测数据确定水箱的真空区域?实验二 伯努利方程实验实验时间 指导老师 组号一、试验数据记录与整理1、记录有关度数 实验装置编号No d 1= ㎝,d 2= ㎝,d 3= ㎝,d 4= ㎝2、测读记录Z+γP值表表1 Z+γP(单位:cm )值表 流量(cm 3/s) 基准线选在序号 测点编号 流量 Ⅰ ⅡⅢⅣ1 2 3 4 5 6 7 8 1 1 23、速度水头值计算表 表2 速度水头计算表 管径cm Q= cm 3/s Q= cm 3/sQ= cm 3/sd 1A cm 2vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g)cm d 2 d 3 d 44、总水头Z+γP+gav 22值计算表表3 总水头Z+ P+gav 22值计算表序号 测点编号 流量 ⅠⅡⅢⅣ1 2 3二、思考题1、流量增大,测压管水头线有何变化?为什么?2、毕托管所测试的总水头线与实测(体积法测流)的总水头线,一般略有差异,试分析其原因。
流体力学综合实训报告范文
一、实训目的本次流体力学综合实训旨在通过实际操作和实验,加深对流体力学基本理论的理解,掌握流体力学实验的基本方法和技能,提高分析问题和解决问题的能力。
通过实训,使学生能够熟练运用流体力学原理解决实际问题,为今后的学习和工作打下坚实的基础。
二、实训内容1. 流体力学基本实验(1)流体静力学实验:通过测量不同深度下的液体压强,验证流体静力学基本公式。
(2)流体运动学实验:通过测量不同位置的流速和流线,研究流体运动规律。
(3)流体动力学实验:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
2. 流体力学综合实验(1)流体流动可视化实验:通过实验观察流体流动状态,分析流动特点。
(2)管道流动实验:通过测量管道内流体流动参数,研究管道流动特性。
(3)湍流流动实验:通过测量湍流流动参数,研究湍流流动特性。
三、实训过程1. 流体静力学实验(1)实验原理:根据流体静力学基本公式,测量不同深度下的液体压强,验证公式。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同深度处测量液体压强;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,验证流体静力学基本公式。
2. 流体运动学实验(1)实验原理:通过测量不同位置的流速和流线,研究流体运动规律。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同位置测量流速;④绘制流线。
(3)实验结果分析:通过对比理论值和实验值,研究流体运动规律。
3. 流体动力学实验(1)实验原理:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。
(2)实验步骤:①将实验装置组装好;②将物体放入实验装置;③测量物体在不同流速下的阻力;④记录实验数据。
(3)实验结果分析:通过对比理论值和实验值,分析流体动力学特性。
4. 流体流动可视化实验(1)实验原理:通过实验观察流体流动状态,分析流动特点。
(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③观察流体流动状态;④记录实验现象。
流体力学实验心得体会
流体力学实验心得体会
本次流体力学实验给了我许多有价值的经验。
在实验过程中,我运用所学知识,深入地了解了流体力学的精髓。
首先,我们学习了流体力学的基本概念,其中包括流体的性质、流体力学的定义以及它的重要性等内容。
了解了这些基本概念之后,我们逐步地开始实验,了解它们的相对性质及其在实际应用中的重要性。
其次,我们进行了实验,测试了水的流体力学特性,主要包括压强的变化,流量的变化,运动的形式等。
我们还测试了水的流化特性,包括黏度及其影响流体中流动形式以及实验结果的不同等。
紧接着,我们详细探讨了流体力学中不同类型的流动,诸如一维流动、二维流动、湍流流动以及涡流流动等。
同时,我们还进行了实验,测试了不同类型流动时的不同变化,并分析了这些变化之间的关系。
最后,我们总结了流体力学的研究成果,重点介绍了它在工程、医学等方面的应用,以及它可以为后世科学研究带来的重要性。
通过发现流体力学涉及的宏观行为规律,可以更进一步研究它在不同领域的应用,并帮助人们更好地利用流体力学的理论知识来解决实际问题。
本次流体力学实验让我深刻地了解了流体力学的重要性,从而更好地运用它的理论知识来解决实际问题。
此外,这次实验更是让我深深地理解到,在学习科学的过程中,要抓住关键知识点,紧密地联系实际,在实践中更好地掌握和学习。
总之,通过本次流体力学实验,我获得了更多价值宝贵的经验,对于今后学习科学更有帮助。
流体力学实验报告
流体力学实验报告引言:流体力学是研究流体在力的作用下的运动以及与周围环境的相互作用的科学。
通过实验可以验证和探究流体力学的理论,并且为工程应用提供基础数据和实际模型。
本实验旨在通过实验方法来观察和研究流体力学的一些基本现象和原理。
一、流体静力学实验1. 实验目的:观察流体在静力平衡下的性质,并验证帕斯卡定律。
2. 实验原理:静力学是研究流体在平衡状态下的力学性质。
帕斯卡定律是指任何一个封闭容器内的压力是相等的。
3. 实验步骤:将液体注入一个封闭容器,通过改变液位的高度,观察容器内的压力变化。
二、流体动力学实验1. 实验目的:研究流体在运动状态下的一些基本特性,如阻力、涡旋等。
2. 实验原理:动力学是研究流体在运动状态下的力学性质。
通过实验可以观察到流体在管道中的流速分布、阻力特性等现象。
3. 实验步骤:通过实验装置产生流体流动,改变管道形状、粗糙度等条件,观察流速和阻力的变化。
三、流体振荡实验1. 实验目的:观察流体振动的一些特性,如共振现象。
2. 实验原理:当外力的频率与流体固有振荡频率相等时,会出现共振现象。
流体振动实验可以用于研究振动频率、振幅等。
3. 实验步骤:通过实验装置产生流体振动,并改变外力的频率,观察流体的共振现象。
四、流体流量实验1. 实验目的:研究流体在管道中的流速和流量分布。
2. 实验原理:流量是单位时间内通过管道横截面的流体体积。
通过实验可以测量流速和流量,研究流体在管道中的流动情况。
3. 实验步骤:使用流量计等装置来测量流速和流量,并改变管道直径、液体粘度等条件,观察其对流动的影响。
结论:通过以上实验,我们观察到了流体力学的一些基本现象和原理,并验证了帕斯卡定律等流体力学的理论。
这些实验为理论研究和工程应用提供了实际数据和模型。
进一步深入研究流体力学的实验,有助于我们更好地理解和应用流体力学的相关知识。
流体力学心得体会
表6-1流动状态实验数据记录处理表
Re?Rec(下临界雷诺数)时,为层流,其中Rec?2000~2320;Re?Rec'(上临界雷诺函数)时,为紊流,其中Rec'?4000~12000。
3.为什么将临界雷诺数Rec作为判断流态的准数?你的实测值与标准是否接近?答:因为在雷诺数规定的两种流动状态,分别由粘性与惯性作为阻力的主要部分,在临界雷诺数Rec前后,流体的流态变化明显,分为层流与紊流,因而利用临界雷诺数判断流体的流动状态。
八、心得体会
通过这次实验,我学会了如何测定液体运动时的沿程水头损失(hf)及断面的平均流速(v),和如何绘制流态曲线(lghf?lgv)图,怎样能找出下临界点并计算临界雷诺数(Rec)的值。学会使用流量实验装置。
二、实验目的
(1)、验证两种流量情况下溢洪道的泄流能力;(2)、观测溢洪道各部位的流态;(3)、分析各部分流速及流态,提出相应建议。
三、模型设计及实验装置
根据试验目的和要求及溢洪道水工模型试验的具体情况,模型选用几何比尺:λl=30。以水工(专题)模型实验规程SL156-165-95及水工(常规)模型实验规程SL155-95为标准。开敞式溢洪道主要受重力作用,选用佛汝德准则即重力相似准则设计,试验采用正态水工模型。模型试验布置:为保证试验目的和要求,模型范围为上游库区溢洪道进水口左右两侧约150米(包括坝段)和进水渠上游150米,下游冲坑上下游约200米。库区为定床模型,下游冲坑设为局部动床模型。流量由模型进水阀门控制。试验时9m高的平水塔经引水管道,经稳水墙,进入模型试验区,经试验模型系统后流向回水廊道。考虑到糙率相似和制作工艺,库区以混凝土抹面,溢洪道用机玻璃制作。流量测量用电磁流量计。试验完成后保留模型3个月以上,试验在模型在征得设计单位其同意后再拆除。
流体力学实验报告
流体力学实验报告目录1. 流体力学实验报告1.1 引言1.1.1 实验背景1.1.2 实验目的1.2 实验方法1.3 实验结果1.4 结论1.5 参考文献1. 引言1.1 实验背景在流体力学的研究领域中,流体的运动行为是一个重要的研究对象。
流体可以是液体或气体,其运动规律受到流体的性质和外界条件的影响。
通过进行流体力学实验,可以更好地理解流体的运动规律和特性。
1.2 实验目的本次实验旨在通过观察、测量和分析流体在不同条件下的运动状态,探索流体的流动规律,了解流体力学相关理论在实际中的应用,提高实验操作技能。
2. 实验方法在实验中,我们首先搭建好流体力学实验平台,准备好实验所需的流体、仪器和设备。
然后根据实验步骤逐步进行实验操作,记录实验数据,并进行数据分析。
最后根据实验结果得出结论。
3. 实验结果通过实验我们观察到在不同流体条件下,流体的运动状态呈现出不同的特性。
通过测量和记录实验数据,我们得出了流体在不同条件下的流速、流量等参数,并进行了数据分析。
实验结果显示,流体在不同条件下表现出各具特点的运动规律。
4. 结论根据实验结果和数据分析,我们得出了结论:流体的运动状态受到流体的性质和外界条件的影响,不同的流体在不同条件下呈现出不同的运动规律。
通过实验我们对流体力学有了更深入的理解,为进一步研究和应用流体力学提供了有益的参考。
5. 参考文献[参考文献1] 作者1. 标题1. 期刊名1,年份1,卷(期)1: 页码1.[参考文献2] 作者2. 标题2. 期刊名2,年份2,卷(期)2: 页码2.。
《流体力学》读书报告
《流体力学》读书报告黄舒予 052715生活中我们常常被流体包围着,流动的空气是流体,潺潺的河水是流体,……究竟什么是流体呢?从字面上来看,我们很可能误以为流动的物体就是流体,有或者有人认为所谓流体就是流动的液体,而我对流体最初的认识来源于阿基米德和他洗澡的故事。
我想大多数人都听过阿基米德定律,一直到现在,人们还在利用这个原理计算物体比重和测定传播载重量。
而在这个实验中,最重要的实验对象就是水。
想必都知道水是流体,那么只要物体能流动就是流体吗?这样的解释明显与事实不符,然而,通过对流体力学的学习,我想,我可以给出一个明确的定义。
流体是液体和气体的总称。
它是由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状和具有流动性。
流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。
当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。
和其他物体都有惯性这个属性一样,流体也有两大主要的物理特性——密度和容重。
密度就是单位体积的质量即ρ=m/v。
容重是指单位体积流体的重力即ŗ=G/V。
对于不同的流体,它们的密度和容重都是不同的。
比如说,水的密度为1000kg/m3,容重为9807N/m3,汞的密度为13595 kg/m3,容重为13326 N/m3。
换句话说,密度和容重就如同流体的标签一样,给定他们的数值,我们就能通过查表,确定究竟何种流体。
在实际的应用中,假定已知某种液体的密度为1000kg/m3,我们就可以通查表找到该液体究竟是什么,倘若任何信息都未给出,则我们可以用实验仪器比如天平秤测出质量,根据玻璃杯的体积,求出密度,然后再查表得出结论。
对于流体的认识的误区之二,就是人们常以为流体必定是流动的。
其实事实并非如此,流体既有动态的一面,也有动态的一面。
流体力学读书报告
流体力学读书报告流体力学,大三才开始接触,之前只是知道理论力学、材料力学、结构力学,对于流体力学一无所知,这一学期听过了原老师精彩的讲课后,对流体力学有了新的认识!流体力学是研究流体平衡和流体的机械运动规律及其在工程实际中应用的一门学科。
流体力学研究的对象是流体,包括液体和气体。
流体力学与土木工程流体力学广泛应用于土木工程的各个领域。
例如,在建筑工程和桥梁工程中,研究解决风对高耸建筑物的荷载作用和风振问题,要以流体力学为理论基础;进行基坑排水、地基抗渗稳定处理、桥渡设计都有赖于水力分析和计算;从事给水排水系统的设计和运行控制,以及供热、通风与空调设计和设备选用,更是离不开流体力学。
可以说,流体力学已成为土木工程各领域共同的专业理论基础。
流体力学不仅用于解决单项土木工程的水和气的问题,更能帮助工程技术人员进一步认识土木工程与大气和水环境的关系。
大气和水环境对建筑物和构筑物的作用是长期的、多方面的,其中台风、洪水通过直接摧毁房屋、桥梁、堤坝,造成巨大的自然灾害;另一方面,兴建大型厂矿、公路、铁路、桥梁、隧道、江海堤防和水坝等,都会对大气和水环境造成不利影响,导致生态环境恶化,甚至加重自然灾害,这方面国内外已有惨痛的教训。
只有处理好土木工程与大气和水环境的关系,做到保护环境,减轻灾害,才能实现国民经济可持续发展。
人类同洪水斗争的历史,可以追溯到遥远的上古时期。
在中国古代的典籍中,就有相传4000 多年以前大禹治水,“疏壅导滞”使滔滔洪水各归于河的记载。
先秦时期(公元256~公元251)在四川岷江中游建都江堰,从此成都平原“水旱从人,不知饥馑,时无荒年”。
隋朝自文帝始,历二世(公元584~610),修浚并贯通南北大运河,“自是天下利于转输”,“运漕商旅,往来不绝”。
又如隋大业年间(公元605~公元617),工匠李春在交河上建赵州桥,这座石拱桥的跨径37.4 米,拱背上还有4 个小拱,既减轻了主拱的负载,又可泄洪,迄今为止1380 年依然完好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《《流体力学》学习报告[最终定稿]》第一篇:《流体力学》学习报告《流体力学》学习报告————11土木二班47号胡智远通过一个学期的学习,让我懂得了。
流体力学是研究流体平衡和机械运动规律及其应用的科学,是力学的一个重要分支。
它的任务是通过流体的运动规律,研究流体之间及流体与各种边界之间的相互作用力,并将它们应用于解决科研和实际工程问题。
在水力、动力、土建、航空、化工,机械等领域里,都日益广泛的应用流体力学,同时正是这些领域的发展,也推动了流体力学的发展和深入。
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。
等离子体在磁场作用下有特殊的运动规律。
研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。
风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。
这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。
生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。
此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。
因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。
此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
学习流体力学,要注意基本概念、基本研究方法的理解和掌握,做到理论联系实际。
流体是由大量不断运动着的分子所组成,分子与分子之间是有空隙的,这就是说,从微观角度看,流体实际在空间上是不连续的。
但是,流体力学只研究流体宏观的、由外因引起的机械运动,而不研究微观的分子运动。
所以可以近似地把流体看作是由无数个连续分布的流体微团所组成的连续介质。
流体微团虽小,但却包含着为数甚多的分子,并具有一定的质量、能量等,一般将这种微团称为质点。
流体的这种“连续介质模型”的建立,是对流体物质结构的简化,使我们可以运用数学的连续函数工具来深入研究流体,对研究流体力学提供了很大的方便。
流体是有粘性的,为了得出流体的主要结论,一般先设流体是无粘性的,即理想流体,然后再通过实验等方法,考虑粘性的影响,对结论加以补充或修正,这也是一般科学研究的方法。
为了更简化,常将流体(特别是液体)按不可压缩处理,即密度为常数,然后再讨论密度不是常数的情况。
以上是对流体力学建立的一些主要模型,研究的方法有理论分析方法、实验方法、数值方法等,它们相互配合,相互补充。
在这学期学习中,让我了解了以下主要内容:包括流体静力学,流体运动学,流体动力学基础,流体阻力和能量损失,孔口、管嘴和管道的流动,一元气体动力学基础,明渠恒定均匀流,明渠恒定非均匀流,堰流与闸孔出流,渗流,相似性原理和量纲分析等知识。
流体静力学,主要研究处于静止或相对静止时的性质、规律以及在工程上的应用,由于是静止或相对静止,流体微团间没有相对运动,因而无切应力,不必考虑它的黏性,即按理想流体处理。
这个课题主要讲了流体静压强及其特征,流体平衡微分方程,重力作用下的流体平衡基本方程,流体压强的表示方法,流体的相对平衡,静止流体作用在平面上的压力,静止流体作用在曲面上的压力等。
如平均静压强p为:p=p/a(pa);若截面上各点压力不等,则截面上任意点d的静压强为pd=limΔp/Δa;流体静压强的方向沿作用面的内法线方向;静止流体中任一点的压强与作用面在空间的方位无关,其均值相等;力的势函数;等压面就是等势面;等压面必与质量力正交;绝对压强;相对压强;等加速直线运动中流体的平衡;匀速圆周运动中流体的平衡;解析法压力的大小和方向;压力的作用点(作用中心);图解法;总压力的大小和方向;压力体。
流体运动学,即研究流体速度、加速度、变形等运动参数变化的规律。
流体静力学也可以看做运动的一种特殊情况,由于不涉及引起运动的力,因此,其结论无论对理想流体还是对粘性流体都是适用的。
本课题主要讲了研究流体运动的方法,流体运动的基本概念,流体的连续性方程,流体微团运动的分析,有旋流动和无旋流动。
主要知识点:如研究流体运动的方法通常有两种:一、拉格朗日法;二、欧拉法。
流体质点的加速度、质点导数;恒定流和非恒定流;均匀流与非均匀流,所谓均匀流,就是流场中,流线相互平行,同一流线上各点的运动参数a不随位置变化;流线与迹线;流管、流束、过流断面、元流、总流;流量;过流断面的平均速度;微分形式的连续性方程;积分形式的连续性方程;平移速度、线变形速度、旋转角速度、角变形速度;有旋流动和无旋流动;速度势函数和流函数;几种简单的平面势流;简单势流的叠加,漩涡流动等知识点。
流体动力学基础,主要研究了流体运动微分方程,恒定元流的能量方程,恒定总流的能量方程,恒定气流的能量方程,恒定流动的动量方程和动量矩方程。
流动阻力和能量损失,流体由于黏滞作用带来运动的复杂性,产生了流动阻力和能量损失。
流体动力学基础虽然提到了能量损失,但没有具体的计算方法,本课题的任务就是分析流动阻力产生的机理及特征,解决能量损失的计算方法,从而使能量方程广泛的用于解决实际的工程问题。
本课题主要研究了沿程损失和局部损失;粘性流体的两种流态——层流和素流;圆管中的层流运动;素流运动;圆管素流的沿程损失,非圆管的沿程损失;管道流动的局部损失;绕流运动等。
孔口、管嘴和管道的流动,主要是利用流体运动的基本规律,解决工程中最常见的水力计算问题,它实际上是连续性方程、能量方程以及水头损失规律的具体运动。
所以学习本课题,有着很大的使用意义。
本课题主要研究了孔口出流;管嘴出流;简单管道的水力计算;复杂管道;管网计算基础;有压管道的水击;自由素流射流等。
一元气体动力学基础,可压缩性是流体的基本属性,当流速高达一定程度,流体的压缩性就显现出来。
大的流速变化引起大的压强变化,同时伴随显著的密度和温度变化。
因此,可压缩流体的流动比不可压缩流体的流动要复杂得多,本课题只讨论一元气体运动。
主要讲了理想气体一元恒定流动的基本方程;可压缩气体的几个基本概念;变截面的等熵流动;可压缩气体的等温管道运动;可压缩气体的绝热管道流动等。
明渠恒定均匀流,明渠水流运动是在重力作用下形成的,在流动过程中,水流要克服阻力而消耗能量,根据实践经验,给水排水工程中所遇到的明渠水流多属于粗糙区的紊流,其沿程水头损失和流速的平方成正比,明渠恒定均匀流是流线为相互平行直线的液流。
主要研究了明渠类型及明渠均匀流特征;明渠均匀流的水力计算;明渠均匀流水力计算的其它问题;无压圆管的水力计算等。
明渠恒定非均匀流,主要研究了恒定非均匀渐变流的基本特性及其水力要素沿程变化的规律。
知识点有,明渠水流的流态;断面单位能量与临界水深;水跃和水跌;明渠恒定非均匀渐变流水面曲线分析;明渠非均匀渐变流水面曲线的计算。
堰流与闸孔出流,主要研究了堰流及其特征;薄壁堰;实用堰;宽顶堰;闸孔出流的水力计算。
渗流,研究水在给定的孔隙介质空间(渗流区)内的渗流的流速、压强分布以及渗流流量、渗流的水面线,估计渗流对土壤的破坏作用。
渗流的流速较大时,能把土壤中颗粒较小的土粒从孔隙中带走,并形成越来越大的孔隙或空洞,这种现象称为管涌,又称渗流变形。
建筑物地基发生渗流变形的可能性,以便采取防止渗流变形的措施等。
从而为解决上述实际渗流问题提供理论基础。
本课题主要研究渗流的基本概念和基本定律;地下河槽中恒定均匀渗流和非均匀渐变渗流;无压恒定缓变渗流的基本方程及其浸润线;井的计算;土坝渗流;渗流的基本方程等。
相似性原理和量纲分析,由于流体流动现象的复杂性,实际工程中大部分涉及的流体力学问题是比较复杂的,有些问题还不能够建立相应的微分方程,或在推导过程中引入了某些假设和简化,其结果与实际的流动有一定的偏差。
因此,常常需要依靠实验的方法去寻求流动的规律性。
通过模型试验,把研究结果转换为原型的流动,从而预测在原型流动中将要发生的现象,只有这样,模型才是有效的模型,实验的研究才有意义。
而相似性原理就是模型试验的理论基础。
总的来说,通过这个学期的学习,让我对《流体力学》有了一个基本的认识,对流体运动的基本规律有比较清晰的了解,这门课所学习的知识,并不是孤立的,对我们土木工程专业以后的发展也是有密切的联系的,这是一门不错的学科,让我受益匪浅。
第二篇。
流体力学总结1,迹线------某一流体质点在空间运动时,不同时刻流经的点组成的连线。
2,切应力-------由于液体质点的相对运动,产生一种内摩擦力抵抗这种运动,而此力与作用面平行,称切应力。
3,理想流体------把流体看作绝对不可压缩、不能膨胀、无粘滞性、无表面张力的连续介质,称为理想流体。
4,流线------某一瞬时在流场中绘出的一条曲线,该曲线上的所有各点的速度向量都与曲线相切。
5,流函数------二维流动中,由连续性方程导出、其值沿流线保持不变的标量函数。
6,势函数------某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该函数称为势函数。
7,连续介质------认为真实流体所占有的空间可以近似的看做由“流体质点”连续地、无空隙地充满着的,称为连续介质。