简述质量流量计的测量原理

合集下载

质量流量计的结构和原理

质量流量计的结构和原理

质量流量计的结构和原理
质量流量计的结构和工作原理可以概括为以下几点:
一、结构
质量流量计主要由测量管、流量传感器、温度传感器、控制回路等部分组成。

二、工作原理
1. 热量脉冲法
向流体传输微小的热量脉冲,检测上下游温度变化,计算热容和流速。

2. 冷热线法
一个探头加热,一个探头测量上下游温差,结合热容计算质量流率。

3. 波束法
传感器发射声波或微波穿过管道,根据传播时间计算流速。

4. 测温法
在管道设置温度探头,流体吸热使温度改变,测量时间计算流量。

5. 冲量法
设置具有惯性的击块,流体冲击产生力移动击块,计算流量。

三、计算流程
1. 测量过程参数:密度、温度、压力、波束传播时间等。

2. 将各参数输入计算机控制回路。

3. 通过特定算法计算获得质量流量值。

4. 显示或输出质量流量结果。

四、特点
测量准确、响应快、可靠性高、使用寿命长。

通过以上结构和原理,质量流量计实现了对流体流量准确的测定,具有重要的工业
应用价值。

质量流量计的基本原理

质量流量计的基本原理

质量流量计的基本原理:
艾默生质量流量计质量测量原理是牛顿二定律F=Ma。

当流体在振动管中流动时,将产生与质量流量成正比的力。

当没有流体流过时,振动管不产生扭曲,振动管两侧电磁信号检测器检测到的信号是同相位的;当有流体经过时,振动管在力矩作用下产生扭曲,两检测器间将存在相位差。

变送器测量左右检测信号之间的滞后时间,这个时间差乘上流量标定系数就可确定质量流量。

质量流量计的密度测量原理是振动频率与流体密度的平方根成反比,通过测量振动频率确定流体密度。

所以质量流量计即可实现对流体质量流量的测量,又可实现对流体密度的测量。

质量流量计的构成:质量流量计由传感器和变送器组成,变送器用于信号处理,两者之间通过专用电缆连接。

传感器的结构有直管、U形管、ω型等多种形式。

裂解炉进料控制选用的是U形管式传感器。

U形管的两个开口端与管道连接,流体由一个端口流入,另一端口流出。

在U形管顶部装有用于激发U形管振动的电磁装置,激发U形管以中心为轴按固有的自振频率振动,自振方向垂直于U形管所在平面;流体流入U形管后,在沿管道流动时又随管道作垂直运动。

此外,流体在流经U形管时,将产生一个加速度,并以一定形式反作用于U 形管。

流体在U形管入口、出口两侧的流动方向相反,形成一个作用力矩,致使U形管发生扭曲,该扭角的大小与通过U形管的流体质量流量相关,通过电磁检测器将测量管的扭曲变成电信号,送入变送器作进一步处理。

变送器是一种带微处理器的智能流量仪表,它把传感器送来的低电平信号转换处理后,输出两路与流量和密度成正比例的4-20mA标准信号。

质量流量计的原理及应用论文

质量流量计的原理及应用论文

质量流量计的原理及应用论文1. 引言质量流量计是一种用于测量流体质量流量的传感器。

它广泛应用于各种工业领域,如石油化工、制药、食品加工等。

本文将介绍质量流量计的原理以及其在工业领域的应用。

2. 原理质量流量计通过测量流体的质量来计算流体的流量。

它利用了流体的质量与其传导热量的关系来实现测量。

工作原理如下: - 流体经过质量流量计时,流体与质量流量计的传感器发生热交换。

- 传感器中的电阻丝受电流加热,流体带走电阻丝释放的热量。

- 通过测量电阻丝加热前后的温度差,可以计算流体的质量。

3. 应用质量流量计在工业领域有广泛的应用。

以下是几个常见的应用领域:3.1 石油化工在石油化工过程中,精确测量流体的质量流量是非常重要的。

质量流量计可以帮助监测石油化工过程中的流体流量,并提供准确的数据用于生产控制和优化。

3.2 制药在制药过程中,需要严格控制药品的质量和流量。

质量流量计可以精确测量药品的流量和质量,确保制药过程中的生产安全和质量控制。

3.3 食品加工食品加工行业需要精确测量食材和添加剂的流量,以确保产品的质量和食品安全。

质量流量计可应用于食品加工过程中,提供准确的流量信息。

3.4 热能计量质量流量计可用于热能计量系统,帮助测量和计量流体的质量和热量。

这对于工业企业的能源管理和节能减排是非常重要的。

4. 总结质量流量计是一种广泛应用于工业领域的流量传感器。

本文介绍了质量流量计的原理以及其在石油化工、制药、食品加工和热能计量等领域的应用。

通过使用质量流量计,可以实现对流体质量和流量的精确测量,为工业生产和能源管理提供准确的数据支持。

质量流量计的工作原理

质量流量计的工作原理

质量流量计的工作原理
质量流量计(mass flow meter)是一种用于测量流体质量流量的仪器,其工作原理基于质量守恒定律和波动理论。

质量流量计通常由两个基本组件组成:传感器和转换器。

传感器通常包括测量管道(或流道)和多个传感器,用于测量流体质量流量。

转换器则用于将传感器产生的信号转换成可读取的质量流量数值。

在工作时,流体通过测量管道或流道流动,同时传感器对流体进行测量。

传感器通常使用压力传感器、温度传感器和密度传感器等来获取相关的测量数据。

首先,通过压力传感器测量流体中的压力变化情况,然后通过温度传感器测量流体中的温度变化情况。

这些测量数据与流体的密度相关联,因此需要使用密度传感器来测量流体的密度。

通过对压力、温度和密度等测量数据的获取和计算,质量流量计能够准确地计算出流体的质量流量。

转换器会将这些计算结果转换为可读取的质量流量数值,并在显示屏上显示出来。

需要注意的是,质量流量计的工作原理与体积流量计(如流量计和涡轮流量计)有所不同。

质量流量计主要依据流体的密度变化来测量流体的质量流量,而体积流量计则是基于流体容积的变化来测量流体的体积流量。

总的来说,质量流量计通过测量压力、温度和密度等参数的变
化,能够准确地计算出流体的质量流量,提供了一种可靠和精确的流量测量方式。

质量流量计工作原理

质量流量计工作原理

质量流量计工作原理
质量流量计是一种用于测量流体质量流量的仪器。

它的工作原理是利用流体在
测量管道中的质量变化来计算流体的质量流量。

在质量流量计中,流体的密度是一个重要的参数,因为质量流量是由流体质量和流体密度的乘积得出的。

首先,让我们来看一下质量流量计的基本结构。

质量流量计通常由测量管道、
传感器和数据处理单元组成。

测量管道是流体流动的路径,传感器用于测量流体的质量变化,数据处理单元用于处理传感器采集到的数据并计算出流体的质量流量。

在质量流量计中,流体的质量变化是通过测量管道中的传感器来实现的。

传感
器可以采用多种不同的原理来实现质量变化的测量,比如热敏电阻、压电效应、振动频率等。

这些传感器可以将流体的质量变化转化为电信号,并传输给数据处理单元进行处理。

数据处理单元是质量流量计的核心部分,它通过处理传感器采集到的数据来计
算出流体的质量流量。

在数据处理过程中,需要考虑到流体的密度、温度、压力等参数,以确保计算结果的准确性。

此外,数据处理单元还可以对测量结果进行校正和补偿,以提高测量的精度和稳定性。

总的来说,质量流量计的工作原理是通过测量管道中流体的质量变化来计算流
体的质量流量。

它利用传感器采集到的数据,并通过数据处理单元进行处理和计算,最终得出流体的质量流量。

质量流量计在工业生产、化工、石油、天然气等领域有着广泛的应用,它能够准确、稳定地测量流体的质量流量,对于生产过程的控制和优化具有重要意义。

质量流量计工作原理

质量流量计工作原理

质量流量计工作原理质量流量计是一种用于测量流体质量流量的仪器,它通过测量流体的质量来确定流体的流量。

质量流量计的工作原理基于质量守恒定律和动量守恒定律,通过测量流体的质量和速度来计算流体的流量。

本文将介绍质量流量计的工作原理及其应用。

质量流量计的工作原理基于质量守恒定律,质量守恒定律是指在封闭系统内,系统的质量不会发生变化。

质量流量计利用这一原理来测量流体的质量流量。

当流体通过质量流量计时,流体的质量不会发生变化,因此可以通过测量流体的质量来确定流体的流量。

质量流量计的工作原理还基于动量守恒定律,动量守恒定律是指在封闭系统内,系统的动量不会发生变化。

质量流量计利用这一原理来测量流体的流速,通过测量流体的流速和质量来计算流体的流量。

质量流量计通常配有流速传感器,用于测量流体的流速,然后根据流速和质量来计算流量。

质量流量计通常包括质量传感器和流速传感器。

质量传感器用于测量流体的质量,流速传感器用于测量流体的流速。

质量传感器通常采用压力传感器或者称为质量平衡传感器,通过测量流体对传感器的压力来确定流体的质量。

流速传感器通常采用涡街流量传感器或者超声波流量传感器,通过测量流体的流速来确定流体的流量。

质量流量计的工作原理可以简单概括为:通过测量流体的质量和流速来确定流体的流量。

质量流量计可以用于测量液体、气体甚至固体的流量,因此在工业生产、环境监测、实验室研究等领域有着广泛的应用。

质量流量计的工作原理使其具有许多优点,例如精度高、稳定性好、可靠性高、适用范围广等。

因此,质量流量计在工业生产、环境监测、实验室研究等领域得到了广泛的应用。

总之,质量流量计是一种用于测量流体质量流量的仪器,其工作原理基于质量守恒定律和动量守恒定律,通过测量流体的质量和流速来确定流体的流量。

质量流量计具有精度高、稳定性好、可靠性高、适用范围广等优点,在工业生产、环境监测、实验室研究等领域有着广泛的应用。

质量流量计工作原理

质量流量计工作原理

质量流量计工作原理
质量流量计是一种用于测量流体质量流量的仪器,它的工作原理基于质量守恒定律和热力学原理。

质量流量计主要由传感器和信号处理单元组成。

工作原理如下:
1. 传感器:质量流量计的传感器通常由两个主要部分组成:流道和热敏电阻。

流道是流体通过的通道,热敏电阻则位于流道上方或者内部。

当流体通过流道时,流体会带走部分热量,热敏电阻会受到流体温度的影响而发生变化。

2. 热敏电阻:热敏电阻是一种电阻值随温度变化的传感器,其电阻值与温度呈反比关系。

热敏电阻通常由铂制成,称为热敏电阻铂热敏电阻。

在质量流量计中,热敏电阻的电阻值随着流体通过流道带走的热量而发生变化。

3. 测量原理:当流体通过流道时,流体会带走流道和热敏电阻的热量。

测量过程中,控制系统通过恒定的加热电流,维持热敏电阻的温度始终高于流体温度。

流体通过时,热敏电阻的温度发生变化,并通过测量瞬时电阻值的变化,来获取流体质量流量的信息。

4. 信号处理:测得的瞬时电阻值变化将被传输至信号处理单元,该单元负责根据预先设定的电阻变化与质量流量的关系进行计算处理。

最后,信号处理单元将质量流量输出作为结果。

通过以上工作原理,质量流量计可以准确测量流体的质量流量,广泛应用于工业自动化控制、流体传递过程中的计量等领域。

质量流量计的工作原理

质量流量计的工作原理

质量流量计的工作原理
质量流量计是一种用于测量流体质量流量的仪器,它的工作原理基于质量守恒定律和热力学原理。

质量流量计的基本构造包括质量传感器和控制系统。

传感器通常由弯曲管道、加热器和温度传感器组成。

当流体通过弯曲管道时,由于该管道呈曲线形状,流体会因为离心力而产生离心位移。

这个离心位移会导致弯曲管道的一端出现质量不平衡,而另一端则出现质量平衡。

加热器会根据流体的温度和热容来检测质量平衡的状态。

控制系统则根据加热器检测到的温度差异来计算流体的质量流量。

当流体的质量不平衡发生时,加热器会改变其热输出来调整流体的温度差异,以实现质量平衡。

控制系统通过测量和调整加热器的热输出,使得流体在弯曲管道中始终保持质量平衡。

根据加热器的热输出量的变化,控制系统可以计算出流体的质量流量。

质量流量计的工作原理可以总结为以下几个步骤:首先,测量流体通过弯曲管道时产生的质量不平衡。

然后,根据质量不平衡计算出相应的温度差异。

通过改变加热器的热输出,使得流体的温度差异达到预设的值,从而实现质量平衡。

最后,根据加热器的热输出量的变化计算出流体的质量流量。

质量流量计的工作原理简单而可靠,可以应用于多种场合,如工业过程控制、化工生产、石油炼制等领域。

它具有精度高、
响应快、可靠性好等优点,已经成为流体测量领域中不可或缺的仪器之一。

质量流量计测量粘度的原理

质量流量计测量粘度的原理

质量流量计测量粘度的原理质量流量计是一种用来测量流体质量流量的仪表。

它可以广泛应用于流体工艺中,包括化工、石油、制药、食品等行业。

在实际应用中,质量流量计可以通过不同的工作原理来进行测量,其中一种常见的原理是通过测量流体的压力差来推导出流体的质量流量,下面将详细介绍质量流量计测量粘度的原理。

质量流量计测量粘度的原理基于流体在不同粘度下的流动特性,即研究流体在剪切应力下的流动行为。

常见的粘度测量设备通常采用的是旋转式或振动式技术,其中旋转式粘度计是一种常见的测量仪器。

旋转式粘度计原理是利用旋转圆柱体的转动产生的剪切应力,来测量流体的粘度。

具体来说,旋转式粘度计由两个旋转圆柱体组成,外圆柱体固定不动,内圆柱体则以一定的转速旋转起来。

当流体通过两个圆柱体之间的空隙时,由于内圆柱体的旋转,流体被剪切形成一层薄膜。

这个剪切层的厚度取决于流体的粘度,因此通过测量转速和流体的流量,可以推导出流体的粘度。

使用旋转式粘度计测量流体粘度时,需要注意一些影响因素,例如温度、压力、流体稠度等。

在实际测量时,为了保持测量的准确性和可靠性,通常需要对这些影响因素进行修正和校正。

此外,测量粘度时还需要选择合适的转速范围和测量时间,以确保测量结果的准确性。

除了旋转式粘度计,还有其他多种测量粘度的原理,例如振动式粘度计。

振动式粘度计是通过测量流体的振动特性来推导出流体的粘度。

在振动式粘度计中,流体通过振动圆柱体时,由于粘度的阻尼作用,振动频率和振幅都会发生变化。

通过测量振动频率和振幅的变化,可以推导出流体的粘度。

总结起来,质量流量计测量粘度的原理基于流体在不同粘度下的流动行为,并通过测量流体的压力差、旋转或振动特性来推导出流体的粘度。

不同的测量原理对应着不同的仪器和方法,但在实际应用中,需要注意对影响因素进行修正和校正,以确保测量结果的准确性。

质量流量计工作原理

质量流量计工作原理

质量流量计工作原理
质量流量计是一种用于测量流体流量的设备,它基于质量守恒原理和测量原理来实现流量测量。

其工作原理如下:
1. 测量原理:
质量流量计采用物理或机电式传感器来测量流体的质量流速。

其中常见的测量原理包括热失重法、振荡法、压差法等。

以下以热失重法为例进行说明:
热失重法根据流体通过传感器时所带走的热量的变化来间接测量流量。

通过在流体流经路径上放置一个加热元件和一个温度传感器,当流体流经时,加热元件会将一定量的热量传递给流体,而温度传感器则测量流体的温度变化。

根据温度变化的幅度和速度,可以计算流体的质量流速。

2. 工作原理:
在工作时,质量流量计将被测流体引导通过测量路径,流体流经路径时会与传感器发生热量交换或其他物理变化。

传感器会将这种变化转化为电信号,然后传递给信号处理部分进行分析和计算。

信号处理部分通常包括放大器、滤波器、模数转换器等,它们将传感器产生的微弱信号放大、滤波并转化为数字信号。

数字信号经过计算和解析后可以得到流体的质量流速数据。

3. 数据处理与输出:
质量流量计通过处理和分析传感器所产生的信号,得出准确的质量流速数据。

这些数据可以通过显示屏、通信接口等方式进行输出,供使用者查看和使用。

质量流量计工作原理基于测量原理和信号处理,通过测量流体的物理变化、数值计算和数据分析来实现对流体质量流速的测量和输出。

质量流量计测量原理

质量流量计测量原理

质量流量计传感器内部结构驱动线圈检测线圈流量管热电阻(RTD)法兰外壳质量流量计采用科里奥利(Coriolis )原理连接传感器和变送器,提供电源,信号通讯连接管线变送器对检测线圈传输来的信号进行处理✓在双管型质量流量计当中,入口处的分流管把流入的介质均等地一分为二,送到两根测量管中,这样保证了100%的介质流经测量管✓两根测量管由于驱动线圈的作用,产生以支点为轴的相对震动。

当测量管中有流量时,产生如图所示的科里奥利现象。

科里奥利质量流量计的工作原理在每个流量管上,均有一组磁铁/ 线圈组,我们称之为入口检测线圈和出口检测线圈。

由于相对振动,线圈在磁铁的磁场做切割磁力线的运动,在内部回路产生交流电信号。

该信号能准确地反映线圈组间的相对位移和相对速度。

通过监测该交流信号,我们可判断测量管的运行状态。

科里奥利质量流量计的工作原理Time mV 无流量TimemV 低流量TimemV 高流量质量流量检测原理在没有流量的情况下,入口和出口处检测线圈监测到的交流电信号是同相位的。

当有流量的时候,由于科里奥利作用,流量管产生扭曲,两端的检测线圈输出的交流电信号存在相位差。

流量越大,相位差就越大,而且其相位差∆T 与流量的大小成正比关系。

这样,可以利用∆T 作为质量流量的标定系数,即可以用∆T 来表示每秒有多少克的流量流过。

相位差与流量标定系数2.9098 克/秒/微秒Time mV TimemV 高密度低密度按照弹性模数的理论,弹簧所悬挂物体的质量和它振动的频率成反比。

这一概念引入到流量管的振动,整体质量(测量管和内部介质之和)越大,其振动频率就越小。

通过检测已知密度(例如标准状态下的水和空气)的介质流经测量管时的频率,可以得到密度与频率之间的线性关系,然后通过振动频率换算到密度。

密度测量原理科里奥利质量流量计的优越性→多参数测量(质量流量,体积流量,密度,温度,等) Multivariable Measurement (Mass Flow, Volume Flow,Density, Temperature, etc.)→安装简单Simplified Installation→高精度High Accuracy→不受流体分布影响Insensitive to Profile/Swirl→不受介质参数变化影响(压力,温度,密度,成分等)Unaffected by Changes in Fluid Parameters (Pressure,Temperature, Density, Composition)→无需重新标定No recalibration required→无活动部件No Moving Parts→无阻流部件Non-Intrusive。

质量流量计测量原理

质量流量计测量原理

质量流量计测量原理
质量流量计测量原理
质量流量计是一种用于测量液体的机械设备,它的主要功能是测量流体的运动量,也就是说它可以测量一定时间内通过特定管道的流体的总量,以它屈臣氏、单位时间,并将流量以单位面积或体积为单位进行表示。

在各种不同的管路中,使用质量流量计可以准确地测量流体的流量,这样可以帮助进行实际的管理操作,如液体的供应或回收。

流量计的测量原理是基于原子力学的流动物理学原理,即当一种流体通过某一段管道时,该物质的总流量是等于物质的速度乘以它的積分流量面積。

根据这一原理,管道中流体的流量可以通过测量管道中介质流速和流量面積得出,因此可以通过测量这两个参数来评估流体的流量。

质量流量计主要采用蝶形表、流量计环和浮子流量计等不同的技术来测量流体的流量。

其中,蝶形表是最常用的,它采用蝶形叶片来测量管道中流体的流量,当流体流过它时,叶片会受气流壓力而屈曲,随着叶片屈曲的程度的增加,流量也会随之增加。

流量计环是流量测量的另一种方法,它主要是通过测量流体的压力来估算流量, T是通过测量流体的压差,来计算流量的。

浮子流量计是一种特殊的流量计,它采用浮子的原理来测量流体的流量,当流体流过相应的管道时,浮子会随之移动,并且把流量数据转换成电信号,最后通过处理器显示出来。

质量流量计是液体流体测量领域中不可或缺的重要设备,它可以精确
测量液体的流量,从而大大的提高液体的管理效率。

它的工作原理是根据原子力学的流动物理原理,通过测量流体的速度和面積,根据流体的不同特性来采用不同的技术来测量流量。

质量流量计 原理

质量流量计 原理

质量流量计原理
质量流量计的原理主要分为两种:
1. 电磁流量计:根据法拉第电磁感应定律(即在导体内感应电动势的大小与该导体内的磁通量变化率成正比)原理测量流体的流量的。

流经管道中导体(一般为流体)的体积流量会在管道内产生磁场,磁场的强度依赖于流体的速度和导电性质。

电磁流量计通过测量磁场的强度和方向来推算流体的流速和流量,可以实现高精度和长期的稳定性测量。

2. 质量流量计:基于热力学原理进行测量。

它测量的是流体的热容、热导率以及体积流量等参数,并通过计算流体流过传感器时的能量变化来推算质量流量。

质量流量计的特点是准确度高、响应速度快、可靠性高,并且可以适应各种复杂的环境。

质量流量计测量原理

质量流量计测量原理

质量流量计测量原理质量流量计是一种用于测量流体质量流量的仪器,它可以精确地测量流体在管道中的流动情况,对于工业生产过程中的流体控制和监测具有重要的作用。

在实际的工程应用中,我们需要了解质量流量计的测量原理,以便正确地选择和使用质量流量计,保证测量的准确性和可靠性。

首先,质量流量计的测量原理是基于质量守恒定律和热力学原理的。

在流体通过管道时,质量守恒定律要求流体的质量在流动过程中保持不变,因此可以通过测量流体的质量来确定流体的流量。

而热力学原理则是利用流体在流动过程中的热量变化来进行测量,通过测量流体的热量来确定流体的质量流量。

其次,质量流量计的测量原理还与流体的密度和流速有关。

流体的密度是指单位体积内流体的质量,而流速则是指流体单位时间内通过管道的速度。

质量流量计通过测量流体的密度和流速来计算流体的质量流量,因此在使用质量流量计时,需要准确地测量流体的密度和流速,以确保测量的准确性。

另外,质量流量计的测量原理还涉及到传感器和信号处理器的应用。

传感器是用于感知流体的密度和流速的装置,它可以将感知到的信息转化为电信号,并传输给信号处理器进行处理。

信号处理器则是用于对传感器采集到的信号进行处理和计算,最终得出流体的质量流量。

因此,在选择质量流量计时,需要考虑传感器和信号处理器的性能和稳定性,以确保测量的准确性和可靠性。

总的来说,质量流量计的测量原理是基于质量守恒定律和热力学原理的,通过测量流体的密度和流速来计算流体的质量流量。

在实际的工程应用中,需要注意选择合适的质量流量计,并确保传感器和信号处理器的性能和稳定性,以保证测量的准确性和可靠性。

通过深入了解质量流量计的测量原理,可以更好地应用质量流量计,提高工业生产过程中流体控制和监测的效率和精度。

液体质量流量计的测量原理

液体质量流量计的测量原理

液体质量流量计的测量原理
液体质量流量计是一种用来测量液体流动中的质量流速的仪器。

它的测量原理基于质量守恒定律和牛顿第二定律。

以下是其测量原理的具体步骤:
1. 原理介绍:液体质量流量计是通过测量液体质量的变化和流动时间来计算质量流速的。

这种流量计通常包括一个称量器和一个计时装置。

2. 测量步骤:首先,将待测液体通过液体质量流量计导入称量器中,同时开始计时。

称量器通常是一个容器,可以测量液体的质量。

3. 液体流动:待测液体在称量器中流动,并且在流动过程中被称量器纳入。

4. 质量测量:液体在流动过程中的质量不断被称量器记录下来。

可以使用压电传感器或其他质量测量仪器来测量质量的变化。

5. 测量时间:同时,计时装置记录下流动液体的流动时间。

可以使用计时器或其他类似装置来测量时间的变化。

6. 计算流速:通过将质量的变化量除以流动时间,可以获得液体的质量流速。

质量流速等于质量的变化量除以时间。

7. 结果输出:最后,测量结果可以通过显示屏或其他输出方式展示出来。

液体质量流量计的测量原理简单、可靠,并且适用于各种液体的质量流速测量。

质量流量计工作原理

质量流量计工作原理

质量流量计工作原理
质量流量计是一种测量流体质量流动的仪器。

它的工作原理基于牛顿第二定律和质量守恒定律的原理。

质量流量计的核心部件是质量传感器,通常是一种称为压电晶体的材料。

当流体通过流量计时,它会施加一个压力或滑移负载在晶体上。

这个负载将生成一个电荷信号,其大小与流体传递的质量成正比。

质量流量计还配备了温度和压力传感器。

这些传感器测量流体的温度和压力,并将这些参数输入到流量计的控制电路。

流量计的控制电路通过测量输入信号的频率和幅度来获得流体的质量流动。

它根据质量传感器的输出信号和流体的密度来计算质量流量。

为了提高测量的准确性,质量流量计通常采用复杂的电子技术和算法来校正传感器的非线性特性和环境因素的影响。

总之,质量流量计通过测量流体施加在质量传感器上的压力或滑移负载来确定流体的质量流动。

通过测量温度和压力,并结合复杂的电子技术和算法来计算质量流量。

这种测量方法可以提供准确的质量流量数据,并用于各种工业应用中。

质量流量计原理

质量流量计原理

质量流量计原理
在工程领域中,质量流量计是用于测量流动介质流量的一种仪表。

它通过测量单位时间内流动介质的质量来确定流量值,而不是使用传统的体积或速度测量方法。

质量流量计主要基于质量守恒原理和测量器件的特性来实现流量的准确测量。

质量守恒原理是指在一个封闭系统内,系统外部流入的质量等于系统内部流出的质量。

质量流量计利用这一原理,通过将介质流经的管道分成两个相等的部分,并在两个部分之间设置测量传感器,来测量介质质量的变化。

一般情况下,传感器可以是压力传感器、温度传感器或者振动传感器等。

当介质流经管道时,流经的质量会引起管道两部分间的压力变化。

通过测量这个压力差,可以间接测量介质的质量流量。

在传统的压力测量中,通常是通过测量容器内气体体积的变化来计算质量流量,而质量流量计则是直接通过质量变化来计算流量,从而减少了体积变化的影响。

除了使用压力传感器测量压力变化外,质量流量计还可以使用其他类型的传感器来测量介质质量的变化。

例如,通过测量介质流经管道时引起的温度变化,可以间接计算质量流量。

另外,通过测量介质流经管道时引起的振动或声波变化,也可以计算出质量流量。

综上所述,质量流量计通过测量介质流经管道时引起的质量变化来确定流量值,从而实现准确测量。

它基于质量守恒原理和测量器件的特性,可以使用压力传感器、温度传感器或振动传
感器等来测量质量变化,从而计算出流量值。

质量流量计具有准确性高、可靠性好、抗干扰能力强等优点,被广泛应用于工程领域中的流量测量。

质量流量测量原理

质量流量测量原理

质量流量测量原理一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。

Rosemount质量流量计依据牛顿第二定律:力=质量×加速度(F=ma)当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴;(2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。

由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。

当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc:ΔFc=2ωVρAΔx (1)式中,A—管道的流通截面积。

由于存在关系式:mq=ρVA所以:ΔFc =2ωqmΔx (2)因此,直接或间接测量在旋转管中流动流体的科里奥利力就可以测得质量流量。

传感器内是U型流量管,在没有流体流经流量管时,流量管由安装在流量管端部的电磁驱动线圈驱动,其振幅小于1mm,频率约为80Hz,流体流入流量管时被强制接受流量管的上下垂直运动。

在流量管向上振动的半个周期内,流体反抗管子向上运动而对流量管施加一个向下的力;反之,流出流量管的流体对流量管施加一个向上的力以反抗管子向下运动而使其垂直动量减少。

这便导致流量管产生扭曲,在振动的另外半个周期,流量管向下振动,扭曲方向则相反,这一扭曲现象被称之为科里奥利(Coriolis)现象,即科氏力。

根据牛顿第二定律,流量管扭曲量的大小完全与流经流量管的质量流量大小成正比,安装于流量管两侧的电磁信号检测器用于检测流量管的振动。

当没有流体流过流量管时,流量管不产生扭曲,两侧电磁信号检测器的检测信号是同相位的;当有流体流经流量管时,流量管产生扭曲,从而导致两个检测信号产生相位差,这一相位差的大小直接正比于流经流量管的质量流量。

由于这种质量流量计主要依靠流量管的振动来进行流量测量,流量管的振动,以及流过管道的流体的冲力产生了科氏力,致使每个流管产生扭转,扭转量与振动周期内流过流管的质量流速成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述质量流量计的测量原理
质量流量计是一种用于测量流体质量流量的仪器,其测量原理主要基于两个主要因素:质量和时间。

质量流量计利用流体通过仪器的质量来测量流体的质量流量,而不是使用体积流量。

标准的质量流量计通常由流体传感器和质量转换器组成。

测量质量流量的主要步骤如下:
1. 流体传感器:流体传感器是实时监测流体质量的装置。

它通常由薄膜、压力传感器或振动器等组成。

当流体通过传感器时,传感器会感知到流体对其产生的压力或振动,并将其转换为电信号。

2. 质量转换器:质量转换器是将传感器输出的电信号转换为质量流量的装置。

它通常由一个电子计算器和一个显示器组成。

电子计算器会根据传感器输出的信号计算流体的质量,并根据计算结果显示流体的质量流量。

3. 温度和压力补偿:为了获得更准确的质量流量测量结果,质量流量计通常还会进行温度和压力的补偿。

通过测量流体的温度和压力,并将其纳入计算公式中,可以对实际流体质量进行校正。

总之,质量流量计的测量原理是基于流体通过传感器产生的压力或振动信号来计
算流体的质量,并通过温度和压力的补偿来获得准确的质量流量测量结果。

相关文档
最新文档