传热学考研知识点总结
传热学考研知识点总结(良心出品必属精品)
传热学考研知识点总结对流换热是怎样的过程,热量如何传递的?如下是小编整理的传热学考研知识点总结,希望对你有所帮助。
传热学考研知识点总结§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。
作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。
本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。
传热学重点研究的是在宏观温差作用下所发生的热量传递。
傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。
牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。
由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。
黑体热辐射公式:实际物体热辐射:传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。
最简单的传热过程由三个环节串联组成。
传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。
2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。
思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。
为什么?2.试分析室内暖气片的散热过程。
3.冬天住在新建的居民楼比住旧楼房感觉更冷。
试用传热学观点解释原因。
4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。
(完整版)传热学知识点总结
Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。
b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。
c 传热学以热力学第一定律和第二定律为基础。
传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。
热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。
热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。
b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。
c .只要温度大于零就有.........能量..辐射。
...d .物体的...辐射能力与其温度性质..........有关。
...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。
稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。
等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。
传热学知识点总结考研
传热学知识点总结考研传热学是热力学的一个重要分支,研究热量在物体之间传递的过程。
在工程学、化学工程、材料科学和环境科学等领域都有着重要的应用。
本文将围绕传热学的基本理论和应用进行系统总结,希望能够对传热学的学习和研究有所帮助。
一、传热学的基本概念1. 传热的定义传热是热量在物体之间传递的过程,可以通过传导、对流和辐射这三种方式进行。
传热的目的是使物体的温度相等或者使热量从高温物体传递到低温物体上。
2. 传热的基本原理传热的基本原理是热量由高温区流向低温区,其基本规律可以用热传导方程、对流传热方程和辐射传热方程来描述。
3. 传热的分类根据传热的方式不同,可以将传热分为传导传热、对流传热和辐射传热。
传导传热是由物体内部的分子传递热量,对流传热是通过流体的运动传递热量,而辐射传热是通过电磁波辐射传递热量。
二、传热学的基本理论1. 传导传热传导传热是由固体内部的分子、原子或离子的运动方式传递热量。
传导传热可以用热传导方程或者傅里叶热传导定律来描述,其中热传导方程可以表达为:q=-kA*(dT/dx),其中q 表示单位时间内通过物体的热量,k表示热导率,A是传热截面积,dT/dx表示温度梯度。
2. 对流传热对流传热是由流体的运动方式传递热量,主要包括自然对流和强制对流两种方式。
自然对流是由温差引起的流体的自然对流运动,而强制对流是通过外力使流体发生运动。
对流传热可以用波亚松定律或者努塞尔数来描述。
3. 辐射传热辐射传热是通过电磁波的辐射方式传递热量,主要取决于物体的温度和表面的发射率等。
辐射传热可以用斯特凡—波尔兹曼定律或者基尔霍夫定律来描述。
4. 传热的复合方式在实际传热过程中,通常会同时存在传导、对流和辐射三种方式,这就需要将它们进行组合计算。
可以通过综合利用传热系数来描述传热的复合方式。
三、传热学的应用1. 传热器设备传热器是用于传热的设备,广泛应用于化工、能源、环保等领域。
常见的传热器包括换热器、蒸发器、冷凝器和加热器等。
考研《传热学》重要考点归纳
考研《传热学》重要考点归纳第1章绪论1.1考点归纳一、热传递的基本方式1.导热(1)导热的定义导热又称热传导,是指物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而进行的热量传递现象。
(2)导热量的计算①傅里叶定律(导热基本定律)或②热流量②热流量单位时间内通过某一给定面积的热量称为热流量,记为Ф,单位为W。
③热流密度通过单位面积的热流量称为热流密度,记为q,单位为W/m2。
(3)热导率①热导率λ或称导热系数,是表征材料导热性能优劣的参数,即是一种热物性参数,其单位为W/(m•K)。
②其物理意义是指单位厚度的物体具有单位温度差时,在单位时间内其单位面积上的导热量。
2.热对流(1)热对流的定义热对流是指由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。
(2)对流传热①对流传热的定义对流传热是指流体与温度不同的固体壁面接触时所发生的传热过程。
②对流传热的分类a.自然对流传热:由于流体冷、热各部分的密度不同而引起的对流传热。
b.强制对流传热:由于机械(水泵或风机等)的作用或其它压差而引起的相对运动所造成的对流传热。
c.沸腾传热及凝结传热:伴随有相变的对流传热,如液体在热表面上沸腾及蒸气在冷表面上凝结的对流传热问题,分别简称为沸腾传热及凝结传热。
③对流传热的计算牛顿冷却公式(对流传热的基本计算式)式中:h——表面传热系数(或称对流换热系数),单位是W/(m2•K)。
(3)热对流与对流传热的区别①热对流是传热的3种基本方式之一,而对流传热不是传热的基本方式。
②对流传热是导热和热对流这2种基本方式的综合作用。
③对流传热必然具有流体与固体壁面间的相对运动。
传热学中,重点讨论的是对流传热问题。
3.热辐射(1)辐射的定义物体通过电磁波来传递能量的方式称为辐射。
(2)热辐射的定义物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为热辐射。
天津市考研能源与动力工程复习资料传热学重要概念解析
天津市考研能源与动力工程复习资料传热学重要概念解析在能源与动力工程领域,传热学是一个重要且常见的研究领域。
传热学研究的是热量如何从一处物体传递到另一处物体的过程,对于能源系统的设计和优化至关重要。
本文将对传热学中的几个重要概念进行解析,以帮助天津市考研能源与动力工程的学生更好地理解和掌握传热学相关的知识。
1. 热传导(Conduction)热传导是指热量通过物质内部的传递。
物质内部的微小粒子(如分子、原子)的热运动使得热能从高温区向低温区传递。
热传导的速率取决于物质的导热性能和温度梯度。
常见的导热材料如金属,其导热性能较好,而绝缘材料如木材导热性能较差。
热传导过程可以通过傅里叶定律来描述。
2. 对流传热(Convection)对流传热是指通过流体(液体或气体)的传热过程。
流体的流动使得高温区和低温区间的热量传递。
对流传热的速率取决于流体的流动速度、流体的性质以及温度梯度。
对流传热在自然对流和强制对流两种情况下都会出现。
自然对流是指无外力干预的流动,如空气的自然对流;强制对流是指外力(如风扇)促使流体流动,并加速了热量的传递。
3. 辐射传热(Radiation)辐射传热是指通过辐射的形式传递热量。
辐射是指热辐射物体发出的电磁波。
所有物体在温度不为零时都会发射辐射,而辐射的强度取决于物体的温度、表面特性和辐射体的形状。
辐射传热的速率与温度的四次方成正比,因此辐射传热在高温情况下占主导地位。
4. 热导率(Thermal Conductivity)热导率是物质传导热量的能力,表示单位面积上在单位时间内从物体的一侧传递到另一侧的热量。
热导率是物质性质的一个参数,取决于物质的组成、结构和温度。
热导率越大,热传导速率越快。
5. 导热方程(Heat Conduction Equation)导热方程描述了热传导过程中温度随时间和空间的变化。
它是一个偏微分方程,可以用于描述不同几何形状的物体中的热传导过程。
解决导热方程可以得到物体内部温度分布的解析解或数值解。
研究生传热学笔记
1. 耗散函数中的耗散热的概念,法向应力可否转化为耗散热答: 课本18——19页22222222223xxyxzxxy yy zy xz yz zz u u u v v v w w w xyz x y z x y z u v w u v u w v w x y z y x z x z y μτττττττττμ⎛⎫⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂=++++++++ ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫⎛⎫=++++++++⎢⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦- Φ2u v w x y z μ⎛⎫∂∂∂++ ⎪∂∂∂⎝⎭μΦ称为能量耗散函数。
耗散热是单位时间内粘性应力,包括粘性切向应力和粘性法向应力,对控制体内流体所做的功不可逆的转变为热能的那一部分,所以法向应力可以转化为耗散热。
粘性切向应力:xy xz yx yz zx zy ττττττ;粘性法向应力:xx yy zz τττ2. 卡门三层通用模型的理论缺陷答:课本146——147页卡门根据壁区的粘性底层,过渡区和湍流核心层提出三层模型的速度分布: 粘性底层:5y +≤,u y ++=过渡区:530y +≤≤,5ln 3.055ln 15yu y +++⎛⎫=-≈+ ⎪⎝⎭湍流核心区:30y +≤ , 2.5ln 5.5u y ++=+其中*u u u+=,*u y y v+=,*u =卡门三层通用模型导得的通用速度分布式比普朗特速度分布精确,不但可以用于平壁湍流,也可用于管内湍流。
在对流换热的计算中,可以比普朗特的两层模型公式取得更好的结果。
缺陷:1) 在P r 30 的情况下,卡门三层通用模型应用于管内湍流对流换热时仍然不能得到满意的结果,其原因在于该通用速度分布完全忽略了湍流的动量传递()0t v =。
2) 在圆管中心线处r u r=∂∂应等于零。
3) 尽管卡门三层模型在描述湍流速度分布本身时与实验结果比较符合,但是用它来计算与速度梯度有关的比值/t v v ,就不那么完全正确。
传热学 每章知识重点与难点汇总
Chapter 1 Thermodynamics and Heat Transfer第一章热力学与传热学1.传热学研究内容(温差=>传热);Heat Transfer Research (Temperature Difference=> Heat Transfer) 2.三种基本传热方式的机理和基本公式;The Mechanisms and Basic Formulas of Three Basic Modes of Heat Transfer.3.传热过程、传热方程式;Heat Transfer Process,Heat Transfer Equation4.导热系数、对流换热系数、传热系数的物理涵义、单位、基本数量级、影响因素和变化规律;Physical meanings ,units, fundamental orders,influencing factors and changes in laws of heat conduction coefficient,convection heat transfer coefficient,heat transfer coefficient.5.热阻与热流网络图;Thermal resistance and heat transfer network6,单位与单位制;Unit and system of unitsChapter 2 Heat Conduction Equation第二章导热方程式1.导热问题的求解目标(物体内部的温度场与热流场);Determine Target of Heat Conduction(temperature field and heatfield in the internal objects)2.温度场(稳态、非稳态、均匀、一维、二维、三维);Temperature field (steady,transient,uniform,one-dimensional,two-dimensional,three-dimensional)3.等温面、等温线、热流线的性质及相互关系;Properties of isothermal surface, isotherm,heat flow and therelationship among them4.方向导数、梯度的数学概念及相互关系;Mathematical concept of directional derivative , gradient and therelationship between them5.Fourier 定律;Fourier Law6.推导导热微分方程式的理论基础、简化假设及方程各项(内能、导热、内热源、导温系数、)的物理涵义;Theoretical bases of concluding heat conduction differentialequation,simplified assumption and physical meanings of each termin the equation (Internal energy, heat conduction, internal heatsource,temperature transfer coefficient, )7.定解条件【几何、物理、时间、边界(Ⅰ、Ⅱ、Ⅲ)】Conditions of determining the solution【geometry,physics,time,boundary(Ⅰ、Ⅱ、Ⅲ)】8.导热问题的求解方法(解析解、数值解)。
考研传热学概念和问答总结
1.热流量:单位时间内所传递的热量2.热流密度:单位传热面上的热流量3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。
4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。
5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。
6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。
7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。
对流传热系数表示对流传热能力的大小。
8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。
辐射传热系数表示辐射传热能力的大小。
9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。
复合传热系数表示复合传热能力的大小。
10.总传热系数:总传热过程中热量传递能力的大小。
数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。
11.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
12.等温面(线):由物体内温度相同的点所连成的面(或线)。
13.温度梯度:在等温面法线方向上最大温度变化率。
14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
15.导温系数:材料传播温度变化能力大小的指标。
传热学考研复习纲要
传热学考研复习纲要第一章1、傅里叶导热定律的概念、公式、单位、物理意义2、导热、对流、辐射的概念;3、传热学的分析方法;4、传热方式的相关分析;5、传热过程以及引入传热过程这一概念的目的;第二章1、导热系数的物理意义(导热图中斜率)、计算公式、影响因素、比较;2、平壁、圆柱、球的导热热阻公式;平壁和圆柱的导热量计算公式;3、导热微分方程的两大定律、各种情况下的公式及各项的物理意义;4、等截面直肋的导热量等系列计算(重点)、测量气体温度的误差及降低方式;5、肋效率的计算公式、物理意义、影响因素(提高肋效率的方法)、是不是肋效率越高越好、肋面总效率的公式及各符号的意义、什么形状的肋效率最高;6、保温材料的概念、利用空气导热系数小这一特点制造保温材料的工程实例及原理;7、导热模型及导热机理;8、定解条件可分为:边界条件和初始条件、三类边界条件的公式及意义;9、热扩散率的公式、物理意义、影响因素、与导热系数的区别和联系;第三章1、集中参数法的概念、物理意义、使用条件(使用这个判据的理由)、两种可以使用集中参数法的特殊情况(无限大平板、表面换热系数趋于零);2、毕渥数的公式、物理意义、毕渥数不同的平壁温度分布图及特点;3、傅里叶数的公式、物理意义;4、集中参数法的计算:时间常数、变温所需时间、特征长度、判断依据、无限大平板(Bi趋于无穷)的计算方法;5、时间常数的公式、影响因素、物理意义,与时间常数大小相关的分析题;第四章1、泰勒公式展开;2、向前差分、向后差分、中心差分;3、公式第五章1、对流换热的概念、影响因素(……四个流体物性)、强制对流以及自然对流的概念;2、对流换热的分析方法(四个);3、流动边界层和温度边界层的概念、厚度、特点(四个)、引入边界层的目的;4、边界层流动状态的判据(为什么用这个判据);5、雷诺数的公式、物理意义、临界值;6、边界层根据雷诺数可分为三个区域;7、雷诺比拟、j因子;8、努赛尔数的公式、物理意义、与毕渥数的区别;9、边界层换热微分方程与第三类边界条件的区别;10、对流换热微分方程、动量微分方程、能量微分方程的公式及利用边界层的条件进行量纲分析后的简化公式、各项的物理意义;11、边界层内对流控制方程的三大定律;12、普朗特数的公式、物理意义、边界层厚度的比较(图)(什么物质大什么小)13、流体强制外掠平板的对流换热准则方程;第六章1、同类现象;2、特征长度、定性温度、特征流速的概念;3、各相似准则数的推导来源(雷诺数、格拉晓夫数、努赛尔数、贝克莱数、普朗特数)4、管内流动与管外流动的区别;5、入口段效应的概念、作用、充分发展段的概念、两个段的换热系数比较(图)6、管内流动层流湍流的临界值;7、管内强制对流的准则方程;8、温差效应修正(温度对流速的影响)、螺旋管效应修正、为什么螺旋管效应修正系数和入口段效应修正系数都大于1而温差效应修正系数小于1?;9、提高对流换热换热系数的方法;10、外掠管束中管子的两种排列方式、叉排与顺排的特点比较、管排修正系数;11、大空间自然对流边界层的温度和速度分布特点(图);12、大空间自然对流与有限空间自然对流的特点;13、温度越低密度越高而自然对流依靠重力实现;14、圆柱和竖壁自然对流的特征长度与横放竖放的区别;15、圆柱和竖壁自然对流准则方程:Nu=C(GrPr)n,n的取值与层湍流的关系;16、瑞利数的公式、自然对流与强制对流的层流湍流的判据的区别;17、有关空气对流换热系数小于水的对流换热系数的分析题;18、横掠单管和纵掠单管的比较、绕流脱体的形成机理(图);第七章1、凝结换热的概念、膜状凝结与珠状凝结的概念、形成机理;2、提高凝结换热换热系数的原则、凝结换热中的主要热阻;3、现代工程中常采用哪种凝结模式?(原因);4、膜状凝结过程管子横放与竖放的区别;5、膜状凝结的换热准则方程(记住公式中的因子含义和正反比关系即可,尤其是与凝结动力(过冷度)的几次方成正比);6、伽利略数的公式;7、凝结换热中的汽化潜热的相关计算、膜状凝结的层湍流判据;8、影响凝结换热的因素(六个),其中不凝结气体的影响机理;9、沸腾换热、大容器沸腾(池沸腾)、管内沸腾、饱和沸腾、过冷沸腾的概念;10、大容器沸腾各个区域的换热特点(图)、核态沸腾比膜态沸腾换热系数大的相关分析题;11、临界热流密度(CHF)(沸腾危机)的概念、工程中引入临界热流密度的意义(控制热流与控制壁温)、控制壁温条件下不会引起设备烧毁的相关分析题;12、大容器沸腾换热的准则方程各物理量的意义;13、沸腾换热主要受哪两个因素的影响、汽化核心的形成、凹坑处已形成汽化核心的原因相关分析题、汽化核心相关推导(最小半径);14、影响沸腾换热的因素(四个)(其中不凝结气体反而会促进换热);15、提高沸腾换热换热系数的原则;第八章1、黑体概念、性质、小孔形成黑体的原因;2、可见光、太阳光、工业温度下、红外线的波长范围;3、斯忒藩-波尔兹曼定律(公式)、普朗克定律、兰贝特定律(公式及推导)的概念;4、辐射力、光谱辐射力、定向辐射强度的概念;5、维恩位移定律的公式、概念(图);6、立体角、纬度角、辐射量的概念及计算;7、发射率(黑度)、光谱发射率、定向辐射率的概念公式(图);8、物体表面发射率的影响因素;9、灰体的概念、漫射体的概念、漫灰体的概念以及引入这些概念的原因;10、气体辐射的特点、气体辐射分为两种气体的辐射;11、贝尔定律公式、公式各物理量的含义;12、光谱吸收比的概念;13、温室效应的原因及各类相关分析题;14、吸收比与波长有关的相关分析题;15、实际物体的吸收比的影响因素;16、基尔霍夫定律的推导过程、两种表述、适用于灰体的情况、可得出黑体的一种性质;17、吸收比、反射比、穿透比的概念及计算公式、什么物体的反射比为0、什么物体的穿透比为0;第九章1、角系数的概念、计算方法、三个特性(公式);2、有效辐射、投入辐射的概念及物理意义;3、封闭腔内两灰体的辐射换热量的计算公式及三种特殊情况的处理;4、空间辐射热阻、表面辐射热阻的概念及计算;5、封闭腔内三灰体的辐射换热量的计算及网络图、重辐射面的概念、网络法的概念、引入网络图的理由;6、遮热板的概念及降低辐射换热量的原理、材料选择、工程应用;7、抽气遮热罩式测量高温气体温度可降低测温误差的原因及相关分析题;8、通过控制表面辐射热阻和空间辐射热阻来提高或降低辐射换热量的工程应用及相关分析题;第十章1、通过平壁的传热、通过圆管的传热传热量的计算公式、圆管的传热的传热系数、加肋后的传热系数、肋化系数的概念;2、临界热绝缘直径的概念、引入该概念的原因、为什么平壁传热不需要引入、临界热绝缘直径的计算公式、各物理量的意义;3、对数平均温差的概念、计算公式、物理意义、引入对数平均温差的原因、其它流动型式的对数平均温差的计算公式;4、换热器顺流布置和逆流布置的概念、各自的特点、各自优缺点、如何获得最大平均温差、一侧发生相变换热时的情况分析、顺流逆流布置的温度变化图;5、换热器的效能的概念、公式及物理意义;6、换热器的热计算的两种方法、两种类型、传热单元数的概念;7、强化传热的原则、措施、隔热保温技术、保温效率;8、污垢热阻的公式、有污垢热阻时的传热系数;。
传热学知识点总结考研真题
传热学知识点总结考研真题一、传热学概念传热学是研究物体之间热量传递的学科,研究热量传递的基本规律和热传递过程的数学模型。
热传递是热量自高温物体传递到低温物体的过程,主要包括传导、对流和辐射三种方式。
二、传热学基本知识1. 热量传递的基本规律热力学第一定律和第二定律规定了热量传递的基本规律。
第一定律要求能量守恒,在热传递中热量从高温物体流向低温物体,使热能分布均匀。
第二定律限制了热量传递的方向,指出热量自热量大者传递到热量小者。
2. 传热的基本方式传导是通过物体内部分子热运动传递热量的方式,是当物体内部温度不均匀时,热量由高温区向低温区传递。
对流是液体或气体中分子受热膨胀上升,冷却后下沉的过程,是传热最常见的方式。
辐射是热能以电磁波的形式传递的方式,适用于真空或无透明物质的热传递。
3. 传热的数学模型传热的数学模型主要采用热传导方程和流体力学方程,通过数学公式和定理来描述传热过程,求解传热问题。
热传导方程描述了传导过程中热量的扩散规律,流体力学方程描述了流体传热过程中的动力学规律。
4. 传热的工程应用传热学在工程中有着广泛的应用,如热工程、制冷空调、化工工程、建筑工程等都离不开传热学的理论和方法。
热传递是很多工程中必不可少的过程,通过传热学的知识和方法可以提高工程的效率和质量。
三、传热学的研究内容1. 传热传质物理基础传热传质物理基础包括热力学、流体力学、传热学、传质学等多个学科知识,主要研究物体间热量传递的基本规律和热量传递过程的数学模型。
此外,也需要涉及热传导、对流传热、辐射传热等传热方式的研究。
2. 传热的数学模型与方法传热学研究中需要建立相应的数学模型,并通过数学方法来解决传热问题。
传热的数学模型可以分为定常传热和非定常传热,通过微分方程和积分方程来描述传热过程,并通过数值计算方法来求解传热问题。
3. 传热的实验方法与技术传热学研究中需要进行大量的实验,通过实验来验证传热理论和模型的正确性。
传热学知识点总结
第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习;读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解;并能进行简单的计算;能对工程实际中简单的传热问题进行分析有哪些热量传递方式和环节..作为绪论;本章对全书的主要内容作了初步概括但没有深化;具体更深入的讨论在随后的章节中体现..本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式1.导热:依靠微观粒子的热运动而产生的热量传递..传热学重点研究的是在宏观温差作用下所发生的热量传递..傅立叶导热公式:2.对流换热:当流体流过物体表面时所发生的热量传递过程..牛顿冷却公式:3.辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力;辐射换热就是这两个过程共同作用的结果..由于电磁波只能直线传播;所以只有两个物体相互看得见的部分才能发生辐射换热..黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程..最简单的传热过程由三个环节串联组成..4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同;但却可以串联或并联同时存在于一个传热现象中..2.热阻概念的理解严格讲热阻只适用于一维热量传递过程;且在传递过程中热量不能有任何形式的损耗..思考题:1.冬天经太阳晒过的棉被盖起来很暖和;经过拍打以后;效果更加明显..为什么2.试分析室内暖气片的散热过程..3.冬天住在新建的居民楼比住旧楼房感觉更冷..试用传热学观点解释原因..4.从教材表1-1给出的几种h数值;你可以得到什么结论5.夏天;有两个完全相同的液氮贮存容器放在一起;一个表面已结霜;另一个则没有..请问哪个容器的隔热性能更好;为什么第二章导热基本定律及稳态导热§2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热§2-4伸展体的一维稳态导热 要求:本章应着重掌握Fourier 定律及其应用;影响导热系数的因素及导热问题的数学描写——导热微分方程及定解条件..在此基础上;能对几种典型几何形状物体的一维稳态导热问题用分析方法确定物体内的温度分布和通过物体的导热量.. 本章重点: 1.基本概念温度场 t =fx ;y ;z ;τ;稳态与非稳态;一维与二维 导热系数λ2.导热基本定律:可以认为是由傅立叶导热公式引深而得到;并具有更广泛的适应性.. (1) 可以应用于三维温度场中任何一个指定的方向 (2) 不要求物体的导热系数必须是常数 (3) 不要求沿x 方向的导热量处处相等 (4) 不要求沿x 方向的温度梯度处处相等 (5) 不要求是稳态导热3.导热微分方程式及定解条件1导热微分方程式控制了物体内部的温度分布规律;故亦称为温度控制方程只适用于物体的内部;不适用于物体的表面或边界..受到坐标系形式的限制..其推导依据是能量守恒定律和傅立叶定律.. 2定解条件定解条件包括初始条件和边界条件.. 第一类边界条件给定边界上的温度值 第二类边界条件给定边界上的热流密度值 第三类边界条件给定边界对流换热条件 3求解思路求解导热问题的思路主要遵循“物理问题 数学描写 求解方程 温度分布 热量计算” 4.一维稳态导热问题的解析解 1如何判断问题是否一维 2两种求解方法对具体一维稳态无内热源常物性导热问题;一般有两种求解方法:一是直接对导热微分方程从数学上求解;二是利用fourier 定律直接积分..前者只能得出温度分布再应用fourier 定律获得热流量.. 3温度分布曲线的绘制对一维稳态无内热源导热问题;当沿热流方向有面积或导热系数的变化时; 依此很容易判断温度分布.. 本章难点:本章难点是对傅立叶导热定律的深入理解并结合能量守恒定律灵活应用;这是研究及解决所有热传导问题的基础.. 思考题:1.如图所示为一维稳态导热的两层平壁内温度分布;导热系数λ均为常数..试确定: 1q 1;q 2及q 3的相对大小;2 λ1和λ2的相对大小..2.一球形贮罐内有-196 的液氦;外直径为2m;外包保温层厚30cm; 其λ= 0.6w/m.k..环境温度高达40 ;罐外空气与保温层间的h=5w/m 2.k 试计算通过保温层的热损失并判断保温层外是否结霜..3.试推导变截面伸展体的导热微分方程;并写出其边界条件..假设伸展体内导热是一维的..第三章 非稳态导热§3-1非稳态导热的基本概念 §3-1集总参数法§3-3非稳态导热过程的微分方程分析要求:通过本章的学习;读者应熟练掌握非稳态导热的基本特点;集总参数法的基本原理及其应用;一维非稳态导热问题的分析解及海斯勒图的使用方法..读者应能分析简化实际物理问题并建立其数学描写;然后求解得出其瞬时温度分布并计算在一段时间间隔内物体所传递的导热量.. 本章重点;一.非稳态导热过程1.实质:由于某种原因使物体内某点不断有净热量吸收或放出;形成了非稳态温度场..2.一维非稳态导热的三种情形:见教材图3-3.. 3.Bi;Fo 数的物理意义 二.集总参数法1.实质:是当导热体内部热阻 忽略不计即Bi 0时研究非稳态导热的一种方法..判别依据:Bi<0.1M..2.时间常数3.几点说明:导热体外的换热条件不局限于对流换热..建立导热微分方程的根本依据是能量守恒定律;由Bi 数的定义;若h 或特征长度d 未知时;事先无法知道Bi 数的大小;此时先假设集总参数法条件成立;待求出h 或d 之后;进行校核.. 三.一维非稳态导热分析解1.前提:一维、无内热源、常物性;Bi 或有限大..2.非稳态导热的正规状况阶段:当Fo>0.2以后;非稳态导热进入正规状况阶段..此时从数学上表现为解的无穷级数只需取第一项;从物理上表现为初始条件影响消失;只剩下边界条件和几何因素的影响.. 本章难点:1.对傅立叶数Fo 和毕渥数Bi 物理含义的理解..2.集总参数法和一维非稳态导热问题分析解的定量计算.. 思考题:1.两个侧面积和厚度都相同的大平板; 也一样;但导温系数a 不同..如将它们置于同一炉膛中加热;哪一个先达到炉膛温度2.两块厚度为30mm 的无限大平板;初始温度20℃;分别用铜和钢制成;平板两侧表面温度突然上升到60℃;试计算使两板中心温度均上升到56℃时;两板所需时间比..已知a 铜=103;a 钢=12.910-6m 2/s..3.某同学拟用集总参数法求解一维长圆柱的非稳态导热问题;他算出了Fo 和Bi 数;结果发现Bi 不满足集总参数法的条件;于是他改用Fo 和Bi 数查海斯勒图;你认为他的结果对吗;为什么4.在教材图3-6中;当 越小时; 越小;此时其他参数不变时 越小..即表明 越小;平板中心温度越接近流体温度..这说明 越小时物体被加热反而温升越快;与事实不符;请指出上述分析错误在什么地方..5.用热电偶测量气罐中气体的温度;热电偶初始温度20℃;与气体表面h=10w/m 2.k;热电偶近似为球形;直径0.2mm..试计算插入10s 后;热电偶的过余温度为初始过余温度的百分之几 要使温度计过余温度不大于初始过余温度的1%;至少需要多长时间 已知热电偶焊锡丝的 =67w/m.k; ρ=7310kg/m 3;c=228J/kg.k..第五章 对流换热§5-1 对流换热概说§5-2 对流换热的数学描写§5-3 对流换热边界层微分方程组§5-4 相似理论基础§5-5 管内受迫流动§5-6 横向外掠圆管的对流换热§5-7 自然对流换热及实验关联式要求;通过本章的学习;读者应从定性上熟练掌握对流换热的机理及其影响因素;边界层概念及其应用;以及在相似理论指导下的实验研究方法;进一步提出针对具体换热过程的强化传热措施..本章主要从定量上计算无相变流体的对流换热;读者应能正确选择实验关联式计算几种典型的无相变换热管槽内强制对流;外掠平板、单管及管束强制对流;大空间自然对流的表面传热系数及换热量..本章重点:一.对流换热及其影响因素对流换热是流体掠过与之有温差的壁面时发生的热量传递..导热和对流同时起作用..表面传热系数h是过程量..研究对流换热的目的从定性上讲是揭示对流换热机理并针对具体问题提出强化换热措施;从定量上讲是能计算不同形式的对流换热问题的h及Q..对流换热的影响因素总的来说包括流体的流动起因、流动状态、换热面几何因素、相变及流体热物性等..亦说明h是一复杂的过程量;Newton冷却公式仅仅是其定义式..二.牛顿冷却公式三.分析法求解对流换热问题的实质分析法求解对流换热问题的关键是获得正确的流体内温度分布;然后利用式5-3求出h;进而得到平均表面传热系数..四.边界层概念及其应用速度和温度边界层的特点及二者的区别..温度边界层内流体温度变化剧烈;是对流换热的主要热阻所在..数量级对比是推导边界层微分方程组常用的方法..基于:五.相似原理对流换热的主要研究方法是在相似理论指导下的实验方法..学习相似理论;应充分理解并掌握三个要点:如何安排实验应测的量;实验数据和整理方法;所得实验关联式推广应用的条件..准则数一般表现为相同量纲物理量或物理量组合的比值;在具体问题中表示的并不是其比值的真正大小;而是该比值的变化趋势..传热与流动中常见的准则数Re、Pr、Nu、Gr、Bi、Fo;其定义和物理意义是应该熟练掌握的..六.无相变对流换热的定量计算注意:判断问题的性质选择正确的实验关联式三大特征量的选取:、、牛顿冷却公式对不同的换热;温差和换热面积有区别实际问题中常常需要使用迭代方法求解;计算结束时应校核前提条件是否满足.. 或则 ;需先假定流态;最后再校核对流换热常常与辐射换热同时起作用;尤其在有气体参与的场合..本章难点:对流换热机理和过程的理解相似原理和相似准则数意义的理解定量计算思考题;1.管内强制对流换热;为何采用短管或弯管可以强化流体换热2.其它条件相同时;同一根管子横向冲刷与纵向冲刷比;哪个的h 大;为什么3.在地球表面某实验室内设计的自然对流换热实验;到太空中是否仍有效 为什么4.由 式中没有出现流速; h 与流体速度场无关;这样说对吗5.一般情况下粘度大的流体其Pr 也大..由 可知;Pr 越大;Nu 也越大;从而h 也越大;即粘度大的流体其h 也越高;这与经验结论相悖;为什么6.设圆管内强制对流处于均匀壁温t w 的条件;流动和换热达充分发展阶段..流体进口t f `;质量流量为q m ;定压比热容为c p ;流体与壁面间表面传热系数为h..试证明下列关系式成立: 式中P 为管横截面周长;t f x 指流体在截面x 处平均温度.. 7.初温为35 ℃流量为1.1kg/s 的水;进入直径为50mm 的加热管加热..管内壁温为65 ℃ ;如果要求水的出口温度为45 ℃ ;管长为多长 如果改用四根等长、直径为25mm 的管子并联代替前一根管子;问每根管子应为多长第六章 凝结与沸腾换热凝结换热现象膜状凝结分析解及实验关联式 影响凝结换热的因素 沸腾换热现象 沸腾换热计算式 影响沸腾换热的因素要求:通过本章的学习;读者应从定性方面掌握凝结和沸腾两种对流换热方式的特点、影响因素和强化措施;尤其是膜状凝结的影响因素和大容器饱和沸腾曲线..从定量上应掌握竖壁、水平单管和管束的膜状凝结工程计算;以及大容器核态沸腾及临界热流密度的计算.. 本章重点: 一.凝结换热 1.现象与特点产生条件是壁面温度<蒸气饱和温度..珠状凝结和膜状凝结的特点、热量传递规律;h 珠状>>h 膜状;但不能持久..2.竖壁膜状凝结分析解Nusselt 分析解基于9条假设;视液膜内只有纯导热..因此要获得局部表面传热系数;只需获得该处液膜厚度..3.膜状凝结的工程计算流态判别Re 迭代法;关联式;注意特征长度和定性温度 4.影响因素掌握膜状凝结诸影响因素;尤其是不凝性气体和蒸气流速的影响机理.. 5.凝结换热的强化当凝结热阻是传热过程主要分热阻时;强化效果较好..强化的原则主要是破坏或减薄液膜层;或加速液膜的排泄.. 二.沸腾换热 1.特点饱和沸腾和过冷沸腾;大容器沸腾和强制对流沸腾;沸腾与蒸发..汽化核心数是衡量强化沸腾的重要参数..2.大容器饱和沸腾曲线曲线形式;随着 t ;四个不同区域的换热规律和特点..核态沸腾是工业中理想的工作区域;其温差小;换热强..3.沸腾换热的两种加热方式控制壁温改变壁温t w 与液体饱和温度t s 之差 t=t w -t s ;q 的大小受沸腾侧影响很大.. 控制热流改变壁面处的热流密度q;q 取决于外部施加的条件;而与h 无关.. 4.临界热流密度q m a x 的意义对热流可控:使q< q m a x ;保证设备安全运行不致烧毁 对壁温可控:使 t< t c ;保证设备有较高的传热效率 5.沸腾换热的工程计算计算公式的拟合误差一般较大;因为沸腾换热机理复杂;受加热表面影响很大.. 6.汽化核心结合汽化核心概念理解沸腾换热机理;结合大容器饱和沸腾曲线了解气泡的生成、长大、脱离、破裂等规律7.沸腾换热影响因素和强化沸腾换热影响因素就是气泡生长运动的影响因素..强化沸腾换热的主要出发点是增加壁面汽化核心数;基本手段是沸腾表面的特殊加工.. 本章难点:凝结与沸腾换热机理和过程的理解 层流膜状凝结Nusselt 简化分析的理解 沸腾换热中烧毁点的理解 思考题:1.竖壁倾斜后其凝结换热表面传热系数将如何变化 为什么2.为什么蒸气中含有不凝性气体会影响凝结换热的强度3.两滴完全相同的水在大气压下分别滴在表面温度为120和400 的铁板上;哪块板上的水先被烧干 为什么4.在电厂动力冷凝器中主要冷凝介质是水蒸气;制冷系统的冷凝器中介质是氟利昂蒸气..在工程实际中常常要强化制冷设备中的凝结换热;而不强化电力设备中的;为什么5.压力为1.013 105Pa 的饱和水蒸气;用壁温为90 的水平铜管来凝结..方案一是用一根直径为10cm 的铜管;方案二是用10根直径为1cm 的铜管..其他条件都相同;哪个方案产生的凝液量多6.一竖管;管长为管径的64倍..为使管子竖放与平放的凝结表面传热系数相等;必须在竖管上安装多少个泄液盘 设相邻泄液盘之间距离相等..第七章 热辐射基本定律及物体的辐射特性§7-1 热辐射的基本概念 §7-2 黑体辐射基本定律 §7-3 实际物体的发射特性 §7-4 实际物体的吸收特性 要求:本章重点是了解热辐射的特点;掌握热辐射的一些基本概念;学习并理解描写黑体辐射的几个基本定律..理解基尔霍夫定律的含义及其作用;了解灰体与黑体、特别是灰体与实际物体的差异.. 本章重点:一.热辐射和黑体辐射 1.热辐射1热辐射指物体由于热的原因发射电磁波的过程..对工程实际的大多数问题来说;热辐射特性主要是红外线的特性;因此不能用可见光的理论来解释..2固体和液体的辐射和吸收是在物体表面上进行;而气体却在整个容积中进行..由此对固体和液体在研究发射和吸收特性时;均只研究半球空间..3黑体的定义是吸收比为1的物体;它是研究辐射换热最重要的简化模型..实际物体的辐射与吸收都以黑体为参照对象 ..在相同温度的物体中;黑体的辐射能力和吸收能力都是最大的..4“漫射体”和“灰体”是辐射换热研究中另外两个重要模型..漫射体是指辐射特性与方向无关的物体;灰体是指单色吸收比 与波长无关的物体.. 2.斯蒂芬-玻尔兹曼S-B 定律Eb= T 4 w/m23.普朗克Planck 定律和维恩Wien 位移定律Planck 定律描述黑体的E b 随 变化的规律..E b =f ;T;某一T 的曲线与横轴之间的面积代表了该T 下的E b ;并且T 越高;曲线的峰值越往短波方向移动..T m =常数就是Wien 位移定律.. 4.兰贝特Lambert 定律Lambert 定律描述的是黑体辐射能量在半球空间不同方向上的分布规律..应注意此时是指半球空间某一指定方向全部波长能量的分布规律;在不同方向上能量的比较;只有在相同立体角的基础上才有意义..Lambert 定律表明;虽然黑体辐射沿半球空间各方向的能量不相同沿表面法线方向最大;切线方向最小;但定向辐射强度却相同;这是由于定向辐射力的定义中强调的是辐射表面的面积;而定向辐射强度中用到的是可见辐射面积;所以表面法线方向可见辐射面积最大;其辐射能亦最大;切线方向可见面积为零;则辐射能也为零..黑体的定向辐射强度=常数..具有这种特性的表面即为漫射表面..漫射表面并非一定是黑体表面.. 5.黑体辐射函数F b 0- 表示某一T 下物体在0- 波长范围内黑体辐射能占同T 下黑体辐射力的百分比..它用来计算黑体或实际物体的辐射..见教材例7-4;7-5.. 二. 实际物体的辐射特性灰体和漫射体是实际物体的两种有效简化..1物体的发射率只取决于其表面特性;与外界条件无关 2对同种材料而言一般有 粗糙面> 磨光面; 氧化表面> 非氧化面3光滑表面的 =0.95 n ;粗糙表面的 =0.98 n ..工程中一般假定 = n = ;但高度磨光金属表面 =1.2 n4实际物体辐射力并非严格与T 4呈正比;但通常仍用T 4表示;而把其它复杂因素归于 中..5实际物体在表面法线方向大约 =0~60°范围内的定向发射率均保持常数;而表面发射的辐射能绝大部分集中在这一区域;因此通常认为金属和非金属表面为漫射表面.. 三. 实际物体的吸收特性实际物体的吸收特性远比其发射特性复杂;吸收比不仅取决于自身表面特性;还对投入辐射的波长具有选择性..灰体是对实际物体的吸收比进行抽象简化后的理想模型;它的 =常数..对灰体的理解;只要在所研究的辐射能覆盖的波长范围内 常数即可;而不必追求对所有波长都严格成立四. 基尔霍夫Kirchhoff 定律Kirchhoff 定律将实际物体的发射率与吸收比联系起来.. T= T 要求该物体在与黑体处于热平衡时成立..对漫射灰体而言;则恒有 T= T;而不需要附加条件.. 1 Kirchhoff 定律的三种不同表达式及其成立条件2研究有太阳辐射的情形时;不可随意利用 = 这一条件;因为太阳辐射不能作为灰体3对漫灰表面 T= T;表明同温度下黑体辐射力最大;善于发射的物体必善于吸收;对黑体 = =1 4引入Kirchhoff 定律后;物体的 与 被联系在一起;由于物体的 只取决于自身的温度及表面状况;一般文献中只给出 的数据.. 本章难点:对辐射强度定义的理解; 对Lambert 定律意义的认识引入漫灰表面的原因、作用和适用条件 Kirchhoff 定律的成立条件 思考题:1.解释下列名词:定向辐射强度、立体角、光谱发射率、灰体、漫射表面2.北方深秋的清晨常有霜降;试问树叶上、下表面的哪一面结霜 为什么3.“善于发射的物体必善于吸收”;即物体辐射力越大其吸收比也越大;你认为对吗4.窗玻璃对红外线几乎不透明;为什么隔着玻璃晒太阳会感到暖和5.选择太阳能集热器的表面涂料时;其 的最佳曲线应是怎样的 取暖用的辐射采暖片也应该用这种涂料吗6.白天;投射到水平屋顶上的太阳照度G s =1100w/m 2;室外空气t f =27 ;有风吹过时空气与屋顶的h=25w/m 2K;屋顶下表面绝热;上表面发射率 =0.2;对太阳辐射的吸收比 S =0.6;求稳定状态下屋顶的温度..设太空温度为绝对零度..7.一个100W 的灯泡在工作时;钨丝温度为2778K;钨丝表面黑度为0.3..求其发光效率..第八章 辐射换热计算§8-1 角系数§8-2 两固体表面间的辐射换热 §8-3 多表面系统的辐射换热 §8-4 辐射换热的强化与削弱 §8-5 气体辐射 要求:本章要求掌握角系数的定义、性质及计算方法..重点是利用代数分析法计算角系数..还要求读者熟练运用有效辐射概念及辐射网络图对两漫灰表面及三个漫灰表面组成的封闭腔系统进行辐射换热的计算..理解辐射换热强化与削弱的原理、遮热板的原理及应用.. 本章重点: 一.角系数1.角系数反映的是能量分配的关系;与物体发射辐射在空间不同方向的分布、两物体的几何形状及物体间距离有关..2.漫发射体对其它物体的角系数是纯几何参数..3.角系数的相对性、完整性和可加性是求角系数的基本关系式.. 二.物体间的辐射换热计算1.用漫灰体代替实际物体;辐射换热计算大为简化..因为:角系数是纯几何参数且 = ..2.投入辐射G 和有效辐射J一个辐射面的投入辐射是辐射系统中所有其它辐射面投向该面的热辐射总和..一个辐射面的有效辐射是离开这个面的所有热辐射;包括本身热辐射及反射热辐射本身热辐射只与该辐射面的特性有关;反射热辐射与其所在的辐射系统有很大关系.. 一个辐射面J-G 的大小决定了该面是吸收热量或放出热量.. 3.表面辐射热阻和空间辐射热阻表面辐射热阻表示一个物体参与辐射换热能力与黑体的差别..其大小与表面的辐射特性 吸收特性 都有关系;只是在 = 时有较为简单的表达式..空间辐射热阻表示两个辐射面由于空间位置所引起的辐射换热能力的减小;其大小只与两表面间的空间结构有关.. 4.等效网络图法辐射网络画好后;建立热辐射方程主要依据两个原理:其一是能量守恒;即流入某一节点的热量之代数和为零;其二是辐射热流率等于辐射驱动力除以辐射热阻的原理.. 重辐射面和黑体的区别:虽然看起来二者都有J=E b ..对重辐射面来说J=E b 是一个浮动热势;它与其它表面的J 及空间热阻有关..而对黑体表面来说; J=E b 是源热势;不依赖于其它表面..二者在网络图上亦有区别..5.辐射换热计算的要求我们所讨论的辐射换热计算是基于如下前提的: 1封闭腔模型 2稳态换热3所有表面不透明;但表面被透热介质隔开 4表面具有漫灰性质5每一表面的有效辐射J 是均匀的.. 6不计对流换热三.辐射换热的强化与削弱1.遮热板的原理:加入一块遮热板增加了两个表面热阻和一个空间热阻;因此辐射换热降低2.遮热板的应用:教材例8-9;8-10 四.气体辐射特点气体辐射对波长的选择性;容积性;不同气体辐射本领有差异..“温室效应”现象的解释 辐射换热名词术语汇总黑体、灰体、漫射体、封闭腔、重辐射面辐射力E 、光谱辐射力E 、发射率黑度 、定向辐射强度L 、有效辐射J 、投入辐射G 吸收比 、反射比 、穿透比 、光谱吸收比 、黑体辐射函数F b 0-S-B 定律、Planck 定律、Wien 位移定律、Lambert 定律、Kirchhoff 定律 角系数X i ;j 、角系数性质表面的净辐射换热量 i 、辐射换热量 i ;j 、表面辐射热阻、空间辐射热阻 遮热板、透热介质 立体角 、网络法 思考题:1.试解释下列名词:有效辐射;表面辐射热阻;重辐射面;遮热板2.黑体和重辐射面都有J=E b ..是否意味着二者有相同的性质3.在太阳系中地球和火星距太阳的距离相当;为什么火星表面温度昼夜变化要比地球大得多4.试求下列各图情形中的X 1;25.一直径为0.8m 的薄壁球形液氧贮存容器;被另一个直径为1.2m 的同心薄壁容器所包围..两容器表面为不透明的漫灰表面;黑度均为0.05;两容器表面之间是真空的..如果外表面的温度为300K;内表面温度为95K;试求由于蒸发使液氧损失的质量流量..液氧的蒸发潜热为 ..第九章 传热过程与换热器§9-1 复合换热过程§9-2 传热过程分析和计算 §9-3 传热的增强与削弱 §9-4 换热器§9-5 换热器的热计算要求:通过本章学习;从定量上应熟练掌握复合换热的分析计算、传热过程的分析计算、对数平均温差计算、间壁式换热器的设计和校核计算..从定性角度应掌握传热过程的热阻分析方法、临界热绝缘直径的含义、综合传热问题的分析方法.. 本章重点:。
(整理)传热学知识点
传热学主要知识点1.热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。
[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。
a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h因素:流速、流体物性、壁面形状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程Downside surface: adiabaticx A/4 A/4第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
《传热学》名词解释总结——考试专用
————————————第一章—————————————1)热量传递的动力:温差2)热量传递的三种基本传递方式:导热,热对流,热辐射3)导热:单纯的导热发生在密实的固体中4)对流换热:导热+热对流5)辐射换热:概念:物体间靠热辐射进行的热量传递过程称为辐射换热;特点:伴随能量形式的转换(能-电磁波能-能),不需要直接接触,不需要介质,只要大于0k就会不停的发射电磁波能进行能量传递(温度高的大)。
6)温度场:是指某一时刻空间所有各点的温度的总称7)等温面:同一时刻,温度场中所有温度相同的点连接所构成的面等温线:不同的等温线与同一平面相交,则在此平面上构成一簇曲线称(注:不会相交不会中断)8)温度梯度:自等温面上一点到另一个等温面,以该点的法线温度变化率最大。
以该点的法线方向为方向,数值也正好等于这个最大温度变化率的矢量称为温度梯度gradt(正方向朝着温度增加的方向)9)热流密度:单位时间单位面积上所传递的热量称为热流密度10)热流矢量:等温面上某点,已通过该点最大的热流密度的方向为方向,数值上也正好等于沿该方向热流密度的矢量称为热流密度矢量(正方向高温指向低温)11)傅里叶定律:适用于连续均匀和各项同性材料的稳态和非稳态导热过12)导热系数比较:金属大于非金属大于液体大于气体,纯物质大于含杂质的。
13)导热系数变化特点:气体随温度升高而升高,液体随温度升高而下降,金属随温度升高而下降,非金属保温材料随温度升高而升高,多孔材料要防潮。
14)导热过程完整的数学描述:导热微分方程+单值性条件。
15)单值性条件:几何条件(大小尺寸)+物理条件(热物性参数+热源有无等)+时间条件(是否稳态)+边界条件16)边界条件:第一类边界条件:已知任何时刻物体边界面上的温度值第二类边界条件:已知任何时刻物体边界面上热流密度第三类边界条件:已知边界面周围流体温度t和面界面与流体之间的表面传热系数h 17)热扩散率:a,表示物体被加热或被冷却时,物体部各部分温度趋向均匀一致的能力。
传热学考研知识点总结
1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
传热学内容总结讲解
传热学内容总结讲解传热学是研究热能的传递方式和规律的科学领域。
它涉及到热传导、热对流和热辐射三种方式的热能传递。
传热学的研究内容包括传热机制、传热性质、传热过程及应用等方面。
下面将对这些内容进行详细的总结讲解。
首先,传热机制是传热学的基础。
热传导是物质内部热能的传递方式,它依靠颗粒之间的热运动和碰撞传递热量。
热对流是通过流体的流动实现热能传递,流体中的分子具有不规则的热运动,当流体在温度梯度下流动时,会带走或带来热量,从而实现热能传递。
热辐射是通过电磁波的传播来传递热能,不需要传热介质的存在。
其次,传热性质是传热学的核心内容。
热传导性质是研究物质导热性能的指标,包括导热系数、导热方程和导热半径等。
导热系数代表了单位温度梯度下单位面积的热能传递量,它是描述物质导热性能的重要参数。
导热方程是用来描述热传导过程的数学方程,可以求解温度分布、热流密度等参数。
导热半径是用来描述热传导长度的指标,表示热传导在单位时间内能传播的距离。
再次,传热过程是传热学的重要研究内容。
热传导过程是物体内部热能传递的过程,可以通过热传导方程进行定量描述。
热对流过程是流体中热能传递的过程,可以通过热力学和流体力学的基本原理进行描述。
热辐射过程是通过电磁波传播热能的过程,可以通过辐射热传递公式进行定量描述。
在实际传热过程中,通常会有多种传热方式同时存在,需要综合考虑各种方式的贡献。
最后,传热学的应用十分广泛。
在热工学中,传热学在工程热设计、热过程计算和热设备优化方面发挥着重要作用。
在材料科学中,传热学可以用于研究材料的导热性能、传热过程及相变等问题。
在能源工程中,传热学可以用于研究能源转化和利用过程中的热传输问题,如热管、换热器等设备的设计与优化。
此外,传热学还广泛应用于建筑、环境、生物医学等领域,对于改善生活和保护环境具有重要意义。
综上所述,传热学是研究热能传递方式和规律的科学领域,涉及到热传导、热对流和热辐射三种方式的热能传递。
传热学知识点及思考题小结
传热学知识点及思考题小结1.夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。
试从传热的观点分析原因。
【要点】首先,冬季和夏季的最大区别是室外温度的不同。
夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。
而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。
因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。
因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。
人体对冷感的感受主要是散热量,在冬季散热量大,因此要穿厚一些的绒衣。
2.工程中应用多孔性材料作保温隔热,使用时应注意什么问题?为什么?【要点】保温材料应注意防潮。
保温材料的一个共同特点是它们经常呈多孔状,或者具有纤维结构,其中的热量传递是导热、对流传热、热辐射三种传热机理联合作用的综合过程。
如果保温材料受潮,水分将替代孔隙中的空气,这样不仅水分的导热系数高于空气,而且对流传热强度大幅度增加,这样材料保温性能会急剧下降。
3.在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?【要点】采用空心砖较好,因为空心砖内部充满着空气,而空气的导热系数相对较小,热阻较大,空心砖导热性较之实心砖差,同一条件下空心砖的房间的散热量小保温性好。
4.工程中应用多孔性材料作保温隔热,使用时应注意什么问题?为什么?【要点】保温材料应注意防潮。
保温材料的一个共同特点是它们经常呈多孔状,或者具有纤维结构,其中的热量传递是导热、对流传热、热辐射三种传热机理联合作用的综合过程。
如果保温材料受潮,水分将替代孔隙中的空气,这样不仅水分的导热系数高于空气,而且对流传热强度大幅度增加,这样材料保温性能会急剧下降。
5.一块被烧至高温(超过400℃)的红砖,迅速投入一桶冷水中,红砖自行破裂,而铁块则不会出现此现象。
试解释其原因。
【要点】红砖的导热系数小,以致Bi较大,即在非稳态导热现象中,内部热阻较大,当一块被烧至高温的红砖被迅速投入一桶冷水中后,其内部温差较大,从而产生较大的热应力,则红砖会自行破裂。
同济考研815传热学复习大纲(知识点总结)
4) 散热量
5)管内流体流过100米温度降为多少?如何求呢?
• 管内流体流过100米温度降为多少?
根据热力学第一定律:管内流体内能(焓)的变化量等于 管壁内外流体之间的换热量。
4、 分 析 (1)影响对流换热系数的因素及其物理机理, (2)根据边界层画出各类对流换热局部对流换热系
数曲线, (3)管内强制对流进行管长、弯管及其温度修正的
物理原因, (4)影响膜状凝结换热的因素, (5)珠状凝结换热为何强于膜态凝结, (6)大容器饱和沸腾曲线, (7)对流换热系数的大概数量级,
备注:管内流动的对流换热实验关联式 管外横掠的对流换热实验关联式 管外自然对流换热实验关联式 以上三式定性温度均取流体已知温度。
解: 1) 定性条件已知,由题意知
2)定性条件已知,由题意知
3) 1m长管道的热阻 总的传热阻共有四部分组成:
管道内流体与管道内壁的对流换热热阻, 管道内壁到外壁间的导热热阻, 管道外壁与保温层外层的导热热阻 和和空气对流换热的热阻.
)
1
2sin 1 sin 1 cos
1
cos(1
e x ) 12F0
Q cV [t0 t(x, )]dV 1
Q0
cV (t0 t )
0
e
1 v
dv
v
0
1
2sin 1 sin 1 cos 1
(
12
F0
)
sin 1 1
其中:
(9)、导热问题的数值解法和差分方程建立: 1)、差分替代微分 2)、泰勒级数法和控制容积法(热平衡法) 3)、稳态一维导热问题的数值解法
传热学 知识点 概念 总结
一、参考书目:传热学A 《传热学》杨世铭、陶文铨,高等教育出版社,2006年二、基本要求1. 掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律;2. 能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析;3. 对典型的传热现象能进行分析,建立合适的数学模型并求解;4. 能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。
三、主要知识点第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。
第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。
第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件);第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。
第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。
第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。
第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩-玻尔兹曼定律,兰贝特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法
3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值
5效能:表示换热器的实际换热效果与最大可能的换热效果之比
6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。
对流仅能发生在流体中,而且必然伴随有导热现象。
对流两大类:自然对流与强制对流。
影响换热系数因素:流体的物性,换热表面的形状与布置,流速
7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?
蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。
不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。
首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。
主要分为两个阶段:非正规状况阶段和正规状况阶段
9灰体有什么主要特征?灰体的吸收率与哪些因素有关?
灰体的主要特征是光谱吸收比与波长无关。
灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。
10气体与一般固体比较其辐射特性有什么主要差别?
气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的
11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?
平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。
纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。
12边界层,边界层理论
边界层理论:(1)流场可划分为主流区和边界层区。
只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。
(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与紊流,紊流边界层内紧靠壁面处仍有层流底层。
13液体发生大容器饱和沸腾时,随着壁面过热度的增高,会出现哪几个换热规律不同的区域?这几个区域
的换热分别有什么特点?为什么把热流密度的峰值称为烧毁点?
分为四个区域:1、自然对流区,这个区域传热属于自然对流工况。
2、核态沸腾区,换热特点:温压小、传热强。
3、过度沸腾区:传热特点:热流密度随着温压的升高而降低,传热很不稳定。
4、膜态沸腾区:传热特点:传热系数很小。
由于超过热流密度的峰值可能会导致设备烧毁,所以热流密度的峰值也称为烧毁点。
14阐述兰贝特定律的内容。
说明什么是漫射表面?角系数具有哪三个性质?在什么情况下是一个纯几何因子,和两个表面的温度和黑度没有关系?
兰贝特定律给出了黑体辐射能按空间方向的分布规律,它表明黑体单位面积辐射出去的能量在空间的不同方向分布是不均匀的,按空间纬度角的余弦规律变化:在垂直于该表面的方向最大,而与表面平行的方向为零。
光谱吸收比与波长无关的表面称为漫射表面。
角系数的三个性质:相对性、完整性、可加性。
当满足两个条件:(1)所研究的表面是漫射的(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的。
此时角系数是一个纯几何因子,和两个表面的温度和黑度没有关系。
15试述气体辐射的基本特点。
气体能当灰体来处理吗?请说明原因
气体辐射的基本特点:(1)气体辐射对波长具有选择性(2)气体辐射和吸收是在整个容积中进行的。
气体不能当做灰体来处理,因为气体辐射对波长具有选择性,而只有辐射与波长无关的物体才可以称为灰体。
16试说明管槽内强制对流换热的入口效应。
流体在管内流动过程中,随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动与管内的流动有什么不同
管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。
入口段的热边界层较薄,局部表面传热系数较高,且沿着主流方向逐渐降低。
充分发展段的局部表面传热系数较低。
外掠单管流动的特点:边界层分离、发生绕流脱体而产生回流、漩涡和涡束。
18为什么在给圆管加保温材料的时候需要考虑临界热绝缘直径的问题而平壁不需要考虑?
圆管外敷设保温层同时具有减小表面对流传热热阻及增加导热热阻两种相反的作用,在这两种作用下会存在一个散热量的最大值,,在此时的圆管外径就是临界绝缘直径。
而平壁不存在这样的问题。
19为什么二氧化碳被称作“温室效应”气体?
气体的辐射与吸收对波长具有选择性,二氧化碳等气体聚集在地球的外侧就好像给地球罩上了一层玻璃窗:以可见光为主的太阳能可以达到地球的表面,而地球上一般温度下的物体所辐射的红外范围内的热辐射则大量被这些气体吸收,无法散发到宇宙空间,使得地球表面的温度逐渐升高。
20试分析大空间饱和沸腾和凝结两种情况下,如果存在少量不凝性气体会对传热效果分别产生什么影响?原因?
对于凝结,蒸气中的不可凝结气体会降低表面传热系数,因为在靠近液膜表面的蒸气侧,随着蒸气的凝结,
蒸气分压力减小而不凝结气体的分压力增大。
蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。
因此,不凝结气体层的存在增加了传递过程的阻力。
大空间饱和沸腾过程中,溶解于液体中的不凝结气体会使沸腾传热得到某种强化,这是因为,随着工作液体温度的升高,不凝结气体会从液体中逸出,使壁面附近的微小凹坑得以活化,成为汽泡的胚芽,从而使q~Δt沸腾曲线向着Δt减小的方向移动,即在相同的Δt下产生更高的热流密度,强化了传热。
21太阳能集热器的吸收板表面有时覆以一层选择性涂层,使表面吸收阳光的能力比本身辐射能力高出很多倍。
请问这一现象与吉尔霍夫定律是否矛盾?原因?
基尔霍夫定律表明物体的吸收比等于发射率,但是这一结论是在“物体与黑体投入辐射处于热平衡”这样严格的条件下才成立的,而太阳能集热器的吸收板表面涂上选择性涂层,投入辐射既非黑体辐射,更不是处于热平衡,所以,表面吸收阳光的能力比本身辐射能力高出很多倍,这一现象与基尔霍夫定律不相矛盾。
22请说明Nu、Bi的物理意义,Bi趋于0和趋于无穷时各代表什么样的换热条件?
Nu数表明壁面上流体的无量纲温度梯度
Bi表明固体内部导热热阻与界面上换热热阻之比
Bi趋于0时平板内部导热热阻几乎可以忽略,因而任一时刻平板中各点的温度接近均匀,并随着时间的推移整体的下降,逐渐趋近于外界温度。
Bi趋于无穷时,表面的对流换热热阻几乎可以忽略,因而过程一开始平板的表面温度就被冷却到外界温度,随着时间的推移,平板内部各点的温度逐渐下降而趋近于外界温度。
23举例说明什么是温室效应,以及产生温室效应的原因
位于太阳照耀下被玻璃封闭起来的空间,例如小轿车、培养植物的暖房等,其内的温度明显地高于外界温度,这种现象称为温室效应。
这是因为玻璃对太阳辐射具有强烈的选择性吸收性,从而大部分太阳辐射能穿过玻璃进入有吸热面的腔内,而吸热面发出的常温下的长波辐射却被玻璃阻隔在腔内,从而产生了所谓的温室效应。
24数值分析法的基本思想
对物理问题进行数值求解的基本思想可以概括为:把原来的时间、空间坐标系中连续的物理量的场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
25强化沸腾的方法
强化沸腾的方法:1、强化大容器沸腾的表面结构,2、强化管内沸腾的表面结构。